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l. Introduction

We present a framework towards a construction (of the classical action) of gauge
field theories out of the following input data:

1) The (Lie) group of local gauge transformations ¢ .

2) Chiral fermions ¢ transforming under a representation 7 of ¢ .

3) The fermionic mass matrix M , i.e. fermion masses plus generalized

Kobayashi-Maskawa matrices.

4) Possibly the spontaneous symmetry breaking pattern of ¢ .

At first sight, this setting seems to be adapted to the Connes-Lott prescription!
of non—commutative geometry (NCG). However, it was proved in Ref. 2 that
only the standard model can be constructed within that scheme — out of a K-
cycle!3 (nowadays called spectral triple) with real structure.* For details of this
construction see Refs. 5,6. It is certainly to early to judge from experimental
results whether the standard model is correct or not. At least there exist good
reasons’ why one could be interested in Grand Unified Theories (GUT’s). It
is clear from Ref. 2 that the discussion of such models within NCG requires
additional structures or different methods. The perhaps most successful NCG—
approach towards Grand Unification was proposed in Refs. 810, where the K-
cycle plays an auxiliary role.

The author of this paper has sketched in Ref. 11 a concept towards gauge
field theories based upon unitary Lie algebras instead of unital associative x—
algebras. Our concept requires the same amount of structures as the Connes—
Lott prescription and is physically motivated. Starting from the above physical
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data 1) to 4) one obtains a K—cycle by enlarging the gauge group ¢ to a unital
associative x—algebra A , provided that it is possible to extend the representation
7 to a representation of A . We shall go the opposite way: We restrict the gauge
group to its infinitesimal elements, giving the Lie algebra of ¢ . In our case there
are no obstructions for the representation, and — in principle — any physical
model based upon 1) to 4) can be constructed. In this paper we present the
mathematical footing of that line. We shall develop techniques adapted to this
case that differ from those of Connes and Lott.

The paper is organized as follows: Sec. II contains the general construction,
without any reference to a physical model. We start in Sec. II.A with basic
definitions concerning L—cycles, the basic geometric object in our approach. In
Sec. I1.B we construct the universal graded differential Lie algebra (2*g and derive
properties of its elements. Using the data specified in the L-cycle we define in
Sec. II.C a Lie algebra representation 7 of 2*g in #(h) . Factorization of 7(£2*g)
with respect to the differential ideal w(7"g) yields the graded differential Lie
algebra €27,g. In Sec. II.D we introduce the important map o, which enables us
to give a convenient form to the ideal 7(J"*g) . Using the language of graded Lie
homomorphisms introduced in Sec. [I.LE we define in Sec. IL.LF the fundamental
objects of gauge field theories: connections, curvatures, gauge transformations,
bosonic and fermionic actions.

In Sec. I1I we apply the general scheme to L—cycles over functions ® matrices.
That class of L—cycles, which has a direct relation to physical models, is defined
in Sec. III.LA. For the space-time part it is convenient to redefine the exterior
differential algebra A*, see Sec. III.B. This enables us decompose in Sec. 1I1.C
the graded Lie algebra 7(Q*g) and in Sec. IIL1.D the ideal 7(J*g) into space—time
part and matrix part. The decomposition of the formulae for the differential and
the commutator is given in Sec. [II.LE. Finally, we consider in Sec. IIL.F local
connections.

Il. L-Cycles and Graded Differential Lie Algebras
A. The L-Cycle

The basic geometric object in our NCG-prescription is an L-cycle, which differs
from a K-cycle®? used in the Connes-Lott prescription by the implementation
of unitary Lie algebras instead of unital associative x—algebras:

Definition 1. An L-cycle (g, h, D, 7,T') over a unitary Lie algebra g is given by

i) an involutive representation ® of g in the Lie algebra HB(h) of bounded
operators on a Hilbert space h, i.e. (m(a))* = w(a*) = —n(a), for any
acg,

i) a (possibly unbounded) selfadjoint operator D on h such that (id, +D?)~*
is compact and for all a € g there is [D,n(a)] € AB(h), where id;, denotes
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the identity on h,
i) a selfadjoint operator T on h, fulfilling T? = id,, , TD+ DT = 0 and T'r(a)—
(@) =0, forallacg.

Any Lie algebra g can be embedded into its universal enveloping algebra (g) , and
the representation 7 : g — Z(h) extends to a representation 7 : U(g) — HA(h)
(Poincaré-Birkhoff-Witt theorem'?). In this sense, any L-cycle can be embedded
into its “enveloping K—cycle”. However, the gauge field theory obtained by the
Connes—Lott prescription’3 from this enveloping K—cycle differs from the gauge
field theory we are going to develop for the L—cycle. Our construction follows the
ideas of Connes and Lott, but the methods and results are different.

Although we do not need it, let us translate properties of a K-cycle into
definitions for the L—cycle. We use the definition of the distance on a K—cycle!?
to define the distance between linear functionals x;, x5 : g — C of the Lie algebra:

Definition 2. Let X be the space of linear functionals of g. The distance
dist(xy,x3) between x1,x9 € X is given by

dist(x1,x2) :=sup{ |xi(a) — x2(a)| : [|[D,7(a)]|| <1 }.
acg
This definition makes (X, dist) to a metric space, and there is no need for 7 being
an algebra homomorphism.

Next, we can take the definition of integration on a K-cycle!? to define the
notion of integration on an L—cycle:

Definition 3. Let d € [1,00) be a real number. An L-cycle (g,h, D, m,T) is
called d*—summable if the eigenvalues E, of D — arranged in increasing order —
satisfy

erjzl En_1 = O( Zfzvzl n—td ) -

We define the integration
/ la|? dp := const.(d) Tr,((x(a))? D™, aca,
X

where Tr,, is the Dizmier trace, du is the “volume measure” on X and const.(d)
refers to a constant depending on d .

B. The Universal Graded Differential Lie Algebra (2*g

To construct differential algebras over a K—cycle (A, h, D) one starts from the
universal differential algebra Q*A4 over A and factorizes this differential algebra
with respect to a differential ideal determined by the representation 7 of Q*A
in Z(h) . In analogy to this procedure we first define a universal differential Lie
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algebra 2*g over the Lie algebra g of the L—cycle. Then we define a representation
7w of Q*g in #(h). Finally, we perform the factorization with respect to the
differential ideal.

Let g be a Lie algebra over R with involution given by a* = —a, for a € g.
The construction of the universal graded differential Lie algebra 2*g over the Lie
algebra g goes as follows: First, let dg be another copy of g. Let V(g) be the free
vector space generated by g and let V' (dg) be the free vector space generated by

dg,

Vig)=EPV., V,=RVacg,
°g (2.1)
V(dg):=EP Vi, Vau=RVdacdg.
dacdg

For a vector space X we denote by ¢, the function on X, which takes the value
1 at the point x € X and the value 0 at all points y # x . Then,

Vig)={ Y, 0o, G €8, Xa€R},
Vidg) ={ >, Maldae » Ga €9, Ao E€RY},

where the sums are finite. Let T'(g) be the tensor algebra of V(g) @V (dg) , which
carries a natural N-grading structure. We define deg(v) = 0 for v € V(g) and
deg(v) =1 for v € V(dg) . For tensor products v @ v, ® ... ® v, € T'(g), where
each v;, i =1,...,n, belongs either to V(g) or to V(dg), we define

(2.2)

deg(v)1 @12 ® ... Q vy,) := > deg(uv;) . (2.3)
Now we have

T(g) =EP1"0) . T"(g) :={ t € T(g) ,deg(t) =n } . (2.4)

nelN

In particular, we have T%(g) ® T'(g) C T*"(g) .
Next, we regard T'(g) as a graded Lie algebra with graded commutator given
by

th ] =ttet - (-D)" et , t*eThg), teTg). (2.5)
Obviously, one has

DI (L I S § L
2) (15, A+ M) = A[F, 8] + A[EF, 21 ~ (2.6)
3) (=1)Fm et [ 8]+ ()™ [ )+ (=)™ [ ] =0,

for t* € T*(g), ,1 € T'(g), i™ € T™(g) and \,\ € R.
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Let Qg = D.en Q"g be the N-graded Lie subalgebra of T'(g) given by the
set of all repeated commutators (in the sense of (2.5)) of elements of V'(g) and
V(dg) . Let I'(g) be the vector subspace of 2*g of elements of the following type:

A(Sa - 5)\(1 ) A(Sda - 5d()\a) )
5@ + 5& - 5@—1—& ) 5da + 5d& - 6d(a+&) ) (27)
[0a, 0a] — Ojaa] [6das 0a] + [0a; 0da) — ddfa,a) »

for a,a € g and A € R. Obviously,

I(g) := I'(g) +[V () ® V(dg), I'(g)]
+[V(g) @ V(dg),[V(e) ®V(dg),I'(g)l] + ... (2.8)

is an N-graded ideal of Q*g, I(g) = @,,cx I"(g) - Then,

N'g = @Q”g , Qg := Qg /I"(g) , (2.9)

neN

is an N—graded Lie algebra, with commutator given by
[w+1(g), @+ 1(9)] :=[w, @] +1(g), w,TeNg. (2.10)

On T'(g) we define recursively a graded differential as an R-linear map d :
T"(g) — T"**(g) by

d()\éa) = Aga d()\éda) =0, (2 11)
d(AJy @ 1) :=Nogq @t + N0y @ dt d(Nge @ 1) := =gy ® dt , ’
foraeg,teT(g) and A € R. From this definition we get
B?(M\6g) =d(Mge) =0, d*(Noga) =0,
d*(Ay @ 1) = d(Aaa @ 1) + d(N, ® dt) (2.12)

= —Agg @ dt + Ny @ dt + \o, ® d*t = N6, @ d*t ,
d*(Nogo ®@ 1) = Mgy @ d?t ,

therefore, by induction, d*> = 0 on T'(g). In order to show that d is a graded
differential we use the following equivalent characterization of (2.11):

n
d(Ul X...Q Un) = Z(—I)E;;ll deg(vj)vl XR...01V,1 R dvi (29 Vi1 XR...vU, .
i=1 (2.13)

