
The asymptotic volume of diagonal subpolytopes

of symmetric stochastic matrices

J. de Jong R. Wulkenhaar

WWU Münster, Germany

Mathematical Institute

j.dejong@uni-muenster.de raimar@math.uni-muenster.de

January 27, 2017

Abstract

The asymptotic volume of the polytope of symmetric stochastic matrices can

be determined by asymptotic enumeration techniques as in the case of the Birkhoff

polytope. These methods can be extended to polytopes of symmetric stochastic

matrices with given diagonal, if this diagonal varies not too wildly. To this end

the asymptotic number of symmetric matrices with natural entries, zero diagonal

and varying row sums is determined and a third order correction factor to this is

examined.
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1 Introduction

Convex polytopes arise naturally in various places in mathematics. A fundamental

problem is the computability of a polytope’s volume. Some results are known for

low-dimensional setups [1], polytopes with only a few vertices, or highly symmetric

cases [2, 3]. This work belongs to the latter category.

Definition 1.1. A convex polytope p is the convex hull of a finite set S p = {v j ∈ Rn}
of vertices.

Stochastic matrices are square matrices with nonnegative entries, such that every row

of the matrix sums to one. The symmetric stochastic N × N-matrices are an example

of a convex polytope, which will be called PN . Its vertices are given by the symmetric

permutation matrices. There are
∑N/2

j=0

(

N

2 j

)

(2 j − 1)!! such matrices. It follows directly

from the Birkhof-Von Neumann theorem that all symmetric stochastic matrices are of

this form. A basis for this space is given by

{IN } ∪ {B( jk)|1 ≤ j < k ≤ N} ,
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where IN is the N × N identity matrix and the matrix elements of B( jk) are given by

B
( jk)

lm
=























B
( jk)

lm
= 1 , if {l,m} = { j, k} ;

B
( jk)

lm
= 1 , if j , l = m , k ;

B
( jk)

lm
= 0 , otherwise

.

All these vertices are linearly independent and it follows that the polytope is
(

N

2

)

-

dimensional.

Definition 1.2. A convex subpolytope p′ of a convex polytope p is the convex hull of

a finite set {v′
j
∈ p} of vertices in p.

Slicing a polytope yields a surface of section, which is itself a convex space and, hence,

a polytope. Determining its vertices is in general very difficult.

Spaces of symmetric stochastic matrices with several diagonal entries fixed are exam-

ples of such slice subpolytopes of PN , provided that these entries lie between zero and

one. The slice subpolytope of PN , obtained by fixing all diagonal entries h j ∈ [0, 1],

is called the diagonal subpolytope PN(h1, . . . , hN). This is a polytope of dimension

N(N − 3)/2. These polytopes form the main subject of this paper.

To keep the notation light, vectors of N elements are usually written by a bold symbol.

The diagonal subpolytope with entries h1, . . . , hN will thus be written by PN(h).

The main results are the following two theorems.

Theorem 1. Let VN(t; λ) be the number of symmetric N × N-matrices with an empty

diagonal and entries in the natural numbers such that t j is the j-th row sum. Let the

total entry sum be x =
∑N

j=1 t j and the average entry λ = x/(N(N − 1)) furthermore be

bounded polynomially in N and the variance be given by y =
∑N

j=1(t j − λ(N − 1))2. If

for some α ∈ (0, 1/2)

λNα → ∞ and
y

λ2N2−2α
→ 0

hold as N → ∞, then the number of matrices is asymptotically given by

VN(t; λ) =

√
2(1 + λ)(

N
2)

(2πλ(λ + 1)(N − 2))
N
2

(

1 +
1

λ

)
x
2

√

N − 2

N − 1
exp

[

−
∑N

j=1(t j − λ(N − 1))2

2λ(λ + 1)(N − 2)

]

}

+ O((1 + λ)(
N
2)(1 +

1

λ
)

x
2 (2πλ(λ + 1)(N − 2))−

N
2 N−N1−2α )

.

Theorem 2. Let h = h1, . . . , hN with h j ∈ [0, 1] and χ =
∑N

j=1 h j. If

lim
N→∞

( N − 1

N − χ
)2

N
∑

j=1

(h j − χ/N)2
= 0 ,

then the asymptotic volume of the polytope of symmetric stochastic N × N-matrices

with diagonal h is given by

vol(PN(h)) =

√
2(N−2) e(N

2)
√

N−1(2π(N−2))
N
2

( N − χ
N(N−1)

)
N(N−3)

2

× exp[−
N2(N−1)2

∑N
j=1(h j − χN )2

2(N − 2)(N − χ)2
]
(

1 + O(N−
√

N)
)

.
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The outline of this paper is as follows. In Paragraph 2 the volume problem is formu-

lated as a counting problem and subsequently as a contour integral. Paragraph 3 is

dedicated to a fundamental lemma to restrict the integration region for this integral.

