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2 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasdata 1) to 4) one obtains a K{cycle by enlarging the gauge group G to a unitalassociative �{algebra A ; provided that it is possible to extend the representation~� to a representation of A : We shall go the opposite way: We restrict the gaugegroup to its in�nitesimal elements, giving the Lie algebra of G : In our case thereare no obstructions for the representation, and { in principle { any physicalmodel based upon 1) to 4) can be constructed. In this paper we present themathematical footing of that line. We shall develop techniques adapted to thiscase that di�er from those of Connes and Lott.The paper is organized as follows: Sec. II contains the general construction,without any reference to a physical model. We start in Sec. II.A with basicde�nitions concerning L{cycles, the basic geometric object in our approach. InSec. II.B we construct the universal graded di�erential Lie algebra 
�g and deriveproperties of its elements. Using the data speci�ed in the L{cycle we de�ne inSec. II.C a Lie algebra representation � of 
�g in B(h) : Factorization of �(
�g)with respect to the di�erential ideal �(J �g) yields the graded di�erential Liealgebra 
�Dg : In Sec. II.D we introduce the important map � ; which enables usto give a convenient form to the ideal �(J �g) : Using the language of graded Liehomomorphisms introduced in Sec. II.E we de�ne in Sec. II.F the fundamentalobjects of gauge �eld theories: connections, curvatures, gauge transformations,bosonic and fermionic actions.In Sec. III we apply the general scheme to L{cycles over functions 
 matrices.That class of L{cycles, which has a direct relation to physical models, is de�nedin Sec. III.A. For the space{time part it is convenient to rede�ne the exteriordi�erential algebra �� ; see Sec. III.B. This enables us decompose in Sec. III.Cthe graded Lie algebra �(
�g) and in Sec. III.D the ideal �(J �g) into space{timepart and matrix part. The decomposition of the formulae for the di�erential andthe commutator is given in Sec. III.E. Finally, we consider in Sec. III.F localconnections.II. L{Cycles and Graded Di�erential Lie AlgebrasA. The L{CycleThe basic geometric object in our NCG{prescription is an L{cycle, which di�ersfrom a K{cycle1,3 used in the Connes{Lott prescription by the implementationof unitary Lie algebras instead of unital associative �{algebras:De�nition 1. An L{cycle (g; h;D; �;�) over a unitary Lie algebra g is given byi) an involutive representation � of g in the Lie algebra B(h) of boundedoperators on a Hilbert space h ; i.e. (�(a))� = �(a�) � ��(a) ; for anya 2 g ;ii) a (possibly unbounded) selfadjoint operator D on h such that (idh+D2)�1is compact and for all a 2 g there is [D; �(a)] 2 B(h) ; where idh denotes



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 3the identity on h ;iii) a selfadjoint operator � on h ; ful�lling �2 = idh ; �D+D� = 0 and ��(a)��(a)� = 0 ; for all a 2 g :Any Lie algebra g can be embedded into its universal enveloping algebra U(g) ; andthe representation � : g ! B(h) extends to a representation � : U(g) ! B(h)(Poincar�e{Birkho�{Witt theorem12). In this sense, any L{cycle can be embeddedinto its \enveloping K{cycle". However, the gauge �eld theory obtained by theConnes{Lott prescription1,3 from this enveloping K{cycle di�ers from the gauge�eld theory we are going to develop for the L{cycle. Our construction follows theideas of Connes and Lott, but the methods and results are di�erent.Although we do not need it, let us translate properties of a K{cycle intode�nitions for the L{cycle. We use the de�nition of the distance on a K{cycle1,3to de�ne the distance between linear functionals x1; x2 : g! C of the Lie algebra:De�nition 2. Let X be the space of linear functionals of g : The distancedist(x1; x2) between x1; x2 2 X is given bydist(x1; x2) := supa2gf jx1(a)� x2(a)j : k [D; �(a)] k � 1 g :This de�nition makes (X; dist) to a metric space, and there is no need for � beingan algebra homomorphism.Next, we can take the de�nition of integration on a K{cycle1,3 to de�ne thenotion of integration on an L{cycle:De�nition 3. Let d 2 [1;1) be a real number. An L{cycle (g; h;D; �;�) iscalled d+{summable if the eigenvalues En of D { arranged in increasing order {satisfy PNn=1E�1n = O(PNn=1 n�1=d ) :We de�ne the integrationZX jaj2 d� := const :(d) Tr!((�(a))2 jDj�d) ; a 2 a ;where Tr! is the Dixmier trace, d� is the \volume measure" on X and const :(d)refers to a constant depending on d :B. The Universal Graded Di�erential Lie Algebra 
�gTo construct di�erential algebras over a K{cycle (A; h;D) one starts from theuniversal di�erential algebra 
�A over A and factorizes this di�erential algebrawith respect to a di�erential ideal determined by the representation � of 
�Ain B(h) : In analogy to this procedure we �rst de�ne a universal di�erential Lie



4 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasalgebra 
�g over the Lie algebra g of the L{cycle. Then we de�ne a representation� of 
�g in B(h) : Finally, we perform the factorization with respect to thedi�erential ideal.Let g be a Lie algebra over R with involution given by a� = �a ; for a 2 g :The construction of the universal graded di�erential Lie algebra 
�g over the Liealgebra g goes as follows: First, let dg be another copy of g : Let V (g) be the freevector space generated by g and let V (dg) be the free vector space generated bydg ; V (g) :=Ma2g Va ; Va =R 8a 2 g ;V (dg) := Mda2dg Vda ; Vda =R 8da 2 dg : (2.1)For a vector space X we denote by �x the function on X ; which takes the value1 at the point x 2 X and the value 0 at all points y 6= x : Then,V (g) = f P� ���a� ; a� 2 g ; �� 2 R g ;V (dg) = f P� ���da� ; a� 2 g ; �� 2 R g ; (2.2)where the sums are �nite. Let T (g) be the tensor algebra of V (g)�V (dg) ; whichcarries a natural N{grading structure. We de�ne deg(v) = 0 for v 2 V (g) anddeg(v) = 1 for v 2 V (dg) : For tensor products v1 
 v2 
 : : :
 vn 2 T (g) ; whereeach vi ; i = 1; : : : ; n ; belongs either to V (g) or to V (dg) ; we de�nedeg(v1 
 v2 
 : : :
 vn) :=Pni=1 deg(vi) : (2.3)Now we haveT (g) =Mn2NT n(g) ; T n(g) := f t 2 T (g) ; deg(t) = n g : (2.4)In particular, we have T k(g)
 T l(g) � T k+l(g) :Next, we regard T (g) as a graded Lie algebra with graded commutator givenby [tk; ~tl] := tk 
 ~tl � (�1)kl ~tl 
 tk ; tk 2 T k(g) ; ~tl 2 T l(g) : (2.5)Obviously, one has1) [tk; ~tl] = �(�1)kl[~tl; tk] ;2) [tk; �~tl + ~�~~tl] = �[tk; ~tl] + ~�[tk;~~tl] ; (2.6)3) (�1)km[tk; [~tl;~~tm]] + (�1)lk[~tl; [~~tm; tk]] + (�1)ml[~~tm; [tk; ~tl]] = 0 ;for tk 2 T k(g) ; ~tl;~~tl 2 T l(g) ; ~~tm 2 Tm(g) and �; ~� 2 R :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 5Let ~
�g = Ln2N ~
ng be the N{graded Lie subalgebra of T (g) given by theset of all repeated commutators (in the sense of (2.5)) of elements of V (g) andV (dg) : Let I 0(g) be the vector subspace of ~
�g of elements of the following type:��a � ��a ; ��da � �d(�a) ;�a + �~a � �a+~a ; �da + �d~a � �d(a+~a) ;[�a; �~a]� �[a;~a] ; [�da; �~a] + [�a; �d~a]� �d[a;~a] ; (2.7)for a; ~a 2 g and � 2 R : Obviously,I(g) := I 0(g) + [V (g)� V (dg); I 0(g)]+ [V (g)� V (dg); [V (g)� V (dg); I 0(g)]] + : : : (2.8)is an N{graded ideal of ~
�g ; I(g) =Ln2N In(g) : Then,
�g :=Mn2N
ng ; 
ng := ~
ng = In(g) ; (2.9)is an N{graded Lie algebra, with commutator given by[$ + I(g); ~$ + I(g)] := [$; ~$] + I(g) ; $; ~$ 2 ~
�g : (2.10)On T (g) we de�ne recursively a graded di�erential as an R{linear map d :T n(g)! T n+1(g) byd(��a) := ��da ; d(��da) := 0 ;d(��a 
 t) := ��da 
 t+ ��a 
 dt ; d(��da 
 t) :=���da 
 dt ; (2.11)for a 2 g ; t 2 T (g) and � 2 R : From this de�nition we getd2(��a) = d(��da) = 0 ; d2(��da) = 0 ;d2(��a 
 t) = d(��da 
 t) + d(��a 
 dt)=���da 
 dt + ��da 
 dt+ ��a 
 d2t = ��a 
 d2t ;d2(��da 
 t) = ��da 
 d2t ; (2.12)therefore, by induction, d2 � 0 on T (g) : In order to show that d is a gradeddi�erential we use the following equivalent characterization of (2.11):d(v1 
 : : :
 vn) = nXi=1 (�1)Pi�1j=1 deg(vj)v1 
 : : :
 vi�1 
 dvi 
 vi+1 
 : : :
 vn :(2.13)For tk = v1 
 : : : 
 vn 2 T k(g) ; k = Pni=1 deg(vi) ; and ~tl 2 T l(g) we get from(2.13) d(tk 
 ~tl) = d(tk)
 ~tl + (�1)ktk 
 d~tl : (2.14)



6 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasThus, d de�ned by (2.11) is a graded di�erential of the tensor algebra T (g) :Moreover, d is also a graded di�erential of the graded Lie algebra T (g) :d[tk; ~tl] = d(tk 
 ~tl � (�1)kl~tl 
 tk)= (d(tk)
 ~tl � (�1)(k+1)l~tl 
 dtk) + (�1)k(tk 
 d~tl � (�1)k(l+1)d(~tl)
 tk)= [dtk; ~tl] + (�1)k[tk; d~tl] :Now, from d(V (g)� V (dg)) � V (g)� V (dg) we conclude that d is also a gradeddi�erential of the graded Lie subalgebra ~
�g � T (g) :Next, we show that dI 0(g) � I 0(g) :d(��a � ��a) = ��da � �d(�a) ; d(��da � �d(�a)) = 0 ;d(�a + �~a � �a+~a) = �da + �d~a � �d(a+~a) ; d(�da + �d~a � �d(a+~a)) = 0 ;d([�a; �~a]� �[a;~a]) = [�da; �~a] + [�a; �d~a]� �d[a;~a] ;d([�da; �~a] + [�a; �d~a]� �d[a;~a]) =�[�da; �d~a] + [�da; �d~a] = 0 : (2.15)Since d(V (g)� V (dg)) � V (g)� V (dg) ; we get from (2.8)dI(g) � I(g) : (2.16)Therefore, the graded di�erential d on ~
�g induces a graded di�erential on 
�gdenoted by the same symbol:d($ + I(g)) := d$ + I(g) ; $ 2 ~
�g : (2.17)Hence, (
�g ; [ ; ] ; d) is a graded di�erential Lie algebra.We extend the involution � : a 7! �a on g to an involution of the free vectorspaces V (g) and V (dg) by(��a)� := ���a ; (��da)� := ���da : (2.18)We obtain an involution of T (g) by(v1 
 v2 
 : : :
 vn)� := v�n 
 : : :
 v�2 
 v�1 ; (2.19)ful�lling (t
 ~t)� = ~t� 
 t� : (2.20)Formula (2.20) induces the following property of the Lie bracket (2.5):[tk; ~tl]� = �(�1)kl[tk�; ~tl�] : (2.21)Because of (V (g) � V (dg))� = V (g) � V (dg) we get an involution on ~
�g byrestricting the involution on T (V ) to its graded Lie subalgebra ~
�g : Obviously,we have I 0(g)� = I 0(g) ; giving I(g)� = I(g) : Therefore, we obtain an involutionon 
�g by ($ + I(g))� := $� + I(g) ; $ 2 ~
�g : (2.22)The graded di�erential Lie algebra 
�g is universal in the following sense:



