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On the Structure of a Di�erential Algebra usedby Connes and LottR. Matthes, G. Rudolph, and R. Wulkenhaar�Fakult�at f�ur Physik und Geowissenschaften,Universit�at LeipzigAugustusplatz 10, D{04109 Leipzig, GermanyAbstractWe investigate the structure of a di�erential algebra associated with thesimplest two{point K{cycle used by Connes and Lott for physical modelbuilding. We show that, in this case, the factorization of the universaldi�erential algebra with respect to the canonical ideal can be performedexplicitly. This enables us to present a complete analysis of the structureof the di�erential algebra under investigation, including explicit multipli-cation and di�erentiation rules. Moreover, we get explicit formulae for thescalar product, induced by the Dixmier trace, of elements of the di�erentialalgebra of arbitrary degree.1 IntroductionSeveral aspects of non{commutative geometry have bee investigated during thelast few years. In particular, A. Connes discovered ([7], [6]) that the \classical"Dirac K{cycle of a Riemannian manifold X contains all information about thismanifold. Given the K{cycle, one can reconstruct the Riemannian manifold. Thisled to the abstract notion of a K{cycle over an { in general { non{commutativealgebra, giving the possibility to discuss geometric structures, which { in general{ do not possess an underlying \classical" manifold. But, interesting enough,already slight modi�cations of the \classical" K{cycle, namely such that thealgebra remains commutative, give rise to interesting physical applications. Thisis due to the existence of non{commutative di�erential calculi even on \classical"manifolds. The most prominent example of the above type [7] is the K{cycle overthe algebra C1(X)
 (C�C) leading to a uni�cation of gauge and Higgs bosons.Taking the tensor product of this algebra with the vector space of fermions, one�supported by the Deutsche Forschungsgemeinschaft1



can derive the Salam{Weinberg model of electroweak interactions ([7], [6], [8]).The above algebra is the simplest example of the class of algebras C1(X) 
(MkC � MlC) ; which we call two{point algebras. To derive the full standardmodel, Connes and Lott [8] proposed to use a K{cycle over the algebra C1(X)
(C�H) ; where H denotes the �eld of quaternions. For a detailed presentationof this construction we also refer to a series of papers by Kastler ([20], [21], [22],[24]). A comprehensive exposition of the mathematical background can be foundin [27] and a physicist's review in [10].The basic structure occurring in the construction of Connes and Lott is thedi�erential algebra 
�D ; which is obtained from the universal di�erential alge-bra (associated with the algebra of the K{cycle) by factorizing with respect toa canonically given ideal. For formulating physical actions one only needs anexplicit knowledge of the structure of the subspaces 
nD ; for n = 0; 1; 2 ; see [8].However, if one wants to get deeper insight into the mathematical structure ofConnes' approach, one should investigate the structure of the whole di�erentialalgebra 
�D : This is done here for the simplest two{point algebra. At �rst sight,the motivation for this analysis seems to be on purely technical grounds. How-ever, as we will show in our next paper [25], the results presented here can betaken as a starting point for constructing graded Lie algebras with derivation.This in turn makes it possible to establish a rigorous link between Connes' the-ory and the approach to model building proposed by Coquereaux et. al. ([13],[12], [9], [11], [14]). In this approach one postulates ad hoc a certain graded ma-trix algebra and considers a generalized connection with values in this algebra.The connection contains both di�erential one forms and zero forms, represent-ing the classical gauge �elds of the electroweak interaction and the scalar Higgs�elds respectively. Adding by hand the gauge bosons of the strong interactionand choosing appropriate fermionic representations, one can derive the standardmodel in this way. As already mentioned, there are some deeper structural re-lations between the two approaches discussed here. We will prove in [25] thatgiven the simplest two{point K{cycle together with a projective module, we areable to construct a graded Lie algebra with derivation. If one chooses the moduleappropriately, then one arrives at the graded Lie algebra used by Coquereauxand Scheck for the derivation of the standard model.A technically di�erent attempt to analyse the general two{point case waspresented in [18]. However, an explicit exposition of the structure of this algebra(in the sense of explicit multiplication and derivation rules) has not been given.Following this line, it would be interesting to derive, for more general examplescontained in the two{point class, the explicit multiplication and di�erentiationrules given in the present paper for the K{cycle over the algebraC1(X)
(C�C) :A similar analysis of Connes' di�erential algebra for the N{point case wouldbe interesting, because this case seems to be relevant for the construction ofgrand uni�ed theories, see [2], [3] and [5]. For the time being these authorscircumvent the analysis of the algebra 
�D : Instead of that they introduce { as in2



the earlier papers of Connes [6] { additional auxiliary �elds, which �nally have tobe eliminated. Finally, let us mention that there also exist attempts to describegravity by methodes of non{commutative geometry ([4], [19], [23]).The paper is organized as follows: In section 2 we review the K{cycle (A; h;D)of Connes and Lott given in [8] and the construction of the basic di�erential alge-bra 
�D obtained from the universal di�erential algebra 
� by factorization withrespect to a certain canonically given ideal. In section 3 we de�ne an a prioridi�erent factorization procedure leading { for the simplest two{point case { toa di�erential algebra denoted by ��A : We give explicit formulae for the multipli-cation and di�erentiation of elements of ��A : In section 4 we prove that ��A and
�D coincide. Finally, in section 5 we show, using the Dixmier trace, that thereis a natural embedding of the subspace �kA of elements of degree k in ��A intothe representation �(
k) of elements of degree k of the universal algebra actingon the Hilbert space h of the K{cycle. This provides us with a natural scalarproduct on ��A : Since for the K{cycle under consideration we know the aboveembedding explicitly, we get explicit formulae for elements of arbitrary degree.2 The K{cycle and the Di�erential Algebra ofConnes and LottLet X be a compact even dimensional Riemannian spin manifold, dimX =: N �4 ; and L2(X;S) be the Hilbert space of square integrable sections of the spinorbundle over X : Let F be a �nite dimensional Hilbert space. The Hilbert spaceh of the K{cycle is chosen ash := L2(X;S)
 F 
C2 ; (1)with natural scalar product < ; >h : h� h! C :Let C be the Cli�ord bundle over X ; whose �bre at each point x 2 X isthe complexi�ed Cli�ord algebra Cli�C(T �xX) of the cotangent space T �xX : Wedenote by �1(C) the set of smooth sections of C ; and Ck � �1(C) is the set ofthose sections of C ; whose values at each point x 2 X belong to the subspacespanned by products of less than or equal k elements of T �xX of the same parity.The algebra A of the K{cycle is the following subalgebra of the algebra�1(C) 
 End (F ) 
 M2C � B(h) ; where B(h) is the algebra of bounded op-erators on h : A := f a = � c1 
 1F 00 c4 
 1F � ; c1; c4 2 C0 g ; (2)where 1F is the identical endomorphism of F : The identity of A is I = 1C 
 1F 
I2�2 ; where 1C is the unit section of C and I2�2 is the 2� 2 identity matrix. Theinvolution � : A ! A is given by < a��1; �2 >h :=< �1; a�2 >h ; 8�1; �2 2h ; a 2 A : 3