This is subsequently integrated in Paragraph 4. A correction factor to the counting re-

sult is discussed in Paragraph 5. The volume of the diagonal subpolytopes is extracted

from the counting result in Paragraph 6.

2 Counting problem

The volume of a polytope p in Rn with basis {B j ∈ Rn|1 ≤ j ≤ d} is obtained by

∫

[0,1]d

du 1p(

d
∑

j=1

u jB j) ,

where 1p is the indicator function for the polytope p. If the polytope is put on a lattice

(aZ)n with lattice parameter a ∈ (0, 1), an approximation of this volume is obtained by

counting the lattice sites inside the polytope and multiplying this by the volume ad of a

single cell. This approximation becomes better as the lattice parameter shrinks. In the

limit this yields

vol(p) = lim
a→0

ad |{p ∩ (aZ)n}| . (1)

This approach is formalized by the Ehrhart polynomial [4], which counts the number

of lattice sites of Zn in a dilated polytope. A dilation of a polytope p by a factor a−1 >

1 yields the polytope a−1 p, which is the convex hull of the dilated vertices S a−1 p =

{a−1v|v ∈ S p}. That the obtained volume is the same follows from the observation

|{a−1 p ∩ Zn}| = |{p ∩ (aZ)n}| .

The volume integral of the diagonal subpolytope PN(h) is

vol(PN(h)) =
{

∏

1≤k<l≤N

∫ 1

0

dukl

}

1PN (h)

(

IN +

∑

1≤k<l≤N

ukl(B
(kl) − IN)

)

.

To see that this integral covers the polytope, it suffices to see that the any symmetric

stochastic matrix A = (akl) is decomposed in basis vectors as

A =
(

akl

)

= IN +

∑

k<l

akl(B
(kl) − IN) .

The next step is to introduce a lattice (aZ)(
N
2) and count the sites inside the polytope.

Each such site is a symmetric stochastic matrix with h1, . . . , hN on the diagonal.

Since the volume depends continuously on the extremal points, it can be assumed with-

out loss of generality that all h j are rational. This implies that a dilation factor a−1

exists, such that all a−1(1 − h j) = t j ∈ N and that the matrices that solve



































0 b12 · · · b1N

b12 0 · · · b2N

...
...
. . .

...

b1N b2N · · · 0





































































1

1
...

1



































=



































t1
t2
...

tN


































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with t j, b jk ∈ N are to be counted. This yields a number VN(t). The polytope volume is

then given by

vol(PN(h)) = lim
a→0

a
N(N−3)

2 VN(
1 − h1

a
, . . . ,

1 − hN

a
) ,

where

VN(t) =

∮

C

dw1

2πiw
1+t1
1

. . .

∮

C

dwN

2πiw
1+tN

N

∏

1≤k<l≤N

1

1 − wkwl

. (2)

To see this, let the possible values m for the matrix element b jk be given by the gener-

ating function

1

1 − w jwk

=

∞
∑

m=0

(w jwk)m .

Applying this to all matrix entries shows that VN(t) is given by the coefficient of the

term w
t1
1

w
t2
2
. . .w

tN

N
in

∏

1≤ j<k≤N
1

1−w jwk
. Formulating this in derivatives yields

VN(t) =
1

t1!

d

dw1

∣

∣

∣

∣

t1

w1=0
. . .

1

tN!

d

dwN

∣

∣

∣

∣

tN

wN=0

∏

1≤k<l≤N

1

1 − wkwl

. (3)

By Cauchy’s integral formula (2) follows from this.

The contour C encircles the origin once in the positive direction, but not the pole at

wkwl = 1.

The next step is to parametrize this contour explicitly and find a way to compute the

integral for N → ∞. In practice this means that a combinatorial treatments must be

avoided. A convenient choice is

w j =

√

λ

λ + 1
eiϕ j , with λ ∈ R+ and ϕ j ∈ [−π, π) .

Later a specific value for λ will be chosen.