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 7Proposition 4. Let ��g = Ln2N�ng be an N{graded Lie algebra with gradeddi�erential d : �ng! �n+1g such thati) �0g = �(g) for a surjective homomorphism � : g! �(g) of Lie algebras,ii) ��g is generated by �(g) and d�(g) as the set of repeated commutators.Then there exists a di�erential ideal I� � 
�g such that ��g �= 
�g=I� :Proof: We de�ne a surjective mapping ~p : ~
�g! ��g by~p(��a) := �(�a) ;~p(d$) := d(~p($)) ;~p([$; ~$]) := [~p($); ~p( ~$)] ;for a 2 g ; $; ~$ 2 ~
�g and � 2 R : Obviously, ~p(I(g)) = 0 : Therefore, byfactorization with respect to I(g) we get a surjection p : 
�g ! ��g by p($ +I(g)) := ~p($) ; for $ 2 ~
�g : We have p(d ker p) = 0 ; therefore, I� = ker p is thedesired di�erential ideal of 
�g :��g �= 
�g = ker p :Proposition 4 tells us that each graded di�erential Lie algebra generated by �(g)and its di�erential is obtained by factorizing 
�g with respect to a di�erentialideal. For the setting described by an L{cycle, such a di�erential ideal is canoni-cally given. This leads to a canonical graded di�erential Lie algebra, see Sec. II.C.To summarize: We have de�ned a universal graded di�erential Lie algebra
�g =L1n=0
ng over a Lie algebra g ; with:{ graded commutator [ ; ] : 
kg� 
lg! 
k+lg ;{ universal di�erential d : 
kg! 
k+1g ; which is linear, nilpotent and obeysthe graded Leibniz rule.{ involution � : 
kg! 
kg :Explicitly, we have the following properties:1) [!k; ~!l] = �(�1)kl[~!l; !k] ; (2.23a)2) [!k; �~!l + ~�~~!l] = �[!k; ~!l] + ~�[!k; ~~!l] ; (2.23b)3) (�1)km[!k; [~!l; ~~!m]] + (�1)lk[~!l; [~~!m; !k]] + (�1)ml[~~!m; [!k; ~!l]] = 0 ; (2.23c)4) d[!k; ~!l] = [d!k; ~!l] + (�1)k[!k; d~!l] ; (2.23d)5) d2!k = 0 ; (2.23e)6) [!k; ~!l]� = �(�1)kl[!k�; ~!l�] ; (2.23f)for !k 2 
kg ; ~!l; ~~!l 2 
lg ; ~~!m 2 
mg and �; ~� 2 R :It is convenient to �x a canonical ordering in elements of 
kg ; k � 1 : First,let �(a) := �a + I(g) ; �(da) := �da + I(g) ; (2.24)



8 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasfor a 2 g : The �rst equation establishes an isomorphism 
0g �= g : We shallrepresent elements !1 2 
1g as!1 = �(d~a) +P�;z�1[�(az�); [: : : [�(a2�); [�(a1�); �(da0�)]] : : : ]]�P�;z�0[�(az�); [: : : [�(a2�); [�(a1�); �(da0�)]] : : : ]] ; (2.25)where ~a; ai� 2 g and the sums are �nite. To avoid possible misunderstandingsconcerning this notation we �x throughout this paper the following convention:Beginning with z = 1 ; the index � �rst runs from 1 to �1 > 0 and labels theterms[�(a11); �(da01)]; : : : ; [�(a1�1); �(da0�1)]in (2.25). Then, for z = 2 ; the index � runs from �1 + 1 to �2 > �1 and labelsthe commutators[�(a2�1+1); [�(a1�1+1); �(da0�1+1)]]; : : : ; [�(a2�2); [�(a1�2); �(da0�2)]]in (2.25), and so on. Therefore, the pair (i; �) of indices labelling an elementai� 2 g does never occur more than once in the sum (2.25). Moreover, we identifythe term belonging to the pair (� = 0; z = 0) of indices with �(d~a) ; as alreadyindicated in (2.25).Now, we write down elements !k 2 
kg ; k � 2 ; recursively as!k =P�[!1�; ~!k�1� ] ; !1� 2 
1g ; ~!k�1� 2 
k�1g ; �nite sum : (2.26)There are two things to check concerning (2.26). First, for ~!n �P�[~!1�; ~~!n�1� ] 2
ng ; with ~!1� 2 
1g and ~~!n�1� 2 
n�1g ; we must show that also [!0; ~!n] 2 
ngcan be represented in the standard form (2.26), for any !0 2 
0g : But this followsfrom the graded Jacobi identity (2.23c):[!0; ~!n] = [!0;P�[~!1�; ~~!n�1� ]]=�P�[~!1�; [~~!n�1� ; !0]]� (�1)n�1P�[~~!n�1� ; [!0; ~!1�]]=P� �[~!1�; [!0; ~~!n�1� ]] + [[!0; ~!1�]; ~~!n�1� ]� :Second, we must show that the commutator [!k; ~!l] 2 
k+lg ; for 2 � k � l ; canbe represented in the standard form (2.26) of an element of 
k+lg ; provided thatboth !k 2 
kg and ~!l 2 
lg are written down recursively in the form (2.26).Using again (2.23b) and (2.23c) we get for !k =P�[!1�; ~~!k�1� ][!k; ~!l] =�(�1)lkP�[~!l; [!1�; ~~!k�1� ]]=P� �[!1�; [~~!k�1� ; ~!l]] + (�1)k[~~!k�1� ; [!1�; ~!l]]� :Repeating this calculation for the commutators [~~!k�1� ; ~!l] and [~~!k�1� ; [!1�; ~!l]] ; wecan recursively decrease the degree k until we arrive at degree 1 :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 9Now we can easily prove(!k)� = �(�1)k(k�1)=2!k ; !k 2 
kg : (2.27)By de�nition, (2.27) holds for k = 0 : From (2.25) and (2.23f) we get for !1 2 
1g!1� =P�;z�0[�(az�); [: : : ; [�(a1�); �(da0�)] : : : ]]�=P�;z�0[�(az�); ([: : : ; [�(a1�); �(da0�)] : : : ])�]= � � � =P�;z�0[�(az�); [: : : ; [�(a1�); (�(da0�))�] : : : ]] = �!1 :In the same way we get from (2.26) and (2.23f) for !k 2 
kg!k� =P�[!1�; ~!k�1� ]� = (�1)k�1P�[!1�; (~!k�1� )�] = (�1)(Pk�1i=2 i)!k=�(�1)k(k�1)=2!k :C. The Graded Di�erential Lie Algebra 
�DgFollowing the procedure for K{cycles we de�ne an involutive representation � ofthe universal di�erential Lie algebra 
�g introduced in Sec. II.B in the gradedLie algebra B(h) of bounded operators on h ; where h is the Hilbert space of theL{cycle given in De�nition 1. We underline that � will not be a representation ofgraded Lie algebras with di�erential. The de�nition of � uses almost the wholeinput contained in the L{cycle. First, using the grading operator �; we de�ne aZ2{grading structure on the vector space O(h) of linear operators on the Hilbertspace h ; O(h) = O0(h)� O1(h) ; byO0(h)� = �O0(h) ; O1(h)� = ��O1(h) : (2.28)This enables us to introduce the graded commutator for Z2{graded linear op-erators on h : For Ai 2 Oi(h) and Bj 2 Oj(h) \ B(h) ; where both Ai; Bj areselfadjoint or skew{adjoint on h ; we de�ne[Ai; Bj]g := Ai �Bj � (�1)ijBj � Ai � �(�1)ij[Bj; Ai]g (2.29)on the subset h0 = domain(Ai) \ f 2 h ; Bj 2 domain(Ai)g of h : In certaincases it may be possible to extend h0 : One has Aj 2 B(h) i� h0 = h :Let us de�ne a linear mapping ~� : ~
�g! B(h) by~�(��a) := �(�a) ; (2.30a)~�(��da) := [�iD; �(�a)]g � [�iD; �(�a)] ; (2.30b)~�([$k; ~$l]) := [~�($k); ~�( ~$l)]g ; (2.30c)for a 2 g ; $k 2 ~
kg ; ~$l 2 ~
lg and � 2 R : Note that �(a) and [D; �(a)] arebounded due to De�nition 1 so that the r.h.s. of equations (2.30a) and (2.30b)belong to B(h) : Now, due to �(g) � O0(h) and D 2 O1(h) ; we get from (2.30)~�(~
2kg) � O0(h) ; ~�(~
2k+1g) � O1(h) : (2.31)



10 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasNext, we show that ~� : ~
�g ! B(h) is an involutive representation, wherewe recall that the involution in B(h) is de�ned as usual by means of the scalarproduct h ; ih on h :h ; � � ~ ih := h� ; ~ ih ; 8 ; ~ 2 h ; � 2 B(h) : (2.32)First, from (2.18), (2.30a) and the fact that � : g ! B(h) is an involutiverepresentation we get~�((��a)�) = �~�(��a) = ��(�a) = (�(�a))� = (~�(��a))� :Second, from (2.18), (2.30b) and the selfadjointness of D we obtain�((��da)�) =��(��da) = i(D � �(�a)� �(�a) �D)=�(�i)�(D� � (�(�a))� � (�(�a))� �D�)=�f�i(�(�a) �D �D � �(�a))g� = (�(��da))� :Now we get by induction that ~� is an involutive representation on ~
�g :Observe that ~�(I(g)) � 0 : (2.33)Therefore, the involutive representation ~� : ~
�g ! B(h) induces an involutiverepresentation � : 
�g! B(h) by (the symbol � is already used but there is nodanger of confusion) �($ + I(g)) := ~�($) ; $ 2 ~
�g : (2.34)In the same way as for K{cycles there may exist ! 2 
�g ; ful�lling �(!) = 0but not �(d!) = 0 : Therefore, �(
�g) is not a di�erential Lie algebra. But thereis a canonical construction towards such an object. Let us de�neJ �g = ker � + d ker � = 1Mk=0 J kg ; J kg = J �g \ 
kg : (2.35)To obtain a di�erential Lie algebra we �rst prove:Lemma 5. J �g is a graded di�erential ideal of the graded Lie algebra 
�g :Proof: It is clear that ker � is an ideal of 
�g : Then, for jk 2 ker � \ 
kg and! 2 
�g we have, see (2.23d),[djk; !] = d([jk; !])� (�1)k[jk; d!] :Because of [jk; d!] 2 ker � and d([jk; !]) 2 d ker � ; J �g is an ideal of 
�g :Moreover, it is obviously a di�erential ideal: dJ �g � J �g ; due to d2 = 0 :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 11By virtue of Proposition 4, the canonical di�erential ideal (2.35) gives rise to agraded di�erential Lie algebra 
�Dg :
�Dg = 1Mk=0 
kDg ; 
kDg := 
kg=J kg : (2.36a)There is a canonical isomorphism
kgJ kg �= 
kg=(ker � \ 
kg)J kg=(ker � \ 
kg) ; (2.36b)establishing the isomorphism
kDg �= �(
kg)=�(J kg) : (2.36c)In particular, one has
0Dg �= �(
0g) � �(g) ; 
1Dg �= �(
1g) : (2.36d)Let & denote the projection onto equivalence classes, & : �(
kg) ! 
kDg : In thisnotation, the commutator and the di�erential on 
�Dg are de�ned as[& � �(!k); & � �(~!l)]g := &([�(!k); �(~!l)]g) ; (2.37a)d(& � �(!k)) := & � �(d!k) ; (2.37b)for !k 2 
kg and ~!l 2 
lg : From (2.37a) there follows that 
�Dg is a graded Liealgebra, and the bracket [ ; ]g : 
�Dg� 
�Dg! 
�Dg has properties analogous to(2.23). For %k = & � �(!k) and ~%l = & � �(~!l) we have with (2.37a) and (2.37b)d[%k; ~%l]g = & � �(d[!k; ~!l]) = & � �([d!k; ~!l] + (�1)k[!k; d~!l])= [d%k; ~%l]g + (�1)k[%k; d~%l]g : (2.37c)Obviously, d2 � 0 on 
�Dg : This means that d is a graded di�erential on 
Dg :Moreover, we have (& � �(!k))� = & � �((!k)�) ; !k 2 
kDg ; (2.38)because � is an involutive representation and �(J �g) is invariant under the invo-lution. From (2.27) we get%n� = �(�1)n(n�1)=2%n ; %n 2 
nDg : (2.39)



