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Abstract. Candidates for renormalizable gauge theory models on Moyal spaces constructed recently have
non-trivial vacua. We show that these models support vacuum states that are invariant under both global
rotations and symplectic isomorphisms which form a global symmetry group for the action. We compute the
explicit expression in position space for these vacuum configurations in two and four dimensions.

1 Introduction

A new family of non-commutative (NC) field theories [1–3]
(for details on non-commutative geometry, see [4, 5]) came
under increasing scrutiny after 1998 when it was real-
ized [6, 7] that string theory seems to have some effect-
ive regimes described by non-commutative field theories
(NCFT) defined on a simple NC version of flat four-
dimensional space. This latter is the so-called Moyal–Weyl
space (for a mathematical description see e.g. [8, 9]), which
has constant commutators between space coordinates.
NCFT on Moyal spaces were also shown to be the ones
whose non-relativistic counterparts correspond to many
body quantum theory in strong externalmagnetic field (see
e.g. [10, 11]).
This growing interest received however a blow when

it was noticed [12, 13] that the simplest NC ϕ4 model (ϕ
real-valued) on four-dimensional Moyal space is not renor-
malizable due to the occurrence of a phenomenon called
ultraviolet/infrared mixing [12–14]. This phenomenon ba-
sically results from the existence of some non-planar dia-
grams which are ultraviolet finite but nevertheless develop
infrared singularities which, when inserted into higher
order diagrams, are not of the renormalizable type [1–3].
A possible solution to this problem, hereafter called the
“harmonic solution”, was proposed in 2004 [15, 16] (see
also [17–19]); it basically amounts to supplementing the
initial action with a simple harmonic oscillator term lead-
ing to a fully renormalizable NCFT. For recent reviews,
see e.g. [20, 21]. This result seems to be related to the
covariance of the model under a new symmetry, called
Langmann–Szabo duality [22], which, roughly speaking,
exchanges coordinates and momenta. Other renormal-
izable non-commutative matter field theories on Moyal
spaces have subsequently been identified [23–26] and some
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studies of the properties of the corresponding renormaliza-
tion group flows have been carried out [27–29], exhibiting
in particular the vanishing of the β-function to all orders
for the ϕ44 model [30].
So far, the construction of a fully renormalizable gauge

theory on four-dimensional Moyal spaces remains a chal-
lenging problem. Recall that the naive non-commutative
version of the pure Yang–Mills action on Moyal spaces
given by S0 =

1
4

∫
d4x(Fµν �Fµν)(x) (in the standard no-

tation and conventions recalled in Sect. 2) suffers from
UV/IR mixing, which makes its renormalizability unlikely.
This basically stems from the occurrence of an IR singu-
larity in the one-loop polarization tensor ωµν(p) (p is some
external momentum). Indeed, by standard calculation one
easily infers that

ωµν(p)∼
(D−2)

4
Γ

(
D

2

)
p̃µp̃ν

πD/2 (p̃ 2)
D/2
+ · · · p→ 0 ,

(1)

where p̃µ ≡ 2Θ−1µν pν and Γ (z) denotes the Euler function.
Notice that this singularity, albeit obviously transverse
in the sense of the Slavnov–Taylor–Ward identities, does
not correspond to some gauge invariant term. This im-
plies that the recent alternative solution to the UV/IR
mixing proposed within the NC ϕ4 model in [31], which
roughly amounts to balancing the IR singularity through
a counterterm having a similar form, cannot be extended
straightforwardly (if possible at all) to the case of gauge
theories.
It turns out that the extension of the harmonic solu-

tion to the case of gauge theories has been achieved re-
cently in [32, 33] (see also [34, 35]), starting basically from
a computation of the one-loop effective gauge action ob-
tained by integrating out the matter degree of freedom
of a NC matter field theory with harmonic term similar
to the one used in [15, 16] minimally coupled to an exter-
nal gauge potential. Both analyses have singled out, as a
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possible candidate for renormalizable gauge theory defined
on (four-dimensional) Moyal space, the following generic
action:

S =

∫
d4x

(
1

4
Fµν �Fµν+

Ω2

4
{Aµ,Aν}

2
�+κAµ �Aµ

)

.

(2)

Here, Aµ denotes the so-called covariant coordinates de-
fined in Sect. 2, a natural gauge covariant tensorial form
stemming from the existence of a canonical gauge invari-
ant connection within the present NC framework (for more
details on the relevant mathematical structures see e.g.
in [21, 36, 37]. In (2), the additional second term may be
viewed as a “gauge counterpart” of the harmonic term in-
troduced in [15]. This action, which has been shown to be
related to a spectral triple [38], exhibits interesting prop-
erties [32, 33] that deserve further studies. For instance,
gauge invariant mass terms for the gauge fields are al-
lowed even in the absence of some Higgs mechanism. How-
ever, the presence of additional terms implies in general
a non-vanishing vacuum expectation value for the gauge
potential. Somewhat similar non-trivial vacuum configura-
tions also occur within NC scalar models with harmonic
term as shown and studied recently in [39]. It turns out
that the explicit determination of the relevant vacuum
for any gauge theory model of the type (2) is a neces-
sary step to be reached before the study of its renormal-
izability can be undertaken. Indeed, a reliable perturba-
tive analysis in the present situation can only be defined
after the action is expanded around the non-trivial vac-
uum which actually demands the explicit expression for
that vacuum. This should then be followed by suitable
gauge fixing, presumably inherited from background field
methods.
The purpose of the present paper is the determination

of the vacuum configurations for the gauge theories gener-
ically defined by (2), forD = 2 andD = 4 dimensions. The
paper is organized as follows. In Sect. 2, we fix the nota-
tion and collect the main features of the non-commutative
geometry framework that will be used throughout the an-
alysis. The relevant symmetries for the vacua are exam-
ined in Sect. 3, focusing on vacuum configurations that
are invariant under both rotations and symplectic isomor-
phisms. Sections 4 and 5 are devoted to the determination
of these symmetric vacuum configurations for D = 2 and
D = 4. It turns out that the use of the matrix basis for-
malism proves convenient to obtain explicit expressions for
the relevant solutions of the equation of motion from which
vacuum solutions can be obtained. Finally, we summarize
and discuss our results in Sect. 6, and we draw conclusions.

2 Basic features

In this section, we collect the main ingredients that will be
needed in the subsequent discussion. Some detailed studies
of the Moyal NC algebra are carried out e.g. in [8, 9], while
mathematical descriptions of the NC framework underly-
ing the present study can be found in [21, 37].

