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Abstract

We apply a recently developed method to exactly solve the �3 matrix model with covariance of a two-
dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively 
describe graphs on a multi-punctured 2-sphere. We show how Ward–Takahashi identities and Schwinger–
Dyson equations lead in a special large-N limit to integral equations that we solve exactly for all correlation 
functions.

The solved model arises from noncommutative field theory in a special limit of strong deformation 
parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection 
positivity.
© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Matrix models [1] were intensely studied around 1990. Highlights include the non-perturba-
tive solution of the Hermitian one-matrix model [2–4] and the understanding that it gives a 
rigorous meaning to quantum gravity in two dimensions. As proved by Kontsevich [5], there 
is an equivalent formulation by a model for Hermitian matrices � with action tr(E�2 + i

6�3), 
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where E is a fixed external matrix. Equivalently, the external structure can be moved to the linear 
term. The resulting partition function

Z[J ] =
∫

MN (C)

D� exp
(

− tr
(

− J� + N
2

β�2 + N
3

α�3
))

(1.1)

(all matrices self-adjoint) was solved by Makeenko and Semenoff [6]. The strategy consists in a 
diagonalisation of � thanks to the Itzykson–Zuber–Harish-Chandra formula, leaving an integral 
over the eigenvalues xi of the random matrix �. Since these xi are dummy integration variables, 
the partition function is invariant under variations xi �→ xi + εnx

n+1
i . These give rise to Virasoro 

constraints on Z[j1, . . . , jN ], which Makeenko–Semenoff were able to solve.
A renewed interest in matrix models came from field theories on noncommutative spaces of 

Moyal–Weyl type. We mention the magnetic field model studied in [7], which is also exactly 
solvable but trivial as a field theory. The field theory of the �3 model on Moyal space with 
harmonic term (see below) has been studied by one of us (HG) and H. Steinacker in [8,9]. The 
novel aspect was a renormalisation procedure for the Kontsevich model. Only partial information 
on correlation functions was obtained; this is the point where the present paper goes much further.

Two of us (HG+RW) worked on the �4-theory on four-dimensional Moyal–Weyl deformed 
space and cured the ultraviolet–infrared mixing by adding a harmonic oscillator potential to the 
action. This leads to a renormalisable model [10], which develops a zero of the β-function of 
the coupling constant [11] at a special value of the parameter space. At this special point the 
model becomes a dynamical matrix model. In [12] we (HG+RW) extended the idea of [11] to 
an alternative solution strategy for matrix models, avoiding the diagonalisation (which is useless 
for the �4 interaction). We used instead the Ward–Takahashi identities which result from a vari-
ation � �→ U∗�U , with U = exp(iεB) unitary, to derive a different type of Schwinger–Dyson 
equations. We proved that one of them consists in a non-linear singular integral equation for 
the 2-point function alone (first obtained in [13]), which then determines all higher correlation 
functions. We subsequently reduced the problem to a fixed point equation for a single function 
on R+ and proved that a solution exists [14]. If one could prove that the solution is the Stieltjes 
transform of a positive measure, which is true for the computer [15], then one could convert the 
model into a 4-dimensional Euclidean quantum field theory with reflection-positive Schwinger 
2-point function [16].

In this paper we apply the strategy of [12] to the �3
2 matrix model.1 Since a linear term would 

be generated by loop corrections, we add it from the beginning. We define first the model with 
cut-offs and give next Ward–Takahashi (WT) identities and Schwinger–Dyson (SD) equations. 
The 1-point function requires renormalisation, after which the cut-off can be sent to ∞ in the 
usual way [6]; for noncommutative field theory this corresponds to a limit of large matrices 
coupled with an infinitely strong deformation parameter – a limit which is called the “Swiss 
cheese limit”. This way one projects onto the genus zero sector, but keeps all possible boundary 
components. In this limit the infinite hierarchy of SD-equations decouples (as in the �4-model 
[12]). We find that a function W(X) related to the 1-point function satisfies a non-linear inte-
gral equation which, up to the renormalisation problem, is identical to an equation solved by 

1 In our subsequent paper [17] we extend this work to four and six dimensions. Whereas the renormalisation of �3
4

and �3
6 is much more involved, the solution of the Schwinger–Dyson equations is easily adapted from the �3

2 case. To 
avoid duplication of material we introduce in some formulae parameters Z, ν which at the end are set to Z = 1 and ν = 0
for �3.
2
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Makeenko–Semenoff [6] in the framework of the Kontsevich model. This coincidence is by no 
means surprising! We then proceed by resolving the entire hierarchy of linear equations for all 
genus-zero matrix correlation functions. Here combinatorial identities on Bell polynomials play 
a crucial rôle.

In the final section we relate the �3-matrix model to field theory on noncommutative Moyal 
space. We also perform in position space the limit of large deformation parameter. In this way 
a Euclidean quantum field theory on standard (undeformed) R2 is obtained for which we can 
explicitly describe all connected Schwinger functions. We deduce that already the Schwinger 
2-point function does not fulfil reflection positivity for whatever (real or imaginary) non-zero 
coupling constant. This is in sharp contrast with the �4-model where numerical and partial ana-
lytic evidence was given that the Schwinger 2-point function is reflection positive.

Associating a quantum field theory with a matrix model is somewhat unusual in the traditional 
setup. We therefore begin in section 2 with a description of this relation, thereby giving a precise 
definition of correlation functions on the multi-punctured sphere, with Nβ fields attached to the 
βth boundary component (= puncture).

2. Prelude: a QFT toy model

We consider planar graphs � on the 2-sphere with two sorts of vertices: any number of black 
(internal) vertices of valence 3, and B ≥ 1 white vertices {vβ}Bβ=1 (external vertices, or punctures, 
or boundary components) of any valence Nβ ≥ 1. Every face is required to have at most one white 
vertex (separation of punctures). Faces with a white vertex are called external; they are labelled 
by positive real numbers x1

1 , . . . , x1
N1

, . . . , xB
1 , . . . , xB

NB
(the upper index labels the unique white 

vertex of the face). Faces without white vertex are called internal; they are labelled by positive 
real numbers y1, . . . , yL. Such graphs are dual to triangulations of the B-punctured sphere.

We associate a weight (−λ̃) to each black vertex, weight 1 to each white vertex, and weight 
1

z1+z2+1 to an edge separating faces labelled by z1 and z2. These can be internal or external, 
also z1 = z2 can occur. Multiply the weights of all edges and vertices of the graph and integrate 
over all internal face variables y1, . . . , yL from 0 to a cut-off 	2, thus giving rise to a function 
G̃	

� (x1
1 , . . . , x1

N1
| . . . |xB

1 , . . . , xB
NB

) of the external face variables.
Three examples are in order:

�1 : G̃	
�1

(x1
1) = (−λ̃)

2x1
1 + 1

	2∫
0

dy1

x1
1 + y1 + 1

, (2.1)

�2 : G̃	
�2

(x1
1 , x1

2) = (−λ̃)2

(x1
1+x1

2+1)2

	2∫
0

dy1

(x1
1+y1+1)(x1

2+y1+1)
, (2.2)

�3 : G̃	
�3

(x1
1 |x2

1) = (−λ̃)2

(2x1
1 + 1)(2x2

1 + 1)(x1
1 + x2

1 + 1)2
. (2.3)

This setting defines a toy model of quantum field theory, sharing all typical features. It has 
the power-counting behaviour of the �3

2 model, in particular has a single divergence: The limit 
lim	→∞ G̃	

�1
(x1

1) does not exist. The problem is cured by renormalisation. We assume the reader 
is familiar with the notion of one-particle irreducible (1PI) subgraphs. The renormalisation of the 
toy quantum field theory consists in recursively replacing all 1PI one-point subfunctions f (z) by 
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its Taylor subtraction f (z) − f (0). This does more than necessary, but permits the global (i.e. 
non-perturbative) normalisation rule G̃�(0) = 0 for any graph � with a single white vertex of 
valence 1. Omitting the superscript 	 on G̃ means recursive renormalisation plus limit 	 → ∞. 
We note

G̃�1(x
1
1) = (−λ̃)

2x1
1 + 1

∞∫
0

dy1

( 1

x1
1 + y1 + 1

− 1

y1 + 1

)
= λ̃

log(x1
1 + 1)

2x1
1 + 1

. (2.4)

Consider the following challenge: Fix B white vertices of valences N1, . . . , NB , take an arbi-
trary number (there is a lower bound) of black vertices, and connect them in all possible ways to 
planar graphs. Assign the weights, perform the renormalisation, evaluate the face integrals (for 
	 → ∞) and sum everything up. What does this give?

A main difficulty in quantum field theory is that there are too many graphs. Our situation is 
more favourable: The number of connected planar graphs with n black vertices can be estimated 
by the number nn−2 of ordered trees with n vertices. With the typical tools of quantum field 
theory, see e.g. [18], one can prove uniform bounds of the type |G̃�| ≤ C1 · |λ̃|nCn

2 . Together 
with the 1

n! -prefactor from the expansion of the exponential one can expect to give a mean-

ing to G̃(x1
1 , . . . , x1

N1
| . . . |xB

1 , . . . , xB
NB

) = ∑
� G̃�(x1

1 , . . . , x1
N1

| . . . |xB
1 , . . . , xB

NB
) for |λ| small 

enough.2

In this paper we achieve more than a proof of convergence: We will provide exact formulae, 
analytic in λ̃2, for any G̃(x1

1 , . . . , x1
N1

| . . . |xB
1 , . . . , xB

NB
). For convenience we refer to the simplest 

cases: G̃(x1
1) will be given in (4.18), G̃(x1

1 , x1
2) implicitly in (4.21) and G̃(x1

1 |x2
1) implicitly 

in (5.9). One has to insert Xβ
i = (2x

β
i + 1)2 and the formulae for W(X) and c(λ̃) given in 

Proposition 4.1. The order-n Taylor term reproduces the sum of all graphs with n black vertices 
and B white vertices of valences N1, . . . , NB . The reader is invited to convince herself/himself 
that these formulae (restricted to the relevant order in λ̃) and the graphical rules agree on the
following examples:

G̃(3)(x
1
1) =

= λ̃3
( (log 2)2

2x1
1 + 1

− (log 2)2

(2x1
1 + 1)3

)
, (2.5)

G̃(2)(x
1
1 , x1

2) =

= λ̃2

(x1
1+x1

2+1)2

( log(x1
1+1) − log(x1

2+1)

x1
1 − x1

2

− log(x1
1+1)

2x1
1+1

− log(x1
2+1)

2x1
2+1

)
. (2.6)

2 We are grateful to the referee for her/his clarifying comments on this point.
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In fact we solve a more general case with weight functions 1
e(z1)+e(z2)+1 for the edges, where 

e : R+ →R+ is a differentiable function of positive derivative. Equivalently, one can keep the old 
face variables yi but assign a weight ρ̃(yi) = 1

e′(e−1(yi ))
to the faces. The asymptotic behaviour 

of ρ̃(y) ∼ y
D
2 −1 for y → ∞ encodes a dimensionality D, where actually only the even integer 

2[D
2 ] matters. This paper treats 2[D

2 ] = 2. For 2[D
2 ] = 0 we have a finite model where no renor-

malisation is necessary. In [17] we extend this work to 2[D
2 ] = 4 (which also has a finite number 

of divergences) and to the just renormalisable case 2[D
2 ] = 6.

