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1 IntrodutionThe aim of this work is to investigate the translation and dilatation symmetryat least at the lassial level for a nonommutative �4-theory. Not muh workhas yet been done in this diretion, only in [1℄ and [2℄ one �nds some satteredremarks onerning the energy-momentum tensor and its Noether proedurefor Moyal-Weyl deformed salar �eld theories. In this paper we extend theanalysis of [2℄ and formulate the Noether proedure for translations alreadyat the operator level. By the use of the Moyal-Weyl orrespondene betweenoperators and �elds we are able to on�rm the results of [2℄.This work is organized as follows. Setion 2 is devoted to some speialfeatures of the quantum spae in onnetion with a �4-theory.In Setion 3 we study the onstrution of the energy momentum tensorat the operator level and in a Moyal-Weyl deformed �4-theory.Finally, in the last setion we investigate the broken dilatation symmetryof the nonommutative �4-theory.2 The quantum phase spae and the salar�eld theoryWe onsider the salar �eld theory whih is desribed at the lassial levelby the following ation1S(0)[�℄ = Z dx  12������+ m22 �2 + �4!�4! ; (1)where �(x) is a real valued salar �eld on the four dimensional Eulideanspae time E4. For �elds in a Shwartz spae of funtions whih dereasesuÆiently fast at in�nity we may de�ne a Fourier transformation by�(x) = Z dk eik�x� ~�(k);~�(k) = Z dx e�ik�x��(x); (2)with ~�(�k) = ~��(k). In order to generalize a �eld theory on an ordinaryspae-time to one on a nonommutative spae-time we replae the loal o-ordinates x� by hermitian operators x̂� obeying the relations[x̂�; x̂�℄ = i��� ; [x̂�; ��� ℄ = 0; (3)1We use the shorthand notations dx := d4x and dk := d4k(2�)4 .1



where ��� = ���� is a real invertible matrix. Consequently, �elds on spae-time are replaed by operators. Replaing x� by x̂� in (2) we obtain�(x̂�) = Z dk eikx̂ ~�(k): (4)With (2) one gets�(x̂) = Z dk Z dx �(x)eikx̂�ikx = Z dx Z dk T̂ (k)e�ikx�(x) == Z dx�̂(x)�(x): (5)�(x̂) is an element of an algebra Ax in the sense of [6℄.In (5) we have introdued the operators T̂ (k) and �̂(k) whih were orig-inally de�ned by Balasz et al. [3℄. More reently, these operators were alsoused by Filk [4℄: T̂ (k) = eikx̂; (6)and by Ambjorn et al. [5℄:�̂(x) = Z dk eikx̂�ikx = Z dk T̂ (k)e�ikx: (7)T̂ (k) and �̂(x) have di�erent useful properties for pratial alulations. Inorder to list these properties let us de�ne the trae operations for T̂ (k) and�̂(x).For simpliity we hoose the spae time dimension d = 2 and onsider ina �rst step the trae of T̂ (k). The operator T̂ (k) has the following properties[4℄: T̂ y(k) = T̂ (�k)T̂ (k)T̂ (k0) = e�ik�k0T̂ (k + k0); (8)where k � k0 := 12���k�k0�: For d = 2 we have��� = �"�� = �  0 1�1 0 ! ; (9)and eq. (3) beomes [x̂1; x̂2℄ = i�: (10)The following remarks onerning the de�nitions of traes an be deduedwith the methods of [3℄. Eq. (10) looks like the usual ommutation relation2



of ordinary quantum mehanis between q̂ and p̂ if one identi�es x̂1 = q̂ andx̂2 = p̂. The orresponding eigenstates are de�ned by [3℄:x̂1jxi = xjxi;x̂2jpi = �pjpi (11)with hxjx0i = Æ(x� x0); Z dx jxihxj = 1;hpjp0i = Æ(p� p0); Z dp jpihpj = 1; (12)and hxjpi = 1p2�eipx: (13)Now it is straightforward to alulate the matrix elements of T̂ (k). The resultis hx0jT̂ (k)jx00i = Æ(k2� + x0 � x00)eik1(x0+x00)=2; (14)implying that the trae is (with an appropriate normalization fator)Tr T̂ (k) := 2�� Z dx hxjT (k)jxi == 2�� Æ(k2�) Z dx eik1x = (2�)2Æ(2)(k�): (15)With eq. (14) we are also able to alulate the matrix elements of �̂(x). Ashort alulation giveshx0j�̂(x)jx00i = Z dk hx0jT̂ (k)jx00ie�ikx == 12�� Æ  x1 � x0 + x002 ! ei(x0�x00)x2=� (16)and the trae of �̂(x) beomesTr �̂(x) := 2�� Z dx hxj�̂(x)jxi = Z dx Æ(x1 � x) = 1: (17)Eqs.(15) and (17) on�rm the results of [4, 5℄. Additionally, one an derivethe following relationsTr [T̂ (k)T̂ (k0)℄ = (2�)2e�ik�k0Æ(2)(k� + k0�) = (2�)2 Æ(2)(k� + k0�);Tr [�̂(x)�̂(x0)℄ = Æ(2)(x� � x0�): (18)3