The counting problem has now been turned into an integral over the N-dimensional

torus

VN(t) =
(

1 +
1

λ

)

∑N
j=1

t j

2
(1 + λ)(

N
2)

(2π)N

∫

TN

dϕ e−i
∑N

j=1 ϕ jt j

∏

1≤k<l≤N

1

1 − λ(ei(ϕk+ϕl) − 1)
, (4)

where we have written dϕ for dϕ1 . . . dϕN .

The notation

x =
∑

j

t j =

N
∑

j=1

t j

is used, when no doubt about N can exist. When no summation bounds are mentioned,

these will always be 1 and N. The notation a≪ b indicates that a < b and a/b→ 0.

Such integrals appear in many counting problems and can be computed asymptotically

by the saddle-point method [5, 6]. This method requires that all t j are equal, which is

not necessary in our case. We show that it suffices to demand that they do not deviate

too much from the symmetric case.

4



3 Reduction of the integration region

Lemma 3.1. For a ∈ [0, 1] there is a positive constant Ra such that for n > Ra the

estimates

1

2
exp[na/e] ≤ (1 + a)n ≤ exp[na]

hold.

Proof. The right-hand side follows from

(1 + a)n
=

n
∑

j=0

a j

(

n

j

)

=

n
∑

j=0

(na) j

j!

n!

n j(n − j)!
≤

n
∑

j=0

(na) j

j!
≤ exp[na] .

To prove the left-hand side, we apply Stirling’s approximation to n! and (n − j)!. It is

then not difficult to see that there is a constant, say 1√
2
, such that

(1 + a)n
=

n
∑

j=0

(na) j

j!

n!

n j(n − j)!
≥

n−1
∑

j=0

(na) j

j!

n!

n j(n − j)!

≥ 1
√

2

n−1
∑

j=0

(na/e) j

j!

( n

n − j

)n− j+ 1
2 .

Approximating by the first n terms

e
na
e =

n−1
∑

j=0

(na/e) j

j!

(

1 + O(
√

nan)
)

shows that the error is small for large n. Choosing Ra such that n > Ra guarantees

|(1 + O(
√

nan))| < 1/
√

2 proves the statement. �

The integrals in (4) are too difficult to compute in full generality. A useful approxima-

tion can be obtained from the observation that the integrand

∣

∣

∣

1

1 − λ(eiy − 1)

∣

∣

∣

2
=

1

1 − 2λ(λ + 1)(cos(y) − 1)
for y ∈ (−2π, 2π) (5)

is concentrated in a neighbourhood of the origin and the antipode y = ±2π, where it

takes the value 1. This is plotted in Figure 1.

For small y and λy the absolute value of the integrand factor can be written as

∣

∣

∣

1

1 − λ(eiy − 1)

∣

∣

∣ =

√

1

1 + λ(λ + 1)y2

(

1 + O(y4)
)

. (6)

A crucial step is to introduce an essential bound, below which we lose accuracy. The

aim is then to find the asymptotic number VN(t) for configurations t, whenever this is

larger than the essential bound.

Definition 3.1. Essential bound

For N, x ∈ N, λ ∈ R+ and α ∈ (0, 1/2) we define the essential bound by

Eα = (2πλ(λ + 1)(N − 2))−
N
2 (1 + λ)(

N
2)(1 +

1

λ
)

x
2 exp[−N1−2α] . (7)
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Lemma 3.2. Let (ζk)k∈N and δN = ζNλ
−1N−α be sequences such that the limits

ζN → ∞ ; δN → 0 and λ < NC for some C > 0

hold as N → ∞ for some α ∈ (0, 1/2). The asymptotic integral (4) is then given by

VN(t; λ) = 2
(

1 +
1

λ

)
x
2 (1 + λ)(

N
2)(2π)−N

×
∫

[−δN ,δN ]N

dϕ e−i
∑N

j=1 ϕ jt j

∏

1≤k<l≤N

1

1 − λ(ei(ϕk+ϕl) − 1)
+ O(Eα exp[−(ζ2

N − 1)N1−2α]) , (8)

if this is larger than the essential bound Eα (7).

Proof. The idea of the proof is to consider the integrand in a small box [−δN , δN]N and

see what happens to it if some of the angles ϕ lie outside of it.

Because x is even, it follows that the integrand takes the same value at ϕ and ϕ + π =

(ϕ1 + π, . . . , ϕN + π). This means that only half of the space has to be considered and

the result must be multiplied by 2.