12 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasD. Towards the Analysis of the Di�erential IdealOur goal is the analysis of the ideal �(J �g) : For this purpose we de�ne�� X�;z�0[�(az�); [: : : [�(a1�); �(da0�)] : : : ]]�:= X�;z�0[�(az�); [: : : [�(a1�); [D2; �(a0�)]] : : : ]] ; (2.40)where ai� 2 g : In particular, from (2.40) we get�(�(da)) = [D2; �(a)] ; �([�(a); !1]) = [�(a); �(!1)] ; (2.41)for a 2 g and !1 2 
1g : We extend � to 
�g ; putting �(
0g) � 0 and�(X� [!k�; ~!l�]) :=X� �[�(!k�); �(~!l�)]g + (�1)k[�(!k�); �(~!l�)]g� ; (2.42)for !k� 2 
kg and ~!l� 2 
lg : Note that �(!k) 2 Ozk+1(h) if �(!k) 2 Ozk(h) ; wherezn = n mod 2 : We do not necessarily have �(!k) 2 B(h) : Now we prove:Proposition 6. We have �(d!k) = [�iD; �(!k)]g + �(!k) ; for !k 2 
kg :Proof : The Proposition is clearly true for k = 0 : To prove the Proposition fork = 1 we �rst consider the case !1 = �(da) 2 
1g : Then we have[�iD; �(!1)]g = [�iD; [�iD; �(a)]g]g = [(�iD)2; �(a)] = ��(�(da))so that �(d!1) = 0 : But this is consistent with d!1 = d2(�(a)) = 0 : Now weprove the Proposition for k = 1 by induction. Because of (2.41), the linearity of� and the structure of elements of 
1g ; see (2.25), it su�ces to assume that theProposition is true for all !1 2 
1g and to show that from this assumption therefollows�(d[�(a); !1]) = [�iD; �([�(a); !1])]g + �([�(a); !1]) ;for all a 2 g : We calculate�(d[�(a); !1]) = [�(�(da)); �(!1)]g + [�(�(a)); �(d!1)]g= [[�iD; �(a)]g; �(!1)]g + [�(a); [�iD; �(!1)]g + �(!1)]g= [�iD; [�(a); �(!1)]g]g + �([�(a); !1])= [�iD; �([�(a); !1])]g + �([�(a); !1]) :Finally, we extend the proof to any k by induction. For that purpose let usassume that the Proposition holds for k � 1 : Due to linearity we can restrictourselves to elements !k = [!1; ~!k�1] 2 
kg : Using (2.42) and the graded Jacobiidentity we calculate�(d[!1; ~!k�1]) = [�(d!1); �(~!k�1)]g � [�(!1); �(d~!k�1)]g= [[�iD; �(!1)]g + �(!1); �(~!k�1)]g � [�(!1); [�iD; �(~!k�1)]g + �(~!k�1)]g= �[�(~!k�1); [�iD; �(!1)]g]g � (�1)k[�(!1); [�(~!k�1);�iD]g]g + �([!1; ~!k�1])= [�iD; [�(!1); �(~!k�1)]g]g + �([!1; ~!k�1]) :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 13We recall that �(J kg) = f�(d!k�1) ; !k�1 2 
k�1g \ ker � g : (2.43)From Proposition 6 we get the following equivalent characterization:�(J kg) = f�(!k�1) ; !k�1 2 
k�1g \ ker � g : (2.44)Obviously, �(!k�1) is bounded if �(!k�1) = 0 :Of course, (2.44) is only a rewritingof (2.43), but it is a convenient starting point for the analysis of �(J �g) :E. Graded Lie HomomorphismsIn this subsection we provide the framework for the formulation of connectionsand gauge transformations. LetHng := f �n 2 Ozn(h) ; zn = n mod 2 ; �n� = �(�1)n(n�1)=2 �n ;[�n; �(
kg)]g � �(
k+ng) ; [�n; �(J kg)]g � �(J k+ng) g (2.45)be the set of graded Lie homomorphisms of �(
�g) of nth degree. Note that Hngmay contain unbounded operators � on h ; but such thath0 = domain(�) \ f 2 h ; �(
�g) � domain(�)gis dense in h : This is necessary to ensure that the sequence f [�; �(!)]g n gn ofelements of h ; for  n 2 h0 and any ! 2 
�g ; converges to �(~!) if  n tends to 2 h ; where �(~!) 2 �(
�g) is independent of  n : Let~cna := fjn 2 Hng ; [jn; �(
�g)]g = 0 g (2.46)be the graded centre of �(
�g) of nth degree. Then, the factor space~H�g := Mn2N0 ~Hng ; ~Hng := Hng = ~cna ; (2.47a)is a graded Lie algebra, with the graded commutator given by[[�k + ~cka; ~�l + ~cla]g; �(!n)]g:= [�k; [~�l; �(!n)]g]g � (�1)kl[~�l; [�k; �(!n)]g]g ; (2.47b)for �k 2 Hkg ; ~�l 2 Hlg and !n 2 
ng : It is clear that this equation is well{de�ned. Obviously, �(
�g) is a graded Lie subalgebra of ~H�g :It is clear that the graded ideal �(J �g) of �(
�g) yields a graded ideal �(J �g)+~c�a of H�g ; see (2.45). Therefore,Ĥ�g := Mn2N0 Ĥng ; Ĥng = Hng =Jng ; Jng = ~cna+ �(J ng) ; (2.48a)



14 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasis a graded Lie algebra. Moreover, it is a graded di�erential Lie algebra, too,where the graded di�erential is de�ned by[d(�k + �(J kg) + ~cka); �(!n) + �(J ng)]g (2.48b):= � � d � ��1([�k; �(!n)]g)� (�1)k[�k; �(d!n)]g + �(J k+n+1g) ;for �k 2 Hkg and !n 2 
ng : It is obvious that this equation is well{de�ned andthat 
�Dg is a graded Lie subalgebra of Ĥ�g :Letu(g) := f �0 2 H0g \B(h) ; (2.49)� � ��1([�0; �(!k)]g)� [�0; �(!k)]g 2 �(J k+1g) ; 8!k 2 
kg g :Obviously, �(g) � u(g) : Let O0 � u(g) be an open neighbourhood of the zeroelement of u(g) and O1 � B(h) be an open neighbourhood of 1B(h) : For anappropriate choice of O0 and O1 we de�ne the exponential mappingexp : O0 ! O1 ; exp(�) := 1B(h) + 1Xk=1 1k! (�)k ; � 2 O0 : (2.50)The Baker{Campbell{Hausdor� formula for ��; �� 2 O0 ;exp(��) exp(��) = exp(�) ; (2.51)� = �� + �� + 12 [��; ��] + 112([��; [��; ��]]� [��; [��; ��]]) + � � � 2 u(g) ;implies that we have a multiplication in exp(O0) : In particular, for �� propor-tional to �� we getexp(�1�) exp(�2�) = exp((�1 + �2)�) = exp(�2�) exp(�1�) ; (2.52)for �1; �2 2 R and � 2 O0 : Thus, exp(�) is invertible in B(h) for each � 2 O0 ;and the inverse is given by(exp(�))�1 = exp(��) = exp(��) = (exp(�))� : (2.53)Therefore, all elements exp(�) are unitary. Since B(h) is a C�{algebra we con-clude that for all � 2 u(g) we havek exp(�)k = k exp(�)� exp(�)k1=2 = k1B(h)k1=2 = 1 : (2.54)Hence, our construction leads to the subgroupexp(u(g)) := f QN�=1 exp(��) ; �� 2 O0 ; N �nite g (2.55)of the group of unitary elements of B(h) :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 15For A being a linear operator on h and � 2 O0 we haveexp(�)A exp(��) = A + 1Xk=1 1k! [�; [�; : : : ; [�| {z }k ; A] : : : ]] : (2.56)For A = �(a) 2 �(g) and exp(�) = u 2 O1 we get u�(a)u� 2 �(g) : For A = �iDwe get u[�iD; u�] = �i(uDu� � D) � ud(u�) 2 Ĥ1g ; because with (2.49) and(2.48b) we have[[�iD; �]; �(!k)]g+ �(J k+1g) = [�iD; [�; �(!k)]]g� [�; [�iD; �(!k)]g] + �(J k+1g)= � � d � ��1([�; �(!k)])� � � ��1([�; �(!k)])� [�; �(d!k)] + [�; �(!k)] + �(J k+1g)= [d�; �(!k)]g + �(J k+1g) :If �(!k) 2 �(J kg) then [[�iD; �]; �(!k)]g 2 �(J k+1g) : Therefore, there is a nat-ural degree{preserving representation Ad of exp(u(g)) in 
�Dg de�ned byAdu �(a) := u�(a)u� ;Adu [�iD; �(a)] := [�iD;Adu �(a)] + [u[�iD; u�];Adu �(a)] ;Adu (�(!k) + �(J kg)) := (Adu �(!k)) + �(J kg) ;Adu [%; ~%]g := [Adu %;Adu ~%]g ; (2.57)for u 2 exp(u(g)) ; a 2 g ; !k 2 
kg and %; ~% 2 
�Dg : Note that due to (2.56) wehave Adu �(J kg) � �(J kg) :F. Connections and Gauge TransformationsIn this subsection we de�ne the notion of a connection, of its curvature, of gaugetransformations and of bosonic and fermionic actions.De�nition 7. A connection on an L{cycle is a pair (r;rh) ; wherei) rh : h! h is linear, odd and skew{adjoint,rh 2 O1(h) ; h ;rh ~ ih = �hrh ; ~ ih ; 8 ; ~ 2 h ;ii) r : 
nDg! 
n+1D g is linear,iii) r(�(!n) + �(J ng)) = [rh; �(!n)]g + �(!n) + �(J n+1g) ; !n 2 
ng :The operator r2 : 
nDg! 
n+2D g is called the curvature of the connection.As a consequence of iii) we get with (2.42)r([%k; ~%l]g) = [r(%k); ~%l]g + (�1)k[%k;r(~%l)] ; %k 2 
kDg ; ~%l 2 
lDg : (2.58)Proposition 8. Any connection has the form �r = d+[~� ; : ]g ; rh = �iD+�� ;for � 2 H1g and ~� := � + ~c1a 2 Ĥ1g : Its curvature is r2 = [�; : ] ; with� = d~� + 12 [~�; ~�]g 2 Ĥ2g :