In order to be omplete, we present an alternative way of alulating thetrae of T̂ (k): Tr T̂ (k) = 2�� Z dx0 hx0jT̂ (k)jx0i; (19)where jx0i is now an appropriate representation of the algebra (3):[x̂�; x̂�℄jx0i = i�"��jx0i: (20)A possible solution for (20) isx̂�jx0i = �x� + i2������ jx0i: (21)However, in this ase x0 annot be identi�ed with x� due to the fat that x�and �� represent 2 � d degrees of freedom (d = 2). Therefore we need anirreduible representation whih eliminates the redundant degrees of freedom.An irreduible representation is given by (renaming x0 ! x):x̂1jxi = xjxix̂2jxi = �i� ddx jxi: (22)Using the Baker-Campbell-Hausdor�-formula and the fat thate�k2 ddx jxi = jx� �k2i; (23)one obtains again the result (15).In order to de�ne a salar �eld theory at the operator level we need aderivation presription [5, 6, 7℄:�̂��(x̂) = �i[x̂0�; �(x̂)℄ = Z dx ���(x)�̂(x); (24)where x̂0� = ��1�� x̂� and �����1�� = Æ�� . This de�nition implies[�̂�; x̂�℄ = Æ�� ; [�̂�; �̂�℄ = 0: (25)Furthermore, we have the Leibniz rule�̂�(f(x̂)g(x̂)) = �̂�f(x̂)g(x̂) + f(x̂)�̂�g(x̂): (26)Additionally, one an show that one has the following useful relation[�̂�; �̂(x)℄ = ����̂(x): (27)4



Eq. (27) implies e�v��̂��̂(x)ev��̂� = �̂(x+ v): (28)The existene of suh an operator implies that Tr �̂(x) is independent of xfor any trae operation on the algebra of operators. (28) gives thereforeTr �̂(x) = Tr�̂(x + v) (29)and thus one has in onsisteny with (17):Tr�(x̂) = Z dx �(x)Tr �̂(x) = Tr �̂(x) Z dx �(x): (30)In normalizing Tr �̂(x) to one we getTr�(x̂) = Z dx �(x): (31)Now we are able to de�ne the inverse map of (5). In Filk's [4℄ notation oneobtains �(x) = Z dk eikxTr [�(x̂)T y(k)℄ (32)and orresponding to Ambjorn et al. [5℄ one has�(x) = Tr[�(x̂)�̂(x)℄; (33)allowing now to de�ne a Moyal-Weyl produt [4, 5℄ in the following manner(�1 � �2)(x) := Z dk eikxTr [�1(x̂)�2(x̂)T y(k)℄ = Tr [�1(x̂)�2(x̂)�̂(x)℄= Z dk1 Z dk2 ei(k1+k2)xe�ik1�k2 ~�1(k1)~�2(k2): (34)Eqs. (33) and (34) show that there is a one-to-one orrespondene between�elds (of suÆiently rapid derease at in�nity) and operators. From (34)follows also Z dx (�1 � �2)(x) = Z dx �1(x)�2(x): (35)Furthermore one hasTr [�1(x̂)�2(x̂)℄ = Z dx (�1 � �2)(x): (36)and Tr[�(x̂)4℄ = Z dx (�(x))4�: (37)5