2.1 The non-commutative gauge theory

The Moyal space, on which the gauge theory considered
here is constructed can be defined as an algebra of tem-
pered distributions on RD endowed with the Moyal prod-
uct [8, 9], hereafter denoted by the �-symbol. Indeed, the
latter can be defined on S = S(RD), the space of complex-
valued Schwartz functions, by

∀f, h ∈ S

(f �h)(x) =
1

πDθD

∫
dDydDzf(x+y)h(x+ z)e−iy∧z ,

(3)

where x∧y = 2xµΘ−1µν yν and

Θµν = θ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 0 0
1 0 0 0

0 0 0 −1
. . .

0 0 1 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (4)

where θ has mass dimension −2. Notice that S is stable by
the product �. Then the Moyal product can actually be ex-
tended by duality to the following subalgebra of tempered
distributions S′(RD):

Mθ = {T ∈ S
′(RD), ∀f ∈ S T �f ∈ S and f �T ∈ S} .

(5)

The Moyal space (Mθ, �, †) is a unital involutive asso-
ciative algebra (where † denotes complex conjugation), and
it involves in particular the “coordinate functions” xµ, sat-
isfying the following commutation relation: [xµ, xν ]� = xµ �
xν −xν �xµ = iΘµν . From this relation, and defining x̃µ =
2Θ−1µν xν , we deduce some useful properties ofMθ:

∀f, h ∈Mθ, ∂µ(f �h) = ∂µf �h+f �∂µh , (6a)
∫
d4xf �h=

∫
d4xfh , (6b)

[x̃µ, f ]� = 2i∂µf , (6c)

{x̃µ, f}� = x̃µ �f+f � x̃µ = 2x̃µf . (6d)

In the present non-commutative framework, the Yang–
Mills theory can be built from real-valued gauge poten-
tials Aµ defined onMθ, stemming from the very definition
of non-commutative connections. For more mathematical
details, see [4, 21, 32, 36, 37]. Recall that the group of gauge
transformations acts on the gauge potential as

Agµ = g �Aµ � g
†+ ig �∂µg

† , (7)

where g ∈Mθ is the gauge function and satisfies g
† � g =

g � g† = I. Recall also that there exists a special gauge po-
tential in the Moyal space defined by (− 12 x̃µ). One can
check that

(
− 12 x̃µ

)g
=− 12 x̃µ holds, stemming from the ex-

istence of a gauge invariant connection [21, 36, 37], whose
occurrence is implied by the fact that all derivations onMθ
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are inner. From this gauge invariant potential, we con-
struct the covariant coordinates [1]:

Aµ =Aµ+
1

2
x̃µ , (8)

which transform covariantly:

Agµ = g �Aµ � g
† . (9)

Then the curvature Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]�,
transforming as F gµν = g �Fµν � g

† can be reexpressed in
terms ofAµ as

Fµν =Θ
−1
µν − i[Aµ,Aν ]� . (10)

It is known that the naive non-commutative extension of
the Yang–Mills action is plagued by UV/IR mixing [14],
which renders its renormalizability very unlikely, unless it
is suitably modified. It turns out that the extension of the
harmonic solution proposed in [15] to the case of gauge the-
ories has been achieved recently [32, 33]. This singled out
a class of potentially renormalizable theories onMθ whose
action can be generically written as

S =

∫
dDx

(
1

4
Fµν �Fµν +

Ω2

4
{Aµ,Aν}

2
�+κAµ �Aµ

)

,

(11)

in which Ω and κ are real parameters, with mass dimen-
sions respectively given by [Ω] = 0 and [κ] = 2. This has
been further shown to be related to a spectral triple [38].

2.2 The matrix basis

It will be convenient to represent elements on Mθ with
the help of the “so-called” matrix basis [23]. Recall that its

elements (b
(D)
mn (x)) in D dimensions are eigenfunctions of

the harmonic oscillator HamiltonianH = x
2

2 :

H �b(D)mn = θ

(

|m|+
1

2

)

b(D)mn ,

b(D)mn �H = θ

(

|n|+
1

2

)

b(D)mn , (12)

where m, n ∈ N
D
2 and |m|=

∑D
2
i=1mi. In two dimensions,

the expression of the elements
(
b
(2)
mn

)
= (fmn) of the matrix

basis in polar coordinates,

x1 = r cos(ϕ) , x2 = r sin(ϕ) , (13)

is given by

fmn(x) = 2(−1)
m

√
m!

n!
ei(n−m)ϕ

(
2r2

θ

)n−m
2

×Ln−mm

(
2r2

θ

)

e−
r2

θ , (14)

where the Lkn(x) are the associated Laguerre polynomi-
als. The extension in four dimensions is straightforward.
Namely, one hasm= (m1,m2), n= (n1, n2) and

b(4)mn(x) = fm1,n1(x1, x2)fm2,n2(x3, x4) . (15)

The matrix basis has the following properties:

(
b(D)mn � b

(D)
kl

)
(x) = δnkb

(D)
ml (x) , (16)

∫
dDxb(D)mn (x) = (2πθ)

D
2 δmn , (17)

(
b(D)mn

)†
(x) = b(D)nm (x) . (18)

We recall that this basis defines therefore an isomorphism
between the unital involutive Moyal algebra and a subal-
gebra of the unital involutive algebra of complex infinite-
dimensional matrices. Indeed, for all g ∈Mθ, there is
a unique matrix (gmn) satisfying

∀x ∈ RD g(x) =
∑

m,n∈N
D
2

gmnb
(D)
mn (x) . (19)

Then this matrix is given by

gmn =
1

(2πθ)
D
2

∫
dDxg(x)b(D)mn (x) . (20)

3 Symmetries of the vacua

In the following, we will have to solve the equation of mo-
tion. This is a difficult task. In this respect, it is convenient
to exhibit some symmetries of the theory that will be used
to constrain the expression for the solutions we look for. In
fact, the group of symmetries of the euclidean Moyal alge-
braMθ inD dimensions is

GD = SO(D)∩Sp(D) , (21)

where SO(D) is the group of rotations and Sp(D) is the
group of symplectic isomorphisms.GD acts on the field Aµ
orAµ by

∀Λ ∈GD , A
Λ
µ (x) = ΛµνAν(Λ

−1x) . (22)

The action S(A) (11) is of course invariant under GD.
We further require that the new action S̃(A0µ, δAµ) =
S(A0µ+ δAµ), obtained from the expansion of S around
a non-trivial vacuum A0µ, is also invariant under GD. This
means that S̃(A0µ, δA