16 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasProof: There is a canonical connection given by (r = d;rh = �iD) : Itemsi) and ii) of De�nition 7 are obvious. For iii) we �nd with Proposition 6[�iD; �(!k)]g + �(!k) = �(d!k) : (2.59)Taking ! 2 ker � we see that iii) is well{de�ned. Let (r(1);r(1)h ) and (r(2);r(2)h )be two connections. Then we get from iii) of De�nition 7(r(1) �r(2))(�(!k) + �(J kg)) = [r(1)h �r(2)h ; �(!k)]g + �(J k+1g) ; (2.60)for !k 2 
kg : Now, item ii) yields � := r(1)h �r(2)h 2 H1g : Since a modi�cation of� by an element of ~c1a � J1g does not change formula (2.60), we get r(1)�r(2) =[~� ; : ] ; where ~� := � + ~c1a 2 Ĥ1g : Taking (r(2);r(2)h ) = (d;�iD) we obtain(r(1);r(1)h ) = (d+ [~� ; : ]g ; �iD + �) :Note that if �(!k) � �(J k+1g) for all !k 2 �(
kg) then there is �iD 2 H1g :Thus, the assertion remains true although the connection (r = d;rh = �iD) isnot distinguished in this case.Finally, we compute the curvature r2 : For !k 2 
kg we have with (2.47)r2(�(!k) + �(J kg)) = r(�(d!k) + [~�; �(!k)]g + �(J k+1g))= [~�; �(d!k)]g + � � d � ��1([~�; �(!k)]g) + [~�; [~�; �(!k)]g]g + �(J k+2g)� [d~� + 12 [~�; ~�]g; �(!k) + �(J kg)]g =: [�; �(!k) + �(J kg)] :Note that the relation between � 2 H1g and �0 2 H1g in (2.60),[�; �(!k)]g + �(J k+1g) = [�0; �(!k)]g + �(J k+1g) ;may have more solutions than �0 = �+ ~c1a : However, we shall regard � and �0 asdi�erent connection forms if �� �0 62 ~c1a : Analogously, the determining equationfor �0 2 Ĥ2g ; [�0; %]g = [�; %]g for all % 2 
�Dg ;may have more solutions than �0 = � : However, we shall select always the canon-ical representative � = d~�+ 12 [~�; ~�]g in the curvature form of the connection r2 :Often we shall denote � 2 Ĥ2g itself instead of r2 the curvature of the connection(r;rh) :De�nition 9. The gauge group of the L{cycle is the group U(g) := exp(u(g))de�ned in (2.55). Gauge transformations of the connection are given by(r;rh) 7�! (r0;r0h) := (AdurAdu� ; urhu�) ; u 2 U(g) :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 17We must check that the de�nition of gauge transformations of a connection iscompatible with De�nition 7:[r0h; �(!n)]g + �(J n+1g) = u[rh; u��(!n)u]gu� + �(J n+1g)= Adu �r(Adu� (�(!n) + �(J ng)))� �(��1 � Adu� � �(!n)) + �(J n+1g)�= r0(�(!n) + �(J ng))� Adu (�(��1 � Adu� � �(!n))) + �(J n+1g) :Thus, the de�nition is consistent i� �(��1 � Adu � �(!n)) + �(J n+1g) =Adu (�(!n)) + �(J n+1g) : But this equation is satis�ed due to (2.49).The gauge transformation of the connection form � occurring in the connectionrh = �iD + � is de�ned by r0h =: �iD + u(�) : (2.61)From r0h = u(�iD + �)u� = (�iD + u[�iD; u�] + u�u�) one �ndsu(�) = udu� + u�u� : (2.62)The gauge transformation of the curvature is due to(AdurAdu� )2(%k) = Adur2Adu� %k = u[�; u�%ku]u�given by u(�) = Adu � = u�u� : (2.63)The Dixmier trace1 provides a canonical scalar product h ; i on B(h) : If theL{cycle is d+{summable (see De�nition 3) we de�ne for �; ~� 2 B(h)h�; ~�i := Tr! (� �~� jDj�d) : (2.64)We assume that in some sense there exists an extension of this formula to linearoperators on h belonging to H2g (recall that H2g is bounded on a dense subsetof h).De�nition 10. The bosonic action SB and the fermionic action SF of the con-nection (r;rh) are given bySB(r) = h�; �iĤ2g := minj22J2gTr!((�0 + j2)2 jDj�d) ; (2.65a)SF ( ;rh) := h ; irh ih ;  2 h ; (2.65b)where Tr! is the Dixmier trace, h ; ih the scalar product on h and �0 2 H2g anyrepresentative of the curvature of r :



18 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasSince both h ; iĤ2g and h ; ih are invariant1 under unitary transformations weget from (2.63) and De�nition 9 that the action (2.65) is invariant under gaugetransformations(r;rh) 7�! (AdurAdu� ; urhu�) ;  7�! u ; u 2 U(g) : (2.66)There is an equivalent formulation of (2.65a). Let e(�0 + j2) 2 H2g be thoserepresentative of � 2 Ĥ2g ; for which the minimum in (2.65a) is attained. Letj2 =P� ��j2� ; for �� 2 R ; be a parameterization of j2 2 J2g : Then,0 = dd�� Tr!((�0 + j2)2 jDj�d) = 2 Tr!((�0 + j2)j2�) jDj�d) :Thus, e(�0 + j2) � e(�) is those representative of � ; which is orthogonal to theideal J2g with respect to h ; iĤ2g :SB = Tr!((e(�))2 jDj�d) ; Tr!(e(�)J2g jDj�d) � 0 : (2.67)The representative e(�) is unique, because Tr!( : jDj�d) is positive de�nite:1Tr!((e(�) + j2)2 jDj�d) = Tr!((e(�))2 jDj�d) + Tr!((j2)2jDj�d)>Tr!((e(�))2 jDj�d) ; 8j2 6= 0 :III. L{Cycles over Functions 
 Matrix Lie AlgebraA. A Class of L{Cycles Relevant to PhysicsLet (a;CF ;M; �̂; �̂) be an L{cycle over a matrix Lie algebra a : In particular,we have a representation �̂ of a in the Lie algebra MFC of endomorphisms ofthe Hilbert space CF : Moreover, the grading operator �̂ anticommutes with thegeneralized Dirac operator M and commutes with �̂(a) : Both M and �̂ belongto MFC :Let X be a compact even dimensional Riemannian spin manifold, dim(X) =N � 4 ; and let C1(X) be the algebra of real{valued smooth functions on X.Since C1(X) is a commutative algebra, the tensor productg := C1(X)
 a (3.1a)over R is in a natural way a Lie algebra, where the commutator is given by[f1 
 a1; f2 
 a2] � f1f2 
 [a1; a2] ; f1; f2 2 C1(X) ; a1; a2 2 a : (3.1b)We introduce the Hilbert spaceh := L2(X;S)
CF ; (3.2)



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 19where L2(X;S) denotes the Hilbert space of square integrable sections of thespinor bundle over X. The representation �̂ : a ! End (CF ) and the C1(X){module structure of L2(X;S) induce a natural representation � of g in B(h):�(f 
 a)(s
 ') := fs
 �̂(a)' ; (3.3)for f 2 C1(X) ; a 2 a ; s 2 L2(X;S) and ' 2 CF : We denote by  the gradingoperator and by D the classical Dirac operator on the Hilbert space L2(X;S) ;see Sec. III.B for more details. Then we putD :=D
 1F +  
M ; (3.4)� :=  
 �̂ : (3.5)The operator [D; �(f 
a)] is bounded on h for all f 
a 2 g : Moreover, D is self-adjoint on h ; because D and  are selfadjoint on L2(X;S) andM is symmetrical.Next, � commutes with �(g) and anticommutes with D : Finally, (idh+D2)�1 iscompact:13 The operator (idh+D2)�1 is a pseudo{di�erential operator of order�2 with compact support and has, therefore, an extension to a continuous op-erator from Hs to Hs+2 on the Sobolev scale fHsg : Due to Rellich's lemma, theembedding e : Ht ,! Hs is compact for t > s : Thus, (idh+D2)�1 considered ase � (idh+D2)�1 : Hs ! Hsis compact, and (g; h;D; �;�) forms an L{cycle.Finally, we briefly sketch how the physical data speci�ed in the Introduction�t into this scheme. First, one constructs a Euclidian version of the gauge �eldtheory. Now, X is the one{point compacti�cation of the Euclidian space{timemanifold. The completion of the space of fermions  yields the Hilbert space h ofthe L{cycle. In some cases, it may be necessary to work with several copies of thefermions. Given the (Lie) group of local gauge transformations G ; we take g asthe Lie algebra of G : The representation � : g!B(h) is just the di�erential ~��of the group representation ~� : The matrixM occurring in the generalized Diracoperator (3.4) contains the fermionic mass parameters and possibly contributionsrequired by the desired symmetry breaking scheme. However, it is necessary that 
M coincides with the fermionic mass matrix fM on chiral fermions. Thegrading operator � represents the chirality properties of the fermions. We have = 5 in four dimensions. After the Wick rotation to Minkowski space we use� to impose a chirality condition on h :B. Notations and TechniquesThis subsection is devoted to de�nitions and techniques related to sections of theCli�ord bundle. We denote by �1(C) the set of smooth sections of the Cli�ordbundle C over X and by Ck � �1(C) the set of those sections of C ; whosevalues at each point x 2 X belong to the subspace spanned by products of less



20 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasthan or equal k elements of T �xX of the same parity. In particular, we identifyC1(X) � C0 :We recall14 that there is an isomorphism of vector spacesc : ��(�1(T �X))! �1(C) (3.6)between �1(C) and the exterior di�erential algebra ��(�1(T �X)) of antisym-metrized tensor products of the vector space of smooth sections of the cotangentbundle over X: In particular, the restriction to the �rst degree yields a vectorspace isomorphism c : �1(T �X) ! C1 : Therefore, elements c1 2 C1 have theform c1 = c(!1) ; for !1 2 �1(T �X) : We use the following sign convention forthe de�ning relation of the Cli�ord action:12(c(!1)c(~!1) + c(~!1)c(!1)) � 12fc(!1); c(~!1)g = g�1(!1; ~!1)1 2 C0 ; (3.7)where g�1 : �1(T �X) � �1(T �X) ! C1(X) is the inverse of the metric g :�1(T�X)� �1(T�X)! C1(X) :Let us de�ne the notion of the exterior product ^ :c11 ^ c12 ^ � � � ^ c1n := 1n! X�2Pn(�1)sign(�)c1�(1)c1�(2) : : : c1�(n) ; c1i 2 C1 ; (3.8)where the sum runs over all permutations of the numbers 1; : : : ; n and the producton the r.h.s. is pointwise the product in the Cli�ord algebra. Observe that ^is associative and that the antisymmetrization (3.8) yields zero for n > N =dim(X) :De�nition 11. �n � Cn is the vector subspace generated by elements of theform (3.8), with �0 � C0 ; �1 � C1 and �n � f0g for n < 0 and n > dim(X) :We de�ne the interior product : �1 � �n ! �n�1 byc10 (c11 ^ c12 ^ � � � ^ c1n) := nXj=1(�1)j+1 12fc10; c1jg(c11^ j_: : : ^c1n) ; (3.9a)c11^ j_: : : ^c1n := c11 ^ c12 ^ � � � ^ c1j�1 ^ c1j+1 ^ � � � ^ c1n : (3.9b)The interior product (3.9a) is extended to : �k � �n ! �n�k by(~c11 ^ ~c12 ^ � � � ^ ~c1k) (c11 ^ c12 ^ � � � ^ c1n):= ~c11 (: : : (~c1k�1 (~c1k (c11 ^ c12 ^ � � � ^ c1n))) : : : ) : (3.10)Lemma 12. For c1i 2 C1 we have12(c10(c11 ^ � � � ^ c1n) + (�1)n(c11 ^ � � � ^ c1n)c10) = c10 ^ c11 ^ c12 ^ � � � ^ c1n ; (3.11a)12(c10(c11 ^ � � � ^ c1n)� (�1)n(c11 ^ � � � ^ c1n)c10) = c10 (c11 ^ c12 ^ � � � ^ c1n) : (3.11b)