We denote M = � 0 MM� 0 � ; M 2 End (F ) ; and demand MM� 6= c 1F ;for any c 2 C : Next we de�ne the generalized Dirac operator D of the K{cycleas D := Dc` 
 1F 
 I2�2 + N+1 
M = � Dc` 
 1F N+1 
MN+1 
M� Dc` 
 1F � : (3)Here Dc` is the classical Dirac operator on L2(X;S) ; which is locally given byDc` = i�(@�+!g�) ; where !g� is the spin connection associated to the Levi{Civitaconnection of the manifold X : The gamma matrices � ; � = 1; : : : ; N ; are localorthonormal sections of C1 ; i.e.�� + �� = 2 ��� 1C : (4)We choose the � to be selfadjoint and denoteN+1 := iN2 12 � � �N�1N : (5)The matrix N+1 is a grading operator on L2(X;S) ; i.e. it commutes with C0and it anticommutes with the Dirac operator. Moreover, N+1 is selfadjoint and(N+1)2 = 1 :Using (2) and (3) one �nds[D; a] = � Dc`(c1)
 1F (c4 � c1)N+1 
M(c1 � c4)N+1 
M� Dc`(c4)
 1F � ; a 2 A : (6)It was proved in [27] that [D; a] is bounded for all a 2 A : Obviously, D isselfadjoint because of the selfadjointness of Dc` and the special choice of M : Itcan be shown [16] that (I +D2)�1 is compact.The selfadjoint R2{grading operator � of the K{cycle is given by� = � �N+1 
 1F 00 N+1 
 1F � ; (7)with �2 = I ; �D +D� = 0 ; and �a = a� ; 8a 2 A :Hence, (A; h;D;�) is an even K{cycle according to De�nition 1 in [8].Let 
� be the universal di�erential algebra over A generated by symbols aand da ; a 2 A :
� = 1Mn=0 
n ; 
0 = A ; (8)
n = fX� a0�da1� : : : dan� : ai� 2 A ; i = 0; : : : ; n ; �nite sum g :4



The universal di�erential d is de�ned byd(X� a0�da1� : : : dan�) :=X� da0�da1� : : : dan� �X� Ida0� : : : dan� ; (9)and has the properties d(ab) = (da)b + a db ;(da)� = da� ; (10)dI = 0 :From this one getsd(!1!2) = (d!1)!2 + (�1)n!1d!2 ; 8!1 2 
n ; !2 2 
� ; (11)d2! = 0 ; 8! 2 
� :It was proved in [27] that� (X� a0�da1� : : : dan� ) :=X� (�i)n a0�[D; a1�] � � � [D; an�] (12)de�nes an involutive representation � of 
� on h : From (2) and (6) one obtainsby induction the structure of the space �(
k) :�(
k)= [k=2]Xr=0 � Ck�2r 
C (MM�)r 00 Ck�2r 
C (M�M)r � (13)�[(k�1)=2]Xr=0 � 0 Ck�2r�1N+1 
CM(M�M)rCk�2r�1N+1 
CM�(MM�)r 0 � ;where [n=2] := n=2 for n even and [n=2] := (n� 1)=2 for n odd. Here we use theconvention Cn � CN for even n > N and Cn � CN�1 for odd n > N :Obviously, �(!) = 0 does not imply �(d!) = 0 ; for ! 2 
� : One de�nesJ = J0+ dJ0 ; with J0 = ker � : It was shown in [27] that J is a two{sided gradedideal of 
� ; which is invariant under d : Factorization with respect to this idealleads to the di�erential algebra
�D := 1Mn=0 
nD ; 
nD := �(
n)=�(J \ 
n) ; (14)of Connes and Lott.
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3 The Di�erential Algebra ��AHere we are going to construct a di�erential algebra ��A ; which turns out tocoincide with 
�D : Since �(
n�2) is a vector subspace of �(
n) ; for n � 2 ; wehave the natural projection�n : �(
n) ! �(
n) = �(
n�2) ; (15)which we extend trivially, putting�n := id�(
n) for n = 0; 1 : (16)In order to perform this factorization explicitly, we decompose each vector space�(
k) into a direct sum. We denote by Vq ; q = 1; : : : ; 4 ; the vector spacesspanned by M rq ; where M r1 := (MM�)r ; M r2 := M(M�M)r ; M r3 := M�(MM�)r ;M r4 := (M�M)r : Since F is �nite dimensional, there is a maximal number m+1of linear independent elements in V1 : Then it is easy to show that fM i1gmi=0 is abasis in V1 :Moreover, one proves that fM iqgmi=0 are bases in Vq ; for q = 2; 3; 4 ; i.e.these bases have equal dimensions. Therefore, we have unique decompositionsM rq = mXi=0 vrq;iM iq ; q = 1; : : : ; 4 ; with vrq;i = �ri for r � m : (17)Denoting the left upper corner of �(
k) ; see (13), by P k1 ; we obtainP k1 = [ k2 ]Xr=0 Ck�2r 
CM r1 = min(m;[ k2 ])Xr=0 Ck�2r 
CM r1 + [ k2 ]Xr=m+1Ck�2r 
CM r1= min(m;[ k2 ])Mr=0 Ck�2r 
CM r1 : (18)The last step follows from (17) and the fact that Cn�2t � Cn : Putting Cn =f0g ; 8n < 0 ; we can formally extend this direct sum from r = 0 to m : By thesame procedure one gets a direct sum decomposition of the other three blocks inthe matrix (13). Thus, �(
k) �nally reads
�(
k) = 2666664 mMr=0 Ck�2r 
CM r1 ; mMr=0 Ck�2r�1N+1 
CM r2mMr=0 Ck�2r�1N+1 
CM r3 ; mMr=0 Ck�2r 
CM r4