One an easily show that yli rotation is allowed:Z dx (�1 � �2 � : : : � �n)(x) = Z dx (�n � �1 � : : : � �n�1)(x): (38)Using now all these de�nitions one is able to de�ne a salar �eld theory ona nonommutative spae-time at the \algebra" level as�S(0)[�℄ = Tr 12(�̂��(x̂))2 + m22 �(x̂)2 + �4!�(x̂)4! == Tr � �L(0)(�(x̂))� : (39)With help of (24) the latter expression may be rewritten as a \Moyal-Weyldeformed" ation:S(0)[�℄ = Z dx 12��� � ���+ m22 � � �+ �4!(�)4�! == Z dx 12������+ m22 �2 + �4!(�)4�! == Z dxL(0)� (�(x)): (40)We onlude this setion with some remarks onerning the equation of mo-tion at the algebra level. In order to see how this works it is suÆient todisuss the free kineti part�S(0)free[�℄ = �12Tr �[x̂0�; �(x̂)℄[x̂0�; �(x̂)℄� = 12Tr (�̂��(x̂))2: (41)The \lassial" equation of motion, similar to the ommutative ase, is ob-tained by minimizing the ation:Æ �S(0)free[�℄Æ�(x̂) = 0: (42)We de�ne the funtional derivative as usual [2℄:�S(0)free[�+ Æ�℄� �S(0)free[�℄ =: Tr0�Æ �S(0)free[�℄Æ�(x̂) Æ�(x̂)1A : (43)Using yli rotation we obtainÆ �S(0)free[�℄Æ�(x̂) = [x̂0�; [x̂0�; �(x̂)℄℄ = ��̂��̂��(x̂) = 0: (44)6



This is the massless free �eld equation of the theory. The inlusion of themass term and the interation gives the following equation of motion:Æ �S(0)[�℄Æ�(x̂) = ��̂��̂��(x̂) +m2�(x̂) + �3!�(x̂)3 = 0: (45)Eq. (45) will be used for the onstrution of the energy momentum tensorin the next setion. For the Moyal-Weyl deformed �eld theory one gets in asimilar way the equation of motion [2℄ÆS(0)[�(x)℄Æ�(x) = ������(x) +m2�(x) + �3!(�)3�(x) = 0: (46)3 Noether theorem for translation symmetryat the algebra level and its Moyal-deformedounterpartIn order to de�ne in�nitesimal translations at the operator level one gener-alizes the usual transformation law for a salar �eldÆ��(x) = ���(x) (47)into Æ��(x̂) = �̂��(x̂) = �i[x̂0�; �(x̂)℄ (48)in aordane with (24). Sine the ation�S(0)[�℄ = Tr 12(�̂��(x̂))2 + m22 �(x̂)2 + �4!�(x̂)4! (49)is invariant under translations we an try to derive a Noether urrent inthe following way. One alulates the variation of �S(0)[�(x̂)℄ in two di�erentways, one using the equation of motion and alternatively without using theequation of motion [9℄.First we note that with help of (24) and performing yli rotations underthe trae one obtains the following formula for \partial integration"Tr ��1(x̂)�̂��2(x̂)� = �Tr ��̂��1(x̂)�2(x̂)� : (50)Then we have 7



Æ� �S(0)[�℄1 == Tr��̂��̂��(x̂)�̂��(x̂) +m2�̂��(x̂)�(x̂) + �3! �̂��(x̂)�3(x̂)� == Tr ��̂�L(�(x̂))�;Æ� �S(0)[�℄2 =Tr��̂�(�̂��(x̂)�̂��(x̂)) + �̂��(x̂)�� �̂��̂��(x̂) +m2�(x̂) + �3!�(x̂)3��:(51)Clearly, one has for the di�ereneÆ� �S(0)[�℄1 � Æ� �S(0)[�℄2 = 0: (52)This leads toTr ��̂�h12(�̂��(x̂)�̂��(x̂) + �̂��(x̂)�̂��(x̂))� Æ�� �L(�(x̂))i� = Tr ��̂�T��� = 0:(53)where we have de�ned the (symmetrized) energy-momentum tensor at thealgebra levelT��(�(x̂)) := 12(�̂��(x̂)�̂��(x̂) + �̂��(x̂)�̂��(x̂))� Æ�� �L(0): (54)It is important to note that eq. (53) does not imply �̂�T�� = 0 loally.For the further disussion we swith to Minkowski spae M4. Using theMoyal-Weyl presription one an rewrite (54) as2T��(�(x)) = 12(��� � ���+ ��� � ���)� ���L(0)� : (55)The onstrution (55) is symmetri - therefore no Belinfante-proedure isneeded [8℄. The result (55) is onsistent withW�S(0)[�℄ = Z dx ��� � ÆS(0)[�℄Æ�(x) = Z dx ��T�� = 0: (56)We add an improvement term in order to get an improved energy-momentumtensor whih is traeless for m = 0 [8℄:T I�� = T�� + 16(���2� ����)(� � �): (57)2In [13℄ one �nds some further useful remarks onerning translation symmetry indeformed quantum �eld theories. 8