Fort = v ®...Quv, € TF(g), k =1 deg(v;), and # € T'(g) we get from
(2.13)

dt* @) =d(t*) @ + (1) @ dt' . (2.14)
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Thus, d defined by (2.11) is a graded differential of the tensor algebra T'(g).
Moreover, d is also a graded differential of the graded Lie algebra T'(g) :
ditt, 1] =d(tF @ 1" — (~1)*# @ t*)
=d(t") @ — (~1)FE @ dth) + (-1)*(t* @ di' — (~1)P V() @ t¥)
= [dt*, 1] + (=1)*[t*, dt'] .
Now, from d(V'(g) ® V'(dg)) C V(g) ® V(dg) we conclude that d is also a graded

differential of the graded Lie subalgebra Q*g C T'(g) .
Next, we show that dI'(g) C I'(g) :

d(Abg — Oxa) = Ada — dd(ra) » d(Xga — bd(ra)) =0,
d(éa + 5& - 5a+a) 5da + 5da - 5(1 a+a) > d(éda + 5da 5d )) 0 ) (2 15)
([5(176 ] a&):[édaad ]+[6a75da] 5daa ) ‘
d([0das 0a] + [0, Oda) — Oda,a] ) —[0da, 0da) + [0da, 0da) =
(

Since d(V(g) ® V(dg)) C V(g) ® V(dg), we get from (2.8)
dI(g) C I(g) - (2.16)

Therefore, the graded differential d on Q*g induces a graded differential on Q*g
denoted by the same symbol:

dw+1(g)) :=dw+1(g), weQyg. (2.17)

Hence, (Q*g, [, |, d) is a graded differential Lie algebra.
We extend the involution * : @ — —a on g to an involution of the free vector
spaces V(g) and V' (dg) by

(Ada)™ = —Ad, (Adga)™ = —Aq - (2.18)
We obtain an involution of 7'(g) by
(M OUVR...0W) '=u,®...0 v, QU] , (2.19)
fulfilling
i) ="t . (2.20)

Formula (2.20) induces the following property of the Lie bracket (2.5):

(5, 8] = —(=1)" [, 1] . (2.21)
Because of (V(g) ® V(dg))" = V(g) ® V(dg) we get an involution on Q*g by
restricting the involution on 7'(V') to its graded Lie subalgebra 2*g. Obviously,

we have I'(g)" = I'(g), giving I(g)* = I(g) . Therefore, we obtain an involution
on 2*g by

(w+1I(g) =w" +1(g), weg. (2.22)

The graded differential Lie algebra €2*g is universal in the following sense:
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Proposition 4. Let A*g = @, . A"g be an N-graded Lie algebra with graded
differential d : A"g — A"Tlg such that

i) Ag = n(g) for a surjective homomorphism m : g — m(g) of Lie algebras,
ii) A*g is generated by w(g) and dw(g) as the set of repeated commutators.
Then there exists a differential ideal Iy C Q*g such that A*g = Q*g/I, .

Proof: We define a surjective mapping p : Q*g — A*g by

for a € g, w,@ € Q*g and A € R. Obviously, p(I(g)) = 0. Therefore, by
factorization with respect to I(g) we get a surjection p : Q*g — A*g by p(w +
I(g)) == p(w), for w € U*g. We have p(dkerp) = 0, therefore, Iy = kerp is the
desired differential ideal of Q2*g :

ANg=Q'g/ kerp . O]

Proposition 4 tells us that each graded differential Lie algebra generated by 7 (g)
and its differential is obtained by factorizing (2*g with respect to a differential
ideal. For the setting described by an L—cycle, such a differential ideal is canoni-
cally given. This leads to a canonical graded differential Lie algebra, see Sec. I1.C.

To summarize: We have defined a universal graded differential Lie algebra
Yg=@D, ,"g over a Lie algebra g, with:

— graded commutator [, ]: QFg x Qlg — QF+lg

— universal differential d : Q%g — QFT'g . which is linear, nilpotent and obeys

the graded Leibniz rule.

— involution * : QFg — QFg.

Explicitly, we have the following properties:

1) [wF &Y = (D" W], (2.23a)
2) [k, A&t + 33 = Awk, 0] + AWk, &, ) (2.23b)
3) (=)W, (@ M) + (D)@ (@, Wk + (—1)™E™, W, O] =0, (2.23¢)
4) dlw*, &' = [dw”, &' + (= 1)F[w*, do' | (2.23d)
5) d*w" =0, (2.23¢)
6) [wk7 ~l]* — ( l)kl[u)k*,&)l*] : (2 23f)

oy =l I~ 3
for w* € QFg, oL@ € Qlg, & € Qmgand \,\ € R.
It is convenient to fix a canonical ordering in elements of Q*g, k > 1. First,
let

(a) :==06,+I(g), v(da) := 640 + 1(g) , (2.24)
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for a € g. The first equation establishes an isomorphism Q°g = g. We shall
represent elements w! € Qlg as

w! = u(da) +Zo¢ z>1[ o(ag,), [ [u(a
__§:a¢20[( ) [ [( ) h aa

where a,a’, € g and the sums are finite. To avoid possible misunderstandings
concerning this notation we fix throughout this paper the following convention:
Beginning with z = 1, the index « first runs from 1 to a; > 0 and labels the
terms

[t(a1), e(dal)], . . ., [uag, ), t(dag, )]
n (2.25). Then, for z = 2, the index « runs from «; + 1 to ay > a4 and labels
the commutators

(a8, 1), [ag, 1), eldag, )], - [ulag, ), [ag,), e(dag, )]
n (2.25), and so on. Therefore, the pair (7, 3) of indices labelling an element
aiﬂ € g does never occur more than once in the sum (2.25). Moreover, we identify
the term belonging to the pair (a = 0,z = 0) of indices with «(da), as already
indicated in (2.25).

Now, we write down elements w* € QFg, k > 2, recursively as

o) [L(&1 ), l(dag)l]. .. ]
), (da)l] 11, (2.25)

wh =3 [wk ok wleQlg, @ teQflg, finite sum . (2.26)

There are two things to check concerning (2.26). First, for o" = 3 [0, on) ] €

Qng, with @! € Q'g and &, feqn- lg, we must show that also [w% @"] € Qg
can be represented in the standard form (2.26), for any w® € Q%g. But this follows
from the graded Jacobi identity (2.23c):

«

Second, we must show that the commutator [w* &'] € Q**g for 2 < k <1, can
be represented in the standard form (2.26) of an element of Q*'g provided that
both wk € QFg and @' € Q'g are written down recursively in the form (2.26).

Using again (2.23b) and (2.23¢) we get for wb = 3 [w!, &b ]
wh, 0] = ~(~)* T, (0", [wh, B ]
=5 (Wb, [Eg @) + (—D¥y  [wh, @)

. . . ~k-1 _ ~k—
Repeating this calculation for the commutators [w,, 1, @' and [w, '

can recursively decrease the degree k until we arrive at degree 1.

1 ~l

o, @', we

Jw
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Now we can easily prove
(W) = —(=1)kE=D2Gk ke Qg (2.27)
By definition, ( .27) holds for k£ = 0. From (2.25) and (2.23f) we get for w' € Q'g

=2 azolt(@d), [ [L(a) (dag N
Z solt(@2), ([ [elad), o(dad)] ... ])°]
= Daezolt(@d), [ [lag), ((dag))'] . ]] = —wt .

In the same way we get from (2.26) and (2.23f) for w* € QFg

)
W = Palog, G717 = (D) Ll (47T = (—)E Dk

[0}

_( 1) k(k— 1)/2wk.

C. The Graded Differential Lie Algebra (1},g

Following the procedure for K-cycles we define an involutive representation 7 of
the universal differential Lie algebra (2*g introduced in Sec. II.B in the graded
Lie algebra Z(h) of bounded operators on h, where h is the Hilbert space of the
L—cycle given in Definition 1. We underline that 7 will not be a representation of
graded Lie algebras with differential. The definition of 7 uses almost the whole
input contained in the L—cycle. First, using the grading operator I', we define a
Zs—grading structure on the vector space &'(h) of linear operators on the Hilbert
space h, O(h) = Oy(h) ® O1(h), by

Oo(W)D =T 0y(h) , o, (WD = —T'0,(h) . (2.28)

This enables us to introduce the graded commutator for Zs—graded linear op-
erators on h : For A; € 0;(h) and B; € 0;(h) N #(h), where both A;, B; are
selfadjoint or skew—adjoint on h, we define

[A;, Bj]y := Ao Bj — (=1)"B;j 0 A; = —(-1)"[B;, A, (2.29)

on the subset A’ = domain(A4;) N {¢ € h, Bj;y € domain(A;)} of h. In certain
cases it may be possible to extend A’. One has A; € Z(h) iff b = h.
Let us define a linear mapping 7 : Q*g — %(h) by

T(Adg) :=m(Aa) , (2.30a)
#(Aaa) 1= [-iD, w(Aa)], = [-iD, 7(\a)] , (2.30b)
([, &) =7 (@), 7 (&), | (2.30c)

fora € g, w* € Ofg, &' € Qlg and A € R. Note that 7(a) and [D,7(a)] are
bounded due to Definition 1 so that the r.h.s. of equations (2.30a) and (2.30b)
belong to #(h). Now, due to 7(g) C Oy(h) and D € O,(h), we get from (2.30)

7(Q%*g) C Oy(h) , 7(Q*+1g) C O1(h) . (2.31)
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Next, we show that 7 : Q*g — Z(h) is an involutive representation, where
we recall that the involution in Z(h) is defined as usual by means of the scalar
product (, ), on h :

<'¢JT*{b>h = <T¢Y7{b>h ) V"#a{ﬁ €h , TE ‘%(h) . (232)

First, from (2.18), (2.30a) and the fact that = : g — Z(h) is an involutive
representation we get

T((Aa)") = =7 (Aa) = —m(Aa) = (1(Aa))* = (7(Ada))"
Second, from (2.18), (2.30b) and the selfadjointness of D we obtain

T((Adga)) = =7 (ANdga) = 1(D o w(Aa) — w(Aa) o D)
=—(=1)"(D" o (n(Aa))" = (w(Aa))* o D)
=—{-i(r(Aa) o D = Dom(Aa))}" = (7(Adua))"

Now we get by induction that 7 is an involutive representation on Q*g.
Observe that

7(I(g))=0. (2.33)

Therefore, the involutive representation 7 : Q*g — 2 (h) induces an involutive
representation 7 : Q*g — Z(h) by (the symbol 7 is already used but there is no
danger of confusion)

m(w+1(g)) =7(w), weyg. (2.34)

In the same way as for K—cycles there may exist w € Q*g, fulfilling 7(w) =0
but not 7(dw) = 0. Therefore, 7(Q2*g) is not a differential Lie algebra. But there
is a canonical construction towards such an object. Let us define

j*g:ker7r+dker7r:@jk , Tk = Tgn QFg . (2.35)

To obtain a differential Lie algebra we first prove:
Lemma 5. J7g is a graded differential ideal of the graded Lie algebra 2*g.