3777775 : (19)
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Elements of �(
k) will be denoted by�k = 0BBBBB@ mXr=0 ck�2r1 
M r1 ; mXr=0 ck�2r�12 N+1 
M r2mXr=0 ck�2r�13 N+1 
M r3 ; mXr=0 ck�2r4 
M r4
1CCCCCA ; (20)

where cnq 2 Cn : We de�ne Ln := Cn=Cn�2 ; in particular we have L0 � C0 andL1 � C1 : Obviously, Ln = f0g for n > N and for n < 0 : In the Appendix weshow that there is a natural right action of N+1 on L� =Ln Ln inherited fromthe multiplication in the Cli�ord algebra. This action commutes with the abovefactorization, i.e. LnN+1 �= (CnN+1)=(Cn�2N+1) : (21)Lemma 1 The space �k � �(
k) has the structure
�k��(
k) �= 2666664 mMr=0 Lk�2r 
CM r1 ; mMr=0 Lk�2r�1N+1 
CM r2mMr=0 Lk�2r�1N+1 
CM r3 ; mMr=0 Lk�2r 
CM r4

3777775 : (22)
Proof: For k < 2 no factorization occurs. We prove the Lemma for the blockP k1 in the upper left corner of the matrix (19). Using the decomposition (66) forCk�2r and Ck�2r�2 we getP k1 �= � mMr=0 Lk�2r 
CM r1 �� � mMr=0 Ck�2r�2 
CM r1 �= � mMr=0 Lk�2r 
CM r1 �� P k�21 :The proof for the other diagonal block is identical. For the o�{diagonal blocksone has to use (21). 2For �k 2 �(
k) the projection �k(�k) is calculated by decomposing �k accord-ing to (20) and by keeping only the part, which contributes to �k��(
k) accordingto Lemma 1. We denote the block in the left upper corner of �k � �(
k) by Sk1 :Then from Lemma 1 we read o� the explicit structure of the non{vanishing Sk1(assuming m � N=2 ):S01 �= L0 
CM01 ; S11 �= L1 
CM01 ;7



S21 �= L2 
CM01 � L0 
CM11 ; : : : ;SN�11 �= (N=2)�1Mr=0 LN�2r�1 
CM r1 ; SN1 �= N=2Mr=0 LN�2r 
CM r1 ;SN+2t�11 �= (1C 
C(MM�)t)SN�11 ; for t = 1; : : : ; m� (N=2) + 1 ;SN+2t1 �= (1C 
C(MM�)t)SN1 ; for t = 1; : : : ; m� (N=2) ; (23)S2m+21 �= (N=2)�1Mr=0 LN�2r 
CM r+m�(N=2)+11 ;S2m+31 �= (N=2)�2Mr=0 LN�2r�1 
CM r+m�(N=2)+21 ; : : : ;SN+2m�11 �= LN�1 
CMm1 ; SN+2m1 �= LN 
CMm1 :Similar formulae can easily be written down for the other three blocks of�k � �(
k) : Let us denote �kA := �k � �(
k) and observe that �kA = f0g fork > N + 2m+ 1 : Now we de�ne a graded algebra ��A by��A = 1Mk=0 �kA ; (24)with multiplication�kA � �lA 3 (�k; ~�l) 7! �k � ~�l := �k+l(�k � ~� l) 2 �k+lA ; (25)where �k 2 �(
k) ; ~� l 2 �(
l) ; such that �k(�k) = �k ; �l(~� l) = ~�l : It is easyto check that the de�nition of this multiplication is independent of the choiceof representatives. The general form of an element �k 2 �kA is { according toLemma 1 { given by�k = 0BBBBB@ mXt=0 �k�2t1 
M t1 ; mXt=0 �k�2t�12 N+1 
M t2mXt=0 �k�2t�13 N+1 
M t3 ; mXt=0 �k�2t4 
M t4
1CCCCCA ; �nq 2 Ln : (26)

This shows that an element �k 2 �kA is completely characterized by the following4(m+ 1) elements of L� (some of them may be identically equal to zero):�k�2t1 ; �k�2t�12 ; �k�2t�13 ; �k�2t4 ; t = 0; : : : ; m : (27)Let �k be the classical vector space isomorphism�k : Lk � Ck=Ck�2 ! �k(X) ; (28)8



where �k(X) is the set of (complex{valued) k{forms on X : The exterior product^ in ��(X) = LNk=0�k(X) transported by the isomorphism � is denoted bythe same symbol. We denote the factorization in Ck with respect to Ck�2 by�c`k : Ck ! Lk � Ck=Ck�2 ; ful�lling�c`k+l(ck~cl) = �c`k (ck) ^ �c`l (~cl) ; 8ck 2 Ck ; ~cl 2 C l : (29)Lemma 2 Let �nq 2 Ln and ~�nq 2 Ln be the characterizing elements of �k 2 �kAand ~�l 2 �lA respectively. Then the characterizing elements �nq of �k � ~�l 2 �k+lAare given by�k+l�2t1 = tXr=0(�k�2r1 ^ ~�l�2(t�r)1 + (�1)l�1�k�2r�12 ^ ~�l�2(t�r)+13 ) ;�k+l�2t�12 = tXr=0(�k�2r1 ^ ~�l�2(t�r)�12 + (�1)l�k�2(t�r)�12 ^ ~�l�2r4 ) ;�k+l�2t�13 = tXr=0(�k�2r4 ^ ~�l�2(t�r)�13 + (�1)l�k�2(t�r)�13 ^ ~�l�2r1 ) ;�k+l�2t4 = tXr=0(�k�2r4 ^ ~�l�2(t�r)4 + (�1)l�1�k�2r�13 ^ ~�l�2(t�r)+12 ) ;where t = 0; : : : ; m and elements �nq ; ~�nq ; which do not occur in (27) are under-stood to be equal to zero.Proof: For �k and ~�l we take representatives �k 2 �(
k) and ~� l 2 �(
l) ; suchthat �k(�k) = �k and �l(~� l) = ~�l :
�k =0BBBBB@ mXr=0 ck�2r1 
 (MM�)r ; mXr=0 ck�2r�12 N+1 
M(M�M)rmXr=0 ck�2r�13 N+1 
M�(MM�)r ; mXr=0 ck�2r4 
 (M�M)r