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 21Proof: The assertion is clear for orthogonal bases.Let fejgNj=1 be an arbitrary selfadjoint basis of �1(T �X) and fejgNj=1 its dualbasis of �1(T�X) : Duality of fejgNj=1 and fejgNj=1 is understood in the senseej(ei) � hej; eii = �ji (3.12)and selfadjointness means c(ej) = c(ej)� : Let rv be the Levi{Civita covariantderivative with respect to the vector �eld v 2 �1(T�X) : Then we de�ne theexterior di�erential d : �k ! �k+1 on �� bydck := NXj=1 c(ej) ^rej (ck) ; ck 2 �k : (3.13)The proof that d is indeed a graded di�erential uses the fact that the Levi{Civitaconnection has vanishing torsion, see (with di�erent sign conventions) Ref. 14.There is a natural scalar product h ; i�� on ��:hck; ~cli�� := ZXvg trc(ck�~cl) ; ck 2 �k ; ~cl 2 �l ; (3.14)where trc : �1(C)! C1(X) is pointwise the trace in the Cli�ord algebra and vgthe canonical volume form on X : The scalar product (3.14) vanishes for k 6= l :Via this scalar product we de�ne the codi�erential d� : �k ! �k�1 on �� as theoperator dual to the exterior di�erential d:hdck; ~ck+1i�� =: hck;d�~ck+1i�� ; 8ck 2 �k ; ck+1 2 �k+1 : (3.15)Lemma 13. Within our conventions one has the representationd�ck = � NXj=1 c(ej) rej (ck) : (3.16)Proof: The proof is straightforward. One has to use Lemma 12, the invarianceof the trace under cyclic permutations, the Leibniz rule for rv and the identityrv(vg) � 0 for the Levi{Civita connection.Note that { in contrast to what its name suggests { d� is not a derivation. Using(3.16) one easily derives for c1i 2 C1 � �1 the formulad�(c11 ^ c12 ^ � � � ^ c1n) (3.17)=Pnk=1 �� (�1)k+1rg�1(c�1(c1k))(c11^ k_: : : ^c1n) + (�1)k+1d�(c1k)(c11^ k_: : : ^c1n)� ;where g�1 is treated as an isomorphism from �1(T �X) to �1(T�X) :



22 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasIn terms of the above introduced selfadjoint bases fejgNj=1 of �1(T �X) andfejgNj=1 of �1(T�X) ; the classical Dirac operator is given by14D = NXj=1 ic(ej)rSej : (3.18)Here, rSv is the Cli�ord covariant derivative on L2(X;S) with respect to thevector �eld v : It has the property[rSv ; c(!)] = c(rv!) � rvc(!) ; (3.19)for any di�erential form ! : With (3.13) this gives immediately[D; f ] =PNj=1 ic(ej)[rSej ; f ] � idf � ic(df) ; f 2 C1(X) ; (3.20)where d is the usual exterior di�erential on the exterior di�erential algebra. Thegrading operator on L2(X;S) is  = �iN=2c(vg) ; ful�llingD + D= i�1+N=2PNj=1(c(ej)[rSej ; c(vg)] + (c(ej)c(vg) + c(vg)c(ej))rSej )= i�1+N=2PNj=1(c(ej)c(rej (vg)) + 2c(ej) ^ c(vg)rSej ) � 0 ; (3.21)because of the properties rv(vg) � 0 and c(ej) ^ c(vg) 2 �N+1 � 0 : Therefore,the Dirac operator D is an odd �rst order di�erential operator. One has 2 =(�1)N=2c(vg)c(vg) = det g�1 : If we restrict ourselves to an orthogonal metric,which we do for the rest of this work, then we have 2 = 1 :Next, using (3.13), (3.16) and Lemma 12 we have for ck 2 �k(�iD)ck � (�1)kck(�iD) =PNj=1(c(ej)[rSej ; ck] + (c(ej)ck � (�1)kckc(ej))rSej )= dck � d�ck + 2PNj=1 c(ej) ckrSej (3.22)= dck � d�ck + 2Pki=1(�1)i+1c11^ i_: : : ^c1krSg�1(c�1(c1i )) ;if ck = c11 ^ c12 ^ : : : c1k ; c1i 2 �1 : The last identity in (3.22) is due to2PNj=1 c(ej) ckrSej =PNj=1Pki=1(�1)i+1fc(ej); c1i g c11^ i_: : : ^c1krSej= 2PNj=1Pki=1(�1)i+1g�1(ej; c�1(c1i )) c11^ i_: : : ^c1krSej= 2Pki=1(�1)i+1c11^ i_: : : ^c1krSg�1(c�1(c1i )) :In particular, [D2; f ] = �f � 2rSgrad f ; f 2 C1(X) ; (3.23)where grad f := g�1(df) is the vector �eld dual to df and � the scalar Laplacian,�f � d�df = �PNi;j=1 g�1(ei; ej)(reirej �rreiej)(f) : (3.24)



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 23C. The Representation of 
�g on the Hilbert SpaceFor physical applications we are interested in the case that the matrix Lie algebraa decomposes into a = a0 � a00 : (3.25)Here, a0 is unitary and semisimple, i.e. a direct sum of simple unitary Lie algebras,and a00 is a direct sum of copies of the Abelian Lie algebra u(1) ; each of themrepresented in the form u(1)(i) = Rb(i) : In particular, direct sum means thatelements of di�erent direct sum subspaces always commute. For each copy ofu(1) ; the representation �̂(b) shall have the following property: There exist �z 2R such that [�̂(b);M] =Pz�2 �z[�̂(b); [: : : [�̂(b); [�̂(b)| {z }z ;M]] : : : ]] : (3.26)For simplicity, we restrict ourselves to the case a00 = u(1) ; where (3.26) is givenby [�̂(b); [�̂(b); [�̂(b);M]]] = [�̂(b);M] or[�̂(b); [�̂(b); [�̂(b);M]]] = � [�̂(b);M] : (3.27)The extension to the general case is obvious.Our goal is to construct the graded di�erential Lie algebra 
�Dg associatedto the L{cycle (g; h;D; �;�) ; see Sec. II.C. For this purpose we �rst have toconstruct the graded Lie algebra �(
�g) associated to this L{cycle. We de-note by �̂(
�a) the corresponding graded Lie algebra associated to the L{cycle(a;CF ;M; �̂; �̂) : From (3.20) we get[D; �(f 
 a)] = idf 
 �̂(a) + f 
 [M; �̂(a)] ; a 2 a ; f 2 C1(X) ; (3.28)where d is the exterior di�erential (3.13). Using that C0 is an Abelian algebra,that elements of C0 commute with elements of C1 and that �̂ is a representationwe obtain for elements of �(
1g) ; see (2.25) and (2.30),��P�;z�0 [�(f z� 
 az�); [: : : [�(f 1� 
 a1�); �(d(f 0� 
 a0�))] : : : ]]�=P�;z�0[�(f z� 
 az�); [: : : [�(f 1� 
 a1�); [�iD; �(f 0� 
 a0�)]] : : : ]]=P�;z�0 f z� � � � f 1�df 0� 
 �̂([az�; [: : : [a1�; a0�] : : : ]]) (3.29a)+P�;z�0 f z� � � �f 1�f 0� 
 �̂([�(az�); [: : : [�(a1�); �(da0�)] : : : ]]) : (3.29b)Here we have f j� 2 C0 ; aj� 2 a ; and d denotes the universal di�erential onboth the universal di�erential Lie algebras over g and a ; it is clear from thecontext on which of them. The same notational simpli�cation was used for thefactorization mappings � : There are two di�erent contributions in this formula,(3.29a) belongs to C1
 �̂(
0a) and (3.29b) to C0
 �̂(
1a) : If it was possible to