It will be automatically proved in Paragraph 4 that

Claim 1.
∫

[−δN/2,δN/2]N

dϕ
∏

1≤k<l≤N

1

1 − λ(exp[i(ϕk + ϕl)] − 1)

≤ ( 2π

λ(λ + 1)(N − 2)

)
N
2

√

N − 2

2(N − 1)
(1 + O(2δ−1

N e−
λ(λ+1)Nδ2

N
8 )) .

Now we argue case by case why other configurations of the angles ϕ j are asymptoti-

cally suppressed.

Case 1. All but finitely many angles lie in the box [−δN , δN]N . A finite number of m

angles lies outside of it. We label these angles {ϕ1, . . . , ϕm}. The absolute maximum of

the integrand

f : (ϕm+1, . . . , ϕN) 7→
∏

1≤k<l≤N

1

1 − λ(exp[i(ϕk + ϕl)] − 1)

-π -
π

2

π

2
π

1

4

1

2

1

Figure 1: The absolute value squared of the integrand factor (5) for λ = 1, 2 and 3 in

dotted, continuous and dashed lines respectively.
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is given by the equations

0 = ∂ϕ j
| f | =

∑

k, j

sin(ϕ j + ϕk)

1 − 2λ(λ + 1)(cos(ϕ j + ϕk) − 1)
for j = m + 1, . . . ,N .

It is clear that the maximum is found for ϕ̃ = ϕm+1 = . . . = ϕN . The first order solution

to this is then

ϕ̃ =
−1

2(N − m − 1)

m
∑

k=1

sin(ϕk)

1 + 2λ(λ + 1)(1 − cosϕk)
.

This shows that the maximum will lie in the box [−δN/2, δN/2]N .

Applying the estimate (6) to pairs of angles at least a distance δN/2 apart and afterwards

Claim 1 to the remaining N − m angles in the box [−δN/2, δN/2]N−m gives us an upper

bound of

( 2π

λ(λ + 1)(N − 2)

)
N−m

2

(

N

m

)

(2π)−N(1 + λ)(
N
2)(1 +

1

λ
)

x
2 (1 +

(λδN)2

4
)−

Nm
4

on the part of the integral in the small box [−δN/2, δN/2]N . Because the maximum of

the integrand lies in this small box, an upper bound for the integration box [−δN , δN]N

is obtained by multiplying the above by 2N . There are
(

N

m

)

ways to select the m angles

out of N.

Comparing this with the essential bound in combination with Lemma 3.1 shows that

this may be neglected, if

2N Nm(8π3λ(λ+1)N)
m
2 (
δN

π
)N−meN1−2α

e−
Nm
16e

(λδN )2 ≤ (

2δNπe
N−2α)N(λπN

3
2

δN

e−N1−2α
ζ2
N

16e
)m → 0 .

The sequence ζN → ∞ guarantees this. In fact, the same argument works for all m such

that m/N → 0.

Case 2. If the number m = ρN of angles outside the integration box [−δN , δN]N in-

creases faster, another estimate is needed, because the maximum ϕ̃ may lie outside of

[−δN/2, δN/2]. It is clear that 0 < ρ < 1 in the limit.

To estimate the location ϕ j = ϕ̃ of the maximum is much trickier now. We will nev-

ertheless take the maximum value as the estimate for the integrand in the entire inte-

gration box. The smaller box [−δN/2, δN/2]N is considered once more. We distinguish

two options.

-Case 2a. The maximum lies in [−δN/2, δN/2]N , thus ϕ̃ ∈ [−δN/2, δN/2].

Applying the estimate (6) to this yields an upper bound

(

N

ρN

)

(2δN)N(1−ρ)(2π)ρN
(

1 +
1

λ

)
x
2 (1 + λ)(

N
2)(1 +

1

4
λ2δ2

N)−
N2ρ(1−ρ)

4 .

Applying Lemma 3.1 to the last factor and dividing this by Eα shows that

(

(
π

δN

)
1−ρ
ρ N exp[

N−2α

ρ
−
λ2δ2

N
N(1 − ρ)
16e

]
)ρN → 0

is a sufficient and satisfied condition.

-Case 2b. The maximum lies not in [−δN/2, δN/2]N . This is the same as δN/2 < |ϕ̃| ≤
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δN .

Applying (6) only to the angles ϕρN+1, . . . , ϕρN in the integration box gives an upper

bound
(

N

ρN

)

(2δN)N(1−ρ)(2π)ρN
(

1 +
1

λ

)
x
2 (1 + λ)(

N
2)(1 +

1

4
λ2δ2

N)−
N2(1−ρ)2

4 .

The same steps as in Case 2a. will do.