The improvement term does not ontribute to the divergene of the energy-momentum tensor whih is given by��T�� = ��T I�� = �4! [[�; ���℄M ; � � �℄M 6= 0; (58)where we have introdued the Moyal braket[�1(x); �2(x)℄M := (�1 � �2)(x)� (�2 � �1)(x): (59)The result (58) is already given in [2℄For a physial interpretation one hooses �0i = 0 [1, 2℄. Then one has3Z d3x (�1 � �2 � : : : � �n)(x) = Z d3x (�n � �1 � : : : � �n�1)(x): (60)Eq. (58) impliesZ d3x ��T�� = �0 Z d3x T0� + Z d3x�iTi� = �0 Z d3x T0� == Z d3x �4! [[�; ���℄M ; � � �℄M = 0 (61)whih means that in this ase there exists a onserved four momentum:�0P� := �0 Z d3x T0� = 0: (62)Additionally, �0i = 0 allows to establish unitarity [10℄.As it is well known, in the ommutative ase the generators of the onfor-mal group are given by moments of the energy-momentum tensor [8℄. E.g. inthe ommutative ase the onserved urrent for dilatation symmetry is givenby D� = x�T I��: (63)However, in the nonommutative ase one expets a breaking of the dilatationsymmetry due to the fat that the energy-momentum tensor is not onserved.As a simple example we study in the last setion the broken dilatation sym-metry in a Moyal-Weyl deformed �eld theory.3Note that the ��� -matrix is no longer invertible, and therefore we restrit our attentionto the Moyal-deformed �eld theory.
9



4 The broken dilatation symmetryIn this setion we express the dilatation transformation in terms of a fun-tional di�erential operator, i.e. we onsiderWD = Z dx ÆD� � ÆÆ�(x) = Z dx (1 + x� � ��)� � ÆÆ�(x) (64)ating on the Minkowskian ation S(0)[�℄ for a massless �eld given byS(0) = Z dx  12������� �4!(�)4�! : (65)Using x� = (2�)4 Z dp eipx i ��p� Æ(4)(p);���(x) = Z dp eipx ip� ~�(p) (66)one veri�es with the de�nition of the Moyal produt (34)x� � ���(x) = x����(x): (67)Then one gets using the improved energy-momentum tensor (57)WDS(0)[�℄ = � Z dx��� �x� � T I���++12(� �2�� 2� � �) + 12x� � (��� �2��2� � ���) ++ �4!x� � �4��� � (�)3� � ��(�)4�� �: (68)It is straightforward to show that the terms in the seond line of (68) vanishand thus one hasWDS(0)[�℄ = � Z dx��� �x� � T I���+ �4!x� � �4��� � (�)3� � ��(�)4��| {z }=:B �: (69)A rather lenghty but straightforward alulation shows that the breaking Ban be written as B = �2��� �S(0)[�℄���� (70)10



whih demonstrates that the breaking is determined by the deformation pa-rameter ��� . The result (70) an be understood in the following way. An\in�nitesimal" dilatation̂x0� = (1 + ")x̂� ("� 1) (71)yields the following modi�ed algebra for the operators x̂0�:[x̂0�; x̂0�℄ = i(1 + 2")��� +O("2): (72)This means that the hange in the deformation parameter indued by in-�nitesimal dilatations is given by Æ��� = 2��� . Therefore one expets thefollowing relation: Z dx ÆD�ÆS(0)Æ� + Æ��� �S(0)���� = 0: (73)This reprodues exatly the result (69), (70).5 Conlusion and OutlookIn the previous setions we have shown that one is able to onstrut anenergy-momentum tensor whih allows to de�ne a onserved four momen-tum if �0i = 0. We have also demonstrated that the Noether theorem fortranslations exists already at the operator level in terms of the operators�(x̂). Using the Moyal-Weyl orrespondene between operators �(x̂) and�elds �(x) we have also derived the energy momentum tensor in the preseneof a Moyal deformed interation. Our result on�rms the results of [1, 2℄.In the last setion we have also onsidered the dilatation symmetry di-retly in a deformed �eld theory. We found that the Ward-identity of di-latation symmetry piks up a breaking proportional to the deformation pa-rameter ��� . All our onsiderations are lassial, i.e. without inlusion ofradiative orretions. Our investigations may be the basis to study the traeanomaly at least at the one loop level. In a further work [12℄ we will try togive an answer whether the well-known trae anomaly [11℄ is modi�ed in aMoyal-Weyl deformed salar quantum �eld theory.Referenes[1℄ T. Krajewski, \Nonommutative geometry and fundamental intera-tions. (In Frenh)", math-ph/9903047.11
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