24 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebrasput all f 0� equal to constants without changing the range of (3.29b) then the lines(3.29a) and (3.29b) would be independent. This is possible i� for all f 00 2 C1(X)and a00 2 a there exists a solution of the equationf 00 
 �̂(�(da00)) =P�;z�1 f z� � � � f 1�f 0� 
 �̂([�(az�); [: : : [�(a1�); �(da0�)] : : : ]]) :But this is indeed the case, due to (3.26) for a00 2 a00 and the fact that a0 issemisimple. Namely, for a semisimple Lie algebra a0 we have12 [a0; a0] = a0 : Thismeans that 8 a0 2 a 9 a0�; ~a0� 2 a0 : a0 =P�[a0�; ~a0�] : (3.30)Then, �(da0) =P� �[�(a0�); �(d~a0�)]� [�(~a0�); �(da0�)]� : Here we see the importanceof the restrictions imposed to a ; we will meet further examples in the sequel.Now, from the de�nition (2.25) of 
1a there follows that (3.29b) can attainany element of C0 
 �̂(
1a) : We split elements aj� 2 a according to (3.25).Since commutators containing elements of the Abelian part vanish, there is a non{vanishing contribution of elements of a00 to (3.29a) only from the term d ~f 00
�̂(a00) ;for a00 2 a00 : Therefore, the coe�cient of elements of �̂(a00) is the Cli�ord actionof a total di�erential. We denote the space dC0 � C1 by B1 (\[co]boundary").In the case of the semisimple Lie algebra a0 the line (3.29a) attains any elementof C1 
 �̂(a0) ; due to (3.30). Thus, we get the �nal result�(
1g) = (�1 
 �̂(a0))� (B1 
 �̂(a00))� (�0 
 �̂(
1a)) : (3.31)This means that elements � 1 2 �(
1g) are of the form� 1 =X� �c1� 
 �̂(a0�) + b1� 
 �̂(a00�) + f� 
 �̂(!1�)� ; (3.32)where c1� 2 C1 ; b1� 2 B1 ; f� 2 C0 ; a0� 2 a0 ; a00� 2 a00 and !1� 2 
1a :Proposition 14.�(
ng) = (�n 
 �̂(a0))� � nMj=1 �n�jj 
 (�̂(
ja) + �̂(T j�2n a))� ; (3.33)for n � 2 : Here, �̂(T jna) is zero for j < 0 ; n < j+2 or n > N+j+2 : For j � 0and j+2 � n � N+j+2 it is recursively de�ned by�̂(T 02 a)�̂(T 0na) :=:= f�̂(a); �̂(a)g ; �̂(T 0N+2a) := [�̂(a); f�̂(a); �̂(a0)g] ;f�̂(a); �̂(a0)g ; 3 � n � N+1 ; (3.34a)�̂(T jna) := f�̂(a); �̂(
ja) + �̂(T j�2j+1 a)g+ [�̂(
1a); �̂(T j�1j+1 a)]g ;2+j � n � N+j+1 ; j > 0 ; (3.34b)�̂(T jN+j+2a) := [�̂(a); �̂(T jj+2a)] + [�̂(
1a); �̂(T j�1N+j+1a)]g ; j > 0 :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 25Proof: The proposition is proved by induction. We need the following two iden-tities: (~c1
 �̂(~a))(cn�jj 
 Aj)� (�1)n(cn�jj 
 Aj)(~c1 
 �̂(~a))= 12(~c1cn�j + (�1)n�jcn�j~c1)j 
 (�̂(~a)Aj � Aj�̂(~a)) (3.35a)+12(~c1cn�j � (�1)n�jcn�j~c1)j 
 (�̂(~a)Aj + Aj�̂(~a)) ;( ~f 
 �̂(~!1))(cn�jj 
 Aj)� (�1)n(cn�jj 
 Aj)( ~f 
 �̂(~!1))= (�1)n�j ~fcn�jj+1 
 (�̂(~!1)Aj � (�1)jAj�̂(~!1)) ; (3.35b)for ~c1 2 �1 ; cn 2 �n ; ~f 2 �0 ; ~a 2 a ; ~!1 2 
1a and any Aj 2 MFC : We shallwrite (3.32) in the form� 1 =P� �c1� 
 �̂(a�) + f� 
 �̂(!�)� ;where P� c1� 
 �̂(a�) �P� �c1�0 
 �̂(a0�) + c1�00 
 �̂(a00�)� :Using (3.35a), (3.35b) and Lemma 12 we obtain from (2.26) the followingform of elements � 2 2 �(
2g) :� 2 =X�(� 1�~� 1� + ~� 1�� 1�)=X�;�;�c1�� ^ ~c1� 
 [�̂(a��); �̂(~a�)] + f�� ~f� 
 [�̂(!1��); �̂(~!1�)]g (3.36a)+ ~f�c1�� 
 [�̂(a��); �̂(~!1�)] + f��~c1� 
 [�̂(~a�); �̂(!1��)]�+ �0 ;�0 =X�;�;c1�� ~c1� 
 f�̂(a��); �̂(~a�)g : (3.36b)All �ve occurring di�erent types of tensor products are independent. This is dueto the fact that for non{vanishing ~c1 2 �1 and cn 2 �n the equality ~c1 ^ cn = 0implies ~c1 cn 6= 0 and ~c1 cn = 0 implies ~c1 ^ cn 6= 0 ; see Lemma 12. First,�0 attains each element of �0
f�̂(a); �̂(a)g : Moreover, P� f ~f 
 [�̂(!1�); �̂(~!1�)]ggives an arbitrary element of �0
 �̂(
2a) and each term in (3.36a) containing an arbitrary element of �1 
 �̂(
1a) : The only not obvious elements are thoseof the form [M; �̂(a)] : However, they can be represented by (3.27) for a = a00and for a = a0 due to (3.30) by[M; �̂(P�[a0�; ~a0�])] =P�([[M; �̂(a0�)]; �̂(~a0�)] + [�̂(a0�); [M; �̂(~a0�)]]) : (3.37)Finally,P�;�; c1��^~c1�
 [�̂(a0��); �̂(~a0�)] represents an arbitrary element of �2
�̂(a0) ; because possible contributions from a00 are cancelled by the commutator.Collecting these results, we arrive at (3.33), for n = 2 : For n > 2 one proceedsby induction, see Ref. 15.Thus, the computation of �(
ng) is reduced to an iterative multiplication ofmatrices only.



26 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasD. Main TheoremTo derive the structure of 
�Dg we �rst de�ne in analogy to (2.40)�̂(X�;z�0[�(az�); [: : : [�(a1�); �(da0�)] : : : ]]) :=X�;z�0[�̂(az�); [: : : [�̂(a1�); [M2; �̂(a0�)]] : : : ]] ;(3.38)for ai� 2 a : We extend �̂ to a linear map �̂g : 
�g! �1(C)
MFC by�̂g(�(f 
 a)) := 0 ; �̂g(�(d(f 
 a))) := f 
 �̂(�(da)) ;�̂g([!k; ~!l]) := [�̂g(!k); �(~!l)]g + (�1)k[�(!k); �̂g(~!l)]g ; (3.39)for f 2 C1(X) ; a 2 a ; !k 2 
kg and ~!l 2 
lg :Theorem 15. For f�̂(a00); �̂(a00)g \ �̂(
2a) = 0 we have�(J ng) = nMj=2 �n�jj 
 (�̂(J ja) + ~Kj�2n a) (3.40)+BNn 
 (f�̂(a); �̂(
n�N�2a) + �̂(T n�N�4n�2 a)g \ �̂(
n�Na)) ;where BN = d�N�1 ; ~K0na � �̂(T 0na) and~Kjna= f�̂(a); �̂(
ja) + ~Kj�2n�1ag+ [�̂(
1a); ~Kj�1n�1a]g (3.41a)+ �̂(�̂�1(�̂(T j�1j+1 a) \ �̂(
j+1a))) ; 2+j � n � N+j+1 ; j > 0 ;~KjN+j+2a= [�̂(a); ~KjN+j+1a] + [�̂(
1a); ~Kj�1N+j+1a]g (3.41b)+ �̂(�̂�1(�̂(T j�1N+j+1a) \ �̂(
j+1a))) ; j > 0 :If f�̂(a00); �̂(a00)g \ �̂(
2a) 6= 0 then �(J 3g) must be replaced by�(J 3g) = �(J 3g) �(3.40) +B1 
 (f�̂(a00); �̂(a00)g \ �̂(
2a)) :Proof: The proof consists in deriving a formula for �(!k) for a given !k 2 
kg :Taking !k 2 
kg \ ker � ; we can derive the structure of �(J k+1g) ; see (2.40).We start with k = 1 and proceed for higher degrees by induction.Before, we provide a property of �̂(
1a) which we need in the proof. Weconsider the splitting!̂1 = d(�(a0) + �(a00)) +P�;z�1[�(az�); [: : : ; [�(a2�); [�(a1�); �(da0�)]] : : : ]] 2 
1a ;for a0 = P�[a0�; ~a0�] 2 a0 and a00 2 a00 : Due to (3.27) and (3.30) we can replace!10 := �(d(a0 + a00)) by!̂10 =�54 [�(b); [�(b); �(da00)]]� 14 [�(b); [�(b); [�(b); [�(b); �(da00)]]]]+P� �[�(a0�); �(d~a0�)]� [�(~a0�); �(da0�)]� :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 27Here, in the �rst term the plus sign (minus sign) stands if in (3.27) the equationwith the plus sign (minus sign) is realized. Indeed, we have�̂(!̂10) � �̂(!10) ; �̂(!̂10) � �̂(!10) : (3.42)The �rst formula is due to (3.27) for a00 and due to the Jacobi identity for a0 :The a0{part of the second formula in (3.42) follows immediately from the Jacobiidentity. The proof for the a00{part consists of algebraic manipulations of (3.27),which are not di�cult but rather lengthy so that they are not listed in this work.The importance of the identities (3.42) is that already elements of 
1a ; which donot contain terms labelled by z = 0 ; are su�cient for the construction of �̂(
1a)and �̂(
1a) :Using (3.29) we can represent elements !1 2 
1g as!1 =P�;z�0[�(f z� 
 az�); [: : : [�(f 1� 
 a1�); �(d(f 0� 
 a0�))] : : : ]] ; (3.43a)) �(!1) =P�;z�0 �ĉ1;z� 
 �̂(âz�) + f̂ z� 
 �̂(!̂1;z� )� ;f̂ z� = f z� � � � f 1�f 0� 2 �0 ; ĉ1;z� = f z� � � � f 1�df 0� 2 �1 ;âz� = [az�; [: : : [a1�; a0�] : : : ]] 2 a ; !̂1;z� = [�(az�); [: : : [�(a1�); �(da0�)] : : : ]] 2 
1a ;(3.43b)where ai� 2 a and f i� 2 �0 : Applying the map � to !1 in (3.43a) we get { using(3.23) and D2 � D2 
 1F + 1
M2 ; see (3.4) {�(!1) =P�;z�0[f z� 
 �̂(az�); [: : : [f 1� 
 �̂(a1�); [D2; f 0� 
 �̂(a0�)]] : : : ]] �P3j=0 sj ;s0 = �̂g(!1) =P�;z�0 f z� � � �f 1�f 0� 
 [�̂(az�); [: : : [�̂(a1�); [M2; �̂(a0�)]] : : : ]] ; (3.44a)s1 =P�;z�0 f z� � � � f 1�(�f 0�)
 �̂([az�; [: : : [a1�; a0�] : : : ]]) ; (3.44b)s2 =�2P�;z�0 f z� � � � f 1�rSgrad f0� 
 �̂([az�; [: : : [a1�; a0�]] : : : ]]) ; (3.44c)s3 = 2P�;z�1 �f z� � � � f 2�rgrad f0�(f 1�)
 [�̂(az�); [: : : [�̂(a2�); �̂(a0�)�̂(a1�)] : : : ]]+ f z� � � � f 3�rgrad f0�(f 2�)f 1� 
 [�̂(az�); [: : : [�̂(a3�); �̂([a1�; a0�])�̂(a2�)] : : : ]]+ � � �+rgrad f0�(f z�)f z�1� � � � f 1� 
 �̂([az�1� ; [: : : [a1�; a0�] : : : ]])�̂(az�)� : (3.44d)From properties of covariant derivatives we �ndf z� � � � f 1�rSgrad f0� = rSfz����f1�g�1(df0�) = rSg�1(fz����f1�df0�) :Next, using (3.13) and (3.16) one easily showsf z� � � �f 1�(�f 0�) = d�(f z� � � � f 1�df 0�) +rgrad f0�(f z� � � � f 1�) : (3.45)Then, the sum of s3 and the part of s1 corresponding to the second term on ther.h.s. of (3.45) will be denoted by ŝ(!1) :ŝ(!1) = s3 +P�;z�1rgrad f0�(f z� � � � f 1�)
 �̂(âz�) (3.46)=P�;z�1 � f z� � � �f 2�rgrad f0�(f 1�)
 [�̂(az�); [: : : [�̂(a2�); f�̂(a0�); �̂(a1�)g] : : : ]]+ f z� � � �f 3�rgrad f0�(f 2�)f 1� 
 [�̂(az�); [: : : [�̂(a3�); f�̂([a1�; a0�]); �̂(a2�)g] : : : ]]+ � � �+rgrad f0�(f z�)f z�1� � � � f 1� 
 f�̂([az�1� ; [: : : [a1�; a0�] : : : ]]); �̂(az�)g�2 �0 
 f�̂(a); �̂(a)g :