This shows that the integration can be restricted to the box [−δN , δN]N . The error terms

follow from Case 1., since convergence there is much slower. �

Remark 1. The estimates in Lemma 3.2 caused the integral (8) to depend non-trivially

on λ. For that reason λ is explicitly mentioned as an argument.

Lemma 3.2 shows that for every α ∈ (0, 1/2) and N ∈ N there is a box that contains

most of the integral’s mass. As N increases, this box shrinks and the approximation

becomes better. The parameter α determines how fast this box shrinks. Smaller values

of α lower the essential bound and, hence, increase the number of configurations within

reach at the price of more intricate integrals and less accuracy.

4 Evaluation of the integral

In the previous paragraph the integration was restricted to a small box around the origin.

The integral can now be cast into a simpler form, where the size of this box is used as

an expansion parameter. The expansion used is

1

1 − λ(exp[iy] − 1)
= exp[

k
∑

j=1

A j(iy) j] + O(yk+1(1 + λ)k+1) . (9)

The coefficients A j are polynomials in λ of degree j with leading term λ j/ j. The first

three are

A1 = λ ; A2 =
λ

2
(λ + 1) and A3 =

λ

6
(λ + 1)(2λ + 1) . (10)

Applying (9) produces the combinations

∑

1≤k<l≤N

ϕk + ϕl = (N − 1)

N
∑

j=1

ϕ j ;

∑

1≤k<l≤N

(ϕk + ϕl)
2
= (N − 2)

N
∑

j=1

ϕ2
j +

(

N
∑

j=1

ϕ j

)2
;

∑

1≤k<l≤N

(ϕk + ϕl)
3
= (N − 4)

N
∑

j=1

ϕ3
j + 3

(

N
∑

j=1

ϕ j

)(

N
∑

k=1

ϕ2
k

)

and (11)

∑

1≤k<l≤N

(ϕk + ϕl)
n
= (N − 2n−1)

(

N
∑

j=1

ϕN
j

)

+

⌊ n
2
⌋

∑

m=1

(

n

m

)

(

N
∑

j=1

ϕm
j

)

(

N
∑

i=1

ϕn−m
i

)

for n ∈ N .

The error in (9) with |y| ≤ δN is (λ + 1)k+1δk+1
N
∼ N−α(k+1). There are

(

N

2

)

such factors,

which suggests that we must choose k = ⌈2α−1⌉ to ensure convergence. The following

lemma shows that this is not necessary.
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Lemma 4.1. Under the conditions of Lemma 3.2 the asymptotic integral (8) is given

by

VN(t; λ) =
2(1 + λ)(

N
2)

(2π)N
(1 +

1

λ
)

x
2

∫

[−δN ,δN ]N

dϕ exp[i
∑

j

ϕ j(λ(N − 1) − t j)]

× exp[−A2((N − 2)
∑

j

ϕ2
j + (

∑

j

ϕ j)
2)] + O(Eα exp[−N2−2α]) .

Proof. The formula follows directly from the application up to second order of (9) with

(10) and (11) to (8). It is sufficient to show that the difference divided by the essential

bound (7)

2eN1−2α

(2π)−N(2πλ(λ + 1)(N − 2))
N
2

×
∫

[−δN ,δN ]N

dϕ
∏

1≤k<l≤N

( 1

1 − λ(exp[i(ϕk+ϕl)] − 1)
− exp[

1+2α−1
∑

j=1

A ji
j(ϕk+ϕl)

j]
)

→ 0 . (12)

Because there are
(

N

2

)

factors, it follows that terms in this sum with j larger than 1+2α−1

are irrelevant. We will demonstrate this identity for α = 2. This means that we show

that the third order may be ignored. It follows than automatically that this holds for

smaller values α ∈ (0, 1/2).

The crucial observation is that

max
ϕ∈[−δN ,δN ]N

∣

∣

∣ exp[iA1(N − 1)
∑

j

ϕ j] exp[−A2((N − 2)
∑

j

ϕ2
j + (

∑

j

ϕ j)
2)]

× (

exp[−iA3((N − 4)
∑

j

ϕ3
j + 3(

∑

j

ϕ2
j)(

∑

j

ϕ j))] − 1
)

∣

∣

∣

≤ max
ϕ∈[−δN ,δN ]N

2 exp[−A2((N − 2)
∑

j

ϕ2
j + (

∑

j

ϕ j)
2)]

× exp[A3((N − 4)
∑

j

|ϕ3
j | + 3(

∑

j

ϕ2
j)(

∑

j

|ϕ j|))]

≤ 2 exp[−λ(λ + 1)δ2
N N(N − 1)(1 − 2(2λ + 1)

3
δN)] .