Proof: It is clear that ker 7 is an ideal of Q*g. Then, for j* € ker 7w N Q*g and
w € Q*g we have, see (2.23d),

[djkaw] = d([]kaw]) - (_1)k[]kadw] :

Because of [j*,dw] € kerm and d([j*,w]) € dkerm, J*g is an ideal of Q*g.
Moreover, it is obviously a differential ideal: dJ*g C J*g, due to d*> = 0. O
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By virtue of Proposition 4, the canonical differential ideal (2.35) gives rise to a
graded differential Lie algebra 7,9 :

Qpg = @ Ohg Ok :=QFg/T% . (2.36a)
k=0

There is a canonical isomorphism

OFg _ QFg/(kerm N QFg)

T~ Ty (kerr n2ig) (2:360)
establishing the isomorphism
Ok g = n(QFg)/n(T) . (2.36¢)
In particular, one has
O)g = 7(Q') =n(g) , Qpg = 7(Q'g) . (2.36d)

Let ¢ denote the projection onto equivalence classes, ¢ : m(Q2¥g) — Q% g. In this
notation, the commutator and the differential on €2},g are defined as

([ (W), m(@"Y),) , (2.37a)
), (2.37b)

for w* € QFg and &' € Qlg. From (2.37a) there follows that %,g is a graded Lie
algebra, and the bracket [ , |, : Qf,g x Q},g — Q7,g has properties analogous to
(2.23). For ¢* = ¢ om(wk) and ¢! = ¢ o 7(@') we have with (2.37a) and (2.37b)

dlh, 1y = o m(dlwt, &) = ¢ o m([dw, &) + (~1)¥uwt, da)

=[do*, &, + (—1)F[ok, dd'], . (2.37¢)

Obviously, d* = 0 on Q% g. This means that d is a graded differential on Qg .
Moreover, we have

(com(Wh))" =com((Wh)), w"e b, (2.38)

because 7 is an involutive representation and 7(J*g) is invariant under the invo-
lution. From (2.27) we get

Qn* — _(_l)n(n—l)/ZQn : Qn c Q’Z’)g ) (2‘39)
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D. Towards the Analysis of the Differential Ideal

Our goal is the analysis of the ideal 7(J"g) . For this purpose we define

o (3 @), [ [i(al), e(dal)] ... ]])
=Y [n(ad), ... [r(al), [D% m(Q)]]... ], (2.40)

a,z>0

where @, € g. In particular, from (2.40) we get

o(u(da)) = [D*,7(a)] , o([t(a),w']) = [r(a), o (wh)] , (2.41)

for a € g and w' € Q'g. We extend o to Q*g, putting (%) = 0 and

oY lwn, @) = ([o(wh), m(@)]g + (=1 [r(wh), o (@a)ly) » (2.42)

o «

for w* € OFg and @}, € O'g. Note that o(w) € ﬁ’zk+l(h) if 7(w*) € @,,(h), where

2, =n mod 2. We do not necessarily have o(w*) € %(h). Now we prove:
Proposition 6. We have m(dw*) = [-1D, 7(w¥)], + o(w¥), for w* € QFg.

Proof: The Proposition is clearly true for £ = 0. To prove the Proposition for
k =1 we first consider the case w! = 1(da) € Q'g. Then we have

(1D, 7 (W), = [iD, [=iD, 7 (a)]gly = [(-1D)* 7(a)] = —o(1(da))
so that m(dw') = 0. But this is consistent with dw' = d*(¢(a)) = 0. Now we
prove the Proposition for £ = 1 by induction. Because of (2.41), the linearity of
7 and the structure of elements of Q'g, see (2.25), it suffices to assume that the
Proposition is true for all w! € Q'g and to show that from this assumption there
follows

m(d[u(a),w']) = [-1iD, 7 ([u(a), w ]y + o ([u(a), w']),

for all @ € g. We calculate

m(d(a), w']) = [r(u(da)), m(w")]; +
== ID m(a)]g, m(wh)]g + [m(a), [-iD, (W] + o (wh)]y
= (1D, (@), 7 (") ]gJg + 0(((a). ')
= [-1D,7([u(a), w'D] + o ([u(a), ') -

Finally, we extend the proof to any k by induction. For that purpose let us
assume that the Proposition holds for £ — 1. Due to linearity we can restrict
ourselves to elements w* = [w!, &*~!] € OFg. Using (2.42) and the graded Jacobi
identity we calculate

r(dlt, 571]) =

+ [m(1(a)), 7 (dw)],

g = [r(wh), m(da* ),
aW(wk Nlg = [r(W"), [-1D, 7 (@ )]y + o (@ )],
Nolg — (=1)F[r(wh), [m(@*71), =iD]]y + o([w!, &)
= [-iD, [r(w' =7r(@k_1)]g]g +o(w!, &) . O
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We recall that

m(J*) = {r(dw™), W teQF tgnkern } . (2.43)
From Proposition 6 we get the following equivalent characterization:

m(Tkg) = {o(W" ), e tgnkernt }. (2.44)
Obviously, o(w*!) is bounded if 7 (w*"t) = 0. Of course, (2.44) is only a rewriting
of (2.43), but it is a convenient starting point for the analysis of 7(J"g) .

E. Graded Lie Homomorphisms

In this subsection we provide the framework for the formulation of connections
and gauge transformations. Let

H'g:={n"€ 0. (h), z=n mod2, n=—(-1)""="D/2yn
", m(Q )], C (), [, w(T)], Cw(THe) b (2.45)

be the set of graded Lie homomorphisms of 7(Q*g) of n'' degree. Note that H"g
may contain unbounded operators i on h, but such that

h' = domain(n) N {yp € h , 7(QL*g)y C domain(n)}

is dense in h. This is necessary to ensure that the sequence { [, 7(w)]|s9,, }n of
elements of h, for ¢, € b’ and any w € Q*g, converges to 7(@)¥ if ¢, tends to
¥ € h, where m(©) € 7(2*g) is independent of ¥, . Let

¢a:={j"eH"g, [j", (g, =0} (2.46)
be the graded centre of 7(Q2*g) of n'™ degree. Then, the factor space

Hig = @ Hg | H'g:=H"g /&, (2.47a)

is a graded Lie algebra, with the graded commutator given by

[[Uk + &k, it + @la]g, m(w")],
= [nka [ﬁla m(W")]gly — (_1)kl[ﬁla [77k7 m(W")]glg (2.47b)

for n* € HFg, 7' € H'g and w™ € Q"g. It is clear that this equation is well-
defined. Obviously, 7(Q*g) is a graded Lie subalgebra of H*g.

It is clear that the graded ideal 7 (7"g) of m(2*g) yields a graded ideal = (7 "g)+
¢*a of H*g, see (2.45). Therefore,

Hg:=PHg, Heg=Hg/lg, IJg=ca+n(J"%), (248a)

nENg



14 R. Wulkenhaar: NCG with Graded Differential Lie Algebras

is a graded Lie algebra. Moreover, it is a graded differential Lie algebra, too,
where the graded differential is defined by

[d(n" + m(T*9) + &), w(w") + 7(T "), (2.48b)
=modor (", m(w")]y) — (1), w(dw)], + (T )

for n* € Hkg and w™ € Q"g. It is obvious that this equation is well-defined and
that €27,g is a graded Lie subalgebra of H*g.
Let

u(g) .= {n’ € H'g N AB(h) , (2.49)
gorn ([, m(wh)]g) — ", o (w)]y € (T g) , V€ Qg .

Obviously, 7(g) C u(g). Let Oy C u(g) be an open neighbourhood of the zero
element of u(g) and O; C #(h) be an open neighbourhood of 1) . For an
appropriate choice of Oy and O, we define the exponential mapping

| —

!(77)’C , n€ 0y . (2.50)

=

exp: Oy — Oy, exp(n) := Lgn) + Z
k=1

The Baker-Campbell-Hausdorff formula for n,,ns € Oy,

exp(na) exp(n)g) = exp(ny) , (2.51)
My =N + 05 + 510> 5] + 75 ([Nas (e 18] — (18, [Nas1]]) + - - - € u(g) ,

implies that we have a multiplication in exp(Qy). In particular, for 7z propor-
tional to 7, we get

exp(A1n) exp(Aan) = exp((A1 + A2)n) = exp(Aan) exp(Ain) , (2.52)

for A1, A2 € R and n € Oy . Thus, exp(n) is invertible in Z(h) for each n € O,
and the inverse is given by

(exp(n))~" = exp(—n) = exp(n*) = (exp(n))” . (2.53)

Therefore, all elements exp(n) are unitary. Since Z(h) is a C*—algebra we con-
clude that for all n € u(g) we have

lexp(n)| = lexp(n)* expm)[I'* = [|Law[* =1 . (2.54)

Hence, our construction leads to the subgroup

exp(u(g)) := { H(]XV:1 exp(Na) , Mo € Op, N finite } (2.55)

of the group of unitary elements of ZA(h) .
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For A being a linear operator on h and n € Oy we have

= 1
exp(n) A exp(— Zk— - AL (2.56)
pat T
For A =m(a) € 7(g) and exp(n) = u € Oy we get ur(a)u” € 7(g). For A = —iD
we get u[—iD,u*] = —i(uDu* — D) = ud(u*) € H'g, because with (2.49) and
(2.48b) we have

[=iD, 7], m(w )]g+W(Jk+1) [=1D, [, m(w My — [0, [1D, 7(@5)]g] + 7(T*g)
= wodon ([, w(w")) — o o (In, m(w"))
= [, 7w (dw")] + [, o (W*)] + 7 (T g)
= [dn, w(w")], +7(T* ) .