28 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasObserve that the terms labelled by z = 0 do not occur in (3.46). Collecting theresults we �nd�(!1) = ŝ(!1) + �̂g(!1) + X�;z�0 �� 2rSg�1�c�1(ĉ1;z� ) 
 �̂(âz�) + d�(ĉ1;z� )
 �̂(âz�)� :(3.47)Next, we discuss the relation between �(!1) and �(!1) : It is clear that ŝ(!1) 2�0 
 f�̂(a); �̂(a)g and �̂g(!1) 2 �0 
 �̂(
1a) ; the question is to which amountthey are determined by �(!1) : To answer this question we �rst consider!1 =P�P3A=1[�(~f�A 
 ~a�); �(d(f�A 
 a�))] ; a�; ~a� 2 a ; (3.48)where ~f�1 = f� ; ~f�2 = �12 ; ~f�3 = �12(f�)2 ;f�1 = f� ~f� ; f�2 = (f�)2 ~f� ; f�3 = ~f� ;for f�; ~f� 2 C1(X) : These functions have the propertiesP3A=1 ~f�Af�A = 0 ; P3A=1 ~f�Ad(f�A) = 0 ; P3A=1 d(~f�A)f�A = 0 ; (3.49a)P3A=1rgrad(~f�A)(f�A) = ~f�rgrad(f�)(f�) = ~f�g�1(df�; df�) : (3.49b)Due to (3.49a) we have �(!1) = 0 and �̂g(!1) = 0 ; but for (3.46) we getŝ(!1)�P�P3A=1rgrad~f�A(f�A)
 f�̂(~a�); �̂(a�)g=P� ~f�rgrad f�(f�)
 f�̂(~a�); �̂(a�)g :Thus, ŝ(!1) is independent of �(!1) : Since (3.49b) { for an appropriate choice off�; ~f� { attains each given function on X (using a partition of unity if necessary),ŝ(!1) attains each element of �0 
 f�̂(a); �̂(a)g � �0 
 �̂(T 02 a) : Now we proveLemma 16. �̂g(ker � \ 
1g) = �0 
 �̂(ker �̂ \ 
1a) � �0 
 �̂(J 2a) :Proof of Lemma 16: We introduce a linear map �̂g : 
�g!B(h) by�̂g(�(f 
 a)) := f 
 �̂(a) ; �̂g(�(d(f 
 a))) := f 
 [�iM; �̂(a)] ;�̂g([!; ~!]) := [�̂g(!); �̂g(~!)]g ;for f 2 C1(X) ; a 2 a ; !; ~! 2 
�g : For !1 2 
1g given by (3.43a) we have�(!1) =P�;z�0 �ĉ1;z� 
 �̂(âz�) + f̂ z� 
 �̂(!̂1;z� )� ;�̂g(!1) =P�;z�0 f̂ z� 
 �̂(!̂1;z� ) ; (3.50)�̂g(!1) =P�;z�0 f̂ z� 
 �̂(!̂1;z� ) :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 29For !1 2 ker � we have P�;z�0 ĉ1;z� 
 �̂(âz�) = 0 and P�;z�0 f̂ z� 
 �̂(!̂1;z� ) = 0 ;because �1 and �0 are independent. But this means(ker � \ 
1g) � (ker �̂g \ 
1g) ) �̂g(ker � \ 
1g) � �̂g(ker �̂g \ 
1g) : (3.51)It is intuitively clear from (3.50) that�̂g(ker �̂g \ 
1g) = �0 
 �̂(ker �̂ \ 
1a) � �0 
 �̂(J 2a) ; (3.52)see (2.44). The justi�cation for (3.52) gives the formalism of skew{tensor prod-ucts, see Ref. 16 for the general scheme and Ref. 15 for the application to ourcase. Now, by virtue of (3.42) it su�ces to take!1 =P�P�;z�1 [�(1
 az��); [: : : ; [�(1
 a2��); [�(f� 
 a1��); �(d(1
 a0��))]] : : : ]] ;with!̂1� :=P�;z�1[�(az��); [: : : ; [�(a2��); [�(a1��); �(da0��)]] : : : ]] 2 ker �̂ \ 
1a ; 8� ;where f� 2 �0 and ai�� 2 a : It is obvious that �(!1) � 0 and that �(!1) =�̂g(!1) =P� f� 
 �̂(!̂1�) attains each element of �0 
 �̂(J 2a) : (Lemma 16)We de�ne a linear map r
 from �(
�g) to (unbounded) operators on h ;r
(cn�jj 
 Aj) :=rScn�jj 
 Aj ; n�j > 0 ;r
(fn 
 An) := 0 ; f 2 C1(X) ; (3.53)where cn�j 2 �n�j and Aj 2 MFC : Here and in the sequel a covariant derivativewith respect to elements of �n is understood in the senserc11^c12^���^c1n :=Pkl=1(�1)l+1c11^ l_: : : ^c1nrg�1�c�1(c1l ) ; c1i 2 �1 ; (3.54)where c�1 : �1 ! �1(T �X) and g�1 : �1(T �X)! �1(T�X) are isomorphisms.Now we can express (3.47) in terms of �(!1) : For given � 1 2 �(
1g) let��1(� 1) 2 
1g be an arbitrary but �xed representative and !1 2 
1g be anyrepresentative. Then, the set f�(!1)g of all elements �(!1) ful�lling the justintroduced conditions isf�(!1)g = �0 
 (�̂(T 02 a) + �̂(J 2a)) + �̂g(��1(� 1))� 2r
(� 1) + d�� 1 : (3.55)Putting � 1 = 0 ; i.e. !1 2 ker �\
1g ; we obtain immediately the assertion of thetheorem for n = 2 :Formula (3.55) is the starting point for the construction of �(
ng) ; n � 2 ;out of (2.42). The result is:



30 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasLemma 17. For given �n 2 �(
ng) let ��1(�n) 2 
ng be an arbitrary but �xedrepresentative and !n 2 
ng be any representative. Then we have for n = 2f�(!2)g = �1 
 (�̂(T 03 a) + �̂(J 2a)) + �0 
 ( ~K13a+ �̂(J 3a))+ �̂g(��1(� 2))� 2r
(� 2) + d�� 2 � d�� 2 ��0
f�̂(a00);�̂(a00)g � (3.56)and for n � 3f�(!n)g = �̂g(��1(�n))� 2r
(�n) + d��n + n+1Xj=2 �n+1�jj 
 ( ~Kj�2n+1a+ �̂(J ja))� d��n ��N�1n+1
f�̂(a);�̂(
n�N�1a)+�̂(Tn�N�3n�1 a)g � : (3.57)Remarks on the proof of Lemma 17: The Lemma is proved by inductionexploiting formula (2.42). The proof is very technical and too long to dis-play in this work. For the details see Ref. 15. It is clear that the proof ofLemma 17 �nishes the proof of Theorem 15. Here, for n = 2 ; one has totake into account that for f�̂(a00); �̂(a00)g \ �̂(
2a) = 0 and � 2 = 0 we haved�� 2 ��0
f�̂(a00);�̂(a00)g � = 0 : If f�̂(a00); �̂(a00)g \ �̂(
2a) 6= 0 then a non{vanishing�0 
 f�̂(a00); �̂(a00)g{part of � 2 = 0 can be compensated by �0 
 �̂(
2a) ; givingthe contribution B1 
 (f�̂(a00); �̂(a00)g \ �̂(
2a)) to the ideal �(J 3g) : The sameargumentation yields the boundary terms in the second line of (3.40).E. The Structure of 
�Dg ; Commutator and Di�erentialAs an immediate consequence of Theorem 15 we �ndCorollary 18. If f�̂(a00); �̂(a00)g \ �̂(
2a) = 0 we have for n � 2
nDg= ��n 
 �̂(a0)�� ��n�1 
 �̂(
1a)��� nMj=2 ��n�jj 
 �(�̂(
ja) + �̂(T j�2n a)) mod (�̂(J ja) + ~Kj�2n a)� (3.58)mod �jn�NBNn 
 (f�̂(a); �̂(
n�N�2a) + �̂(T n�N�4n�1 a)g \ �̂(
n�Na))� :If f�̂(a00); �̂(a00)g \ �̂(
2a) 6= 0 then 
3Dg must be replaced by
3Dg = 
3Dg �(3.58) mod B1 
 (f�̂(a00); �̂(a00)g \ �̂(
2a)) :Therefore, the construction of 
nDg is reduced to the problem of �nding thefactor space (�̂(
ja) + �̂(T j�2n a)) = (�̂(J ja) + ~Kj�2n a) : Here, only the matrix Liealgebra a plays a rôle. The inuence of the ��{part to 
nDg is almost trivial.Next, we derive explicit formulae for the commutator and the di�erentialof elements of 
�Dg : For the sake of an easier notation we restrict ourselves tothe case f�̂(a00); �̂(a00)g \ �̂(
2a) = 0 and (f�̂(a); �̂(
n�N�2a) + �̂(T n�N�4n�1 a)g \



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 31�̂(
n�Na)) = 0 : If these conditions are not ful�lled then there are obvious mod-i�cations to 
3Dg and 
nDg ; n � N + 2 ; see Corollary 18.Due to Corollary 18 and (3.32) we represent elements %n 2 
nDg as%n =X� nXj=0 cn�j� j 
 (�̂(!j�) + ~J jna) ; (3.59a)~J jna := �̂(J ja) + ~Kj�2n a ; ~J 0na � 0 ; ~J 1na � 0 ; (3.59b)n � 2 : cn�j� 2 �n�j ; �̂(!0�) 2 �̂(a0) ; �̂(!j�) 2 �̂(
ja) for j > 0 ;n = 1 : c1� 2 �1 if �̂(!0�) 2 �̂(a0) ; c1� 2 B1 if �̂(!0�) 2 �̂(a00) ;c0� 2 �0 ; �̂(!1�) 2 �̂(
1a) ;n = 0 : c0� 2 �0 ; �̂(!0�) 2 �̂(a) : (3.59c)The formula for the graded commutator of elements of 
�Dg is very simple,�X� kXi=0 ck�i� i 
 (�̂(!i�) + ~J ika);X� lXj=0 ~cl�j� j 
 (�̂(~!j�) + ~J jl a)�g=X�;� kXi=0 lXj=0(�1)i(l�j) ck�i� ^ ~cl�j� i+j 
 ([�̂(!i�); �̂(~!j�)]g + ~J i+jk+la) ;(3.60)because if the product between ck�i� and ~cl�j� is not completely antisymmetrizedthen we get a combination of graded anticommutators of elements of �̂(
�a) in thesecond component of the tensor product, which contributes to the ideal �(J �g) :Thus, the graded commutator of elements of 
�Dg is given by the combination ofthe exterior product of the ��{parts and the graded commutator of the �̂(
�a){parts modulo �(J �g) ; where a graded sign due to the exchange with  must beadded.Due to (3.22) and (3.54) we have for ck 2 �k(�iD)ck � (�1)kck(�iD) = dck � d�ck + 2rSck : (3.61)We apply Proposition 6 and Lemma 17 to (3.59a), using (3.53) and (3.39) andintroducing �n :=P�Pnj=0 cn�j� j 
 �̂(!j�) 2 �(
ng) : This givesd%n� �(d��1(�n)) + �(J n+1g)=P�Pnj=0 �((�iD)cn�j� � (�1)n�jcn�j� (�iD))j 
 �̂(!j�)+(�1)n�jcn�j� j+1 
 ((�iM)�̂(!j�)� (�1)j�̂(!j�)(�iM))�+d��n � 2r
(�n) + �̂g(��1(�n)) + �(J n+1g)=P�Pnj=0 �dcn�j� j 
 (�̂(!j�) + ~J jn+1a)+cn�j� j+1 
 ((�1)n�j[�iM; �̂(!j�)]g + �̂(!j�) + ~J j+1n+1a)� : (3.62)
Let us say some words on the terms in (3.56) and (3.57) containing total di�er-entials. In general, for�k := ck�jj 
 �̂(�̂j�2k ) 2 �k�jj 
 �̂(T j�2k a) � �(J kg)