3. The setup

Consider the following action functional for Hermitian matrix-valued ‘fields’ � = �∗ ∈
MN (C):

S = V tr(E�2 + κ� + λ

3
�3), (3.1)

or explicitly (in symmetrised form)

S = V
( N∑

n,m=0

1

2
�nm�mnHnm + κ

N∑
m=0

�mm + λ

3

N∑
k,l,m=0

�kl�lm�mk

)
,

Hmn := Em + En. (3.2)

Here V is a constant discussed later, λ is the coupling constant (real or complex), and κ will 
be needed for renormalising the 1-point function. The self-adjoint positive matrix E = (Emδmn)

plays a crucial rôle. We assume that the eigenvalues Em are a discretisation of a monotonously 
increasing differentiable function e with e(0) = 0,

Em = μ2
(1

2
+ e

( m

μ2V

))
, (3.3)

thus identifying 2E0 = μ2 with a squared mass. The resulting covariance functions 1
Hmn

=
1

μ2(e( m

μ2V
)+e( n

μ2V
)+1)

are nothing else than the (discretised) edge weights considered in section 2. 

In particular, the discussion on the dimensionality encoded in e (i.e. in the spectrum of E) ap-
plies.

Comparison with (1.1) suggests that V is proportional to the size N of the matrices. This is 
precisely what we will do. The only reason to keep them distinct is the fact that, as recalled in 
section 6, the action (3.1) naturally arises in noncommutative field theory. There, V is related to 
the deformation parameter, so that the limit N ∼ V → ∞ defines the strong-deformation regime.

The partition function with an external field J , which is also a self-adjoint matrix, is formally 
defined by

Z[J ] :=
∫

D� exp
( − S + V tr(J�)

)
(3.4)

= K exp
(

− λ

3V 2

N∑ ∂3

∂Jmn∂Jnk∂Jkm

)
Zf ree[J ],
m,n,k=0
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Zf ree[J ] := exp
( N∑

m,n=0

V

2
(Jnm − κδnm)H−1

nm (Jmn − κδnm)
)
, (3.5)

where K = ∫
D� exp

( − V
2

∑N
m,n=0 �mnHmn�nm

)
.

A perturbative expansion of log Z[J ] gives exactly the graphical setup described in section 2
– up to discretisation and temporary admission of non-planar graphs. The matrix indices cor-
respond to face variables, edges between faces m, n have weight 1

Hmn
, and the �3 vertices are 

the black ones with weight (−λ). Identifying the white vertices is a little tricky. It turns out that 
the source matrices J partition into cycles Jp1...pNβ

:= ∏Nβ

j=1 Jpj pj+1 , with Nβ + 1 ≡ 1. Such a 
cycle of length Nβ is what we call a white vertex of valence Nβ . Indeed, a ‘star’ of covariances ∏Nβ

j=1
1

Hpj pj+1
attaches to the source matrices, which graphically means that the white vertex is 

the common corner of the Nβ external faces labelled by p1, . . . , pNβ .
With this identification we can represent log Z as a sum over the number and the valences of 

the white vertices, i.e. the cycles of source matrices:

log
Z[J ]
Z[0] =:

∞∑
B=1

∞∑
1≤N1≤···≤NB

N∑
p1

1,...,pB
NB

=0

V 2−B
G|p1

1 ...p1
N1

|...|pB
1 ...pB

NB
|

S(N1,...,NB)

B∏
β=1

J
p

β
1 ...p

β
Nβ

Nβ

, (3.6)

where the symmetry factor S(N1,...,NB) is chosen as follows: If we regroup identical valence 
numbers Nβ as (N1, . . . , NB) = (N ′

1, . . . ,N
′
1︸ ︷︷ ︸

ν1

, . . . , N ′
s , . . . ,N

′
s︸ ︷︷ ︸

νs

), then S(N1,...,NB) = ∏s
i=1 νi !. The 

expansion coefficients G|p1
1 ...p1

N1
|...|pB

1 ...pB
NB

| are called (N1+ . . .+NB)-point function. In prin-

ciple they further expand into graphs � with all possible numbers of black vertices and their 
connections. Being interested in exact formulae, we keep the (N1+ . . .+NB)-point functions 
intact and never expand into graphs. We will prove in this paper (similarly to [12]) that these 
functions have a well-defined large-(N , V ) limit precisely for the given a scaling factor V 2−B

in log Z[J ]. For later purpose we note the first terms of the resulting expansion of the partition 
function itself:

Z[J ]
Z[0] = 1 + V

∑
m

G|m|Jmm (3.7)

+ V

2

∑
m,n

G|mn|JmnJnm +
∑
m,n

(1

2
G|m|n| + V 2

2
G|m|G|n|

)
JmmJnn

+ V

3

∑
m,n,k

G|mnk|JmnJnkJkm +
∑
m,n,k

(1

2
G|mn|k| + V 2

2
G|mn|G|k|

)
JmnJnmJkk

+
∑
m,n,k

( 1

6V
G|m|n|k| + V

2
G|m|n|G|k| + V 3

6
G|m|G|n|G|k|

)
JmmJnnJkk + . . . .

All sums run from 0 to a cut-off N .
We repeat the remark pointed out in [12] that these correlation functions have common source 

factors on the diagonal, e.g. (V 1G|aa| +G|a|a|)JaaJaa . The functions G|aa| and G|a|a| are clearly 
distinguished by their topology (number and valence of white vertices) and most conveniently 
identified by continuation of G|ab| and G|a|b| to the diagonal.
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Finally, we introduce our main tool: the Ward–Takahashi identities. As proved in [11,12], the 
invariance of the partition function (3.4) under inner automorphisms � �→ U∗�U boils down to 
the WT-identities∑

m

∂

∂Jam

∂

∂Jmb

Z[J ] = WaδabZ[J ]
+

∑
m

V

Ea − Eb

(
Jma

∂

∂Jmb

− Jbm

∂

∂Jam

)
Z[J ], (3.8)

where the precise form of Wa (which we shall not need) is given in [12, Thm 2.3]. These iden-
tities are exactly the counterpart of the Virasoro constraints in the traditional approach to matrix 
models [6].

4. Schwinger–Dyson equations and their solution for B = 1

4.1. 1- and 2-point functions

We now derive a formula for the connected 1-point function G|a| by inserting (3.4), (3.5) into 
the corresponding term of (3.6):

G|a| = ∂ log Z[J ]
V ∂Jaa

∣∣∣
J=0

= K

Z[0] exp
(
− λ

3V 2

∑
m,n,k

∂3

∂Jmn∂Jnk∂Jkm

)(
(Jaa−κ)H−1

aa Zf ree[J ]
)∣∣∣

J=0

= H−1
aa

(
− κ − λ

V 2Z[0]
N∑

m=0

∂

∂Jam

∂

∂Jma

Z[J ]
)∣∣∣

J=0

= H−1
aa

(
− κ − λG2|a| −

λ

V

N∑
m=0

G|am| − λ

V 2 G|a|a|
)

. (4.1)

The last line follows from a two-fold differentiation of (3.7). Of course the sum 
∑N

m=0 G|am|
includes m = a!

The connected 2-point function G|ab| is computed for a �= b as follows:

G|ab| = ∂2 log Z[J ]
V ∂Jab∂Jba

∣∣∣
J=0

= K

Z[0] exp
(
− λ

3V 2

∑
m,n,k

∂3

∂Jmn∂Jnk∂Jkm

) ∂

∂Jab

(
JabH

−1
ab Zf ree

)∣∣∣
J=0

= H−1
ab − λ

V 2

H−1
ab

Z[0]
N∑

m=0

∂

∂Jab

∂

∂Jbm

∂

∂Jma

Z[J ]
∣∣∣
J=0

= H−1
ab − λ

V (Eb − Ea)

H−1
ab

Z[0]
N∑

m=0

∂

∂Jab

(
Jmb

∂Z
∂Jma

− Jam

∂Z
∂Jbm

)∣∣∣
J=0

= H−1
ab − λ H−1

ab
( ∂Z − ∂Z )∣∣∣
V (Eb − Ea) Z[0] ∂Jaa ∂Jbb J=0
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= H−1
ab

(
1 + λ

(G|a| − G|b|)
Ea − Eb

)
. (4.2)

In the step from the 3rd to 4th line we have used the Ward–Takahashi identity (3.8). The equation 
extends by continuity to a = b, i.e. G|aa| = H−1

aa + λH−1
aa limb→a

(G|a|−G|b|)
Ea−Eb

. The limit is well-
defined in perturbation theory where G|a| is, before performing the loop sum, a rational function 
of the En so that a factor Ea − Eb can be taken out of G|a| − G|b|. We shall later see that our 
large-(N , V ) limit automatically gives a meaning also to limb→a .