If w(w*) € m(J*g) then [[—-iD,n], m(w*)], € 7(T*'g). Therefore, there is a nat-
ural degree—preserving representation Ad of exp(u(g)) in Q},g defined by

Ady m(a) :=ur(a)u* ,
Ad, [-iD,n(a)] :=[-iD, Ad, 7(a)] + [u[—1D, u*|, Ad, 7(a)] ,
Ad, ((w¥) + 7(J79)) = (Ad, w(wb) + (') |
Ady [0, 8]y = [Ady 0, Ady 2l

(2.57)

for u € exp(u(g)), a € g, w* € Q*gand o, 0 € Q5g. Note that due to (2.56) we
have Ad, 7(J*g) C n(J*g) .
F. Connections and Gauge Transformations

In this subsection we define the notion of a connection, of its curvature, of gauge
transformations and of bosonic and fermionic actions.

Definition 7. A connection on an L-cycle is a pair (V,V},), where

i) Vi:h— hislinear, odd and skew-adjoint,

Vi€ Oi(h), (, Vi) =—(Vath,¥)n, Yob,9b€h,
i) V:Q%hg— QMg is linear,
iii) V(r(w")+n(J")) = [Va, 7(w")]y + o(w™) + o(J"g), w"eQ'g.

The operator V? : Qg — Qg is called the curvature of the connection.

As a consequence of iii) we get with (2.42)
V([e" dy) = [V(e"), &, + (-1)"[e", V(2)] . o e Qpa, o' €Qpg. (258)

Proposition 8. Any connection has the form (V =d+[p, .|y, Vi = —iD+p) ,
for p € H'g and p := p+ ¢ha € Hlg. Its curvature is V2 = [0, .|, with
0= dp+L[p. pl, € Heg.
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Proof: There is a canonical connection given by (V =d, V;, = —iD). Items
i) and ii) of Definition 7 are obvious. For iii) we find with Proposition 6

[—iD, 7(w")], + o (W*) = 7(dw") . (2.59)

Taking w € ker  we see that iii) is well-defined. Let (V(!), VS)) and (V) Vf))
be two connections. Then we get from iii) of Definition 7

(VO = V) (") +7(T"9) = [V} = Vi, m(@)], +7(T*g) . (260)

for wk € QFg. Now, item ii) yields p := vﬁj’ —Vf) € H'g. Since a modification of
p by an element of &'a = J'g does not change formula (2.60), we get V() — V(2 =
5, . ], where p := p+ &a € H'g. Taking (V(Q),Vf)) = (d,—1D) we obtain
(VO, V) = (d+[p, .1y, —iD+p).

Note that if o(w¥) C 7(J**+g) for all w* € m(QFg) then there is —iD € H'g.
Thus, the assertion remains true although the connection (V =d, V,, = —iD) is
not distinguished in this case.

Finally, we compute the curvature V2. For w* € QFg we have with (2.47)

VA(r (") + 7(T%)) = V(n(dw) + [p, m(w")]g + 7 (T g))
= [p,m(dw")]g + 7o don™ ([p,m(w")]) + [p, [p, 7 (W*)]gly + m(T* )
= [dp + 5p: plg (") + 7 (T'9)]y =2 0,7 (") + 7(T"9)] - B

Note that the relation between p € H'g and p' € H'g in (2.60),
o, w(Wh)]y + (T g) = [o, w(Wh)], +7(T* )

may have more solutions than p' = p+ &¢'a. However, we shall regard p and p’ as
different connection forms if p — p' ¢ ¢'a. Analogously, the determining equation
for 0 € H?g,

0, 0], = [0, 0], forall peQpg,

may have more solutions than ¢ = 6 . However, we shall select always the canon-
ical representative § = dp + 3[p, pl, in the curvature form of the connection V2.

Often we shall denote 0 € 7-[29 itself instead of V2 the curvature of the connection

(V, V).

Definition 9. The gauge group of the L-cycle is the group U(g) = exp(u(g))
defined in (2.55). Gauge transformations of the connection are given by

(V,Va) — (V',V}) := (Ad, VAd,- , uVyu*) , ueU(g).
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We must check that the definition of gauge transformations of a connection is
compatible with Definition 7:

[V w(w™)]y + (T g) = u[Vy, u'n(W")ulgu” + (T g)
= Ad, (V(Ady- (r(w™) + 7(T"9))) — o(7 ' 0 Ady o m(w™)) + (T g))
=V'(r(w") +7(J")) — Ad, (o(7 ' o Ady om(w™))) +7(JT"g) .
Thus, the definition is consistent iff o(7~' o Ad, o 7(w")) + 7(J"g) =
Ad, (o(w™)) + 7(J"™g) . But this equation is satisfied due to (2.49).
The gauge transformation of the connection form p occurring in the connection
Vi = —iD + p is defined by
Vi = —iD + 7,(p) . (2.61)
From V)¢ = u(—iD + p)u*yp = (—1D + u[—iD, u*] + upu*)yp one finds
Yu(p) = udu® + upu* . (2.62)
The gauge transformation of the curvature is due to
(Ad, VAd,- )*(o") = Ad, VZAd,- o" = u[f, u* o u]u
given by

Yu(0) = Ad, 0 = ubu” . (2.63)

The Dixmier trace' provides a canonical scalar product (, } on Z(h). If the
L—cycle is d*—summable (see Definition 3) we define for 7,7 € Z(h)

(r,7) :=Tr, (7°7 |D|_d) ) (2.64)
We assume that in some sense there exists an extension of this formula to linear
operators on h belonging to H?%g (recall that H2g is bounded on a dense subset
of h).

Definition 10. The bosonic action Sg and the fermionic action Sg of the con-
nection (V,V}) are given by

Sp(V) = (0,0) 5, == min Tr,((60 + %)% DY) , (2.65a)
J 9
Sr(¥, Vi) = (,iVph)n, Y eh, (2.65b)

where Tr,, is the Dizmier trace, { , ), the scalar product on h and 60y € H?g any
representative of the curvature of V .
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Since both (, )z, and (, ), are invariant' under unitary transformations we
get from (2.63) and Definition 9 that the action (2.65) is invariant under gauge
transformations

(V,Vy) — (Ad, VAdy- ,uVpu®) , Y r—utp, uely). (2.66)

There is an equivalent formulation of (2.65a). Let e(fh + j*) € H’g be those
representative of @ € H?g, for which the minimum in (2.65a) is attained. Let
J2 =", Aaj2, for A\, € R, be a parameterization of j* € J%. Then,

d . - . . _
0=~ Tru((6 + %)% 1D ™) = 2 Tru((60 + 5)52) [P ) -

Thus, e(fy + j2) = e(6) is those representative of 6, which is orthogonal to the
ideal J% with respect to (, )z,

Sy = Tr,((e(6))* DY), Tr,(e(6) J% D] %) =0. (2.67)
The representative ¢(f) is unique, because Tr, (. |D]|™9) is positive definite:!

Tr,((e(0) + %) D7) = Tru((e(6))* [DI7%) + Tru ((5%)*1D] )
> T, ((e(9))* D7), Vi #0.

Ill. L—Cycles over Functions ® Matrix Lie Algebra
A. A Class of L-Cycles Relevant to Physics

Let (a, CF,M,fr,f‘) be an L-cycle over a matrix Lie algebra a. In particular,
we have a representation 7 of a in the Lie algebra MzC of endomorphisms of
the Hilbert space C . Moreover, the grading operator [’ anticommutes with the
generalized Dirac operator M and commutes with 7(a). Both M and I belong
to MF(D .

Let X be a compact even dimensional Riemannian spin manifold, dim(X) =
N > 4, and let C*°(X) be the algebra of real-valued smooth functions on X.
Since C*°(X) is a commutative algebra, the tensor product

g:=C"X)®a (3.1a)
over R is in a natural way a Lie algebra, where the commutator is given by
(fi®ay, fo ®as] = fifo®[ay,az], fi,f: € C®(X), a,aa€a. (3.1b)
We introduce the Hilbert space

h:=L*X,S5) ®C", (3.2)



R. Wulkenhaar: NCG with Graded Differential Lie Algebras 19

where L%(X,S) denotes the Hilbert space of square integrable sections of the
spinor bundle over X. The representation 7 : & — End (C¥) and the C*°(X)-
module structure of L?*(X,S) induce a natural representation 7 of g in %(h):

T(f®a)(s®¢) = fs@(a)p, (3.3)

for f € C*(X), a€a, s€ L*X,S) and ¢ € C". We denote by « the grading
operator and by D the classical Dirac operator on the Hilbert space L?(X,S),
see Sec. II1.B for more details. Then we put

D:=D®ly+y®M, (3.4)
i=y®I. (3.5)

The operator [D, 7(f ® a)] is bounded on A for all f ®a € g. Moreover, D is self-
adjoint on A, because D and ~y are selfadjoint on L*(X, S) and M is symmetrical.
Next, I' commutes with 7(g) and anticommutes with D . Finally, (id, +D?)™" is
compact:'® The operator (id, +D?)~! is a pseudo—differential operator of order
—2 with compact support and has, therefore, an extension to a continuous op-
erator from Hy to H,,» on the Sobolev scale {H;} . Due to Rellich’s lemma, the
embedding e : H; — Hj is compact for ¢ > s. Thus, (id, +D2)_1 considered as

eo (id, +D?*)': H, — H,

is compact, and (g, h, D, 7, I') forms an L-cycle.