1CCCCCA ;
~� l =0BBBBB@ mXs=0 ~cl�2s1 
 (MM�)s ; mXs=0 ~cl�2s�12 N+1 
M(M�M)smXs=0 ~cl�2s�13 N+1 
M�(MM�)s ; mXs=0 ~cl�2s4 
 (M�M)s

1CCCCCA ;
where cnq 2 Cn ; with �cǹ (cnq ) = �nq ; and ~cnq 2 Cn ; with �cǹ (~cnq ) = ~�nq : We provethe Lemma for the upper right block sk+l2 of (�k � ~�l) : Let pk+l2 be the upper right9



block of the product �k � ~� l in �(
�) : Then we havepk+l2 = � mXr=0 ck�2r1 
 (MM�)r � � � mXs=0 ~cl�2s�12 N+1 
M(M�M)s�+� mXr=0 ck�2r�12 N+1 
M(M�M)r � � � mXs=0 ~cl�2s4 
 (M�M)s �= mXr=0 mXs=0ck�2r1 ~cl�2s�12 N+1 
M(M�M)r+s+ mXr=0 mXs=0(�1)l�2s ck�2r�12 ~cl�2s4 N+1 
M(M�M)r+s= mXt=0 tXr=0� ck�2r1 ~cl�2(t�r)�12 + (�1)l ck�2r�12 ~cl�2(t�r)4 � N+1 
M t2+ 2mXt=m+1 mXr=t�m� ck�2r1 ~cl�2(t�r)�12 + (�1)l ck�2r�12 ~cl�2(t�r)4 � N+1 
M t2 :Observing that the second term of this sum lies in the kernel of �k+l and using(29) we getsk+l2 = mXt=0 tXr=0(�k�2r1 ^ ~�l�2(t�r)�12 + (�1)l �k�2r�12 ^ ~�l�2(t�r)4 )N+1 
M t2 : (30)The proof for the other blocks of �k � ~�l is similar. 2Next, we introduce an involution on ��A ; putting�k� := �k(�k�) ; where �k 2 �(
k) ; such that �k(�k) = �k 2 �kA : (31)This de�nition is independent of the choice of the representative �k : One gets(�k � ~�l)� = (~�l)� � (�k)� ; 8�k 2 �kA ; ~�l 2 �lA : (32)Using the explicit representation (26) we obtain�k� = 0BBBBB@ mXt=0 �k�2t1 � 
M t1 ; mXt=0 (�1)k�1�k�2t�13 �N+1 
M t2mXt=0 (�1)k�1�k�2t�12 �N+1 
M t3 ; mXt=0 �k�2t4 � 
M t4
1CCCCCA : (33)Now we endow ��A with the structure of a di�erential algebra. First we trans-port the ordinary exterior di�erential d from ��(X) to L� using the isomorphism� ; see (28), d�k := ��1k+1 � d � �k(�k) ; 8�k 2 Lk ; (34)10



and de�ne the codi�erential d� on L� ; see Appendix, byd� = N+1dN+1 : (35)Here N+1 means the left action on L� ; which is related to the right action by(70), see Appendix. Observe that( (d� d�)
 1F 
 I2�2 )(�k) 2 �k+1A � �k�1A ; 8�k 2 �kA : (36)Denoting the projection onto the �rst component of this direct sum by prk+1 ; wede�ne an operator D : �kA ! �k+1A ; puttingD�k := prk+1 � ( (d� d�)
 1F 
 I2�2 )(�k) ; 8�k 2 �kA : (37)Explicitly, for �k 2 �kA given in (26) we getD�k = 0BBBBB@ mXt=0 (d�k�2t1 )
M t1 ; mXt=0 (d�k�2t�12 )N+1 
M t2mXt=0 (d�k�2t�13 )N+1 
M t3 ; mXt=0 (d�k�2t4 )
M t4
1CCCCCA : (38)Indeed, in the diagonal blocks of �k there only survives the di�erential becausethe codi�erential applied to them contributes only to �k�1A : In the o�{diagonalblocks only the codi�erential survives, givingd�(�k�2t�1q N+1) = N+1d(N+1�k�2t�1q N+1)= (�1)k�2t�1N+1d(�k�2t�1q ) = �(d�k�2t�1q )N+1 :Lemma 3 D is a graded di�erential on ��A ; i.e.i) D�k 2 �k+1A ; �k 2 �kA ;ii) D(�k � ~�l) = (D�k) � ~�l + (�1)k �k � (D~�l) ; �k 2 �kA ; ~�l 2 �lA ;iii) D2�k = 0 ; �k 2 �kA :Proof: i) is clear by de�nition. ii) can be checked by explicit calculation using(26), (38), and Lemma 2. iii) is a consequence of (38) and the identity d2 � 0 :2We observe that N+1
M 2 �1A : Therefore, it makes sense to introduce thefollowing graded commutator:[N+1 
M; �k]g := (N+1 
M) � �k � (�1)k�k � (N+1 
M) : (39)We de�ne d̂ := D� i[N+1 
M ; : ]g : (40)11



Lemma 4 d̂ is a graded di�erential on ��A ; i.e.i) d̂�k 2 �k+1A ;ii) d̂(�k � ~�l) = (d̂�k) � ~�l + (�1)k �k � (d̂~�l) ; (41)iii) d̂2�k = 0 :Proof: i) is clear by de�nition. From (39) we �nd[N+1 
M; �k � ~�l]g = [N+1 
M; �k]g � ~�l + (�1)k�k � [N+1 
M; ~�l]g :Then ii) follows from Lemma 3. To see iii) we calculated̂2�k = DfD(�k)� i[N+1 
M; �k]g g�i[N+1 
M; fD(�k)� i[N+1 
M; �k]g g ]g= D2(�k)� iD((N+1 
M) � �k) + (�1)kiD(�k � (N+1 
M))�i(N+1 
M) �D(�k) + (�1)k+1iD(�k) � (N+1 
M)�(N+1 
M) � (N+1 
M) � �k + �k � (N+1 
M) � (N+1 
M)= �(N+1 
M) � (N+1 
M) � �k + �k � (N+1 
M) � (N+1 
M)= ��k+2 � [1C 
M2; �k] ;for any �k 2 �(
k) ; such that �k(�k) = �k : We used ii) and iii) of Lemma 3and D(N+1 
M) � 0 : From (13) we see that (1C 
M2) commutes with any� 2 �(
�) ; and hence we conclude iii): 2Lemma 5 Let �nq be the characterizing elements of �k 2 �kA : Then the charac-terizing elements �nq of d̂�k 2 �k+1A are given by�k�2t+11 = d�k�2t1 + (�1)k i (�k�2t+12 + �k�2t+13 ) ;�k�2t2 = d�k�2t�12 + (�1)k i (�k�2t1 � �k�2t4 ) ;�k�2t3 = d�k�2t�13 + (�1)k i (�k�2t4 � �k�2t1 ) ;�k�2t+14 = d�k�2t4 + (�1)k i (�k�2t+13 + �k�2t+12 ) ;where t = 0; : : : ; m and elements �nq ; which do not occur in (27) are understoodto be equal to zero.Proof: The Lemma follows immediately from (40), (38), and Lemma 2. 2Though, at �rst sight, the structure of the di�erential algebra ��A seems toberather complicated, it can be characterized, at least locally, in a nice way interms of generators and relations.
12