The naïve limit N → ∞ in (4.1) will diverge unless κ = κ(N ) is carefully adjusted. We chose 
a renormalisation condition

G0 = 0 ⇔ −κ(N ) = λ

V

N∑
m=0

G0m + λ

V 2 G|0|0|, (4.3)

where a well-defined limit G|00| is assumed. Substituting (4.2) and (4.3) into (4.1), the 
Schwinger–Dyson equations are obtained as

G|a| = H−1
aa

{
− λG2|a| −

λ

V

N∑
m=0

(H−1
am − H−1

0m ) − λ

V 2 (G|a|a| − G|0|0|)

− λ2

V

N∑
m=0

(
H−1

am

(G|a| − G|m|)
Ea − Em

− H−1
0m

G|m|
Em − E0

)}
. (4.4)

This equation suggests to introduce
W|a|
2λ

:= G|a| + Haa

2λ
= G|a| + Ea

λ
. (4.5)

Taking Ham(Ea − Em) = E2
a − E2

m into account, we arrive at

W 2|a| = 4E2
a − 4λ2

V 2 (G|a|a|−G|0|0|) − 2λ2

V

N∑
m=0

( (W|a| − W|m|)
E2

a − E2
m

− W|m| − W|0|
E2

m − E2
0

)
, (4.6)

G|ab| = 1

2

W|a| − W|b|
E2

a − E2
b

. (4.7)

4.2. Large-(N , V ) limit and integral equations

Let us take the limit N , V → ∞ subject to fixed ratio N
V

= μ2	2, in which the sum converges 
to a Riemann integral

lim
1

V

N∑
m=0

f (m/V ) = μ2	2

1∫
0

du f
(
μ2	2u

) = μ2

	2∫
0

dx f (μ2x). (4.8)

Expressing discrete matrix elements as a =: V μ2x, the eigenvalues of E take the form Ea =
μ2(e(x) + 1

2 ), see (3.3). We introduce the dimensionless3 coupling constant λ̃ := λ
μ2 and define

3 From the partition function (3.4) and its expansion (3.6) one reads off the following mass dimensions:

[�] = μ0, [J ] = μ2, [κ] = μ2, [λ] = μ2, [G|p1
1 ...p1

N1
|...|pB

1 ...pB
NB

|] = μ2(2−B−N).
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μ2W̃ (x) := lim
N ,V →∞

W|V μ2x|, G̃(x) := lim
N ,V →∞

G|V μ2x|, (4.9)

related by W̃ (x)

2λ̃
= G̃(x) + e(x)+ 1

2

λ̃
. Now the limit of (4.6) becomes

(W̃ (x))2 = (2e(x) + 1)2 (4.10)

− 8λ̃2

	2∫
0

dy
( W̃ (x) − W̃ (y)

(2e(x) + 1)2 − (2e(y) + 1)2 − W̃ (y) − W̃ (0)

(2e(y) + 1)2 − 1

)
.

We assume here G|V μ2x|V μ2x| =O(V 0) so that this term does not contribute to the limit; this will 
be checked later. It can be seen graphically that this term generates higher genus contributions, 
which are scaled away in the large-N limit. A final transformation

X := (2e(x) + 1)2, W(X) = W̃ (x(X)), G(X) = G̃(x(X)), (4.11)

and similarly for other capital letters Y(y), T (y) and functions G(X, Y) = G̃(x(X), y(Y )) etc., 
simplifies (4.10) to

W 2(X) +
�∫

1

dYρ(Y )
W(X) − W(Y)

X − Y
= X +

�∫
1

dYρ(Y )
W(1) − W(Y)

1 − Y
,

ρ(Y ) := 2λ̃2

√
Y · e′(e−1(

√
Y−1
2 ))

, � := (1 + 2e(	2))2. (4.12)

Equation (4.12) closely resembles a problem solved in the appendix of Makeenko–Semenoff [6]. 
We take their solution (obtained by solving a Riemann–Hilbert problem) as an ansatz4

W(X) :=
√

X + c√
Z

− ν + 1

2

�∫
1

dT
ρ(T )

(
√

X + c + √
T + c)

√
T + c

(4.13)

with constants Z, ν, c determined by normalisation and consistency conditions (thus becoming 
functions of λ, �). Straightforward computation using 

√
X+c−√

Y+c
X−Y

= 1√
X+c+√

Y+c
yields

�∫
1

dYρ(Y )
W(X) − W(Y)

X − Y

=
√

X+c√
Z

�∫
1

dYρ(Y )

(
√

X+c + √
Y+c)

√
X+c

− 1

2

�∫
1

dTρ(T )√
T +c(

√
X+c + √

T +c)

�∫
1

dYρ(Y )

(
√

X+c + √
Y+c)(

√
Y+c + √

T +c)
.

4 Our ansatz is more general than necessary in 2 dimensions. We need Z, ν in 4 and 6 dimensions [17] and treat already 
here the general case in order to avoid duplication in [17].
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In the last line we can symmetrise 1√
T +c

�→ 1
2

( 1√
T +c

+ 1√
Y+c

)
so that the double integral factors. 

Converting the second line by rational fraction expansion, we arrive at

�∫
1

dYρ(Y )
W(X) − W(Y)

X − Y
= 1√

Z

�∫
1

dYρ(Y )√
Y + c

− 1√
Z

�∫
1

dYρ(Y )
√

X + c√
Y + c(

√
X + c + √

Y + c)

− 1

4

( �∫
1

dTρ(T )√
T + c(

√
X + c + √

T + c)

)2

= −(W(X) + ν)2 + X + c

Z
+ 1√

Z

�∫
1

dYρ(Y )√
Y + c

. (4.14)

This equation takes the form of (4.12) if we choose ν = 0, Z = 1 and adjust5 c by

W(1) = 1 = √
1 + c + 1

2

�∫
1

dT
ρ(T )

(
√

1 + c + √
T + c)

√
T + c

. (4.15)

For ρ(T ) ∼ T −α and α > 0, realised in our case, the formula (4.13) and the resulting condition 
on c have a limit � → ∞.

Inserting ρ(T ) from (4.12) into (4.15) we have an explicit expression of λ̃2 in terms of c, 
either with c > −1 real or c ∈ C \ ]−∞,−1]. Obviously, c = 0 corresponds to λ̃ = 0. The im-
plicit function theorem then provides a unique diffeomorphism λ̃2 �→ c(λ̃) on a neighbourhood 
of 0 ∈ R or 0 ∈ C. Since we will be able to express all correlation functions in terms of elemen-
tary functions of c(λ̃, e) and ρ(λ̃, e), this proves analyticity of all correlation functions in these 
neighbourhoods.

4.3. Linearly spaced eigenvalues of E

The noncommutative field theory model of section 6 translates to linearly spaced eigenvalues 
with e(x) = x. This yields X = (2x + 1)2 and ρ(Y ) = 2λ̃2√

Y
. The integral can be evaluated for 

� → ∞:

Proposition 4.1. Equation (4.12) is for eigenvalue functions e(x) = x and Z = 1, ν = 0 solved 
by:

W(X) = √
X + c + 2λ̃2

√
X

log
( (

√
X + c + √

X)(
√

X + 1)√
X

√
1 + c + √

X + c

)
, (4.16)

1 = √
c + 1 + 2λ̃2 log

(
1 + 1√

c + 1

)
. (4.17)

5 In [6], c is determined by c+∫ �
1

dYρ(Y )√
Y+c

= 0 from (4.14). We are particularly interested in linearly spaced eigenvalues 

e(x) = x where ρ(Y ) ∝ 1√
Y

, see (4.12). Then 
∫ �

1
dYρ(Y )√

Y+c
diverges for � → ∞. This makes it necessary to normalise 

W(1) = 1.
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We thus get for the renormalised 1-point function

G̃(x) = 1

2λ̃

(
W((2x + 1)2) − (2x + 1)

)
(4.18)

=
√

(2x+1)2 + c − (2x+1)

2λ̃
+ λ̃

2x+1
log

( (2x+2)(
√

(2x+1)2 + c + 2x+1)

(2x+1)
√

1+c + √
(2x+1)2 + c

)
,

again with c being the inverse solution of (4.17).
A numerical investigation shows that (4.17) has a solution6 for −λ̃c ≤ λ̃ ≤ λ̃c and λ̃c =

0.490686 . . . attained at cc = −0.873759 . . . . By choosing c > 0 it is possible to simulate purely 
imaginary λ̃. A perturbative solution of (4.17) gives as first terms

c = −4λ̃2 log 2 − 4λ̃4(log 2 − (log 2)2) − 2λ̃6(2 log 2 − (log 2)2) +O(λ̃8). (4.19)

This leads to the following series expansion of the renormalised 1-point function:

G̃(x) = λ̃

2x + 1
log(x + 1) + λ̃3

( (log(2))2

2x + 1
− (log(2))2

(2x + 1)3

)
+ λ̃5

( (log(2))2

2x + 1
+ 2(log(2))3 − (log(2))2

(2x + 1)3 − 2(log(2))3

(2x + 1)5

)
+O(λ̃7) . (4.20)

It matches perfectly the Feynman graph computation (2.5) of section 2.
The scaling limit G̃(x, y) = lim

N ,V →∞
μ2G|V μ2x,V μ2y| of (4.7) for the 2-point function is

G(X,Y ) = G̃(x(X), y(Y )) = 2
W(X) − W(Y)

X − Y
. (4.21)

We refrain from spelling out the insertion of (4.18). There is no problem going to the diagonal: 
G̃(x, x) = 2W ′(X).

4.4. N -point functions

According to (3.6) the connected (N>2)-point functions are

G|a1a2...aN | = 1

V

∂

∂JaNa1

∂

∂Ja1a2

· · · ∂

∂JaN−1aN

log
Z[J ]
Z[0]

∣∣∣
J=0

. (4.22)

For pairwise different indices we compute, similarly to (4.2),

G|a1...aN | = K

Z[0]
∂N−1

{
exp

(− λ
3V 2

∑
m,n,k

∂3

∂Jmn∂Jnk∂Jkm

)(
Ja2a1H

−1
a1a2

Zf ree

)}
∂Ja2a3 · · · ∂JaNa1

∣∣∣
J=0

= − λ

V 2

H−1
a1a2

Z[0]
N∑

m=0

∂

∂Ja2a3

· · · ∂

∂JaNa1

∂

∂Ja1m

∂

∂Jma2

Z[J ]
∣∣∣
J=0

= − λ

V

H−1
a1a2

Z[0]
N∑

m=0

∂

∂Ja2a3

· · · ∂

∂JaNa1

(
Jma1

∂Z[J ]
∂Jma2

− Ja2m
∂Z[J ]
∂Ja1m

)
(Ea1 − Ea2)

∣∣∣
J=0

6 In general, the critical value corresponds to ρ0 := 1 − 1
2

∫ ∞
1

dZρ(Z)√
Z+c

3 = 0. This function ρ0 plays a key rôle in higher 
correlation functions.
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= λH−1
a1a2

G|a1a3...aN | − G|a2...aN |
(Ea1 − Ea2)

= λ
G|a1a3...aN | − G|a2...aN |

(E2
a1

− E2
a2

)
. (4.23)

The 2nd line is the result of the ∂
∂Ja1a2

differentiation, and in the step from the 3rd to 4th line 
we have used the Ward–Takahashi identity (3.8) for pairwise different indices. Formula (4.23)
together with (4.7) expresses N -point functions recursively by factors 1

(E2
ai

−E2
aj

)
and W|ak |. We 

can solve this recursion:

Proposition 4.2. The connected (N≥2)-point function is given for pairwise different indices by

G|a1a2,...aN | = λN−2

2

N∑
k=1

W|ak |
N∏

l=1,l �=k

Pakal
, Pab := 1

E2
a − E2

b

. (4.24)

Proof. The formula is proved by induction, starting with N = 2 which is formula (4.7) when 
inserting Pa1a2 = −Pa2a1 . Assume it holds for N . Then using (4.23) and Pa1a2 = −Pa2a1 we 
have

G|a1...aN+1| = λPa1a2(G|a1a3...aN+1| − G|a2...aN+1|)

= λN−1

2
Pa1a2

( N+1∑
k=1,k �=2

W|ak |
N+1∏

l=1,l /∈{2,k}
Pakal

−
N+1∑
k=2

W|ak |
N+1∏

l=2,l �=k

Pakal

)

= λN−1

2

(
W|a1|

N+1∏
l=2

Pa1al
+ W|a2|

N+1∏
l=1,l �=2

Pa2al

+
N+1∑
k=3

W|ak |Pa1a2

(
Paka1

N+1∏
l=3,l �=k

Pakal
− Paka2

N+1∏
l=3,l �=k

Pakal

))
.