Finally, we briefly sketch how the physical data specified in the Introduction
fit into this scheme. First, one constructs a Euclidian version of the gauge field
theory. Now, X is the one—point compactification of the Euclidian space—time
manifold. The completion of the space of fermions 4 yields the Hilbert space h of
the L—cycle. In some cases, it may be necessary to work with several copies of the
fermions. Given the (Lie) group of local gauge transformations ¢ , we take g as
the Lie algebra of & . The representation 7 : g — Z(h) is just the differential 7,
of the group representation 7. The matrix M occurring in the generalized Dirac
operator (3.4) contains the fermionic mass parameters and possibly contributions
required by the desired symmetry breaking scheme. However, it is necessary that
v ® M coincides with the fermionic mass matrix M on chiral fermions. The
grading operator ' represents the chirality properties of the fermions. We have
~ = 7° in four dimensions. After the Wick rotation to Minkowski space we use
[' to impose a chirality condition on A .

B. Notations and Techniques

This subsection is devoted to definitions and techniques related to sections of the
Clifford bundle. We denote by I'*°(C') the set of smooth sections of the Clifford
bundle C' over X and by C* C I'*(C) the set of those sections of C', whose
values at each point x € X belong to the subspace spanned by products of less
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than or equal k£ elements of 7Ty X of the same parity. In particular, we identify
C®(X) =C".
We recall'* that there is an isomorphism of vector spaces

¢ A (D®(T* X)) — I%(C) (3.6)

between I'*°(C) and the exterior differential algebra A*(I"*°(7*X)) of antisym-
metrized tensor products of the vector space of smooth sections of the cotangent
bundle over X. In particular, the restriction to the first degree yields a vector
space isomorphism ¢ : T*°(T*X) — C'. Therefore, elements ¢! € C' have the
form ¢! = ¢(w'), for w! € I°(T*X). We use the following sign convention for
the defining relation of the Clifford action:

s(e(whe(@h) + c(@e(w!)) = s{e(w!) (@)} =g Hw' @)1 eC®,  (3.7)

where g7 : T(T*X) x I°(T*X) — C*(X) is the inverse of the metric g :
[®(T.X) x I'*(T.X) - C*(X).
Let us define the notion of the exterior product A :

1 .
1A 1 1. 11 1 1 1
Cq A\ Cy VANRIEIRIVAN C, = ﬁ Z (_I)SIgD(W)CW(l)CW@) e C?r(n) s G € C , (38)
" wepn
where the sum runs over all permutations of the numbers 1, ..., n and the product

on the r.h.s. is pointwise the product in the Clifford algebra. Observe that A
is associative and that the antisymmetrization (3.8) yields zero for n > N =
dim(X).

Definition 11. A" C C" is the vector subspace generated by elements of the
form (3.8), with A° = C%, A' = C' and A" = {0} for n <0 and n > dim(X).

We define the interior product J: A' x A" — A"~ ! by

n

(A A Aed) = (1) e et Y e (3.9)

n
, j=1
J
AN Y AC = Ny NN N N NG (3.9b)

The interior product (3.9a) is extended to 1: AF x A" — A"F by

(GIAEGAAG) d(cl AcSA---Acb)
= (A (G @ d (et A A== Ack)))...). (3.10)

n

Lemma 12. For ¢; € C' we have

(cglet Aeeo Ay + (=1)"(e; A~ Ach)eg) =cgAey Aes A+ Ach . (3.11a)
(et Aeeencl)y = (=1)"(c; A+ Ach)ey) =cg d(e; AcgA-+-Ach) . (3.11b)
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Proof: The assertion is clear for orthogonal bases. O
Let {€/}_, be an arbitrary selfadjoint basis of I°(T*X) and {e;}}_, its dual

basis of (T, X) . Duality of {e;}}_, and {€’}, is understood in the sense
e (e;) = (€7, e;) = &7 (3.12)

)

and selfadjointness means c(e/) = c(e/)*. Let V, be the Levi-Civita covariant
derivative with respect to the vector field v € I'°(7,X). Then we define the
exterior differential d : A¥ — A*+! on A* by

N

dc® .= Zc(ej) AV, ("), Fenk. (3.13)

j=1

The proof that d is indeed a graded differential uses the fact that the Levi-Civita
connection has vanishing torsion, see (with different sign conventions) Ref. 14.
There is a natural scalar product (, )y~ on A*:

(c g NZ>A* = /vg trc(ck*él) , et e, (3.14)
X

where tr, : [*°(C) — C*°(X) is pointwise the trace in the Clifford algebra and v,
the canonical volume form on X . The scalar product (3.14) vanishes for £ # [.
Via this scalar product we define the codifferential d* : A¥ — A*~! on A* as the
operator dual to the exterior differential d:

(dcf Ty ye = (F a* e ™., Ve AP T e AR (3.15)

Lemma 13. Within our conventions one has the representation

Mz

c(e’) 1V, (c") . (3.16)

Jj=1

Proof: The proof is straightforward. One has to use Lemma 12, the invariance
of the trace under cyclic permutations, the Leibniz rule for V, and the identity
Vu(vy) = 0 for the Levi-Civita connection. O

Note that — in contrast to What its name suggests — d* is not a derivation. Using
(3.16) one easily derives for ¢} € C' = A! the formula

d*(c; Az A=~ Ae) . . (317)
=21 (= (CDF Vg (iAo Acy) + (1)1 () (A Y. Acy))

where ¢! is treated as an isomorphism from I'*(T*X) to ['°(T,X).
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In terms of the above introduced selfadjoint bases {e’}N =1 of I'*°(T*X) and
{ej 1, of T®°(T.X), the classical Dirac operator is given by

N

D=> ic(e/)V . (3.18)

j=1

Here, V7 is the Clifford covariant derivative on L?(X,S) with respect to the
vector field v. It has the property

(VY e(w)] = e(V,w) = Vye(w) (3.19)
for any differential form w . With (3.13) this gives immediately
D, f1=Y0L, ic(e)[Ve, fl=idf =ic(df) , feC=(X), (3.20)

where d is the usual exterior differential on the exterior differential algebra. The
grading operator on L?(X, S) is v = —i"/2¢(v,) , fulfilling

Dy +4D =i 23 (e(e) [V e(v)] + (cle?)elvy) + e(v)e(e))) V)
=i YT () e(Va () +2e(e)) Aelvy) V) =0, (3.21)

because of the properties V,(v,) = 0 and ¢(e?) A ¢(v,) € ANt = 0. Therefore,
the Dirac operator D is an odd first order differential operator. One has % =
(=1)N2¢(vy)e(v,) = detg~!. If we restrict ourselves to an orthogonal metric,

which we do for the rest of this work, then we have v* = 1.
Next, using (3.13), (3.16) and Lemma 12 we have for c& € A*

(—=iD)e* — (—1)Fe"(—iD) = 327 (e(€) [V, ] + (e(e)) ¥ — (~1)*ce(e!) V)
=dcf —d*cF +2 Zjvzl c(el) Jck VS (3.22)

:dck_d*ck+22f:1(_ )Z+1 1/\ \/ /\Ckv—l _1( 1))7

if ®=clAciN...cl,cl €A The last identity in (3.22) is due to

25 ele!) 15 VS = 0 T (-1 elel), el elA YA VS
—QZ] S (- )’Jrl el M) el v Aeg Vi
=23°F (—1)*LeA . v AT i)
In particular,
D% fl=Af =2V, [€C™(X), (3.23)
where grad f := g 1(df) is the vector field dual to df and A the scalar Laplacian,

Af=didf == 971, e)(Ve, Ve, = Vo) (f) - (3.24)
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C. The Representation of (2*g on the Hilbert Space

For physical applications we are interested in the case that the matrix Lie algebra
a decomposes into

a=d®da". (3.25)

Here, o' is unitary and semisimple, i.e. a direct sum of simple unitary Lie algebras,
and a” is a direct sum of copies of the Abelian Lie algebra u(1), each of them
represented in the form u(l)(i) = Rbg) . In particular, direct sum means that
elements of different direct sum subspaces always commute. For each copy of
u(1), the representation 7(b) shall have the following property: There exist A* €
R such that

—

[7(b), M] =>_ o, N*[7(b), [...[7(b), [7(b), M]]...]] . (3.26)

- o
g
¥4

For simplicity, we restrict ourselves to the case a” = u(1), where (3.26) is given
by

[7(b), [7(b), [7(b), M]]] = [(b), M] or
[7(b), [7(b), [7(b), Ml = = [7(b), M] .

The extension to the general case is obvious.

Our goal is to construct the graded differential Lie algebra (2},g associated
to the L—cycle (g, h, D, m,T'), see Sec. II.C. For this purpose we first have to
construct the graded Lie algebra m(Q*g) associated to this L-cycle. We de-
note by 7(Q2*a) the corresponding graded Lie algebra associated to the L-cycle
(a, CF, M, #,T') . From (3.20) we get

(3.27)

[D,n(f®a)|=idf @7(a) + fy® [M,7(a)], a€ca, feC®X), (3.28)

where d is the exterior differential (3.13). Using that C° is an Abelian algebra,
that elements of C° commute with elements of C' and that 7 is a representation
we obtain for elements of 7(Q'g), see (2.25) and (2.30),

T(Paso [1fa ®al), [ [t(fa ® ag), (d(fa ® ag))]- .. ]])
= Yasolm(fa ®ad), [ [n(fa ® ag), [-1D, 7 (fa @ ap)ll ... 1]
=Yoo fa Jadfa @70, [ g, ag] - ]1) (3.29a)
+ X aeso o fafay @ & ([(ag), [ [1(ag), e(dag)] ... ]]) . (3.29b)

Here we have f/ € C°, a/, € a, and d denotes the universal differential on
both the universal differential Lie algebras over g and a; it is clear from the
context on which of them. The same notational simplification was used for the
factorization mappings ¢. There are two different contributions in this formula,
(3.29a) belongs to C' @7 (02 a) and (3.29b) to CPy @7 (N'a). If it was possible to
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put all f2 equal to constants without changing the range of (3.29b) then the lines
(3.29a) and (3.29b) would be independent. This is possible iff for all f§ € C*(X)
and a) € a there exists a solution of the equation

fo ® 7 (uldag)) = Yo .o1 far o fafey @ 7 ([L(af), [ [e(ag), o(dag)] .. . T]) -

But this is indeed the case, due to (3.26) for a € a” and the fact that o' is
semisimple. Namely, for a semisimple Lie algebra a’ we have!? [a',a/] = a’. This
means that

Va' €a Fay,a, €a @ a =) [al,al] - (3.30)

o) o

Then, «(da') =Y, ([e(al), o(dal)] — (@), «(dal,)]) . Here we see the importance
of the restrictions imposed to a, we will meet further examples in the sequel.