Λ
µ ) = S̃(A

0
µ, δAµ), where the Λ ∈GD

do not affect the vacuum A0µ. Since S(Aµ) is invariant
under GD, this is equivalent to

∀Λ ∈GD , S̃
((
A0µ
)Λ
, δAµ

)
= S̃
(
A0µ, δAµ

)
. (23)
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This relation implies that thevacuumis invariantunderGD.
Indeed, using (30) for the action given in the next section,
the part of (23) quadratic in δAµ can be written as

∫
dDx

(

−
(1−Ω2)

2

(
2A0µ �A

0
ν � δAµ � δAν

+2A0µ �A
0
ν � δAν � δAµ+2A

0
µ � δAν �A

0
µ � δAν

)

+
(1+Ω2)

2

(
2A0µ �A

0
µ � δAν � δAν

+2A0µ �A
0
ν � δAν � δAµ

+A0µ � δAµ �A
0
ν � δAν+ δAµ �A

0
µ � δAν �A

0
ν

)
)

=

∫
dDx

(

−
(1−Ω2)

2

(
2
(
A0µ
)Λ
�
(
A0ν
)Λ
� δAµ � δAν

+2(A0)Λµ �
(
A0ν
)Λ
� δAν � δAµ

+2
(
A0µ
)Λ
� δAν �

(
A0µ
)Λ
� δAν

)

+
(1+Ω2)

2

(
2
(
A0µ
)Λ
�
(
A0µ
)Λ
� δAν � δAν

+2
(
A0µ
)Λ
�
(
A0ν
)Λ
� δAν � δAµ

+
(
A0µ
)Λ
� δAµ �

(
A0ν
)Λ
� δAν

+δAµ �
(
A0µ
)Λ
� δAν �

(
A0ν
)Λ))

. (24)

This relation is true for all the fluctuations δAµ, so it holds
at the level of the lagrangians involved in the integrals.
Assuming now δAµ(x) = δµρ, for some fixed ρ, we obtain
from (24)

2Ω2
(

A0µA
0
µ+2

(
A0ρ
)2
−
(
A0µ
)Λ(
A0µ
)Λ
−2
((
A0ρ
)Λ)2

)

= 0 ,

(25)

where the index ρ is not summed over. It is now easy to get((
A0ρ
)Λ)2

=
(
A0ρ
)2
, and sinceGD is a connected Lie group,

(
A0ρ
)Λ
(x) =A0ρ(x) . (26)

The vacuum is invariant under GD, i.e., dropping
the superscript 0 from now on in A0µ, we have Aµ(x) =
ΛµνAν(Λ−1x) for all Λ ∈ GD. Since the identity matrix
and 2Θ−1 are the only matrices up to a scalar multiplica-
tion that commute with GD, we can write

Aµ(x) = φ1(x)xµ+φ2(x)2Θ
−1
µν xν = φ1(x)xµ+φ2(x)x̃µ ,

(27)

where φ1 and φ2 are two scalar fields invariant under GD.
Then, GD is isomorphic to U(

D
2 ) and the isomorphism is

described by associating to each coefficient uij of a matrix
of U(D2 ), the submatrix

(
Re(uij) − Im(uij)
Im(uij) Re(uij)

)

, (28)

in the (i, j) entry of the matrix of GD. From the theory of
the invariants of U(D2 ) [40], one infers that φ1 and φ2 are

therefore functions only on x2. Then, the general expres-
sion for Aµ can be written as

Aµ(x) = Φ1(x
2)xµ+Φ2(x

2)x̃µ . (29)

This form will be extensively used to solve the equation of
motion in the following section.

4 Solving the equation of motion

By using the definition of the covariant coordinate (8),
namelyAµ =Aµ+

1
2 x̃µ, the action (11) can be rewritten as

S =

∫
dDx

(

−
(1−Ω2)

2
Aµ �Aν �Aµ �Aν

+
(1+Ω2)

2
Aµ �Aµ �Aν �Aν +κAµ �Aµ

)

. (30)

Then, the corresponding equation of motion δS
δAµ(x)

= 0 is
given by

−2(1−Ω2)Aν �Aµ �Aν+(1+Ω
2)Aµ �Aν �Aν

+(1+Ω2)Aν �Aν �Aµ+2κAµ
= 0 . (31)

Due to the very structure of the Moyal product, this is
a complicated integro-differential equation for which no
known algorithm to solve it does exist so far. Notice that
it supports the trivial solution Aµ(x) = 0, which, however,
is not so interesting since expanding the action around it
gives rise to a non-dynamical matrix model, as already
noted in [34]. It turns out that (31) supports other non-
trivial solutions. These can be conveniently determined for
D= 2 andD= 4 using the matrix basis (14) and (15) as we
now show in the rest of this section.

4.1 The case D = 2

WhenD = 2, it is convenient to define

Z(x) =
A1(x)+ iA2(x)√

2
, Z†(x) =

A1(x)− iA2(x)√
2

.

(32)

Then the action can be expressed as

S =

∫
d2x((−1+3Ω2)Z �Z �Z† �Z†

+(1+Ω2)Z �Z† �Z �Z†+2κZ �Z†) , (33)

so that the equation of motion takes the form

(3Ω2−1)(Z† �Z �Z+Z �Z �Z†)

+2(1+Ω2)Z �Z† �Z+2κZ

= 0 . (34)
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Expressing now Z(x) in the matrix basis, namely

Z(x) =
∞∑

m,n=0

Zmnfmn(x) , (35)

(34) becomes a cubic infinite-dimensional matrix equation.
In view of the discussion in Sect. 3, we now look for the
symmetric solutions of the form given by (29), namely

Z(x) = Φ1(x
2)

(
x1+ ix2√
2

)

+Φ2(x
2)

(
x̃1+ ix̃2√
2

)

.

(36)

To translate (36) into the matrix basis, we first note that
the expression of the matrix coefficients of Z(x) is given
by (20)

Zmn =
1

2πθ

∫
d2xZ(x)fnm(x) . (37)

In polar coordinates (r, ϕ), we have

x1+ ix2 = re
iϕ , x̃1+ ix̃2 =−

2i

θ
reiϕ , (38)

and

Zmn =
(−1)n

2πθ
√
2

√
n!

m!