Multiplying this by the volume of the box (2δN)N and comparing it with the essential

bound shows that the difference (12) vanishes as exp[−N2−2α]→ 0.

Including higher order terms changes the estimate to

2 exp[−λ(λ + 1)δ2
N N(N − 1)(1 − 2(2λ + 1)

3
δN + O

(

λ2δ2
N

)

)] ,

but leaves the rest of the argument unchanged. �
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The result of Lemma 4.1 is the integral

VN(t; λ) =
2

(2π)N

(

1 +
1

λ

)
x
2 (1 + λ)(

N
2)
∫

[−δN ,δN ]N

dϕ exp[i

N
∑

j=1

ϕ j(λ(N − 1) − t j)]

× exp[−A2

(

(

N
∑

j=1

ϕ j)
2
+ (N − 2)

N
∑

j=1

ϕ2
j

)

] (13)

=
2

(2π)N

(

1 +
1

λ

)
x
2 (1 + λ)(

N
2)
∫ ∞

−∞
dτ

∫ ∞

−∞
dx′

∫

[−δN ,δN ]N

dϕ exp[2πiτ(x′ −
N

∑

j=1

t j)]

× exp[i

N
∑

j=1

ϕ j(λ(N − 1) − t j)] exp[−A2

(

x′2 + (N − 2)

N
∑

j=1

ϕ2
j

)

] ,

where we have used the Fourier representation of the Dirac delta to seperate the depen-

dence on x and t. Integrating respectively ϕ, x′ and τ now yields

VN(t; λ) =

√
2(1 + λ)(

N
2)

(2πλ(λ + 1)(N − 2))
N
2

(

1 +
1

λ

)
x
2

√

N − 2

N − 1
exp[

(x − λN(N − 1))2

4λ(λ + 1)(N − 1)(N − 2)
]

× exp[−
∑

j(t j − λ(N − 1))2

2λ(λ + 1)(N − 2)
] . (14)

The expansion parameter δN has disappeared from this result, as was to be expected.

The error in the ϕ-integration is O(Nα exp[−ζ2
N

N2−2α]) and thus much smaller than that

of Lemma 3.2. This also proves Claim 1.

Integrating this over t, while keeping x =
∑N

j=1 t j fixed, gives an estimate of the total

number VN(x; λ) of symmetric matrices with zero diagonal and natural entries sum-

ming to x. Because it is assumed that λ(N − 1)→ ∞, the integral is a simple gaussian.

It follows that

VN(x; λ) =

∫

R
N
+

dt δN(x −
∑

j

t j) VN(t; λ)

=
(1 + λ)(

N
2)

√
πλ(λ + 1)N(N − 1)

(1 +
1

λ
)

x
2 exp[− (x − λN(N − 1))2

4λ(λ + 1)N(N − 1)
] . (15)

Substituing x = λN(N − 1) here and integrating x from 0 to X would yield the asymp-

totic number of symmetric matrices with natural entries and uniform row sums X/N.

However, it is simpler and more accurate to compute this number from scratch using

the same methods as above.

Methods to treat such multi-dimensional combinatorical Gaussian integrals in more

generality have been discussed in [7].

4.1 Parameter choice

It was mentioned before, that such integrals can be computed asymptotically by the

saddle-point method. This requires all t j to be equal and λ to be the average matrix

entry for infinitely large matrices. Because (14) covers also this case, a similar result is

10



expected. It follows from Lemma 3.2 that these formulas are accurate, when they are

large compared to the essential bound (7). This means that

exp[
(x − λN(N − 1))2

8A2(N − 1)(N − 2)
] exp[−

∑N
j=1(t j − λ(N − 1))2

4A2(N − 2)
] exp[N1−2α]

= exp[− (x − λN(N − 1))2

8A2N(N − 1)
] exp[− y

4A2(N − 2)
] exp[N1−2α]→ ∞ ,

where the parameters x and y are defined by

x =

N
∑

j=1

t j ; y =

N
∑

j=1

(t j −
x

N
)2 . (16)

The asymptotic choice of λ is thus given by the average matrix entry

λ =
x

N(N − 1)
(1 + O(N−

1
2
−α)) . (17)

It follows, furthermore, that convergence is expected for y ≪ λ2N2−2α and that the rate

of convergence α depends essentially on y.

The observation that ζN = log(N) satisfies all the demands proves Theorem 1.