Proposition 6 Let (U; fx�g�=1;:::;N ) be a local coordinate system on X ande� := d̂� x� 
 1F 00 x� 
 1F � = � dx� 
 1F 00 dx� 
 1F � ; (42)e0 := d̂� 12 
 1F 00 �12 
 1F � = � 0 iN+1 
M�iN+1 
M� 0 � :Let � be the automorphism of A given by � : � f1 00 f2 � 7�! � f2 00 f1 � : Thenfe0; e1; : : : ; eNg is a basis of the A{bimodule �1A and we havea � e� = e� � a ;a � e0 = e0 � �(a) ; a 2 A ; (43)e� � e� = �e� � e� ;e� � e0 = �e0 � e� ; (44)(e0)2m+2 := e0 � � � � � e0| {z }2m+2 = 0 : (45)Thus, every �k 2 �kA has a unique representation�k = Xl=0;:::;min(k;2m+1) X1��1<���<�k�l�N al�1:::�k�l � e�1 � � � � � e�k�l � (e0)l ; (46)with al�1:::�k�l 2 A :Proof: Using the general form�1 = � �11 
 1F �02N+1 
M�03N+1 
M� �14 
 1F � ; �11; �14 2 L1 ; �02; �03 2 L0 ;of an element of �1A we see that elements of the form (42) generate �1A : Linearindependence follows from the fact that fdx�g�=1;:::;N is a local frame of L� :Thus, fe0; e1; : : : ; eNg is a local basis of the A{bimodule �1A :Formulae (43) and (44) follow immediately from the multiplication rules givenin Lemma 2, and (45) is a direct consequence of (17). Since elements of �(
�)can be represented as sums of products of elements of A and �(
1) ; see (12), andsince � respects this property, see (25), we get that elements of ��A are sums ofproducts of elements of A and �1A : Thus, fe�1 � � � � � e�k�l � (e0)lgk;l2N0 generatethe algebra ��A : Linear independence is again obvious. 24 Main TheoremIn this section we will show that the di�erential algebra ��A coincides with 
�D :For this purpose we �rst prove a technical Lemma, which turns out to be ageneralization of Lemma 5 in [8] to the non{commutative case.13



First, note that on the space C0 � L0 of functions on X we have (cf. (77)and [1], Proposition 3.38)�i[Dc`; c0] = (d� d�)(c0) ; 8c0 2 C0 : (47)Using (47) we see thatd̂� 0 = �i[D; � 0] ; 8� 0 2 A � �(
0) � �0A : (48)Lemma 7 i) For any !k 2 
k we have d̂ � �k � �(!k) = �k+1 � �(d!k) :ii) Let �k 2 �(
k) and ~�k+1 2 �(
k+1) with d̂��k(�k) = �k+1(~�k+1) : Then thereexists an !k 2 
k ; such that �(!k) = �k and �(d!k) = ~�k+1 :Proof: i) For !k =P� a0�da1� : : : dak� 2 
k ; ai� 2 A ; we have�(!k) =P� (�i)k a0�[D; a1�] � � � [D; ak�] and�(d!k) =P� (�i)k+1 [D; a0�][D; a1�] � � � [D; ak�] :Using (25) and (48), we get�k � �(!k) = X�a0� � d̂a1� � : : : � d̂ak� ;�k+1 � �(d!k) = X�d̂a0� � d̂a1� � : : : � d̂ak� : (49)Now i) follows from Lemma 4.ii) For k = 0 we have �(
0) = A ; ker �0 = f0g ; and ker �1 = f0g : Hence, for agiven � 0 2 A we �nd with (48) ~� 1 = d̂� 0 = �i[D; � 0] : Thus, we can take ! = � 0 :Now, let k � 1 : From d̂ � �k(�k) = �k+1(~�k+1) and the general form�k =X� (�i)k a0�[D; a1�] � � � [D; ak�] ; ai� 2 A ;of an element of �(
k) we get { using (49) {~�k+1 =X� (�i)k+1 [D; a0�][D; a1�] � � � [D; ak�] + �k+1 ; with �k+1 2 ker �k+1 :Making the ansatz !k =X� a0�da1� : : : dak� + jk ; jk 2 
k ; and assuming �k =�(!k) and ~�k+1 = �(d!k) ; there follows�(jk) = 0 and �(djk) = �k+1 : (50)Thus, it remains to show that for any given �k+1 2 ker �k+1 � �(
k�1) we canalways �nd a jk ful�lling (50).From i) we �nd 0 = d̂��k��(ker �\
k) = �k+1���d(ker �\
k) ; which meansthat � � d(ker � \ 
k) � ker �k+1 : Thus, any element jk =X� b0�db1� : : : dbk� 2ker � \ 
k ; bi� 2 A ; ful�ls �(jk) = 0 and �(djk) 2 ker �k+1 : To �nd the form of�(djk) ; we calculate�iD(�(j)�) =X� (�i)k+1 [D; b0�][D; b1�] � � � [D; bk�]�+14