Now the definition on Pakal
implies

Pa1a2(Paka1 − Paka2) = Paka1Paka2 ,

so that (4.24) follows for N �→ N + 1. �
We can easily perform the scaling limit N , V → ∞ to functions G̃(x1, . . . , xN) =

limN ,V →∞ μ2(N−1)G|V μ2x1,...,V μ2xN | and G(X1, . . . , Xn) := G̃(x1(X1), . . . , xN(XN)). With 
lim(2EV μ2xk

) = μ2√Xk and thus lim(μ4Pkl) = 4
Xk−Xl

we have

G(X1, . . . ,XN) =
N∑

k=1

W(Xk)

2λ̃

N∏
l=1,l �=k

4λ̃

Xk − Xl

. (4.25)

5. N -point function with B ≥ 2 boundaries

5.1. (N1+ . . .+NB )-point function with one Ni > 1

To simplify notation let ∂N

∂J
:= ∂N

∂J ...∂J ∂J
. We prove:
a1...aN a1a2 aN−1aN aN a1
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Proposition 5.1. For N1 > 1 one has

G|a1
1 ...a1

N1
|...|aB

1 ...aB
NB

| = λ

G|a1
1a1

3 ...a1
N1

|a2
1 ...a2

N2
|...|aB

1 ...aB
NB

| − G|a1
2a1

3 ...a1
N1

|a2
1 ...a2

N2
|...|aB

1 ...aB
NB

|
E2

a1
1
− E2

a1
2

.

(5.1)

Proof. For pairwise different ai, bj we have from (3.6)

G|a1
1 ...a1

N1
|...|aB

1 ...aB
NB

| = V B−2 ∂N1

∂Ja1
1 ...a1

N1

. . .
∂NB

∂JaB
1 ...aB

NB

log
Z[J ]
Z[0]

∣∣∣
J=0

= V B−1 ∂N1−1

∂Ja1
2a1

3
. . . ∂Ja1

Na1
1

∂N2

∂Ja2
1 ...a2

N2

. . .
∂NB

∂JaB
1 ...aB

NB

{
K

Z[J ]

× exp
(
− λ

3V 2

∑
m,n,k

∂3

∂Jmn∂Jnk∂Jkm

)(
Ja1

2a1
1
H−1

a1
1a1

2
Zf ree[J ]

)}∣∣∣
J=0

(*)

= V B−3(−λ)

Ha1
1a1

2

∂N1−1

∂Ja1
2a1

3
. . .∂Ja1

Na1
1

∂N2

∂Ja2
1 ...a2

N2

. . .
∂NB

∂JaB
1 ...aB

NB

{
1

Z[J ]
N∑

m=0

∂2Z
∂Ja1

1m∂Jma1
2

}∣∣∣
J=0

= V B−2(−λ)

E2
a1

1
− E2

a1
2

∂N1−1

∂Ja1
2a1

3
. . . ∂Ja1

Na1
1

∂N2

∂Ja2
1 ...a2

N2

. . .
∂NB

∂JaB
1 ...aB

NB

{
1

Z[J ]

×
N∑

m=0

(
Jma1

1

∂Z
∂Jma1

2

− Ja1
2m

∂Z
∂Ja1

1m

)}∣∣∣
J=0

(**)

= V B−2(−λ)

E2
a1

1
− E2

a1
2

( ∂N1−1

∂Ja1
2 ...a1

N1

− ∂N1−1

∂Ja1
1a1

3 ...a1
N1

) ∂N2

∂Ja2
1 ...a2

N2

. . .
∂NB

∂JaB
1 ...aB

NB

log Z[J ]
∣∣∣
J=0

. (***)

Precisely for N1 = 2 there is a surviving term of the Ja1
2a1

1
differentiation, but the result cancels 

with K
Z[J ] so that further differentiations due to B ≥ 2 give zero. Therefore, all surviving dif-

ferentiations of Ja1
2a1

1
in (*) come from exp(− λ

3V 2

∑
∂3

∂J 3 ). In (**) the Ward–Takahashi identity 

(3.8) and Hab(Ea − Eb) = E2
a − E2

b are used. Then Jma1
1

must be hit by ∂
∂J

a1
N1

a1
1

and Ja1
2m by 

∂
∂J

a1
2a1

3

, thus giving (***). The final line gives with (3.6) the assertion (5.1). �
By symmetry in the boundary components we can recursively use (5.1) to express any 

(N1+ . . .+NB )-point function with one Ni > 1 in terms of G|a1|a2|...|aB |. Since further bound-
aries play a spectator rôle in (5.1), we can easily adapt the arguments of Proposition 4.2 to resolve 
this recursion:

Proposition 5.2. Let B ≥ 2. The connected (N1+ . . .+NB )-point function with one Ni > 1 is 
given in terms of Pab := 1

2 2 by

Ea−Eb
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G|a1
1 ...a1

N1
|...|aB

1 ...aB
NB

| (5.2)

= λN1+···+NB−B

N1∑
k1=1

. . .

NB∑
kB=1

G|a1
k1

|...|aB
kB

|
( N1∏
l1=1,l1 �=k1

Pa1
k1

a1
l1

)
· · ·

( NB∏
lB=1,lB �=kB

PaB
kB

aB
lB

)
,

its large-(N , V ) limit by

G(X1
1, . . . ,X

1
N1

| . . . |XB
1 , . . . ,XB

NB
) (5.3)

= λ̃N1+···+NB−B

N1∑
k1=1

· · ·
NB∑

kB=1

G(X1
k1

| . . . |XB
kB

)

B∏
β=1

Nβ∏
lβ=1,lβ �=kβ

4

X
β
kβ

− X
β
lβ

.

5.2. SD-equation for (1+ . . .+1)-point function

Proposition 5.3. Let B ≥ 2. Then the (1+ . . .+1)-point function satisfies

W|a1|G|a1|a2|...|aB | +
λ2

V

N∑
m=0

G|a1|a2|...|aB | − G|m|a2|...|aB |
(E2

a1 − E2
m)

(5.4)

= −λ

B∑
β=2

G
|a1aβaβ |a2|

β

ˇ......|aB |
− λ

V 2 G|a1|a1|a2|...|aB |

− λ

B−2∑
p=1

∑
2≤i1<···<ip≤B

G|a1|ai1 |...|aip |G|a1|aj1 |...|ajB−p−1 |,

where 2 ≤ j1 < · · · < jB−p−1 ≤ B and {i1, . . . , ip, j1, . . . , jB−p−1} = {2, . . . , B}, and 
β

ˇ. . . . . .

denotes the omission of aβ .

Proof. We write down for pairwise different indices aβ the formula for the (1+ . . .+1)-point 
function in (3.6) with B ≥ 2 boundary components and perform the Ja1a1 -differentiation:

G|a1|a2|...|aB | = V B−2 ∂B

∂Ja1a1 . . . JaBaB

log
Z[J ]
Z[0]

∣∣∣
J=0

= V B−1∂B−1

∂Ja2a2 . . . JaBaB

{ K

Z[J ] exp
(
− λ

3V 2

∑
m,n,k

∂3

∂Jmn∂Jnk∂Jkm

)

×
(
(Ja1a1 − κ)H−1

a1a1 Zf ree[J ]
)}∣∣∣

J=0

= V B−1 ∂B−1

∂Ja2a2 . . . JaBaB

{ 1

Z[J ]
(−λ)

V 2Ha1a1

N∑
m=0

∂

∂Ja1m

∂

∂Jma1
Z

}∣∣∣
J=0

= V B−3 (−λ)

Ha1a1

N∑
m=0

∂B−1

∂Ja2a2 . . . JaBaB

{ ∂2 log(Z)

∂Ja1m∂Jma1
+ ∂ log(Z)

∂Ja1m

∂ log(Z)

∂Jma1

}∣∣∣
J=0

= (−λ)

Ha1a1

{ 1

V

N∑
G|a1m|a2|...|aB | +

B∑
G

|a1aβaβ |a2|
β

ˇ......|aB |
+ 1

V 2 G|a1|a1|a2|...|aB |

m=0 β=2
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+ 2G|a1|G|a1|a2|...|aB | +
B−2∑
p=1

∑
2≤i1<···<ip≤B

G|a1|ai1 |...|aip |G|a1|aj1 |...|ajB−p−1 |
}
, (5.5)

with notations introduced in the proposition. We multiply by Haa

λ
and bring −2G|a1|G|a1|a2|...|aB |

to the lhs, thus reconstructing the function W|a1| defined in (4.5):

1

λ
W|a1|G|a1|a2|...|aB | +

1

V

N∑
m=0

G|a1m|a2|...|aB |

= −
B∑

β=2

G
|a1aβaβ |a2|

β

ˇ......|aB |
− 1

V 2 G|a1|a1|a2|...|aB |

−
B−2∑
p=1

∑
2≤i1<···<ip≤B

G|a1|ai1 |...|aip |G|a1|aj1 |...|ajB−p−1 |. (5.6)

Reducing the (2+1+ . . .+1)-point function by (5.1) leads to the assertion (5.4). �
In the scaling limit G(x1| . . . |xB) := μ2(2−B) limN ,V →∞ G|V μ2x1|...|V μ2xB |, the term

1
V 2 G|a1|a1|a2|...|aB | in (5.4) goes away, and we obtain a recursive system of affine equations for 
the function with B boundary components. To write these equations in more condensed form, let 
us abbreviate for a set I = {i1, . . . , ip} of indices G(X|Y�I ) := G(X|Y i1 | . . . |Y ip ). With these 
notations, and including ν (here = 0) from (4.13) for later use in [17], we can express the limit 
of (5.4) in terms of Xi := (2e(xi) + 1)2 as follows:

(W(X1)+ν)G(X1|X�{2,...B}) + 1

2

�∫
1

dTρ(T )
G(X1|X�{2,...B})−G(T |X�{2,...B})

(X − T )

= −λ̃

B∑
β=2

G(X1,Xβ,Xβ |X�{2
β

ˇ......B}) − λ̃
∑

J⊂{2,...,B}
1≤|J |≤B−2

G(X1|X�J )G(X1|X�{2,...,B}\J ). (5.7)

The measure ρ(T ) was defined in (4.12). In presence of ν �= 0 we need a finite cut-off �; the limit 
� → ∞ is only possible for the solutions. The inhomogeneity only involves known functions 
with < B boundary components.