∫
rdrdϕei(m−n)ϕ

(
2r2

θ

)m−n
2

×Lm−nn

(
2r2

θ

)

e−
r2

θ

(

Φ1(r
2)reiϕ−Φ2(r

2)
2i

θ
reiϕ
)

.

(39)

By performing the integration over ϕ, we easily find that

Zmn =
(−1)n

θ
√
2

√
n!

m!

∫
r2dr

(
2r2

θ

)m−n
2

×Lm−nn

(
2r2

θ

)

e−
r2

θ

(

Φ1(r
2)−Φ2(r

2)
2i

θ

)

δm+1,n .

(40)

Then, defining z = 2r
2

θ
and

am =
(−1)m+1

4

√
m+1

θ

×

∫
dzL−1m+1(z)e

− z2

(

Φ2

(
θz

2

)

+
iθ

2
Φ1

(
θz

2

))

,

(41)

we obtain

Zmn =−iamδm+1,n . (42)

This, inserted into (34), yields

∀m ∈ N ,

am
(
(3Ω2−1)

(
|am−1|

2+ |am+1|
2
)
+2(1+Ω2)|am|

2+2κ
)

= 0 , (43)

where it is understood that a−1 = 0. Then (43) implies

∀m ∈N ,

(i) am = 0 or

(ii) (3Ω2−1)
(
|am−1|

2+ |am+1|
2
)
+2(1+Ω2)|am|

2+2κ

= 0 . (44)

From now on, we will focus only on the second condi-
tion (ii) (this will be discussed in more detail in Sect. 6; see
the hypothesis (H)):

∀m ∈N ,

(3Ω2−1)
(
|am−1|

2+ |am+1|
2
)
+2(1+Ω2)|am|

2+2κ= 0 .
(45)

Upon setting um+1 = |am|2, (45) becomes

∀m ∈ N ,

(3Ω2−1)(um+um+2)+2(1+Ω
2)um+1+2κ= 0 ,

(46)

which is a non-homogeneous linear iterative equation of
second order with the boundary condition u0 = 0. This will
be solved in Sect. 5.1.

4.2 The case D = 4

The caseD = 4 can be straightforwardly adapted from the
two-dimensional case. Owing to the fact that two symplec-
tic pairs are now involved in the four-dimensional Moyal
space, we define two complex quantities, namely

Z1(x) =
A1(x)+ iA2(x)√

2
, Z2(x) =

A3(x)+ iA4(x)√
2

.

(47)

Then, using these new variables, (30) can be conveniently
reexpressed as

S =

∫
d4x
(
(−1+3Ω2)Z1 �Z1 �Z

†
1 �Z

†
1

+(1+Ω2)Z1 �Z
†
1 �Z1 �Z

†
1+2κZ1 �Z

†
1

+(−1+3Ω2)Z2 �Z2 �Z
†
2 �Z

†
2

+(1+Ω2)Z2 �Z
†
2 �Z2 �Z

†
2+2κZ2 �Z

†
2

−2(1−Ω2)Z1 �Z2 �Z
†
1 �Z

†
2

−2(1−Ω2)Z2 �Z1 �Z
†
2 �Z

†
1

+(1+Ω2)Z1 �Z
†
1 �Z2 �Z

†
2

+(1+Ω2)Z2 �Z1 �Z
†
1 �Z

†
2

+(1+Ω2)Z1 �Z2 �Z
†
2 �Z

†
1

+(1+Ω2)Z†1 �Z1 �Z
†
2 �Z2

)
. (48)
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From (48), we derive the equations of motion

(3Ω2−1)
(
Z†1 �Z1 �Z1+Z1 �Z1 �Z

†
1

)

+(1+Ω2)
(
2Z1 �Z

†
1 �Z1+Z2 �Z

†
2 �Z1

+Z†2 �Z2 �Z1+Z1 �Z2 �Z
†
2+Z1 �Z

†
2 �Z2

)

−2(1−Ω2)
(
Z†2 �Z1 �Z2+Z2 �Z1 �Z

†
2

)
+2κZ1

= 0 , (49a)

(3Ω2−1)
(
Z†2 �Z2 �Z2+Z2 �Z2 �Z

†
2

)

+(1+Ω2)
(
2Z2 �Z

†
2 �Z2+Z1 �Z

†
1 �Z2

+Z†1 �Z1 �Z2+Z2 �Z1 �Z
†
1+Z2 �Z

†
1 �Z1

)

−2(1−Ω2)
(
Z†1 �Z2 �Z1+Z1 �Z2 �Z

†
1

)
+2κZ2

= 0 . (49b)

Notice that (49a) and (49b) are exchanged upon perform-
ing the exchange Z1� Z2. Now we again specialize to the
symmetric solutions of the form (29), namely

Z1(x) =
1
√
2

(
Φ1(x

2)(x1+ ix2)+Φ2(x
2)(x̃1+ ix̃2)

)
,

Z2(x) =
1
√
2

(
Φ1(x

2)(x3+ ix4)+Φ2(x
2)(x̃3+ ix̃4)

)
.

(50)

Then, in view of (15) and (20), one has

(Z1)m,n =
1

(2πθ)2

∫
d4xZ1(x)fn1,m1(x1, x2)

×fn2,m2(x3, x4) . (51)

Let us introduce the polar coordinates associated to each
symplectic pair:

x1 = r1 cos(ϕ1) , x2 = r1 sin(ϕ1) ,

x3 = r2 cos(ϕ2) , x4 = r2 sin(ϕ2) ,

r2 = r21+ r
2
2 . (52)

Then, by using (14) and integrating over the two angular
variables ϕ1 and ϕ2, one obtains

(Z1)m,n =
2(−1)m1+m2+1

θ

√
m1+1

θ

×

∫
r1dr1r2dr2

(

Φ1(r
2)−

2i

θ
Φ2(r

2)

)

× e−
r2

θ L−1m1+1

(
2r2

θ

)

L0m2

(
2r2

θ

)

× δm1+1,n1δm2,n2 . (53)

Let us now integrate this expression by parts. Defining

z1 =
2r21
θ
, z2 =

2r22
θ
, z = z1+ z2, and denoting by F (z) one

primitive function of
(
Φ2
(
θz
2

)
+ iθ2 Φ1

(
θz
2

))
e−
z
2 , (53) leads

to

(Z1)m,n =−i
(−1)m1+m2+1

4

√
m1+1

θ

×

∫
dz1dz2F (z)L

0
m1
(z1)L

0
m2
(z2)

× δm1+1,n1δm2,n2 , (54)

where we have used

d

dx
L−1m1+1(x) =−L

0
m1
(x) . (55)