X� (�i)k+1 b0�D( [D; b1�] � � � [D; bk�]� ) ; where � 2 h :Since �(j) = 0 ; we have �(dj)� = �X� (�i)k+1 b0�D( [D; b1�] � � � [D; bk�]� ) ; and,therefore,�(dj)� =X�b0�K� ; with K� := �(�i)k+1D([D; b1�] � � � [D; bk�] � ) :We underline that P� b0�K� 2 �(
k�1) � ker �k+1 ; which is not obvious fromlooking at K� : Now we are left with solving the following equations:0 = X�(�i)k b0�[D; b1�] � � � [D; bk�] ;�k+1 = X�b0�K� ;where �k+1 2 �(
k�1) is given. We represent �k+1 ; �(jk) ; and �(djk) =P� b0�K�according to (20), which reduces the above equations to a system of equationsfor sections in the Cli�ord bundle C : We solve this system locally by choosing alocal frame in C : Observing that we can �x all bi� with i = 1; : : : ; k ; we are leftwith a system of linear algebraic equations for b0� ; which has for a generic choiceof bi� ; i = 1; : : : ; k ; (such that the determinant of the system of linear algebraicequations does not vanish) a solution. Using a partition of unity one constructsa global solution jk for any given �k+1 : 2Using Lemma 7, the fact that � is an involutive representation, and the iden-tity d(!k�) = (�1)k(d!k)� ; 8!k 2 
k ; we haved̂(�k�) = d̂ � �k(�k�) = d̂ � �k � �(!k�) = �k+1 � �(d(!k�))= �k+1 � �( (�1)k(d!k)�) = (�1)k(�k+1 � �(d!k))� ;where �k(�k) = �k 2 �kA and �(!k) = �k 2 �(
k) : Thus, we obtaind̂(�k�) = (�1)k(d̂�k)� : (51)Theorem 8 
kD and �kA are identical as involutive graded di�erential algebras.Proof: i) First we show that 
kD and �kA are identical as vector spaces, i.e. wehave to prove that �(J \ 
k) = ker �k : We begin with the inclusion ker �k ��(J \ 
k) : Let there be given � 2 �(
k) with �k(�) = 0 : The pair �k�1 � 0 2�(
k�1) ; ~�k � � 2 �(
k) ful�ls the conditions of ii) in Lemma 7. Hence, thereexists an !k�1 2 
k�1 ; with �(!k�1) = 0 and �(d!k�1) = � : This means that!k�1 2 J \ 
k�1 and d!k�1 2 J \ 
k ; and, therefore, � 2 �(J \ 
k) :To prove the inclusion �(J \ 
k) � ker �k ; observe that every !k 2 J \ 
kcan be represented as !k = !k1 + d!k�12 ; with �(!k1) = 0 and �(!k�12 ) = 0 : Thenfrom i) of Lemma 7 we �nd �k � �(!k) = �k � �(d!k�12 ) = d̂ � �k�1 � �(!k�12 ) = 0 ;and, therefore, �(!k) 2 ker �k :ii) The identity of the di�erentials is proved on the level of equivalence classes.Using ii) of Lemma 7 and i) of this proof, we get for �k 2 �kA :15



�k = �(!k) + ker �k = �(!k) + �(J \ 
k) ;d̂�k = �(d!k) + ker �k+1 = �(d!k) + �(J \ 
k+1) ;where !k belongs to 
k ; as in ii) of Lemma 7. But this is just the de�nition ofthe di�erential in 
�D :iii) To prove that the involutions on �(
k) and �kA are identical, observe thatfor �k = �(!k) + ker �k 2 �kA we have with (31)�k� = �(!k)� + ker �k = �(!k)� + �(J \ 
k) = �(!k�) + �(J \ 
k) ;where we have used that the ideals occurring in this factorization are invariantunder the involution.iv) The fact that multiplications coincide is again proved on the level of equiv-alence classes. Let �k = �(!k)+ker �k 2 �kA and ~�l = �(~!l)+ker �l 2 �lA ; where!k 2 
k and ~!l 2 
l are as in ii). Since � is a representation and ker � is anideal, we have �k � ~�l = �(!k~!l) + ker �k+l = �(!k~!l) + �(J \ 
k+l) ; where thelast identity follows from i). This is the multiplication rule in 
�D : 2This generalizes the result of Connes and Lott stating the isomorphism of 
�Dwith the classical de Rham complex for the case A = C1(X) : We note that fork = 1 Lemma 5 reproduces the equations following Lemma 15 in [8].5 The natural scalar product on ��A induced bythe Dixmier traceHere we will show that the Dixmier trace Tr! ; see [7], [27], [6], [8], provides ascalar product < ; >��A on ��A : For �k 2 �(
k) ; ~� l 2 �(
l) ; a scalar product on�(
�) is given by < �k; ~� l >:= Tr! ( (�k)�~� ljDj�N ) : (52)For the K{cycle under consideration this scalar product can be expressed as acombination of the usual trace and integration over the manifold. Let �k 2 �(
k)and ~� l 2 �(
l) be represented as in (20). Let trC denote the trace in the Cli�ordalgebra (normalized by trC(1C) = 2(N=2) ), trF the trace in End (F ) ; and vg thecanonical volume formon X : Then one �nds ([8], before Example 4, and [27],Theorem 5.3)< �k; ~� l > = 1(N2 )!(4�)N2 �4Xq=1 mXr;s=0(�1)(k+l)�qZXvg trCf(ck�2r��qq )� ~cl�2s��qq g trFf(M rq )�M sq g; (53)where �q = 0 for q = 1; 4 and �q = 1 for q = 2; 3 :For k � 2 ; let ~�k be the orthogonal projection from �(
k) onto the orthogonalcomplement (with respect to (52)) of the subspace �(
k�2) : For k = 0 and k = 116