5 Corrections

It was shown in Lemma 4.1 that the third order term in (9) can be ignored. This

simplified the integration considerably. However, it might be possible to retrieve a

part of the contribution from the A3-term.

The basis of (14) is the integral

F2 =

∫

[−δN ,δN ]N

dϕ exp[i

N
∑

j=1

ϕ j(λ(N − 1) − t j)] exp[−A2

(

(

N
∑

j=1

ϕ j)
2
+ (N − 2)

N
∑

j=1

ϕ2
j

)

] .

Formulating the third term as differentials with respect to t gives a purely asymptotic

correction
∞
∑

k=0

(−A3)k

k!

[

(N − 4)
∑

j

∂3
t j
− 3A3(

∑

j

∂2
t j
)(
∑

l

∂tl )
]kF2 .

Selecting only dominant contribution yields the factor

F3 =

∞
∑

k=0

(−A3)k

k!

[{

(N − 4)
∑

j

∂3
t j
− 3A3(

∑

j

∂2
t j

)(
∑

l

∂tl )
}F2

]k

= exp[
A3(x − λN(N − 1))3

16A3
2
N2(N − 1)2

] × exp[−3A3

(2N − 3)(x − λN(N − 1))

8A2
2
(N − 1)2

]

× exp[
3A3(x − λN(N − 1))y

8A3
2
N(N − 1)(N − 2)

] × exp[
A3(N − 4)z

8A3
2
(N − 2)3

] . (18)

The parameter

z =
∑

j

(t j − x/N)3 (19)

obtains an upper bound in the same way as y did. Asymptotically this factor should

tend to one, which implies that y ≪ λ2N
3
2
+α and |z| ≪ λ3N2.

An idea of the accuracy of these formulas can be obtained from Table 1 and Table 2.
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6 Polytope volume

Now that the counting statementis in place, it is time to return to the polytopes. The

pivotal observation is that (14) yield asymptotically correct results for y ≪ λ2N2−2α.

The volume of the space of N × N-matrices with entry sum x satisfying

y

4A2(N − 2)
< M ≪ N1−2α

is estimated by

Nπ
N
2

Γ( N
2
+ 1)

∫ M

0

dt e−t2

tN−1
=

Nπ
N
2

2Γ( N
2
+ 1)

∫ M2

0

dy e−yy
N
2
−1 .

This is a fraction
1

Γ( N
2

)

∫ M2

0

dy e−yy
N
2
−1

t1 t2 t3 t4 t5 t6 t7 # y z VN (t;λ) (F3VN )(t;λ)

8 8 8 8 8 8 8 5.42E7 0 0 4.77E7 4.77E7

7 7 8 8 8 9 9 4.75E7 4 0 4.19E7 4.19E7

7 7 7 8 8 9 10 4.18E7 8 6 3.69E7 3.72E7

7 7 7 7 8 9 11 3.48E7 14 24 3.04E7 3.15E7

6 7 7 7 7 11 11 2.44E7 26 42 2.07E7 2.20E7

6 7 7 7 8 8 13 2.01E7 32 114 1.70E7 2.03E7

6 6 6 6 6 13 13 8.10E6 70 210 5.02E6 6.91E6

5 8 8 8 9 9 9 3.53E7 12 -24 3.24E7 3.13E7

5 7 7 7 7 9 14 1.17E7 50 186 9.56E6 1.27E7

5 5 7 7 8 8 16 4.26E6 84 456 3.20E6 6.39E6

5 5 5 6 6 8 21 1.08E5 204 2100 6.77E4 1.63E6

4 6 7 7 8 10 14 7.92E6 62 150 6.50E6 8.16E6

4 6 7 7 8 8 16 3.88E6 86 438 3.00E6 5.83E6

3 7 8 8 9 9 12 1.09E7 44 -60 1.16E7 1.06E7

3 3 6 6 6 16 16 5.50E5 190 750 1.06E5 3.31E5

2 4 4 10 10 11 15 6.97E5 134 42 6.42E5 6.84E5

2 2 4 4 4 19 21 2.06E4 410 2904 9.01E1 7.34E3

2 2 2 3 5 14 28 1 578 7416 0.41 3.09E4

Table 1: The number (#) of symmetric 7 × 7-matrices with zero diagonal and natural entries

summing to x = 56 such that the j-th row sums to t j and the asymptotic estimates for this

number by VN (t; λ) (14) and
(F3VN

)

(t; λ) (18) with λ given by (17). The parameters y and z are

defined in (16) and (19) respectively. The notation 1.0E6 = 1.0 × 106 is used here.