A similar derivation holds for (Z2)m,n. Finally, using the
symmetry argument developed in Sect. 3, we find

(Z1)m,n =−iam1m2
√
m1+1δm1+1,n1δm2,n2 , (56)

(Z2)m,n =−iam1m2
√
m2+1δm1,n1δm2+1,n2 , (57)

where am1,m2 ∈ C is symmetric upon the exchange of m1
andm2. Then, (49a) and (49b) become

(3Ω2−1)
(
m1|am1−1,m2 |

2+(m1+2)|am1+1,m2 |
2
)
am1,m2

+(1+Ω2)
(
2(m1+1)|am1,m2 |

2

+(m2+1)|am1,m2 |
2+m2|am1,m2−1|

2

+(m2+1)|am1+1,m2 |
2+m2|am1+1,m2−1|

2
)
am1,m2

−2(1−Ω2)
(
m2|am1,m2−1|

2am1+1,m2−1

+(m2+1)am1+1,m2am1,m2+1am1,m2
)
+2κam1,m2

= 0 , (58a)

(3Ω2−1)
(
m2|am1,m2−1|

2+(m2+2)|am1,m2+1|
2
)
am1,m2

+(1+Ω2)
(
2(m2+1)|am1,m2 |

2

+(m1+1)|am1,m2 |
2+m1|am1−1,m2 |

2

+(m1+1)|am1,m2+1|
2+m1|am1−1,m2+1|

2
)
am1,m2

−2(1−Ω2)
(
m1|am1−1,m2 |

2am1−1,m2+1

+(m1+1)am1,m2+1am1+1,m2am1,m2
)
+2κam1,m2

= 0 . (58b)

As we did for the case D = 2, we assume now that
am1,m2 	= 0 (for a more detailed discussion of this point,
see Sect. 6; this will be called hypothesis (H)). Combin-
ing this latter assumption with (58), it can be shown that
am1,m2 depends only on m =m1+m2. The correspond-
ing proof is presented in the appendix. Now, if we define
vm1+m2+1 = |am1,m2 |

2, (58) is equivalent to

∀m ∈ N , (3Ω2−1)(mvm+(m+3)vm+2)

+ (1+Ω2)(2m+3)vm+1+2κ

= 0 , (59)

which is a non-homogeneous linear iterative equation
of second order with non-constant coefficients, with the
boundary condition v0 = 0. Notice also that this equation
is very close to this of the case D = 2, defining vm =

um
m

in (46).

5 Solutions

In this section, we solve (46) and (59) to obtain the vacuum
configurations for D = 2 andD = 4.
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5.1 The case D = 2

Let us consider (46):

∀m ∈N , (3Ω2−1)(um+um+2)+2(1+Ω
2)um+1+2κ

= 0 ,

u0 = 0 , um ≥ 0 . (60)

For Ω2 	= 13 , we define

r =
1+Ω2+

√
8Ω2(1−Ω2)

1−3Ω2
, (61)

and one has 1r =
1+Ω2−

√
8Ω2(1−Ω2)

1−3Ω2
. Then, it is easy to real-

ize that (60) supports different types of solutions according
to the range for the values taken by Ω. Namely, one has

– for Ω2 = 0, κ= 0, um = αm and α≥ 0;
– for 0 < Ω2 < 1

3 , um = α(r
m − r−m)− κ

4Ω2
(1− r−m),

α≥ 0 and r > 1;
– for Ω2 = 13 , κ≤ 0 and um =−

3κ
4 ;

– for 13 <Ω
2 < 1, κ≤ 0, um =−

κ
4Ω2
(1−r−m) and r <−1;

– for Ω2 = 1, κ≤ 0 and um =−
κ
4 (1− (−1)

−m).

Notice that the solution for Ω = 0 corresponds to the
commutative case: um =

m
θ
is equivalent to a vacuum

Aµ(x) =
1
2 x̃µ or Aµ = 0. Then it is possible to choose α

depending on Ω, so that the solution is continuous in Ω
near 0. With the Taylor expansions

rm− r−m = 4
√
2mΩ+O(Ω3) ,

1− r−m = 2
√
2mΩ−4m2Ω2+O(Ω3) ,

α(Ω) =
1

Ω
(α0+O(Ω)) , (62)

one deduces that κ must have the same asymptotic behav-
ior as Ω near 0. If κ= κ0Ω+O(Ω),

um = 4
√
2mα0−

√
2m

2
κ0+O(Ω) . (63)

For α0 =
κ0
8 +

4
4θ
√
2
, we find the commutative limit for

the vacuum: Aµ = 0, and the gauge potential is massless
(limΩ→0 κ= 0).
Consider now the asymptotic behavior of the vacuum

in the configuration space for x2 →∞. If 0 < Ω2 < 1
3

and α 	= 0, then
√
um ∼m→∞ r

m
2 and r > 1. As a conse-

quence [8], the solution Aµ(x) of the equation of motion
does not belong to the Moyal algebra. So we require that
α = 0. Then, for Ω 	= 0, κ has to be negative and um has
a finite limit. This indicates that Aµ(x) has a constant
limit as x2→∞.
Let us try to obtain an expression for the vacuum in the

configuration space. Using the variable (32), the solution is

Z(x) =
∞∑

m,n=0

−iamδm+1,nfm,n(x)

=−i
∞∑

m=0

amfm,m+1(x) , (64)

with am = e
iξm
√
um and ξm ∈ R an arbitrary phase.

Using (14), we obtain

Z(x) =−2i
√
ze
z
2 eiϕ

∞∑

m=0

(−1)m
√
m+1

amL
1
m(z) , (65)

where z = 2r
2

θ . Then use of the property

Lkm(z) =
ezz−

k
2

m!

∫ ∞

0

dte−ttm+
k
2 Jk(2

√
tz) (66)

permits one to express Z(x) as

Z(x) =−2ie
z
2 eiϕ
∫ ∞

0

dte−t
√
tJ1(2

√
tz)

∞∑

m=0

(−1)mam
m!
√
m+1

tm ,

(67)

with Jk(x) the kth Bessel function of the first kind. Since

−i

√
2z

θ
ei(ϕ+ξm) = (x̃1+ ix̃2) cos(ξm)

+
2

θ
(x1+ ix2) sin(ξm) ,

one can deduce the expression of the vacuum in two dimen-
sions:

Aµ(x) = 2
√
θ
e
z
2

√
z

∫ ∞

0

dte−t
√
tJ1(2

√
tz)

×
∞∑

m=0

(−1)m
√
um+1

m!
√
m+1

tm

×

(

x̃µ cos(ξm)+
2

θ
xµ sin(ξm)

)

, (68)

with um given above.