5.3. Solution for the (1+1)-point function

We specify the problem (5.7) to the 1 + 1-point function

(W(X) + ν)G(X|Y) = −λ̃G(X,Y,Y ) − 1

2

�∫
1

dTρ(T )
G(X|Y) − G(T |Y)

X − T
. (5.8)

A perturbative solution of (5.8) to O(λ̃4) suggests:

Proposition 5.4. The (1+1)-point function is given by
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G(X|Y) = 4λ̃2

√
X + c · √Y + c · (√X + c + √

Y + c)2
, (5.9)

where c(e, ̃λ) was defined in (4.15).

Proof. We insert the ansatz (5.9) into the following integral:

− 1

2

�∫
1

dTρ(T )
G(X|Y) − G(T |Y)

X − T

= − 2λ̃2

√
Y + c

�∫
1

dTρ(T )

1√
X+c·(√X+c+√

Y+c)2 − 1√
T +c·(√T +c+√

Y+c)2

X − T

= 2λ̃2

√
X + c · √Y + c · (√X + c + √

Y + c)2

�∫
1

dTρ(T )√
T + c · (√X + c + √

T + c)

+ 2λ̃2

√
Y+c · (√X+c + √

Y+c)2

�∫
1

dTρ(T )√
T +c

(
√

X+c + √
T +c + 2

√
Y+c)

(
√

X+c+√
T +c)(

√
T +c+√

Y+c)2

= (W(X) + ν)G(X|Y) − 4λ̃2

√
Z

√
Y + c · (√X + c + √

Y + c)2

− 4λ̃2 ∂

∂Y

�∫
1

dTρ(T )√
T +c

1

(
√

X+c + √
T +c)(

√
X+c + √

Y+c)(
√

Y+c + √
T +c)

. (5.10)

We have inserted the formula for W from (4.13). On the other hand, from (4.25),

G(X,Y,Y ) = 8λ̃ lim
Y1→Y

W(X)−W(Y)
(X−Y)

− W(Y1)−W(Y)
(Y1−Y)

X − Y1
= 8λ̃

∂

∂Y

W(X) − W(Y)

X − Y

= 8λ̃
∂

∂Y

{ 1√
Z(

√
X + c + √

Y + c)

− 1

2

�∫
1

dTρ(T )√
T +c

1

(
√

X+c + √
T +c)(

√
X+c + √

Y+c)(
√

Y+c + √
T +c)

}
. (5.11)

Adding (−λ̃)G(X, Y, Y) to (5.10) yields (W(X) + ν)G(X|Y), as required by (5.8). �
Note that (5.9) is essentially the same as [8, eq. (93)].

5.4. Solution for the (1+1+1)-point function

We specify the problem (5.7) to the (1+1+1)-point function

(W(X) + ν)G(X|Y 2|Y 3) + 1

2

�∫
dTρ(T )

G(X|Y 2|Y 3) − G(T |Y 2|Y 3)

X − T

1
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= −λ̃G(X,Y 2, Y 2|Y 3) − λ̃G(X,Y 3, Y 3|Y 2) − 2λ̃G(X|Y 2)G(X|Y 3). (5.12)

We have with (5.3)

G(X,Y 2, Y 2|Y 3) = 16λ̃2 ∂

∂Y 2

G(X|Y 3) − G(Y 2|Y 3)

X − Y 2

= −128λ̃4 ∂2

∂Y 2∂Y 3

{ 1√
X+c(

√
X+c+

√
Y 3+c)

− 1√
Y 2+c(

√
Y 2+c+

√
Y 3+c)

X − Y 2

}
= ∂2

∂Y 2∂Y 3

{ 128λ̃4(
√

X+c + √
Y 2+c + √

Y 3+c)√
X+c

√
Y 2+c(

√
X+c+√

Y 3+c)(
√

X+c+√
Y 2+c)(

√
Y 2+c+√

Y 3+c)

}
and consequently

G(X,Y 2, Y 2|Y 3) + G(X,Y 3, Y 3|Y 2) + 2G(X|Y 2)G(X|Y 3)

= ∂2

∂Y 2∂Y 3

{ 128λ̃4(
√

X+c + √
Y 2+c + √

Y 3+c)√
X+c

√
Y 2+c

√
Y 3+c(

√
X+c + √

Y 3+c)(
√

X+c + √
Y 2+c)

+ 128λ̃4

√
X+c

2
(
√

X+c + √
Y 3+c)(

√
X+c + √

Y 2+c)

}

= ∂2

∂Y 2∂Y 3

{ 128λ̃4

√
X+c

2√
Y 2+c

√
Y 3+c

}
= 32λ̃4

√
X+c

2√
Y 2+c

3√
Y 3+c

3 . (5.13)

Because of the factorisation the only reasonable ansatz is

G(X|Y 2|Y 3) = (−32)γ λ̃5

√
X + c

3√
Y 2 + c

3√
Y 3 + c

3 . (5.14)

This gives as prefactor of −32λ̃5√
Y 2+c

3√
Y 3+c

3 in (5.12) (with exchanged lhs and rhs and use of (4.13)):

1

X + c
= γ√

Z(X + c)
+ γ

2

�∫
1

dTρ(T )√
(T + c)

√
(X + c)

3
(
√

X + c + √
T + c)

+ γ

2

�∫
1

dTρ(T )

1√
(X+c)

3 − 1√
(T +c)

3

X − T

= γ√
Z(X + c)

− γ

2(X + c)

�∫
1

dTρ(T )√
(T + c)

3

⇒ γ = 1

ρ0
, ρ0 := 1√

Z
−

�∫
1

dTρ(T )

2
√

(T + c)
3 . (5.15)

For linearly spaced eigenvalues e(x) = x and Z = 1, i.e. ρ(T ) = 2λ̃2√
T

, this amounts to ρ0 =
1 − 2λ̃2√ √ .
1+c( 1+c+1)
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5.5. Solution for the (1+ . . .+1)-point function for B ≥ 4

This is the most elaborate section of the paper. Over the next 6 pages we prepare the proof of 
Theorem 5.11. Eq. (5.14) suggests that all (1+ . . .+1)-point functions with B ≥ 3 factorise. We 
make the ansatz

G(X1| . . . |XB) = (−2λ̃)3B−4

ρ0

B−3∑
M=0

γ M
B

dM

dtM

√
X + c − 2t

−3
{1,...,B}

∣∣∣
t=0

, (5.16)

where
√

X + c − 2t
−3
I :=

∏
β∈I

1√
Xβ + c − 2t

3 .

Our aim is to compute the coefficients γ M
B starting with γ M

3 = δM,0.

Lemma 5.5. Assume (5.16). Then

(W(X1)+ν)G(X1|X�{2,...B}) + 1

2

�∫
1

dTρ(T )
G(X1|X�{2,...B})−G(T |X�{2,...B})

(X − T )

= (−2λ̃)3B−4

ρ0

B−3∑
M=0

γ M
B

M∑
j=0

(
M

j

) j∑
l=0

(2j+1)!!ρj−l√
X1+c

2l+2

dM−j

dtM−j

√
X+c−2t

−3
{2,...,B}

∣∣∣
t=0

, (5.17)

where ρl := δl,0√
Z

− 1

2

�∫
1

dTρ(T )√
T + c

3+2l
. (5.18)

Proof. We distribute the t -derivatives by Leibniz rule. The prefactor of (−2λ̃)3B−4

ρ0
γ M
B (2j +

1)!!(M
j

)
dM−j

dtM−j

√
X + c − 2t

−3
{2,...,B}

∣∣
t=0 under the sum over j, M is

(W(X1) + ν)
1√

X1 + c
3+2j

+ 1

2

�∫
1

dTρ(T )

1√
X1+c

3+2j − 1√
T +c

3+2j

X1 − T

= 1
√

Z
√

X1+c
2j+2 − 1

2

�∫
1

dTρ(T )

∑2j+2
l=1

√
X1+c

l√
T +c

2j+2−l

√
X1+c

3+2j√
T +c

3+2j
(
√

X1+c + √
T +c)

= 1
√

Z
√

X1+c
2j+2 − 1

2

j∑
l=0

1
√

X1+c
2(j−l)+2

�∫
1

dTρ(T )√
T +c

3+2l

=
j∑ ρl√

1 2(j−l)+2
, (5.19)
l=0 X +c
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with ρl defined in (5.18). The step from the first to second line relies on
1√

X1+c
3+2j − 1√

X2+c
3+2j

X1 − X2 = −
2j+2∑
l=0

√
X1 + c

l√
X2 + c

2j+2−l

√
X1 + c

3+2j√
X2 + c

3+2j
(
√

X1 + c + √
X2 + c)

(5.20)

with compensation of l = 0 with the integral in W(X1) according to (4.13). After a reflection 
l �→ j − l we arrive at (5.17). �
Lemma 5.6. Assume (5.16). Then the first term on the rhs of (5.7) and the |J | = 1 and |J | = B−2
contributions to the last term combine to

− λ̃

B∑
β=2

(
G(X1,Xβ,Xβ |X�{2,

β

ˇ......,B}) + 2G(X1|Xβ)G(X1|X�{2,
β

ˇ......,B})
)

= (−2λ̃)3B−4

ρ0

B−4∑
M=0

M∑
j=0

j+1∑
l=0

γ M
B−1√

X1+c
4+2j−2l

(
M

j

)
(2j + 1)!!(2l + 1)

(2l + 1)!!