let ~�k be the identity on �(
0) and �(
1) : Here and in what follows a completionof �(
n) in the sense of the above de�ned scalar product (52) is meant. We havea natural embedding ik : �kA ! �(
k) given byik(�k) := ~�k(�k) 2 �(
k) ; (54)for �k(�k) = �k : By construction, ik is well de�ned. In particular,�k � ik = id�kA ; (55)because with (id� ~�k)(�k) 2 ker �k we have�k � ik(�k) = �k � ~�k(�k) = �k(~�k(�k) + (id� ~�k)(�k)) = �k(�k) = �k :Next we de�ne a scalar product < ; >��A : ��A � ��A ! C ; putting< �k; ~�l >��A :=< ik(�k) ; il(~�l) > : (56)Observe that for k 6= l this product gives zero. First, for k + l being odd, thetrace in the Cli�ord algebra, see (53), is taken over an odd number of {matricesand, therefore, vanishes:trC(�1 � � ��2n+1) = trC(�1 � � ��2n+1(N+1)2 )= trC(N+1�1 � � ��2n+1N+1) = (�1)2n+1trC(�1 � � ��2n+1) :For k + l being even, assume k > l : Then il(�l) 2 �(
k�2) ; and hence ik(�k) isby de�nition orthogonal to il(�l) :Let us calculate ik(�k) for �k 2 �kA : For this purpose it is convenient to per-form a linear transformation of bases M iq 7! N iq in the vector spaces Vq spannedby fM iqgmi=0 : Inserting this transformation into (13), we see that the only trans-formations leaving �(
k) invariant areN iq = iXt=0 f iq;tM tq ; i = 0; : : : ; m ; q = 1; : : : ; 4 ; f iq;t 2 C ; det(fq) 6= 0 : (57)In particular, N01 = f 01;01F ; N02 = f 02;0M ; N03 = f 03;0M� ; N04 = f 04;01F : Bythe Schmidt orthogonalization procedure we get a unique (up to normalization)orthogonal (with respect to trF ) basis fN iqgmi=0 ; which is in accordance with (57):N0q = M0q ; N iq = M iq � i�1Xt=0 f iq;tN tq ; f iq;t = trF (N tq�M iq)trF (N tq�N tq) ; (58)for i = 1; : : : ; m : Since in model building the norms of N iq have to be �tted tophysical parameters, we cannot normalize the basis fN iqgmi=0 : We have chosenf iq;i = 1 ; i = 0; : : : ; m, which is especially convenient, because in that case thefactorization procedure leading from �(
k) to �kA done in terms of fN iqgmi=0 yields17



the same result as given in (26). In this sense the above choice of the orthogonalbasis can be considered as being canonical. For this basis we get�k = 0BBB@ mXt=0 �k�2t1 
N t1 ; mXt=0 �k�2t�12 N+1 
N t2mXt=0 �k�2t�13 N+1 
N t3 ; mXt=0 �k�2t4 
N t4 1CCCA : (59)Therefore, the corresponding formulae for products and the di�erential, seeLemma 2 and Lemma 5, remain unchanged. Hence, ik(�k) has the formik(�k) = 0BBB@ mXt=0 bk�2t1 
N t1 ; mXt=0 bk�2t�12 N+1 
N t2mXt=0 bk�2t�13 N+1 
N t3 ; mXt=0 bk�2t4 
N t4 1CCCA 2 �(
k) ;with bnq 2 Cn ; �cǹ (bnq ) = �nq : (60)The element ik(�k) has to be orthogonal to any ~�k�2 2 �(
k�2) ;~�k�2 = 0BBB@ mXt=0~bk�2t�21 
N t1 ; mXt=0~bk�2t�32 N+1 
N t2mXt=0~bk�2t�33 N+1 
N t3 ; mXt=0~bk�2t�24 
N t4 1CCCA ; ~bnq 2 Cn :Then, using the orthogonality of the basis fN iqgmi=0 we �nd0 = < ik(�k); ~�k�2 >= 1(N2 )!(4�)N2 4Xq=1 mXr;s=0ZXvg trC f(bk�2r��qq )� ~bk�2s��q�2q g trFf(N rq )�N sq g= 1(N2 )!(4�)N2 4Xq=1 mXr=0 ZXvg trCf(bk�2r��qq )� ~bk�2r��q�2q gtrFf(N rq )�N rq g :This must be true for any ~bk�2r��q�2q 2 Ck�2r��q�2 ; which means that bk�2r��qq is amaximal homogeneous element of Ck�2r��q ; treated in the sense of (66), ful�lling(60).In more detail, if we write both ik(�k) and �k in terms of the canonical or-thogonal bases fN iqgmi=0 as above, then ik splits blockwise into ik = ick̀ 
 id ; whereick̀ : Lk ! Ck denotes the classical embeddingic`0 ([1C ]) = 1C ; ick̀ ([�1 ] ^ [�2 ] ^ : : : ^ [�k ]) = �1�2 � � ��k ; (61)18



with 1 � �1 < �2 < : : : < �k � N and [�] := �c`1 (�) : This meansik(�k) = 0BBB@ mXt=0 ick̀�2t(�k�2t1 )
N t1 ; mXt=0 ick̀�2t�1(�k�2t�12 )N+1 
N t2mXt=0 ick̀�2t�1(�k�2t�13 )N+1 
N t3 ; mXt=0 ick̀�2t(�k�2t4 )
N t4 1CCCA : (62)Observe that the use of the orthogonal basis fN iqgmi=0 leads to an extremely simplerepresentation of ik ; namely one has to apply the classical embedding ick̀ on the�rst component of every block of �k : Now we can write down the explicit structureof the product (56) for �k; ~�k 2 �kA represented as in (59) with �nq and ~�nq denotingtheir characterizing elements:< �k; ~�k >��A = 1(N2 )!(4�)N2 �4Xq=1 mXr=0 ZXvg trCfick̀�2r��q(�k�2r��qq )� ick̀�2r��q(~�k�2r��qq )gtrFf(N rq )�N rq g: (63)Thus, < ; >��A is a positive de�nite scalar product on �kA for each k :For the classical embedding ic` there holds the following equality betweenthe scalar product for sections of the Cli�ord bundle und the scalar product fordi�erential forms:ZX vg trC f(ick̀ (�k))� ick̀ (�k)g = (�1) k(k�1)2 2N2 ZX �k((�k)�) ^ ��k(�k) ; (64)where �k; �k 2 Lk ; �k : Lk ! �k(X) is the classical isomorphism (28), and �denotes the Hodge star operator, see (81). Using this, we can write (63) as< �k; ~�k >��A = 1(N2 )!(2�)N2 4Xq=1 mXr=0(�1)(k�2r��q)(k�2r��q�1)=2 �ZXf�k�2r��q(�k�2r��qq )� ^ ��k�2r��q(~�k�2r��qq )gtrFf(N rq )�N rq g: (65)We see that { due to the explicit knowledge of the canonical ideal { we get anexplicit embedding of �kA � 
kD into �(
k) and, therefore, explicit formulae forscalar products of elements of arbitrary degree.A Appendix: Some Remarks on N+1With Lk := Ck=Ck�2 we have the canonical isomorphism of vector spaces [1]Ck �= Lk � Lk�2 � : : :� L�k ; (66)19