5.2 A special case

In this subsection, we consider the caseΩ2 = 13 and κ< 0 in
two dimensions. We have found in the previous subsection
that the solution is given by um =−

3κ
4 and am = e

iξm
√
um.

Now we set ξm = 0; let us check that this solution of the
equation of motion is a minimum of the action. The action
can be expanded around the vacuum Z(x) for these values
of parameters and its quadratic part is given by

S̃quadr =

∫
d2x(2κδZ �δZ†+4Z �Z† � δZ � δZ†

+4Z† �Z �δZ† � δZ+2Z �δZ† �Z �δZ†

+2Z† � δZ �Z† � δZ) , (69)

where δZ(x) is the fluctuation. Denoting α = −πθκ
> 0, (69) can be reexpressed in the matrix basis as

S̃quadr = 4αδZm,nδZ
†
n,m−2αδZ

†
m+1,nδZ

†
n+1,m

−2αδZm,n+1δZn,m+1 . (70)
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Using (32), one can find that

S̃quadr = 2α(δA1)m,n(δA1)n,m−α(δA1)m,n(δA1)n+1,m−1
−α(δA1)m,n(δA1)n−1,m+1
+2α(δA2)m,n(δA2)n,m
+α(δA2)m,n(δA2)n+1,m−1
+α(δA2)m,n(δA2)n−1,m+1
+2iα(δA1)m,n(δA2)n+1,m−1
−2iα(δA1)m,n(δA2)n−1,m+1 . (71)

By defining the variable

Xm,n =

(
(δA1)m,n
(δA2)m,n

)

, (72)

we find the following expression for (69):

S̃quadr = 2αX
T
m,n

(
1 0

0 1

)

Xn,m+αX
T
m,n

(
−1 i

i 1

)

Xn+1,m−1

+αXTm,n

(
−1 −i

−i 1

)

Xn−1,m+1 . (73)

The operator involved in (73) is

Gm,n;k,l = 2α

(
1 0

0 1

)

δn,kδm,l+α

(
−1 i

i 1

)

δn+1,kδm,l+1

+α

(
−1 −i

−i 1

)

δn,k+1δm+1,l . (74)

The above solution is a minimum for the action pro-
vided (74) is a positive operator. This can be shown indeed
to be the case once it is realized that Gm,n;k,l depends
actually only on two indices, since the following identity
among the indices holds here:m+n= k+ l. It follows that
Gm,γ−m;γ−l,l with γ =m+n= k+ l does not depend on γ
and therefore Gm,γ−m;γ−l,l =Gm,l. Then, one has

Gml = 2α

(
1 0

0 1

)

δm,l+α

(
−1 i

i 1

)

δm,l+1

+α

(
−1 −i

−i 1

)

δm+1,l . (75)

This operator can be represented by an infinite-dimensional
matrix. Let us set a cut-off N on the dimension of this ma-
trix:m, l≤N . We have

G(N) = α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 −1 −i 0 0

0 2 −i 1 0 0

−1 i 2 0 −1 −i . . .

i 1 0 2 −i 1

0 0 −1 i 2 0

0 0 i 1 0 2
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(76)

which is now a diagonalizable 2N×2N matrix. Indeed:

– 2α is a two-fold degenerate eigenvalue, with (i, 1, 0,
. . . , 0) and (0, . . . , 0,−i, 1) as associated eigenvectors.

– 0 is a (N −1)-fold degenerate eigenvalue, with (i,−1,
i, 1, 0, . . . , 0), (0, 0, i,−1, i, 1, 0, . . . , 0), . . . , (0, . . . , 0, i,
−1, i, 1, 0, . . . , 0), . . . , (0, . . . , 0, i,−1, i, 1) as associated
eigenvectors.
– 4α is a (N −1)-fold degenerate eigenvalue, with (−i, 1,
i, 1, 0, . . . , 0), (0, 0,−i, 1, i, 1, 0, . . . , 0), . . . , (0, . . . , 0,
−i, 1, i, 1, 0, . . . , 0), . . . , (0, . . . , 0,−i, 1, i, 1) as associ-
ated eigenvectors.

Since α = −πθκ > 0, Zmn = −i
√
− 3κ4 δm+1,n, or equiva-

lently

Aµ(x) =
√
−3κθ

(
e
z
2

√
z

∫ ∞

0

dte−t
√
tJ1(2

√
tz)

×
∞∑

m=0

(−1)mtm

m!
√
m+1

)

x̃µ (77)

is a degenerate minimum of the action (11) for Ω2 = 1
3 ,

where κ < 0 and z = 2x
2

θ .

5.3 The case D = 4

Equation (59) looks like (46), but the non-triviality of the
coefficients of this linear iterative equation makes it much
more difficult to solve. Let us introduce the following aux-
iliary function:

y(x) =
∞∑

m=1

vmx
m , (78)

since v0 = 0. Then (59) is equivalent to

((3Ω2−1)(1+x2)+2(1+Ω2)x)y′(x)

+

(
3Ω2−1

x
+1+Ω2

)

y(x)

= 2(3Ω2−1)v1−
2κx

1−x
. (79)

This first-order linear differential equation near x= 0 can
be solved whenever 0<Ω2 < 13 . Similar considerations ap-
ply for 13 ≤Ω

2 ≤ 1. One obtains

y(x) =

√
(1−3Ω2)(1+x2)−2(1+Ω2)x

x
K

+
(1−3Ω2)v1
4Ω2(1−Ω2)x

(1−3Ω2− (1+Ω2)x)

+
κ
√
2

16Ω3x
arctan

(
Ω
√
2(1+x)

√
(1−3Ω2)(1+x2)−2(1+Ω2)x

)

×
√
(1−3Ω2)(1+x2)−2(1+Ω2)x

+
κ(1−3Ω2+(Ω2−3)x)

8Ω2(1−Ω2)x
, (80)

where K is a constant. As (vm) is given by the expansion
of the solution (80) near x= 0, it has to be continuous in
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x= 0. This fixes the value forK. It is given by

K =−

√
1−3Ω2

8Ω2(1−Ω2)

(
2(1−3Ω2)v1+κ

)

−
κ
√
2

16Ω3
arctan

(
Ω
√
2

√
1−3Ω2

)

. (81)