×
B∑

β=2

( dl

dt l

1√
Xβ + c − 2t

3

)( dM−j

dtM−j

√
X+c−2t

−3

{2,
β

ˇ...,B}

)∣∣∣
t=0

. (5.21)

Proof. It suffices to take β = 2 and then to permute. From (5.3) we have

G(X1,X2,X2|X�{3,...,B}) = 16λ̃2 ∂

∂X2

G(X1|X�{3,...,B}) − G(X2|X�{3,...,B})
X1 − X2 . (5.22)

We insert (5.16) for B �→ B − 1. With Leibniz rule and (5.20) one has

− λ̃G(X1,X2,X2|X�{3,...,B})

=
B−4∑
M=0

M∑
j=0

(
M

j

) 2j+2∑
l=0

∂

∂X2

{ γ M
B−1(2j + 1)!!√X1 + c

l√
X2 + c

2j+3−(l+1)

√
X1 + c

3+2j√
X2 + c

3+2j
(
√

X1 + c + √
X2 + c)

}

× 16λ̃3 · (−2λ̃)3B−7

ρ0

dM−j

dtM−j

√
X+c − 2t

−3
{3,...,B}

∣∣∣
t=0

. (5.23)

The other term reads with (5.9) as well as (5.16) for B �→ B − 1

− 2λ̃G(X1|X2)G(X1|X�{3,...,B}) (5.24)

=
B−4∑
M=0

M∑
j=0

(
M

j

)
(2j + 1)!!γ M

B−1

ρ0
√

X1 + c
3+2j

∂

∂X2

{ (−2λ̃) · (−8λ̃2) · (−2λ̃)3B−7

√
X1+c(

√
X1+c + √

X2+c)

}

× dM−j

dtM−j

√
X+c − 2t

−3
{3,...,B}

∣∣∣
t=0

.

Bringing (5.23)+(5.24) to common X1–X2 denominator 1√
X1+c

4+2j √
X2+c

3+2j (before X2-differ-

entiation) produces a total numerator

2j+3∑ √
X1+c

l√
X2+c

3+2j−l =
j+1∑

(
√

X1+c +
√

X2+c)
√

X1+c
2l√

X2+c
2j+2−2l

.

l=0 l=0
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After cancellation and differentiation with respect to X2 we have

− λ̃
(
G(X1,X2,X2|X�{3,...,B}) + 2G(X1|X2)G(X1|X�{3,...,B})

)
(5.25)

= (−2λ̃)3B−4

ρ0

B−4∑
M=0

M∑
j=0

(
M

j

)
γ M
B−1

j+1∑
l=0

(2j+1)!!(2l+1)√
X1+c

4+2j−2l√
X2+c

2l+3

× dM−j

dtM−j

√
X+c−2t

−3
{3,...,B}

∣∣∣
t=0

.

We write 1√
X2+c

2l+3 = 1
(2l+1)!!

dl

dt l
1√

X2+c−2t
3 , repeat these steps for all Xβ≥2 and sum over β , 

thus establishing the formula. �
The remaining terms with 2 ≤ |J | ≤ B − 3 in the last term of (5.7) are straightforward:

− λ̃
∑

J⊂{2,...,B},|J |=p

G(X1|X�J )G(X1|X�{2,...,B}\J ) (5.26)

= 1

2
· (−2λ̃)3B−4

ρ2
0

p+1−3∑
M ′=0

B−p−3∑
M ′′=0

M ′∑
j ′=0

M ′′∑
j ′′=0

(
M ′

j ′

)(
M ′′

j ′′

)
(2j ′+1)!!(2j ′′+1)!!γ M ′

p+1γ
M ′′
B−p√

X1 + c
6+2j ′+2j ′′

×
∑

J⊂{2,...,B},|J |=p

( dM ′−j ′

dtM
′−j ′

√
X+c − 2t

−3
J

)( dM ′′−j ′′

dtM
′′−j ′′

√
X+c−2t

−3
{2,...,B}\J

)∣∣∣
t=0

.

Symbolically we are left with the problem 
[
(5.17) = (5.21) + ∑B−3

p=2 (5.26)
]

to be solved for 
γ M
B , provided the ansatz is consistent. By shifting indices we select the common coefficient of 
(−2λ̃)3B−4

ρ0
√

X1+c
6+2l

∏B
β=2

( 1
mβ !

d
mβ

dt
mβ

1√
Xβ+c−2t

3

)∣∣
t=0 in this equation:

Lemma 5.7. Assume (5.16). Then (5.7) amounts to the following system of equations for integers 
l ≥ −2 and (B−1)-tuples M = (m2, . . . , mB) with M := m2 + · · · + mB :

B−5−M−l∑
j=0

(M + 2 + l + j)!γ M+2+l+j
B

(2j+2l+5)!!ρj

(l + 2 + j)! (5.27)

= (M + l + 1)!γ M+l+1
B−1

B∑
β=2

(2l + 2mβ + 3)!!(2mβ + 1)mβ !
(l + mβ + 1)!(2mβ + 1)!!

+ 1

2ρ0

∑
l′+l′′=l

(2l′+1)!!(2l′′+1)!!
l′!l′′!

∑
M′∪M′′=M

(M ′ + l′)!γ M ′+l′
#(M′)+1(M

′′ + l′′)!γ M ′′+l′′
#(M′′)+1.

The sum in the last line (which contributes only for l ≥ 0) is over all partitions of M into two 
subtuples M′, M′′ of #(M′) and #(M′′) elements which sum up to M ′ and M ′′, respectively. 
The initial condition is γ M = δM,0.
3
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For the solution we have to introduce:

Definition 1. The Bell polynomials7 Bn,k are defined by B0,k({ }) = δk,0 and Bn,k({xj }n−k+1
j=1 ) =∑

n!
j1!j2!···jn−k+1! (

x1
1! )

j1( x2
2! )

j2 · · · ( xn−k+1
(n−k+1)! )

jn−k+1 , for n≥1, where the sum is over non-negative in-
tegers j1, . . . , jn−k+1 with j1 +j2 +· · ·+jn−k+1 = k and 1j1 +2j2 +· · ·+(n −k−1)jn−k+1 = n.

Lemma 5.8. The Bell polynomials satisfy the identity

n−k∑
j=1

(αj+β)

(
n

j

)
xjBn−j,k

(
x1, . . . , xn−j−k+1

) = (αn+β(k+1))Bn,k+1
(
x1, . . . , xn−k

)
.

(5.28)

Proof. This follows from [19, Lemma 8],(
n

m

)
Bm,l({x})Bn−m,k−l ({x}) =

∑
v∈π(n,k)

n!
v1!v2! · · ·Wm,l(v)

(x1

1!
)v1

(x2

2!
)v2 · · · ,

where the π(n, k) is the set of v1, v2, · · · ≥ 0 with 1v1 + 2v2 + · · · = n and v1 + v2 + · · · = k. 
We only need l = 1 where the general definition of Wm,l(v) given in [19, eq. (2)] reduces to 
Wm,1(v) = vm. Moreover, Bm,1({x}) = xm. Therefore,

n−k+1∑
m=1

(αm+β)

(
n

m

)
xmBn−m,k−1({x}) =

n−k+1∑
m=1

(αm+β)

(
n

m

)
Bm,1({x})Bn−m,k−1({x})

=
∑

v∈π(n,k)

n!
v1!v2! · · ·

( n−k+1∑
m=1

(αmvm+βvm)
)(x1

1!
)v1

(x2

2!
)v2 · · · = (αn + βk)Bn,k({x}).

A shift in k yields the result. �
Proposition 5.9. The solution of (5.27) for l = −2 and l = −1,

B−3−M∑
j=0

(
M + j

j

)
(2j + 1)!!ρjγ

M+j
B = γ M−1

B−1 , (5.29)

B−4−M∑
j=0

(
M + 1 + j

j + 1

)
(2j + 3)!!ρjγ

M+1+j
B = (2M + B − 1)γ M

B−1, (5.30)

where M ∈ {0, . . . , B − 3} and under initial condition γ M
3 = δM,0, is

γ M
B = 1

ρB−3
0

B−3−M∑
K=0

(B − 3 + K)!
(B − 3 − M)!M!BB−3−M,K

({
− (2r + 1)!!ρr

(r + 1)ρ0

}B−2−M−K

r=1

)
. (5.31)

Proof. We start with (5.29). The formula correctly captures the case M = B − 3 where only 
j = 0 contributes in (5.29), giving the solution γ B−3

B = 1
ρB−3

0
. We proceed by twofold induction 

7 For an overview about Bell polynomials, see https :/ /en .wikipedia .org /wiki /Bell _polynomials or https :/ /www.
encyclopediaofmath .org /index .php /Bell _polynomial. Many identities are proved in [19] and references therein.

https://en.wikipedia.org/wiki/Bell_polynomials
https://www.encyclopediaofmath.org/index.php/Bell_polynomial
https://www.encyclopediaofmath.org/index.php/Bell_polynomial
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in increasing B and increasing s := B − 3 − M . We rearrange (5.29) as an equation for γ M
B . 

All other terms either have less B (namely γ M−1
B−1 ) or less s (namely γ M+j

B , j ≥ 1) so that the 

induction hypothesis applies. We have with xr := − (2r+1)!!ρr

(r+1)ρ0
and s := B − 3 − M in (5.29):

γ M
B = 1

ρB−3
0

s∑
K=0

(B − 4 + K)!
s!(M − 1)! Bs,K

({xr}s−K+1
r=1

)
(*)

+ 1

ρB−3
0

s∑
j=1

(
M+j

j

)
(j + 1)xj

s−j∑
K=0

(B − 3 + K)!
(s−j)!(M+j)!Bs−j,K

({xr}s−j−K+1
r=1

)
. (**)

We exchange the summation order 
∑s

j=1
∑s−j

K=0 = ∑s−1
K=0

∑s−K
j=1 and use (5.28) to express the 

last line as

(∗∗) = 1

ρB−3
0

s−1∑
K=0

(B − 3 + K)!
s!M! (s + K + 1)Bs,K+1

({xr}s−K
r=1

)
.