where �k := 0 for k even and �k = 1 for k odd. Using the local orthonormalbasis � ; � = 1; : : : ; N ; of C1 ; see (4), we can consider Lk ; k � 1 ; as spanned(locally) by completely antisymmetrized products of k elements � :On Ck we have natural right and left multiplications by N+1 : One �nds thatright multiplication of a completely antisymmetrized product of k elements �(1 � k � N) by N+1 gives a completely antisymmetrized product of the N � kcomplementary elements � : This means that we haveLkN+1 = LN�k : (67)We denote BN�k � CkN+1 : Then from (66) and (67) we �ndBN�k �= LN�k � LN�(k�2) � : : :� LN��k : (68)This gives(CkN+1)=(Ck�2N+1) � BN�k=BN�(k�2) (69)�= LN�k = LkN+1 � (Ck=Ck�2)N+1 :For cn 2 Cn we have cnN+1 = (�1)nN+1cn : This enables us to interchangeleft and right multiplication with N+1 on L� : Putting �k = ck + Ck�2 2 Lk ;where ck 2 Ck ; we haveN+1�k = N+1(ck + Ck�2) = (�1)k(ck + Ck�2)N+1 = (�1)k�kN+1 2 LN�k :(70)Because of (N+1)2 = 1 this givesN+1�kN+1 = (�1)k�k 2 Lk ; 8�k 2 Lk : (71)The isomorphism �k : Lk ! �k(X) ; �k(�) = dx� ; relates left multiplicationwith N+1 to the Hodge star ? on ��(X) as de�ned in [1] via?�k(�k) := �N�k(N+1�k) ; 8�k 2 Lk : (72)Note, however, that { comparing with [1] { we use a di�erent sign convention inthe de�ning relations of the Cli�ord algebra, see (4). Because of (70) we obviouslyhave �N�k(�kN+1) = (�1)k ? �k(�k) ; 8�k 2 Lk : (73)Now we prove that d� = N+1dN+1 (left multiplication by N+1 ) is thecodi�erential on L� ; see (35). On L� we have the natural scalar product< �k; �k >:= ZX vg trC f(ick̀ (�k))� ick̀ (�k)g ; 8�k; �k 2 Lk ; (74)where ick̀ was given in (61). An equivalent representation of this product is< �k; �k >:= ZX vg trC fN+1icǸ((N+1�k�) ^ �k)g : (75)20



We remark that we have a natural involution on the exterior di�erential algebra��(X) inherited from the involution in the Cli�ord algebra, which gives(ak ^ ~al)� = (~al)� ^ (ak)� ; 8ak 2 �k(X) ; ~al 2 �l(X) : (76)Therefore, (dak)� = (�1)kd(ak�) ; 8ak 2 �kA : (77)Now we calculate< �k;d�k�1 >= ZX vg trC fN+1 icǸ((N+1�k�) ^ d�k�1)g= ZX vg trC fN+1 icǸ((�1)N�kd((N+1�k�) ^ �k�1))g� ZX vg trC fN+1 icǸ((�1)N�k(d(N+1�k�)) ^ �k�1)g= �(�1)N�k ZX vg trC fN+1 icǸ(((�1)kd((N+1�k)�)) ^ �k�1)g= �(�1)k ZX vg trC fN+1 icǸ(N+1N+1(d(N+1�k))� ^ �k�1)g= �(�1)k ZX vg trC fN+1 icǸ(N+1(�1)N�k+1(N+1d(N+1�k))� ^ �k�1)g= < d��k; �k�1 > ;where ZX vg trC fN+1 icǸ(d�N�1)g = 0 ; �N�1 2 LN�1 ; and equations (70) and(77) were used. The codi�erential d� = N+1dN+1 on L� is related to thecodi�erential d� = ?d? on ��(X) by�k�1(d�(�k)) = d�(�k(�k)) ; 8�k 2 Lk : (78)With (N+1)2 = 1 and ?2 = 1 this yieldsN+1(d� d�) + (d� d�)N+1 = 0 and ? (d� d�) + (d� d�)? = 0 : (79)These equations make it, in principle, possible to replace in this paper the calculusbased upon L� and N+1 by a calculus based upon ��(X) and ? : For example,we could write { omitting the isomorphism � { the element �k given in (26) as:
�k = 0BBBBB@ mXt=0 ak�2t1 
M t1 ; mXt=0 (�1)k�1 ? ak�2t�12 
M t2mXt=0 (�1)k�1 ? ak�2t�13 
M t3 ; mXt=0 ak�2t4 
M t4

1CCCCCA ; anq 2 �n(X) : (80)
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We underline, however, that for calculating the product � one has either to returnto representatives in the Cli�ord algebra, or one has to use (after blockwisemultiplication of matrices of the form (80)) the following multiplication rules:ak _̂ ~al = ak ^ ~al ;?ak _̂ ~al = ?(ak ^ ~al) ;ak _̂ ? ~al = (�1)k ? (ak ^ ~al) ;?ak _̂ ? ~al = (�1)kak ^ ~al :We have omitted the lower index q of di�erential forms occurring in (80), becausethe multipication rules do not depend on q :Finally, we relate the de�nition of the Hodge star ? in [1] to the Hodge star �used in classical di�erential geometry. One has�ak := �kg�1(ak) vg ; ak 2 �k(X) ; (81)where �kg�1 denotes the natural isomorphism between k{di�erential forms andk{vector �elds provided by the metric g : �1(TX) ! �1(T �X) ; is the con-traction of a k{vector �eld with an l{di�erential form (l � k) giving an (l � k){di�erential form, and vg is the canonical volume form associated to the metricg on X : Then one can show that for an even dimensional Riemannian manifoldthe following relations hold:� � ak = (�1)kak ;?ak = (�i)N2 (�1) k(k+1)2 � ak : (82)References[1] N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators,Springer{Verlag Berlin Heidelberg 1992.[2] A. H. Chamseddine, G. Felder and J. Fr�ohlich, Grand Uni�cation in Non-Commutative Geometry, Nucl. Phys. B 395 (1992) 672{698.[3] A. H. Chamseddine, G. Felder and J. Fr�ohlich, Uni�ed Gauge Theories inNon-Commutative Geometry, Phys. Lett. B 296 (1992) 109{116.[4] A. H. Chamseddine, G. Felder and J. Fr�ohlich, Gravity in Non-CommutativeGeometry, Commun. Math. Phys. 155 (1993) 205{301[5] A. H. Chamseddine and J. Fr�ohlich, SO(10) Uni�cation in Non{Commu-tative Geometry, Phys. Rev. D 50 (1994) 2893{2907.[6] A. Connes, Essay on Physics and Non-commutative Geometry,preprint IHES/M/89/69 22
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