Now, from the definition (2.25) of Q'a there follows that (3.29b) can attain
any element of C%y ® #(Q'a). We split elements a/ € a according to (3.25).
Since commutators containing elements of the Abelian part vanish, there is a non—
vanishing contribution of elements of a” to (3.29a) only from the term d f0®7(al)
for a) € a”. Therefore, the coefficient of elements of #(a”) is the Clifford action
of a total differential. We denote the space dC® C C* by B' (*[co]boundary”).
In the case of the semisimple Lie algebra o' the line (3.29a) attains any element
of C' @ 7t(a’), due to (3.30). Thus, we get the final result

m(Q'g) = (A @7(d)) @ (B' @ #(a")) & (A @ 7(Q'a)) . (3.31)
This means that elements 7' € 7(Q'g) are of the form

=" (ch @(a) + bk @ (alh) + fay @ T(Wh)) (3.32)

«
1 1 1 1 0 l / " n 1 1
where ¢, € C*, b, € B, fo, € C”, a,€d, a), €a’ and w, € Q'a.

Proposition 14.

n

T(Q'g) = (A" @ #(d) @ (P A7y @ (7(Va) + #(T]*a))) , (3.33)

j=1

forn > 2. Here, #(T?a) is zero for j <0, n < j+2 orn > N+j+2. For j >0
and j+2 <n < N+j+2 it is recursively defined by

RIS = {7070}, A(TR0) = [F(@), (7@, 7 (@H s g g
w(Tpa) == {7(a), 7(a )} : 3<n<N+1, '
#(TJa) = {i(a), 7(Va) + 7(T} fa)} + [7(Q'a), 7 (T, a), ,

_ 247 <n< N+j+1, j>0, (3.34b)
T(TR1j420) = [(a), T(T]100)] + [F(2'a), 7T 0], j>0.
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Proof: The proposition is proved by induction. We need the following two iden-
tities:

@) (" Ty @ A7) — (=1)" (" © A7)(¢' ® 7(a))
%(cl(; T+ ()Y © (n(a) AT — AJW@) (3.35a)

LLE T — (L1 Iy @ (@) A+ A7) |
(Fr@ #@ )y © &) = (P iy © 4)(Fy ©7()
= (1) gt @ (RGN A — (—1)ATR() | (3.35D)

for e A, " e A", fe A, aea,d € Qaandany A7 € MpC. We shall
write (3.32) in the form

=3, (ch @7 (as) + fay @ 7(wa))

where 3" ¢} @ #(aq) =3, () @ #(al,) + i @ 7(al))) .

Using (3.35a), (3.35b) and Lemma 12 we obtain from (2.26) the following
form of elements 72 € w(Q?%g) :

72 Z (7 + 7l
—Z e (chs Ay ® [7(aap), 7 (Gay)] + fapfar @ [T(whs), ﬁ(&év)]g (3.36a)
arCag¥ @ [F(aap)s T(@4,)] + faslar @ [ (day), T (wag)]) + £°
“O—ZW OCBJCM@{W(%&/?) (Gay)} - (3.36b)

s2yY

All five occurring different types of tensor products are independent. This is due
to the fact that for non—vanishing ¢! € A and ¢" € A" the equality ¢t A ¢® =0
implies ¢! J¢" # 0 and &' J¢" = 0 implies ¢t A ¢® # 0, see Lemma 12. First,
k? attains each element of A’ ® {7(a), 7 (a)}. Moreover, 3 ff ® [#(wl), 7(OL)],
gives an arbitrary element of A°® 7(Q?a) and each term in (3.36a) containing ~y
an arbitrary element of Ay ® #(Q'a). The only not obvious elements are those
of the form [M,@(a)]. However, they can be represented by (3.27) for a = a"
and for a = o’ due to (3.30) by

M, 7 (X alan, @a))] = 22 (M, 7(aq)], 7 (@) + [7 (ag), M, 7 (@)]) - (3.37)

Finally, -, 5 cogA\Ch, ® [7?(0.,’043),.7%(&’0[7)] represents an arbitrary element of A?®
7(a’), because poss1ble contributions from a” are cancelled by the commutator.
Collecting these results, we arrive at (3.33), for n = 2. For n > 2 one proceeds
by induction, see Ref. 15. O

Thus, the computation of 7w(Q"g) is reduced to an iterative multiplication of
matrices only.
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D. Main Theorem

To derive the structure of ,g we first define in analogy to (2.40)

oD Tag), [--[(ay), e(dag)]. .. TN) =) [w(ad), [ [i(ag), [IMP A(@Q)]] -]
,z2>0 a,2>0 (338)

for a!, € a. We extend & to a linear map 6,4 : Q*g — I'°(C) ® MpC by

(L(f ®a)):=0,  G((d(f®@a))):=f@
Og([w", &) = [6(w"), m(@)]g + (1) [m(w*), 64(@)], ,

for f € C®(X), a€a, wkFeQFgand &' € Qlg.

~
—
u
S
~
~
—
w
w
Nej
~—

Theorem 15. For {7(a"),7(a")} N7 (Q%a) =0 we have
=P A"y @ (7(Ja) + K} 2a) (3.40)
7j=2
+BYy" @ ({7 (a), #(Q" " 2a) + 7(T7 )} N 7 (Q" Na))

where BY = dAN~', K% = #(T%) and

Kla={#(a),7(Va) + K} ja} + [#(Q'a), K1 1d], (3.41a)
+o(d ATV a)N&(QHa), 24j<n<N+j+l, j>0,
K?v+j+2a=[ﬁ(a),K?v+j+1 a] + [#(2'a), K475l (3.41b)
o (7 H(F(Th 0 NAQ ), j>0.

If {7 (a"), 7 (a")} N 7(Q%a) # 0 then w(JT>g) must be replaced by

m(T%) = (T°) leao) +B' @ ({7(a"), 7(a")} N 7(Q%a)) .

Proof: The proof consists in deriving a formula for o(w¥) for a given w* € QFg.
Taking w* € QFgNkerm, we can derive the structure of m(J**g), see (2.40).
We start with £ = 1 and proceed for higher degrees by induction.

Before, we provide a property of 7(Q'a) which we need in the proof. We
consider the splitting

W' =d(u(d) + 1(a")) + X g oo [1ad), [ [1(ad), [1(ag), (dag)]] . ] € Q'a

for o = ) 4aj, aj] € o' and " € a”. Due to (3.27) and (3.30) we can replace
wi == u(d(d" + a")) by

@y = £5[u(b), [1(b), t(da")]] = 7[¢(b), [e(b), [t(b), [1(b), t(da”)]]]
+ 375 ([eay), e(dafy)] — [u(al), u(daf)]) -

_®=
~—
—

N—
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Here, in the first term the plus sign (minus sign) stands if in (3.27) the equation
with the plus sign (minus sign) is realized. Indeed, we have

#(@g) = #7(Wh) o(@) = o(wp) - (3.42)

The first formula is due to (3.27) for ¢” and due to the Jacobi identity for a’.
The a’-part of the second formula in (3.42) follows immediately from the Jacobi
identity. The proof for the a”—part consists of algebraic manipulations of (3.27),
which are not difficult but rather lengthy so that they are not listed in this work.
The importance of the identities (3.42) is that already elements of Q'a, which do
not contain terms labelled by 2z = 0, are sufficient for the construction of 7 (Q'a)
and 6(Q'a).
Using (3.29) we can represent elements w! € Q'g as

wh =Y asolt(fE @ ad), [ [(fa @ ag), d(fd @ ap))]- .11, (3.43a)
= W(Wl) = Za,zZO (étlx’z ® w(a%) + fiv® 7Ar(d)é’z)) )

P=fi L €N, els = 2. fldfo e A (3.43b)
az, =l[az,[...[al,dd]...]]€a, @&L*=[(a?),[...[t(al),c(dad)]...]] € Q'a,

where a!, € a and f! € A°. Applying the map o to w' in (3.43a) we get — using
(3.23) and D* =D?®@ 1y + 1 ® M?, see (3.4) —

o(w') =2 g m0lfa ®F(al), [ [fa ® 7(ag), [D?, fo ® &(ag)]]..
so=0g(w') = Yo .n0 fi o fafa @ [7(ag), [ [F(ag

51=Dazz0 fa TalASR) @F([0F, [ - [ag, ag] - ]
Sg = —2 Za,zzo fa-- fclzvgs;adfao ® (g, [ .- [azlxa ag

)
55220 oo (f3+ 2V0ana g (£1) © [7(a2). [ [7(a2), frgamg?m ]
]

E»—A

+ faz Tt fzvgradfao (faz)fclz ® [’fr(az)a [ s [ﬁ—(ai)a ﬁ([aiu ag
+oee 4+ Vgradfao(fozz)f;_l ot fal ® ﬁ([a,g_l7 [ e [a’(lwa’gc] te

From properties of covariant derivatives we find
z 1S _ oS _ oS
Jar+ FaVeradsg = Vigsto 1010) = Vo t0z-4012) -
Next, using (3.13) and (3.16) one easily shows
for fa ALY = A (f5 - fadf2) + Varaaso (fo -+ fa) - (3.45)