32 R. Wulkenhaar: NCG with Graded Di�erential Lie Algebraswe have d�k 2 �(J k+1g) : This is no longer true for k = 2 and �̂(�̂02) =f�̂(a00); �̂(~a00)g ; with a00; ~a00 2 a00 : However, in this case the di�erential d� 2 iseliminated by the counterterm �d�� 2 ��0
f�̂(a00);�̂(a00)g � in (3.56). An analogousproperty holds for k � j = N � 1 ; where the terms d�k are cancelled by thedi�erentials in (3.57). Therefore, in the following formula for the di�erentiationrule on 
�Dg one must omit these boundary terms. Then we obtain a simpleformula: d%n = � (d
 1F )(�n) + [ 
�iM; �n]g+(1
 �̂ � �̂�1) � �n � ( 
 1F )� mod �(J n+1g) ; (3.63)where �n 2 �(
ng) is an arbitrary representative of %n 2 
nDg : Here, the di�eren-tial d ignores the grading operator  ; i.e. d(ck) := (dck) : The non{trivial partin this formula is to �nd the spaces ~J jn+1a constituting the ideal �(J n+1g) : Thedi�erential d�n ; the graded commutator with 
�iM and even the computationof (1
 �̂ � �̂�1)(�n) are not di�cult for a concrete example.F. Local ConnectionsIn the case under consideration, an L{cycle over the tensor product of the algebraof functions and a matrix Lie algebra, there exists the notion of locality. Our goalis to de�ne a multiplication~̂ : �k � 
nDg! 
k+nD g ; (3.64)~ck ~̂(X� nXj=0 cn�j� j
 (�̂(!j�)+ ~J jna)) :=X� nXj=0(~ck ^ cn�j� )j
 (�̂(!j�)+ ~J jk+na) ;see (3.59). However, we clearly have problems to do this on the whole di�erentialLie algebra 
�Dg due to the existence of the boundary spaces �0
 �̂(a00) in 
0Dg ��(g) and B1
 �̂(a00) in 
1Dg � �(
1g) : These boundary spaces in general do notyield elements of 
�Dg when we multiply them by elements of �� : Moreover,there are problems if the boundary terms �jn�NBNn 
 (f�̂(a); �̂(
n�N�2a) +�̂(T n�N�4n�1 a)g\ �̂(
n�Na)) and B1
 (f�̂(a00); �̂(a00)g\ �̂(
2a)) in Corollary 18 arepresent. Therefore, formula (3.64) is understood to hold on subspaces of 
�Dg ;where no collision with boundary terms occurs. Then, the multiplication (3.64)is associative, (ck ^ ~cl)~̂%n = ck ~̂(~cl ~̂%n) ; (3.65)for ~ck 2 �k ; ~~cl 2 �l and %n 2 
nDg (di�erent from boundary spaces). In partic-ular, 
nDg carries a natural C1(X){module structure, where we omit the multi-plication symbol ~̂ for simplicity:f(X� nXj=0 cn�j� j 
 (�̂(!j�) + ~J jna)) :=X� nXj=0(fcn�j� )j 
 (�̂(!j�) + ~J jna) ;(3.66)



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 33for f 2 C1(X) :Moreover, the Hilbert space h = L2(X;S)
CF carries a natural�1(C){module structure induced by the �1(C){module structure of L2(X;S) :sc(P� s� 
 '�) :=P� scs� 
 '� ; (3.67)for sc 2 �1(C) ; s� 2 L2(X;S) and '� 2 CF : The structures just introducedenable us to restrict the set of connections according to De�nition 7 to the subsetof local connections relevant for physical applications.De�nition 19. A connection (r;rh) is called local connection i� for all f 2C1(X) ;  2 h and %n 2 
nDg di�erent from boundary spaces one hasrh(f ) = frh( ) + df( ) ; (3.68a)r(f%n) = fr(%n) + (df)^̂%n : (3.68b)The group of local gauge transformations is the groupU0(g) := � u 2 U(g) � B(h) ; fu = uf ; 8f 2 C1(X) ; 8 2 h ;(AdurAdu� ; urhu�) is a local connection if (r;rh) is 	 : (3.68c)We recall that a connection has the form (r = d + [~�; : ]g ; rh = �iD + �) ;where � 2 H1g and ~� := � + ~c1a 2 Ĥ1g ; see Proposition 8. The insertion intoDe�nition 19 yields � � f = f � � ; 8f 2 C1(X) : (3.69)Therefore, � 2 �(C) 
 MFC : Since � 2 H1g ; there can only occur classicalsmooth di�erential forms up to �rst degree in the �(C){component of � : Thismeans that� 2 (�1 
 r0a)� (�0 
 r1a) ; (3.70)r0a = �(r0a)� = �̂(r0a)�̂ � MFC ; r1a = �(r1a)� = ��̂(r1a)�̂ � MFC :If we compute graded commutators with �(
�g) we get[r0a; �̂(a)] � �̂(a0) ; [r0a; �̂(
1a)] � �̂(
1a) ; (3.71)fr0a; �̂(a)g � f�̂(a); �̂(a)g+ �̂(
2a) ; fr0a; �̂(
1a)g � f�̂(a); �̂(
1a)g+ �̂(
3a) ;[r1a; �̂(a)] � �̂(
1a) ; fr1a; �̂(
1a)g � �̂(
2a) + f�̂(a); �̂(a)g :Moreover, one has to check that [�; �(J ng)]g � �(J n+1g) : The same analysis forthe group of local gauge transformations (3.68c) yieldsU0(g) = exp(�0 
 u0(a)) ; whereu0(a) = f u0 2 r0a ; �̂ � �̂�1(u0) � c1a g ; (3.72)see (2.49) and (2.55) for the notation.



34 R. Wulkenhaar: NCG with Graded Di�erential Lie AlgebrasFrom (3.68b) one easily �nds for the curvature of a local connection r2f =fr2 ; for f 2 C1(X) : Thus,f�f = �f = f(� � d � ��1(�) + 12 [�; �]g + �(J 2g) + ~c2a)= (� � d � ��1(�) + 12 [�; �]g + �(J 2g) + ~c2a)f : (3.73)Here, � � d � ��1(�) + �(J 2g) + ~c2a is understood in the sense (2.48b). Hence, wemust search for the subspace of ~c2a commuting with functions. This space hasthe structure~c2a = (�2 
 c0a)� (�1 
 c1a)� (�0 
 c2a) ; cia � MFC ; (3.74)because possible ��{contributions of higher degree are already orthogonal to anyrepresentative of � ; see (2.67). The spaces cia have elementwise the followinginvolution and Z2{grading properties:c0a=�(c0a)� = �̂(c0a)�̂ ; c1a = �(c1a)� = ��̂(c1a)�̂ ;c2a= (c2a)� = �̂(c2a)�̂ : (3.75)From (2.46) one �nds after a decomposition into ��{components the equationsc0a � �̂(a0) = 0 ; c0a � �̂(
1a) = 0 ;c1a � �̂(a0) = 0 ; c1a � �̂(
1a) = 0 ;[c2a; �̂(a0)] = 0 ; [c2a; �̂(
1a)] = 0 : (3.76a)The restriction to �̂(a0) is due to possible problems with the boundary spaces.Due to (3.73) it is convenient to de�nej0a := c0a ; j1a := c1a ; j2a := c2a+ �̂(J 2a) + f�̂(a); �̂(a)g : (3.76b)We recall that the commutator and the di�erential in the curvature � = d�+12 [�; �]g+J2g are indirectly de�ned via the graded Jacobi identity and the gradedLeibniz rule (2.48b). The commutator and di�erential in �(
�g) mod �(J �g)are given by (3.60) and (3.63). It is obvious that these formulae extend to localelements of Ĥ�g : Only the map �̂ � �̂�1 has to be extended to r�a via the gradedLeibniz rule:[�̂ � ��1(�k) +�̂(J k+1a); �̂(!l) + �̂(J la)]g:= �̂ � ��1([�k; �̂(!l)]g)� (�1)k[�k; �̂(!l)]g + �̂(J k+l+1a) ; (3.77)for �k 2 rka and !l 2 
la : Then we �nd for the curvature� = � (d
 1F )(�) + f 
�iM; �g+ 12f�; �g+(1
 �̂ � ��1) � � � ( 
 1F )� mod J2g ; (3.78)where we recall that J2g = �0 
 (�̂(J 2a) + f�̂(a); �̂(a)g) + ~c2a :



R. Wulkenhaar: NCG with Graded Di�erential Lie Algebras 35In our case { h = L2(X;S) 
 CF { we have B(h) = B(L2(X;S)) 
MFC :Then, the parameter d in (2.64) is equal to the dimension N of the manifold X,see Ref. 1. Moreover, the trace theorem1 of Alain Connes says that in this casewe have Tr!((sc 
m) jDj�N) = 1(N2 )!(4�)N2 ZXvg trc(sc) tr(m) ; (3.79)where we recall that vg denotes the canonical volume form on X ; trc denotesthe trace in the Cli�ord algebra Cli�C (RN) ; normalized by trc(1) = 2N=2 ; andtr(m) is the matrix{trace of m 2 MFC : We use the trace theorem (3.79) for theconstruction of e(�) ; see (2.67). For the curvature � of a local connection we haveaccording to the above considerations a decomposition� =P� �c2� 
 (� 0� + j0a) + c1� 
 (� 1� + j1a) + c0� 
 (� 2� + j2a)� ; (3.80)where ci 2 �i and � i 2 MFC : Since �� =LNk=0�k is an orthogonal decomposi-tion with respect to the scalar product (3.14) given by trc ; we see that (2.67) isequivalent to �nding for i 2 f0; 1; 2g and each � the elements ji� 2 jia satisfyingtr(~j i (� i� + ji�)) = 0 ; for all ~j i 2 jia : (3.81a)These equations must be solved for the concrete L{cycle (a;CF ;M; �̂; �̂) and theconcrete element � i� ; giving in the notation of (3.80)e(�) =P� �c2� 
 (� 0� + j0�) + c1� 
 (� 1� + j1�) + c0� 
 (� 2� + j2�)� : (3.81b)Now, formula (2.65a) for the bosonic action takes the form (up to a constant)SB(r) = ZXvg trc(e(�)2) : (3.82a)Here, trc contains both the traces in Cli�C (RN ) and MFC : For the fermionicaction we obtainSF ( ;r) = h ; (D + i�) ih = ZXvg  �(D + i�) : (3.82b)This �nishes our prescription towards gauge �eld theories. Let us recall whatthe essential steps are. One starts to select the L{cycle from the physical dataor assumptions. We have learned that the matrix part of the L{cycle containsthe essential information. Hence, we must construct the spaces �̂(
na) and theideal �̂(J na) up to second (in some cases up to third) order. This is necessary tocompute the spaces r0a; r1a and j0a; j1a; j2a constituting the connection form � andthe ideal J2g : Then we have to compute the curvature � of the connection and toselect its representative e(�) orthogonal to J2g : Finally, we write down the bosonicand fermionic actions. This scheme can be applied to a large class of physicalmodels. Among them are the SU(3) � SU(2) � U(1){standard model17 and theSU(5) � U(1){Grand Uni�cation model.18 The SU(5){GUT can be obtained asa special case of the latter.
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