For 0<Ω2 < 13 , it is possible to write down the general so-
lution for the (vm). Here we will assume that κ= 0 for the
sake of simplicity. From the relation
√
1−2αx+x2

=
∞∑

n=0

(
∞∑

k=0

Γ
(
3
2

)

k!Γ (n+1−2k)Γ
(
3
2 −n+k

)(−2α)n−2k
)

xn ,

(82)

we have

∀n≥ 2

vn =−
(1−3Ω2)2v1
4Ω2(1−Ω2)

∞∑

k=0

(−2)n+1−2kΓ
(
3
2

)

k!Γ (n+2−2k)Γ
(
1
2 −n+k

)

×

(
1+Ω2

1−3Ω2

)n+1−2k
. (83)

Using now the definition for the hypergeometric function

2F1(a, b; c; z) =
∞∑

k=0

Γ (a+k)Γ (b+k)Γ (c)

Γ (a)Γ (b)Γ (c+k)

zk

k!
, (84)

we can conclude that

∀m≥ 0

vm+1 =
(1+Ω2)2v1
4
√
πΩ2(1−Ω2)

Γ (3/2)Γ (m+3/2)

Γ (m/2+3/2)Γ (m/2+2)

×

(
1+Ω2

1−3Ω2

)m

× 2F1

(

−
m

2
−
1

2
,−
m

2
−1;−m−

1

2
;
(1−3Ω2)2

(1+Ω2)2

)

.

(85)

Notice that for (1−3Ω
2)2

(1+Ω2)2
small enough this expression is

positive if we choose v1 ≥ 0. Furthermore, 2F1
(
− m2 −

1
2 ,

−m2 −1;−m−
1
2 ; z
)
is a polynomial of degree m+22 � in z,

so that

v2 =
1+Ω2

1−3Ω2
v1 ,

v3 =
(1+4Ω2−4Ω4)

(1−3Ω2)2
v1 ,

v4 =
(1+Ω2)(1+8Ω2−5Ω4)

(1−3Ω2)3
v1 ,

v5 =
(1+16Ω2+26Ω4−24Ω6−3Ω8)

(1−3Ω2)4
v1 ,

v6 =
(1+Ω2)(1+24Ω2+66Ω4−96Ω6+21Ω8)

(1−3Ω2)5
v1, . . .

(86)

Notice also that using (80), the commutative limit for
D = 4 can be obtained in a way similar to what has been
done for the two-dimensional case. The solution (vm) is
indeed continuous in Ω = 0 for the well-chosen coefficient
v1 =

1
θ
+O(Ω) and with κ=O(Ω). It can be realized that

the sequence given by (85) is divergent, since it behaves
like an exponential so that it does not belong to the Moyal
algebra. However, as in the two-dimensional case, it is pos-
sible to calculate in (80) the contribution for κ 	= 0 and to
set to zero the coefficient of the divergent part for the solu-
tion (vm), so that the resulting vacuumwill again belong to
the Moyal algebra with suitable asymptotic behavior.
In the general case, forΩ2 ∈ [0, 1] and κ 	= 0, we can ex-

press the general solution in the configuration space.

Z1(x) =−i
∞∑

m1,m2=0

√
m1+1am1,m2fm1,m1+1(x1, x2)

×fm2,m2(x3, x4) , (87)

where am1,m2 = e
iξm√vm+1, m=m1+m2 and ξm ∈ R is

an arbitrary phase. Using the polar coordinates (52) and
the expression (14), one has

Z1(x) =−4i

√
2

θ
r1e
iϕ1e−

r2

θ

∞∑

m=0

m∑

m1=0

eiξm(−1)m

×
√
vm+1L

1
m1

(
2r21
θ

)

L0m−m1

(
2r22
θ

)

. (88)

Since the identity

m∑

k=0

Lαk (x)L
β
m−k(y) = L

α+β+1
m (x+y) (89)

is verified, and with (66), we find

Z1(x) = 4

√
θ

2

e
z
2

z

∫ ∞

0

dte−tJ2(2
√
tz)

×
∞∑

m=0

(−1)m

m!

√
vm+1t

m+1

×

(

(x̃1+ ix̃2) cos(ξm)+
2

θ
(x1+ ix2) sin(ξm)

)

,

Z2(x) = 4

√
θ

2

e
z
2

z

∫ ∞

0

dte−tJ2(2
√
tz)

×
∞∑

m=0

(−1)m

m!

√
vm+1t

m+1

×

(

(x̃3+ ix̃4) cos(ξm)+
2

θ
(x3+ ix4) sin(ξm)

)

,

(90)

where z = 2x2

θ
, vm+1 is determined above, and Z2(x) is

computed in the same way. The vacuum of the covariant
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coordinates can therefore be written

Aµ(x) = 2
√
2θ
e
z
2

z

∫ ∞

0

dte−tJ2(2
√
tz)

×
∞∑

m=0

(−1)m

m!

√
vm+1t

m+1

×

(

x̃µ cos(ξm)+
2

θ
xµ sin(ξm)

)

. (91)

6 Discussion

Recent attempts to extend the harmonic solution proposed
in [15] to the case of gauge theories defined onMoyal spaces
have singled out a class of gauge theory models generi-
cally described by the action given in (2), for which the
gauge potential has a non-vanishing expectation value sig-
naling therefore a non-trivial vacuum. In this paper, we
have performed a detailed study of the corresponding vac-
uum states, focusing on those configurations that are in-
variant under both rotation and symplectic isomorphisms,
i.e. invariant under GD = SO(D)∩Sp(D), which is a sym-
metry group for the action, as discussed in Sect. 3. Recall
that the explicit determination of these vacua is a ne-
cessary step to be reached before the study of its renor-
malizability can be undertaken, since a reliable perturba-
tive analysis in the present situation can only be defined
after the action is expanded around the non-trivial vac-
uum. The use of the matrix basis for both D = 2 and
D = 4 dimensions proved very convenient when solving
the relevant equations of motion in order to obtain rather
tractable expressions, written first in the matrix basis and
turned back to the position space when necessary. No-
tice that the technical machinery we set-up in Sects. 4
and 5 of this paper provides, as a byproduct, a rather
simple algorithm to solve the equation of motion that in-
volves the Moyal product together with (star)-polynomial
interactions.
As the main result of this paper, we have found that

the vacuum configurations in the D = 2- and D = 4-
dimensional position space are generically given

A2Dµ (x) = 2
√
θ
e
z
2

√
z

∫ ∞

0

dte−t
√
tJ1(2

√
tz)

×
∞∑

m=0

(−1)m
√
um+1

m!
√
m+1

tm

×

(

x̃µ cos(ξm)+
2

θ
xµ sin(ξm)

)

, (92)

A4Dµ (x) = 2
√
2θ
e
z
2

z

∫ ∞

0

dte−ttJ2(2
√
tz)

×
∞∑

m=0

(−1)m

m!