Then, the sum of s3 and the part of s; corresponding to the second term on the
r.h.s. of (3.45) will be denoted by §(w') :

S(wh) =53+ 3051 Veraape (fa - fa) @ 7(a5) (3.46)
=Yoo (fa faVgra o (fa) @ [7(al), [ [7(a2), {7(a0), 7 (ag)}] . -]
+ o faVaraage (fo)fo ® [7(ad), [ - [ (@)} - -
+ e+ Vgradfao(f(i)fozz_l e fal ® {ﬁ.([a’z_l’ [ t
e N’ ® {#(a),7(a)} .
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Observe that the terms labelled by z = 0 do not occur in (3.46). Collecting the
results we find

o(w') = 8w + 65w + > (- 2V iy @ T(a5) + d7(E7) ® (7)) -
=0 (3.47)
Next, we discuss the relation between 7(w') and o(w?!) . It is clear that §(w?) €

A’ @ {7(a),7(a)} and G4(w') € A° ® 6(Q'a), the question is to which amount
they are determined by 7(w'). To answer this question we first consider

w' = => ZA [ (ocA ® Gq), H{d(fas ® a0))] ;  Ga,la € 0, (3.48)
where
folefOc ) fo&:_% ) 043—_%(fa) )
fod:fafa ) faZZ(fa)Qfa ) a3:fa )

for fu, fu € C*®(X). These functions have the properties

22421 fozAfozA =0, ZA 1 aAd(f A) = 0 ) ZA 1 d( ocA) ar =0, (3.49a)
ZA:l Vgrad(faA)(fOcA) fa grad(fa) ( ) (dfaadfa) : (3-49b)

Due to (3.49a) we have 7(w') = 0 and 64(w') = 0, but for (3.46) we get

COEDIN Dy gra,dfaA(OéA)@{Tr(d ) 7 (aa)}
=20 faViarad o (fa) ® {7 (@a), 7(aa)} -

Thus, $(w') is independent of 7(w') . Since (3.49b) — for an appropriate choice of
fa, fo — attains each given function on X (using a partition of unity if necessary),
$(w') attains each element of A° ® {7 (a),7(a)} = A’ ® 7(T5a). Now we prove

Lemma 16. 54(kerm N Q'g) = A’ ® o(ker7 N Qla) = A° @ #(J?a) .
Proof of Lemma 16: We introduce a linear map 74 : Q2*g — #(h) by

t(f®a):=foila),  7df@a))):=fy®[-iM,7(a)],
g ([w, @]) == [7rg (W), g (@)]y

for f e C*(X), a€a, w,oe€ N*g. For w! € Qlg given by (3.43a) we have

ﬂ_(wl):Za,zZO ( 1Z®7r( )+fz,7®,ﬂ_( )) )
ﬁﬂ(wl) = Za,zZO Jiozz’7 ® ﬂ—( Wy ) ’ (350)
&g(wl) = Za,zZO fa® &(@é’z) .
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(6]
because A' and A° are independent. But this means

For w' € kerm we have 7 . ¢y @ @(a;) = 0 and }°, - ffy@r@l?) =0,

(kerm N Q'g) C (kerig N Q'g) = G4(kerm N Q'g) C G4(ker 7y N Qlg) . (3.51)
It is intuitively clear from (3.50) that
ogkerig NQ'g) = A’ @ o(kera N Q'a) = A’ @ #(J%a) , (3.52)

see (2.44). The justification for (3.52) gives the formalism of skew—tensor prod-
ucts, see Ref. 16 for the general scheme and Ref. 15 for the application to our
case. Now, by virtue of (3.42) it suffices to take

W' =300 g1 MA@ ag), [ (1@ aZp), [(fa ® agg), (A1 @ agy))]] ... T]

with

Wl = Z,B,ZZI[L(agﬂ)7 [..., [L(aiﬁ), [L(a}lﬂ), L(dagﬂ)]] ] €kerinQla,  Va,

where f, € A% and al; € a. It is obvious that 7(w') = 0 and that o(w")

og(wh) =", fa ® 6(w}) attains each element of A° @ 71(J%a). O
(Lemma 16)

We define a linear map Vg from 7(£2*g) to (unbounded) operators on h,

Vol Iy @ AT):=V5 @A, n—j>0, (3.53)
Va(fy"®@ A"):=0, [feC®(X), '
where ¢"=7 € A" and A’ € MpC . Here and in the sequel a covariant derivative
with respect to elements of A" is understood in the sense

k l
Vc%/\c%/\---/\c}b = lel(—l)lﬂc%/\ V. /\C}lvgflocfl(cll) , C% - Al , (354)

where ¢! : A' - T°(T*X) and g7' : I®°(T*X) — I'*°(T.X) are isomorphisms.

Now we can express (3.47) in terms of m(w'). For given 7! € 7(Q'g) let
7 1(r!) € Qg be an arbitrary but fixed representative and w! € Qg be any
representative. Then, the set {o(w!)} of all elements o(w!) fulfilling the just
introduced conditions is

{o(h} =A@ (7(T9a) + 7(T?a)) + 64(77 1 (71)) — 2Vqa(r!) + d*r' . (3.55)

Putting 7! = 0, i.e. w! € kerrNQlg, we obtain immediately the assertion of the
theorem for n = 2.

Formula (3.55) is the starting point for the construction of o(Q2"g), n > 2,
out of (2.42). The result is:
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Lemma 17. For given ™ € w(Q"g) let 7 1(7") € Q"g be an arbitrary but fized
representative and w™ € Q2"g be any representative. Then we have for n = 2

{o(w)} =A@ (7(T) + 7(T%0) + A’y @ (Kja + 7(T°a))
i

+0g(r1(7%) = 2Va(r?) + d'7° — d(7* [xosia@)ate)) ) (3.56)
and forn >3
wt1
{o(w")} =64(r (7") = 2Va(r") + d°7" + Y A"y @ (K7 Ta+ #(J7a))
—a(r fAN-lvnH@{ﬁ(a)ﬁ(m—N—la)+fr(Tf7j3a)}) : (3.57)

Remarks on the proof of Lemma 17: The Lemma is proved by induction
exploiting formula (2.42). The proof is very technical and too long to dis-
play in this work. For the details see Ref. 15. It is clear that the proof of
Lemma 17 finishes the proof of Theorem 15. Here, for n = 2, one has to
take into account that for {7 (a”),7(a”)} N 7#(Q%a) = 0 and 72 = 0 we have
d (7% Ihosfi@n,i@ny ) = 0. If {#(a”),7(a”)} N 7(Q%a) # 0 then a non—vanishing
A @ {#(a"),7(a")}part of 72 = 0 can be compensated by A° ® #(Q?%a), giving
the contribution B! ® ({#(a"), 7 (a”)} N 7(Q%a)) to the ideal 7(J3g). The same
argumentation yields the boundary terms in the second line of (3.40). O

E. The Structure of ()},g, Commutator and Differential

As an immediate consequence of Theorem 15 we find
Corollary 18. If {7(a"),#(a")} N7 (Q%a) = 0 we have for n > 2
Qhg=(A"@7(a")) ® (A" 'y @ 7(Q'a))®

® é (A" 47 @ ((7(Va) + #(T7%a)) mod (7(J'a) + K1 %a))  (3.58)

J=2

mod 6]_yBYy" @ ({7(a), #(Q" N %a) + #(T7 N a)} n#(Q" Va))) .
If {#(a"), 7 (a")} N 7(Q%a) # 0 then Q% g must be replaced by

Q?bg = Q?bg f(3.58) mod B' ® ® ({7 (a") 7( ”)} n ( a)) . [

Therefore, the construction of €2},g is reduced to the problem of finding the
factor space (#(Q/a) + #(T3 2a)) / (7(J?a) + K3 2a) . Here, only the matrix Lie
algebra a plays a role. The influence of the A*fpart to 2},g is almost trivial.

Next, we derive explicit formulae for the commutator and the differential
of elements of 2},g. For the sake of an easier notation we restrict ourselves to

the case {7 (a"),#(a")} N 7(Q%a) = 0 and ({7 (a), 7(Q"V"2a) + #(T" N *a)} N
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#(Q" Na)) = 0. If these conditions are not fulfilled then there are obvious mod-
ifications to Q%g and Q%g, n > N + 2, see Corollary 18.
Due to Corollary 18 and (3.32) we represent elements " € Qg as

=) ) v @ (@(Wl)+ Tha) (3.59%)
a 7=0
Tia:=7(Ja)+ K%, Jla=0, Jla=0, (3.59b)
n>2: el (W) e w(a’), w(wl) € #(Va) for j >0,
n=1: ¢ el if 7)) en(d), cl e Bt if (W) € #(a") 3.5
el r(wl) e m(Qta), (3:59)
n=0: & eA, T(wd) € wt(a) .

The formula for the graded commutator of elements of (2},g is very simple,

k

2 ) e 0.5 S 6 ) + i),

o =0 g j=0 (3.60)
=33 SN DT A @ (), 7 @)l + Ty

a,f

1§

o
<.

Il

o

because if the product between cf~% and 6;,7]‘ is not completely antisymmetrized

then we get a combination of graded anticommutators of elements of 7 (£2*a) in the
second component of the tensor product, which contributes to the ideal 7(7"g) .
Thus, the graded commutator of elements of {1},g is given by the combination of
the exterior product of the A*—parts and the graded commutator of the 7(Q*a)—
parts modulo 7(7g), where a graded sign due to the exchange with 4 must be
added.