We shift the index K + 1 �→ K and redistribute the resulting (s + K) = (B − 3 + K) − M : Its 
part (−M) cancels the rhs of the first line (*), and (B − 3 + K) increases the factorial to the 
claimed formula (5.31).

We check consistency with (5.30). For M = B − 4 the lhs restricts to j = 0, and both sides 
evaluate to 3(M+1)

ρB−4
0

. For M ≥ B − 5 we express the lhs in terms of xr := − (2r+1)!!
(r+1)

ρr

ρ0
and insert 

(5.31). Then the j ≥ 1 part of the lhs becomes after exchanging the K–j summation

(5.30)lhs
j≥1 = − 1

ρB−3
0

B−5−M∑
K=0

B−4−M−K∑
j=1

(B−3+K)!
(B−4−M)!M!

(
B−4−M

j

)

× (2j+3)xjBB−4−M−j,K({xr})

= − 1

ρB−3
0

B−5−M∑
K=0

(B−3+K)!
(B−4−M)!M! (2(B−M−4) + 3(K+1))︸ ︷︷ ︸

=3(B−2+K)−(B+2M−1)

BB−4−M,K+1({xr}),

where (5.28) has been used for α = 2, β = 3. Its part 3(B − 2 + K), after a shift K + 1 �→ K , 
evaluates to −3(M + 1)γ M+1

B . The remainder gives (2M+B−1)
ρ0

γ M
B−1, so that (5.30) is true. �

Remains (5.27) for l ≥ 0. Because of permutation symmetry we can assume M =
(0, . . . ,0︸ ︷︷ ︸

n0

, . . . , p, . . . ,p︸ ︷︷ ︸
np

) with n0 +· · ·+np = B −1 =: N and 0n0 +1n1 +· · ·+pnp = M . Then 

the sum over subtuples M′ = (0, . . . ,0︸ ︷︷ ︸
n′

0

, . . . , p, . . . ,p︸ ︷︷ ︸
n′

p

) amounts to the sum over 0 ≤ n′
i ≤ ni with 

multiplicity 
(n0
n′

0

) · · · (np

n′
p

)
. Therefore (5.31) solves (5.27) for l ≥ 0 iff the following is true:

Conjecture 5.10. For any l, n0, . . . , np ∈ N, the Bell polynomials satisfy the identity (with n0 +
· · · + np = N and 0n0 + 1n1 + · · · + pnp = M)

(2l+5)!!
(l + 2)!

∑
(N−2+K)!BN−M−l−4,K({xr})

(N−M−l−4)! (5.32)

K≥0
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−
∑
K≥0

(N−3+K)!BN−M−l−4,K({xr})
(N−M−l−4)!

p∑
i=0

ni

(2l + 2i + 3)!!(2i + 1)i!
(2i + 1)!!(l + i + 1)!

=
∑
j≥1

∑
K≥0

(N−2+K)! (2j+2l+5)!!(j+1)!
(2j+1)!!(j+l+2)! · xj

j ! · BN−M−l−j−4,K({xr})
(N−M−l−j−4)!

+ 1

2

l∑
l′=0

n0∑
n′

0=0

· · ·
np∑

n′
p=0

(2l′+1)!!(2l′′+1)!!
l′! l′′!

(
n0

n′
0

)
· · ·

(
np

n′
p

)

×
∑

K ′,K ′′≥0

(N ′−2+K ′)!BN ′−M ′−l′−2,K ′({xr})
(N ′−M ′−l′−2)! (N ′′−2+K ′′)!BN ′′−M ′′−l′′−2,K ′′({xr})

(N ′′−M ′′−l′′−2)! ,

where N ′ := n′
0 +· · ·+n′

p and M ′ := 0n′
0 +1n′

1 +· · ·+pn′
p as well as l′′ := l− l′, N ′′ := N −N ′

and M ′′ := M − M ′. The sums over j, K, K ′, K ′′ are restricted to the range of non-trivial Bell 
polynomials and inverse Gamma functions.

We have checked (5.32) with a computer algebra program for many different l, p, ni . Of 
course a direct proof will be necessary.8

The generating function of Bell polynomials is

exp
(
u

∞∑
j=1

xj t
j

j !
)

=
∑

n,k≥0

uk tn

n!Bn,k

({xr}n−k+1
r=1

)
. (5.33)

Multiplying by e−uuB−3, integrating over u ∈ R+ and differentiating with respect to t gives an 
alternative realisation of (5.31), where we also insert the definition (5.18) of ρr . With the series ∑∞

j=1
(2j+1)!!
(j+1)! yj = 1

y

∑∞
k=2

(− 1
2

k

)
(−2y)k = 1

y
( 1√

1−2y
− 1 − y) = 2

(1+√
1−2y)

√
1−2y

− 1, below 

with y = t
T +c

, we arrive at

ρB−3
0 M!(B − 3 − M)!γ M

B

=
∞∫

0

du e−uuB−3 dB−3−M

dtB−3−M
exp

( u

ρ0

∞∑
r=1

t r (2r + 1)!!
(r + 1)! (−ρr)

)∣∣∣
t=0

8 Other identities found during this work include for any m, p, n2, . . . , np ∈ N:

∑
n′
i
+n′′

i
=ni

∑
k′+k′′=m

(2k′+1)!!(2k′′+1)!!(k′ + ∑p
j=2 jn′

j
)!(k′′ + ∑p

j=2 jn′′
j
)!

k′!k′′!(2+k′ + ∑p
j=2(j−1)n′

j
)!(2+k′′ + ∑p

j=2(j−1)n′′
j
)!

p∏
j=2

(
nj

n′
j

)

=
2 · (m+1+∑p

j=2 jnj )!
(m+4+∑p

j=2(j−1)nj )!
{ (2m+3)!!

m! +
p∑

j=2

nj

( (2m+3)!!
(m+2)! ((m+3)j+m+2) − j !(2j+2m+3)!!

(j+m+1)!(2j−1)!!
)}

.
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=
∞∫

0

du e−uuB−3

× dB−3−M

dtB−3−M
exp

( u

2ρ0

�∫
1

dTρ(T )√
T +c

3

( 2(T +c)

(
√

T +c + √
T +c−2t)

√
T +c−2t

− 1
))∣∣∣

t=0

= ρB−2
0

dB−3−M

dtB−3−M

(B − 3)!( 1√
Z

− ∫ �

1
dTρ(T )√

T +c

1
(
√

T +c+√
T +c−2t)

√
T +c−2t

)B−2

∣∣∣
t=0

. (5.34)

Combined with the ansatz (5.16) and with Z = 1 in 2 dimensions we have proved (provided 
that Conjecture 5.10 is true):

Theorem 5.11. The (1 + · · · + 1)-point function with B ≥ 3 boundary components of the �3
2

matricial QFT-model has the solution

G(X1| . . . |XB)

= (−2λ̃)3B−4 dB−3

dtB−3

( 1√
X1+c−2t

3 · · · 1√
XB+c−2t

3(
1 − ∫ ∞

1
dTρ(T )√

T +c

1
(
√

T +c+√
T +c−2t)

√
T +c−2t

)B−2

)∣∣∣∣∣
t=0

. (5.35)

Together with (5.3) we have thus completely solved the combined large-(N , V ) limit of the 
Kontsevich model.

6. From �3
2 model on Moyal space to Schwinger functions on RRR2

This section parallels the treatment of the φ�4
4 case in [12]. We refer to that paper for more 

details. The φ�3
2 -model on Moyal-deformed 2D Euclidean space with harmonic propagation is 

defined by the action

S[φ] :=
∫
R2

dξ

8π

(
κφ + 1

2
φ � (−� + ‖4�−1 · ξ‖2 + μ2)φ + λ

3
φ � φ � φ

)
(ξ). (6.1)

The tadpole contribution proportional to κ ∈ R is required for renormalisation. By � we denote 
the 2D-Moyal product parametrised by θ ∈R,

(f � g)(ξ) :=
∫

R2×R2

dη dk

(2π)2 f (ξ + 1
2� · k)g(ξ + η)ei〈k,η〉, � :=

(
0 θ

−θ 0

)
. (6.2)

The Moyal space possesses a convenient matrix basis

fmn(ξ) = 2(−1)m

√
m!
n!

(√
2

θ
ξ
)n−m

Ln−m
m

(2‖ξ‖2

θ

)
e− ‖ξ‖2

θ , m,n ∈ N, (6.3)

where the Lα
m(t) are associated Laguerre polynomials of degree m in t and (ξ1, ξ2)

k :=
(ξ1 + iξ2)

k . The matrix basis satisfies (fkl �fmn)(ξ) = δmlfkn(ξ) and 
∫
R2 dξ fmn(ξ) = (2πθ)δmn. 

A convenient regularisation consists in restricting the fields φ to those with finite expansion 
φ(ξ) = ∑N

m,n=0 �mnfmn(ξ). Using formulae for Laguerre polynomials, the action (6.1) takes 
precisely the form (3.1) of a matrix model for φ = φ∗ ∈ MN (C), with the following identifica-
tion:
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V = θ

4
, Em = m

V
+ μ2

2
= μ2

(1

2
+ m

μ2V

)
. (6.4)

This explains our interest in linearly spaced eigenvalues e(x) = x.
Following [16] we define connected Schwinger functions in position space as

Sc(μξ1, . . .,μξN) := lim
V μ2→∞

lim
	→∞

∑
N1+···+NB=N

N∑
q1

1 ,...,qB
NB

=0

G|q1
1 ...q1

N1
|...|qB

1 ...qB
NB

|
8πμ2(2−B−N)S(N1,...,NB)

×
∑

σ∈SN

B∏
β=1

f
q

β
1 q

β
2
(ξσ(sβ+1))· · ·fq

β
Nβ

q
β
1
(ξσ(sβ+Nβ))

V μ2Nβ

, (6.5)

where sβ := N1+. . .+Nβ−1 and N = 	2V μ2. The G... are the expansion coefficients of 
log Z[J ] in (3.6), where we already absorbed their mass dimension given in footnote 3. These 
Schwinger functions are fully symmetric in μξ1, . . . , μξN .