N x λ(N − 1) # #c VN (x; λ)

5 80 16 2.25E09 2.03E09 2.07E09

6 72 12 1.07E12 9.60E11 9.44E11

7 56 8 2.07E13 1.78E13 1.68E13

8 40 5 1.36E13 1.04E13 9.82E12

9 30 3.33 3.61E12 2.26E12 2.26E12

10 32 3.2 2.50E14 1.47E14 1.50E14

Table 2: The number (#) of symmetric N × N-matrices with zero diagonal and natural entries

summing to x and the asymptotic estimate for this number by VN (x; λ) (15) with λ given by

(17). The corrected number #c is given by
(

∫ x/2

0
dt exp[−( (t−λ(N−1))2

4A2(N−2)

)2
]
)N

times #. The notation

1.0E06 = 1.0 × 106 is used here.
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Figure 2: The volume result (20) (red) and the volume of PN(0.5, . . . , 0.5, x, 1 − x) (blue) for

N = 4, 5, 6, 7, 8, 9. The latter were determined by a numerical integration algorithm for convex

multidimensional step functions on the basis of Monte Carlo integration.
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(b) vol
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)

Figure 3: The volume result (20) (gray), the corrected volume result (black) and the volume for

two functions (green) for N = 5. The latter were determined by straightforward Monte Carlo

integration.

of the total volume. This ratio tends to one, if M2/N → ∞. Asymptotically, almost all

matrices are covered by (14) provided that α ∈ (0, 1/4).
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This shows that the polytope volume can be determined by (1). This is done on the

basis of Theorem 1. In terms of the variables

t j =
1 − h j

a
and χ =

∑

j

h j

the volume of of the diagonal subpolytope is calculated by

vol(PN(h)) = lim
a→0

a
N(N−3)

2 VN(
1 − h

a
;

N − χ
aN(N − 1)

)

= lim
a→0

√

2(N − 2)

N − 1
(1 +

aN(N − 1)

N − χ )
N−χ
2a (a +

N − χ
N(N − 1)

)(
N
2)

× (2π
N − χ

N(N − 1)
(a +

N − χ
N(N − 1)

)(N − 2))−
N
2 exp[−

N(N − 1)
∑N

j=1(h j − χN )2

2(N − 2)(N − χ)(a + N−χ
N(N−1)

)
]

=

√
2(N − 2) e(N

2)
√

N − 1(2π(N − 2))
N
2

( N − χ
N(N − 1)

)
N(N−3)

2 exp[−
N2(N − 1)2

∑N
j=1(h j − χN )2

2(N − 2)(N − χ)2
] . (20)

The error is given by the surface of the dilated polytope.

lim
a→0

a
N(N−3)

2

(

− a2 d

da

)

VN(
1 − h

a
;

N − χ
aN(N − 1)

)

= lim
a→0
−N(N − 3)a

2
a

N(N−3)
2 VN(

1 − h
a

;
N − χ

aN(N − 1)
) .

It inherits furthermore the relative error O((e/N)N1−2α

) from Theorem 1.

The essential bound criterion becomes

lim
a→0

y

λ2N2−2α
=

(Nα(N − 1)

N − χ
)2

N
∑

j=1

(h j −
χ

N
)2 .

Because all α-dependence has fallen out, it is safe to set α = 0 here. This proves The-

orem 2.

N VN (0.5, . . . , 0.5) volPN(0.5, . . . , 0.5) ratio

4 8.19E-02 1.25E-01 1.53

5 5.34E-04 6.11E-04 1.14

6 2.60E-07 3.07E-07 1.18

7 7.63E-12 8.92E-12 1.17

8 1.12E-17 1.27E-17 1.13

9 7.08E-25 7.95E-25 1.12

Table 3: The volume result VN(0.5, . . . , 0.5) (20), the volume of PN(0.5, . . . , 0.5) and the ratio

between them for N = 4, 5, 6, 7, 8, 9. The volumes of PN( 1

2
) were determined by a numerical

integration algorithm for convex multidimensional step functions on the basis of Monte Carlo

integration.

Examples of this formula at work are given in Figure 2 and 3. It is not difficult to

include the correction factor (18) in this. However, this would not result in a visible

difference in Figure 2. In each of these figures a constant factor seems to be missing.

In fact, this factor is already missing in the matrix counting, see the first entry of Table

1. This constant should tend to 1 and Table 3 suggests it does.
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