√
vm+1t

m

×

(

x̃µ cos(ξm)+
2

θ
xµ sin(ξm)

)

, (93)

where ξm, (um) and (vm) have been defined in Sects. 5.1

and 5.3 and z = 2x2

θ . Note that these solutions do not cor-
respond to the whole set of GD-invariant solutions for the
equation of motion. Indeed, we have made in Sect. 4 the
assumption (H) that the coefficients am and am1,m2 are
non-zero. Let us now discuss this assumption. In fact, it is
tempting to conjecture that requiring the hypothesis (H)
permits one to select only the minima of the action among
all the solutions of the equation of motion. This is some-
what supported by the scalar case studied in [39], for which
the equation of motion (again a Moyal cubic equation)
bears some similarity with the one considered in this paper.
In that scalar case, it has been shown that the minima are
obtained for a maximal use of the assumption (H). More-
over, this is also verified for the two special cases Ω = 0
and Ω2 = 1

3 . Indeed, the solution for Ω = 0 corresponds
to the usual vacuum Aµ = 0, which is of course a mini-
mum of the action, while the caseΩ2 = 13 in two dimensions
has been treated in Sect. 5.2. This unfortunately is much
more difficult to verify when Ω is arbitrary, because the
operator involved in the quadratic part of the action ex-
panded around the vacuum depends then on four indices,
so that diagonalization is very difficult (see Sect. 5.2). In-
clusion of ghost terms into the action stemming from some
further gauge fixing might well improve this situation as
can be realized by inspection of the relevant expressions
in the matrix basis. This would remain to be investigated.
In any case, if the above conjecture was not verified, it is
easy to obtain the coefficients am and am1,m2 of all the
solutions of the equation of motion in the matrix basis
from a rather straightforward adaptation of the results of
Sect. 5. Notice, however, that this produces a huge num-
ber of possible solutions. This will not be considered in the
present paper.
Let us finally focus on another special case: Ω = 1 and

κ < 0. The equation of motion (31) simplifies into

2Aµ �Aν �Aν+2Aν �Aν �Aµ+2κAµ = 0 , (94)

which can be reexpressed in terms of the gauge invariant
condensate C(x) = (Aµ �Aµ)(x) as

{Aµ, 2C+κ}� = 0 . (95)

It is obvious that the constant condensate

C(x) =−
κ

2
(96)

satisfies this equation of motion. The solutions found in
Sect. 5 by requiring the assumption (H) are

– u0 = 0, u2k =−
κ
2 and u2k+1 = 0, in two dimensions,

– v0 = 0, v2k = v2k+1 =−
κ
8k+4 , in four dimensions,

and all these solutions are of constant condensate
type (96).

Appendix

In this appendix, we will prove recurrently that the co-
efficients am1,m2 depend only on m = m1+m2 for all
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m1,m2 ∈ N. We have assumed that am1,m2 	= 0. Define
b0 = a0,0. Now suppose that for a certain m ∈ N, ∀k1, k2 ∈
N, so that k1+ k2 ≤m, ak1,k2 depends only on k1+ k2,
and we write ak1,k2 = bk1+k2 . Set alsom1,m2 so thatm1+
m2 =m. Let us prove that am1+1,m2 = am1,m2+1.
As am1,m2 = am1+1,m2−1 = bm and am1−1,m2 =

am1,m2−1 = bm−1, (58) can then be reexpressed as

(
(3Ω2−1)m|bm−1|

2+(1+Ω2)(2m+3)|bm|
2+2κ

+((3Ω2−1)(m1+2)+(1+Ω
2)(m2+1))|am1+1,m2 |

2

−2(1−Ω2)(m2+1)am1+1,m2am1,m2+1
)
bm

= 0 , (A.1a)
(
(3Ω2−1)m|bm−1|

2+(1+Ω2)(2m+3)|bm|
2+2κ

+((3Ω2−1)(m2+2)+(1+Ω
2)(m1+1))|am1,m2+1|

2

−2(1−Ω2)(m1+1)am1+1,m2am1,m2+1
)
bm

= 0 . (A.1b)

If we transformatm1→m1+1 andm2→m2−1 in (A.1b),
andm1→m1−1 andm2→m2+1 in (A.1b), and simplify
by bm 	= 0, we obtain

(3Ω2−1)m|bm−1|
2+(1+Ω2)(2m+3)|bm|

2+2κ

+
(
(3Ω2−1)(m2+1)+(1+Ω

2)(m1+2)
)
|am1+1,m2 |

2

−2(1−Ω2)(m1+2)am1+1,m2am1,m2+1
= 0 , (A.2a)

(3Ω2−1)m|bm−1|
2+(1+Ω2)(2m+3)|bm|

2+2κ

+
(
(3Ω2−1)(m1+1)+(1+Ω

2)(m2+2)
)
|am1,m2+1|

2

−2(1−Ω2)(m2+2)am1+1,m2am1,m2+1
= 0 . (A.2b)

Then simplification by bm in (A.1a) and addition
by (A.2a) give rise to

2(3Ω2−1)m|bm−1|
2+2(1+Ω2)(2m+3)|bm|

2+4κ

+4Ω2(m+3)|am1+1,m2 |
2

−2(1−Ω2)(m+3)am1+1,m2am1,m2+1
= 0 . (A.3)

In the same way, with (A.1b) and (A.2b), we obtain

2(3Ω2−1)m|bm−1|
2+2(1+Ω2)(2m+3)|bm|

2+4κ

+4Ω2(m+3)|am1,m2+1|
2

−2(1−Ω2)(m+3)am1+1,m2am1,m2+1
= 0 . (A.4)

The comparison of (A.3) and (A.4) gives

|am1+1,m2 |
2 = |am1,m2+1|

2 . (A.5)

By substracting (A.1a) by (A.2b) and using (A.5), we find

−2(1−Ω2)|am1+1,m2 |
2+2(1−Ω2)am1+1,m2am1,m2+1

= 0 , (A.6)

and this is the aim of the proof:

am1+1,m2 = am1,m2+1 . (A.7)
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