The various factors of V need explanation. We recall that the prefactor of G... in (3.6) was 
V 2−B . The factor V −B is distributed over the B cycles. In a first step we have thus defined the 
free energy density as (μ2V )−2 log Z[J ]

Z[0] , in agreement with the usual procedure in matrix models 

(see e.g. the 1
N2 prefactor in [6, eq. (4.2)]). Then formally we set

Sc(μξ1, . . .,μξN) = 1

8π

δN((μ2V )−2 log Z[J ]
Z[0] )

δJ (ξ1) . . . δJ (ξN)

∣∣∣
J=0

,

with a special definition of δJmn

δJ (ξ)
. Since by properties of the matrix basis (6.3) one has Jmn =∫

R2
dη

8πV
fnm(η)J (η), the usual convention δJ (η)

δJ (ξ)
= δ(ξ − η) gives δJmn

δJ (ξ)
= 1

8πV
fnm(ξ). As part 

of the renormalisation process, we change these conventions into

δJmn

δJ (ξ)
:= μ2fnm(ξ), (6.6)

or equivalently Sc(μξ1, . . ., μξN) = 1
8π

(8πV μ2)N δN ((μ2V )−2 log Z[J ]
Z[0] )

δJ (ξ1)...δJ (ξN )

∣∣∣
J=0

with the standard con-

vention. It is important to note that these field redefinitions are neutral with respect to the number 
B of boundary components.

The evaluation of (6.5) follows the same lines as in [16]. To keep this paper self-contained, 
we outline the steps until the technical lemma proved in [16, Lemma 4+Corollary 5] can be used. 
We collect the indices qβ := (q

β
1 , . . . , qβ

Nβ
) and define |qβ | := q

β
1 + · · · + q

β
Nβ

and 〈ωβ, qβ〉 :=∑Nβ−1
i=1 ω

β
i (q

β
i − q

β
i+1) for ωβ = (ω

β
1 , . . . , ωβ

Nβ−1). We assume that the matrix functions G have 
a representation as Laplace–Fourier transform,

G|q1|...|qB |
μ2(2−B−N)

=
∫
RB+

d(t1, . . . , tB)

∫
RN−B

d(ω1, . . . ,ωB)GN ,V (t1,ω1| . . . |tB,ωB) (6.7)

× exp
(

− 1

V μ2

B∑
β=1

(
tβ |qβ | − i〈ωβ,qβ〉)).

The inverse Laplace–Fourier transforms GN ,V (t1, ω1| . . . |tB, ωB) depend on N , V but have a 
limit G(t1, ω1| . . . |tB, ωB) = limN ,V →∞ GN ,V (t1, ω1| . . . |tB, ωB) satisfying
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G̃(x1| . . . |xB |) =
∫
RB+

d(t1, . . . , tB)

∫
RN−B

d(ω1, . . . ,ωB)G(t1,ω1| . . . |tB,ωB) (6.8)

× exp
(

−
B∑

β=1

(
tβ |xβ | − i〈ωβ,xβ〉)).

Inserting (6.7) into (6.5) gives, besides GN ,V (t1, ω1| . . . |tB, ωB), the following type of factors 
(for each β = 1, . . . , Nβ omitted below) under the Laplace–Fourier integral and the sum over 
permutations and partitions of N :

N∑
q1,...,qN=0

fq1q2(ξσ(s+1)) · · ·fqNq1(ξσ(s+N))

V μ2N
z
q1
1 (t,ω) · · · zqN

N (t,ω), (6.9)

z1 = e
− t

V μ2 +i
ω1

V μ2 , zi = e
− t

V μ2 +i
ωi−ωi−1

V μ2 for i = 2, . . . ,N − 1, zN = e
− t

V μ2 −i
ωN−1
V μ2 .

For N → ∞ but fixed V , the index sum was evaluated in [16]:

Lemma 6.1 ([16, Lemma 4+Corollary 5]). Let 〈ξ, η〉, ‖ξ‖ and ξ×η = det(ξ, η) be scalar prod-
uct, norm and (third component of) vector product of ξ, η ∈ R2. Then for ξi ∈R2 and zi ∈ C with 
|zi | < 1 one has (with cyclic identification N + i ≡ i where necessary)

∞∑
q1,...,qN=0

1

V μ2

N∏
i=1

fqiqi+1(ξi)z
qi

i (6.10)

= 2N

V μ2(1 −
N∏

i=1
(−zi))

exp

(
−

N∑
i=1

‖ξi‖2

4V

1 +
N∏

i=1
(−zi)

1 −
N∏

i=1
(−zi)

)

× exp

(
−

∑
1≤k<l≤N

((〈ξk, ξl〉−iξk×ξl

)
2V

l∏
j=k+1

(−zj )

1−
N∏

i=1
(−zi)

+
(〈ξk, ξl〉+iξk×ξl

)
2V

N+k∏
j=l+1

(−zj )

1−
N∏

i=1
(−zi)

))
.

That the result can be applied to the combined limit N , V → ∞ with N = 	2V μ2, where 
|zi | = 1 becomes critical, needs some explanation. It is uncritical to move the convergent 
G(t1, ω1| . . . |tB, ωB) in front of the limit. The result (6.10) relies on the generating function ∑∞

n=0 Lα−n
n (t)zn = e−zt (1 + z)α which precisely for α ∈ N is absolutely convergent for any

z ∈ C. The only place where |z| < 1 matters is a final sum 
∑∞

q=0
(q+k)!
q!k! ((−z1) · · · (−zN))q =

1
(1−(−z1)···(−zN ))1+k . Restricting this sum to 1 ≤N gives (for N being even) instead

N∑
q=0

(q + k)!
q!k! (z1 · · · zN)q = 1 − (z1 · · · zN)N+1Pk(z1 · · · zN)

(1 − z1 · · · zN)1+k
,

where Pk(z) is a polynomial of degree k with Pk(1) = 1. Since (z1 · · · zN)N = e−	2Nt , there is 
a V -uniform multiplicative error of 1 +O(1)e−	2Nt if we restrict in (6.10) the sum to qi ≤ N . 
Therefore, the limit limV →∞ of (6.10) agrees with the scaling limit N , V → ∞ with N

V μ2 = 	2

fixed of (6.9) followed by sending 	 → ∞. We thus have
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lim
	→∞

(
lim

N ,V →∞
N

V μ2 =	2

N∑
q1,...,qN=0

fq1q2(ξσ(s+1)) · · ·fqNq1(ξσ(s+N))

V μ2N
z
q1
1 (t,ω) · · · zqN

N (t,ω)

)

=
{

0 for N odd,
2N

N2t
exp

(
− μ2

2Nt
‖ξσ(s+1)−ξσ(s+2)+ . . .−ξσ(s+N)‖2

)
for N even.

(6.11)

Now write

2N

N2t
e− μ2

2Nt
‖ξ‖2 = 2N

2πN

∫
R2

dp e
− N

2μ2 ‖p‖2t+i〈p,ξ〉
(6.12)

and recall that the zi factors of (6.11) were introduced via the Laplace–Fourier transform (6.7)
to be inserted into (6.5). Combining all these steps and limits, we can immediately perform the 

Laplace–Fourier transform (6.8) to a function with arguments xβ
i = ‖pi‖2

2μ2 for all i = 1, . . . , Nβ . 
The final result reads

Sc(μξ1, . . .,μξN) =
∑

N1+···+NB=N

Nβ even

∑
σ∈SN

B∏
β=1

(2NB

NB

∫
R2

dpβ

2πμ2 e
i〈pβ,ξσ(sβ+1)−ξσ(sβ+2)+···−ξσ(sβ+Nβ )〉)

× 1

8πS(N1,...,NB)

G̃
( ‖p1‖2

2μ2 , . . . ,
‖p1‖2

2μ2︸ ︷︷ ︸
N1

∣∣ . . . ∣∣ ‖pB‖2

2μ2 , . . . ,
‖pB‖2

2μ2︸ ︷︷ ︸
NB

)
. (6.13)

For N = 2 the formula specifies with (4.21) and (4.13) to

Sc(μξ1,μξ2) =
∫
R2

dp

4π2μ2 ei〈p,ξ1−ξ2〉Ŝ2(p), (6.14)

Ŝ2(p) = 2W ′(( ‖p‖2

μ2 + 1
)2

)
=

1 − λ̃2

∞∫
1

dT√
T

√
T +c

μ4(√
(‖p‖2+μ2)2+cμ4 + μ2

√
T +c

)2

√
(‖p‖2+μ2)2 + cμ4

.

It was also pointed out in [16] and [15] that the Schwinger 2-point function is reflection 
positive iff the function ‖p‖2 �→ Ŝ2(p) is a Stieltjes function. This is not the case, neither for 
real nor purely imaginary non-vanishing λ̃! For c > 0 and thus λ̃ ∈ iR, the integrand has a pole 
(or end point of a branch cut) in the complex plane at ‖p‖2 = μ2(−1 ± i

√
c), contradicting 

holomorphicity in C \ R−. For −1 < c < 0 and thus λ̃ ∈ R one finds that the imaginary part 
of Ŝ2(p) at ‖p‖2 = (−3 − i |c|

10 )μ2 is negative.9 This contradicts the anti-Herglotz property of 
Stieltjes functions. A rigorous proof that the 2-point function of �3

2 is not reflection positive will 
be given in [17].

9 Here one should write 
√

(‖p‖2 + μ2)2 + cμ4 �→
√

‖p‖2 + (1 − √−c)μ2
√

‖p‖2 + (1 + √−c)μ2 for a well-
defined holomorphic extension of (6.14).
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7. Summary

We have given an alternative solution strategy for the large-N limit of the �3
2 matrix model 

(= renormalised Kontsevich model). This limit suppresses non-planar graphs. In principle, punc-
tures (or boundary components) are also suppressed, but special limits of noncommutative field 
theory amplify them to the same level as the disk topology. We have established exact formu-
lae, analytic in the (squared) coupling constant, for all these correlation functions. Correlation 
functions of disk topology (single puncture) can certainly be derived from previous results on 
the Kontsevich model. The complete treatment of the multi-punctured cases is new (to the best 
of our knowledge).

In our subsequent paper [17] we extend this work to the �3
4 and �3

6 models. There the renor-
malisation is much more involved, whereas the solution of Schwinger–Dyson equations is easily 
adapted from �3

2. We will discuss the issue of overlapping divergences and renormalons in �3
6. 

The main result will be the proof that �3
4 and �3

6, but not �3
2, have reflection positive 2-point 

functions.
Reflection positivity of higher correlation functions is work in progress. Another interesting 

question concerns the identification of the KdV hierarchy in the solution we found.
We also hope that these investigations provide new ideas for attacking the more difficult equa-

tions of the �4
4 model.
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