Due to (3.22) and (3.54) we have for ¥ € A*

(=iD)c" — (=1)*c*(—iD) = dc* — d*¢" +2V5, . (3.61)

We apply Proposition 6 and Lemma 17 to (3.59a), using (3.53) and (3.39) and
introducing 7" := 37, Y77 a7y @ 7(w)) € m(Q"g) . This gives

do" = (dr (")) + 7r(‘7”+'lg) '
=5, T (D) = (I (D) & e
H(=D)" Ty @ ((-iM)r(w ) (1) 7 (w])(—iM))) (3.62)
+d* 7" — 2V (7") + G4(m 1)) + 7(T"g) '
Y (A @ () + Thpye)
e I @ ((—1)" M, 7 (Wh)]y + 6(w)) + T05a)) -

Let us say some words on the terms in (3.56) and (3.57) containing total differ-
entials. In general, for

=y @ (k] 77) € MMy @ #(T] %) C 7(T'9)
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we have d7% € 7w(J*Tg). This is no longer true for ¥ = 2 and #(£9) =
{#(a"),7(a")}, with a”,a" € a”. However, in this case the differential dr?
eliminated by the counterterm —d(T2 [ AO® {(a") 7 (a)} ) in (3.56). An analogous
property holds for k — 7 = N — 1, where the terms d7* are cancelled by the
differentials in (3.57). Therefore, in the following formula for the differentiation
rule on €2},g one must omit these boundary terms. Then we obtain a simple
formula:

do" = ( (AR 1Lp)(r") + [y ® —iM, "],
+(1@sor ot o (y® 1)) modn(J"g) , (3.63)

where 7" € 7(€2"g) is an arbitrary representative of ¢" € Q' g. Here, the differen-
tial d ignores the grading operator v, i.e. d(c*~) := (dc*)vy . The non—trivial part
in this formula is to find the spaces J7_ a constituting the ideal 7(J"*'g) . The
differential d7" , the graded commutator with Y& —iM and even the computation
of (1® ¢ oa~')(r") are not difficult for a concrete example.

F. Local Connections

In the case under consideration, an L—cycle over the tensor product of the algebra
of functions and a matrix Lie algebra, there exists the notion of locality. Our goal
is to define a multiplication

Zcha 19 (1) 710 =30 36 A 19 (1A T )
a j=0 a j=0

see (3.59). However, we clearly have problems to do this on the whole differential
Lie algebra Q% g due to the existence of the boundary spaces A°®@7(a”) in Q% g =

7(g) and B' ® 7(a”) in Q) g = 7(Q'g) . These boundary spaces in general do not
yield elements of (2;,g when we multiply them by elements of A*. Moreover,
there are problems if the boundary terms 07 BYy" @ ({7(a),#(Q" " 2a) +
AT N ta)} N7 (2" Va)) and B'® ({7(a"), A( a”)} N7 (2%a)) in Corollary 18 are
present. Therefore, formula (3.64) is understood to hold on subspaces of Q},g,
where no collision with boundary terms occurs. Then, the multiplication (3.64)
is associative,

(" AE)Ag" = FA(E A, (3.65)

for &8 € AF, & € Al and o" € Qg (different from boundary spaces). In partic-
ular, Qg carries a natural C'°(X)-module structure, where we omit the multi-
plication symbol A for simplicity:

FOY Ty @ (7(wh) + Tia) ZZ fer )y ® (7(w)) + Tha)

* J=0 @ J=0 (3.66)
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for f € C*°(X). Moreover, the Hilbert space h = L*(X, S)®@CF carries a natural
['*°(C)-module structure induced by the I'*°(C')-module structure of L*(X,S) :

$(D 0 Sa ® Pa) =3, 55 ® Pa , (3.67)

for s € I'°(C), s, € L*(X,S) and ¢, € CF. The structures just introduced
enable us to restrict the set of connections according to Definition 7 to the subset
of local connections relevant for physical applications.

Definition 19. A connection (V,V},) is called local connection iff for all f €
C®(X), ¥ € h and 0" € Qg different from boundary spaces one has

Vi(f¥) = Vi) +df(9) , (3.68a)
V(fd")=fV(e") + (df)Ae" (3.68b)

The group of local gauge transformations is the group

Up(g) = {ueclUle) CHh), fup=ufyp, VfeCX), Vpeh,
(Ad, VAd,- , uV,u*) s a local connection if (V,V,) is } . (3.68¢)

We recall that a connection has the form (V =d+ [p, . ];, Vi, = —iD + p),
where p € H'g and p := p + ¢'a € H'g, see Proposition 8. The insertion into
Definition 19 yields

pof=fop, Vfe(C®X). (3.69)

Therefore, p € T'(C) ® MpC. Since p € H'g, there can only occur classical
smooth differential forms up to first degree in the I'(C)—component of p. This
means that

pe (AN @ra)d (Ay®rla), (3.70)
e = —(r%)* =T(%) c MpC, rla=—(rla)*=-T(r'a)l' c MpC .

If we compute graded commutators with 7(2*g) we get

i, #(a)] C #(a) | 2%, 7#(Qa)] C #(Qla) | (3.71)
(2%, 7#(a)} € {#(a), #(a)} + #(Q%) , {r'%, #(Q'a)} C {#(a), #(Q'a)} + #(QPa) |
[r'a, 7(a)] C #(Qa) , {r'a, 7(Q'a)} C #(Q%a) + {7(a),7(a)} .

Moreover, one has to check that [p, 7(J"g)], C 7(J"*'g). The same analysis for
the group of local gauge transformations (3.68¢) yields

Up(g) = exp(A° ® ug(a)) , where

we(a)={ ug €%, Go (uy) Cclal, (3.72)

see (2.49) and (2.55) for the notation.
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From (3.68b) one easily finds for the curvature of a local connection V?f =
fV? for f € C®(X). Thus,

fOf =0f=f(modon ' (p)+ 5lp, ply + (T %) + &)

=(rodor'(p) + 3lp. plg + 7(T7) + 2Cl) (3.73)
Here, modon!(p) +n(J%) + % is understood in the sense (2.48b). Hence, we
must search for the subspace of ¢% commuting with functions. This space has
the structure

Fa=Nech)o AMyech) o (A’®ch), cacMgC, (3.74)

because possible A*—contributions of higher degree are already orthogonal to any
representative of #, see (2.67). The spaces c'a have elementwise the following
involution and Zs,—grading properties:

~

%= —(c%)* = f(c[:oa)f , cla = —(cla)* = —f(c{:la)F ,

= (ch) = T(c)T. (3.75)

From (2.46) one finds after a decomposition into A*~components the equations

cl%-7(a)=0, - 7(Q'a)=0,
cla-#(a) =0, cla- #(Qa) =0, (3.76a)
(¢, #(a)] =0, [, #(Q'a)] =0

The restriction to #(a’) is due to possible problems with the boundary spaces.
Due to (3.73) it is convenient to define

jlai=ca, jla=cla, ju:=ca+7(T%)+ {7(a),7(a)}. (3.76b)

We recall that the commutator and the differential in the curvature 6 = dp +
s[p, plg + J% are indirectly defined via the graded Jacobi identity and the graded
Leibniz rule (2.48b). The commutator and differential in 7(Q2*g) mod 7(J"g)
are given by (3.60) and (3.63). It is obvious that these formulae extend to local
elements of 7:[*9. Only the map 6 o 7~! has to be extended to r*a via the graded
Leibniz rule:

(6 om () +#(T* ), 7 (W) + 7(T'a)l
=g o (0", 7(W)y) — (=", 6(W)]y + #(T* ), (3.77)

for n* € r*a and w' € Q'a. Then we find for the curvature

0= ((de1p)(p) +{v® —iM,p} + 3{p, p}
+(l@cor ) opo(y®1lp)) mod %, (3.78)

where we recall that J% = A’ ® (7#(J?a) + {7(a),7(a)}) + ¢%.
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In our case — h = L*(X,S) ® C" — we have 8(h) = Z(L*(X,S)) ® MpC.
Then, the parameter d in (2.64) is equal to the dimension N of the manifold X,
see Ref. 1. Moreover, the trace theorem' of Alain Connes says that in this case
we have
1

(¥)1(am)2
where we recall that v, denotes the canonical volume form on X, tr, denotes
the trace in the Clifford algebra Cliff (R"), normalized by tr.(1) = 2"¥/? and
tr(m) is the matrix-trace of m € MpC. We use the trace theorem (3.79) for the
construction of e(f) , see (2.67). For the curvature 6 of a local connection we have
according to the above considerations a decomposition

0=>,(2® (0 +j%) +ciy® (1h +j'a) + & @ (72 +j%)) , (3.80)

Tro((s° @ m) [D|~) = /X v tr(s) tr(m), (3,79

where ¢ € A" and 7% € MpC. Since A* = @5, A* is an orthogonal decomposi-
tion with respect to the scalar product (3.14) given by tr., we see that (2.67) is
equivalent to finding for 7 € {0, 1,2} and each « the elements j¢, € ji satisfying

tr(j(rL +42)) =0, forall j'€ja. (3.81a)
These equations must be solved for the concrete L-cycle (a, C*, M, 7, f‘) and the
concrete element 72 , giving in the notation of (3.80)

(@) =3, (A4 +clve(rl+i)+d e (2+52) .  (3.81b)

Now, formula (2.65a) for the bosonic action takes the form (up to a constant)

Sp(V) = /vg tr.(e(0)?) . (3.82a)

X

Here, tr. contains both the traces in Cliffp (RY) and MzC. For the fermionic
action we obtain

Se($,V) = (%, (D +ip))n = [ ¥ (D+ip)p.  (3.82b)

X

This finishes our prescription towards gauge field theories. Let us recall what
the essential steps are. One starts to select the L—cycle from the physical data
or assumptions. We have learned that the matrix part of the L-cycle contains
the essential information. Hence, we must construct the spaces 7({2"a) and the
ideal 7 (J™a) up to second (in some cases up to third) order. This is necessary to
compute the spaces r'a, r'a and j%., j'a, j% constituting the connection form p and
the ideal J% . Then we have to compute the curvature # of the connection and to
select its representative ¢(f) orthogonal to J% . Finally, we write down the bosonic
and fermionic actions. This scheme can be applied to a large class of physical
models. Among them are the SU(3) x SU(2) x U(1)-standard model'” and the
SU(5) x U(1)-Grand Unification model.'® The SU(5)-GUT can be obtained as
a special case of the latter.
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