
published in: Acta Physica Polonica B 27 (1996) 2755{2762c 1996 Polish Physical SocietyON CERTAIN GRADED LIE ALGEBRASARISING IN NONCOMMUTATIVE GEOMETRY�R. Matthes, G. Rudolph and R. WulkenhaarInstitut f�ur Theoretische Physik der Universit�at LeipzigAugustusplatz 10/11, 04109 Leipzig, GermanyGiven an algebra, a �nite projective right module and a di�erential al-gebra over this algebra, a graded Lie algebra with derivation is constructed.It is shown that the algebraic structure of the Mainz-Marseille approachto the standard model may be obtained making use of this general con-struction in a special case. Thereby, a rigorous mathematical link betweenConnes' noncommutative geometry and the Mainz-Marseille approach isestablished.PACS number: 02.40.-k1. IntroductionThe ideas of Connes, cf. [2] and [3], have been the starting point for numerousattempts to construct uni�ed �eld theories using the tools of noncommutative ge-ometry, the main achievement being, perhaps, the identi�cation of the Higgs �eldas a gauge �eld. Slightly more modest seems to be { at �rst sight { the Mainz-Marseille approach, [4], which reaches essentially the same aims without using theprecise geometrical notions of Connes, starting from a certain Z2-graded Lie al-gebra with derivation. We can, however, show that the algebraic structure of thislatter approach can be derived in the scheme of Connes. The main point is to usea �nite projective module (a notion which was avoided by the Mainz-Marseillegroup) and a di�erential algebra over the (underlying) algebra to construct agraded Lie algebra with derivation, which may be mapped by a partial homo-morphism onto the graded Lie algebra of the Mainz-Marseille approach. Therebywe are able to give a precise geometrical meaning to all objects appearing there.We will here only sketch the main mathematical ideas and refer to our pa-per [6] for all details. Moreover, we only mention, that there is a nice physicalapplication of our method: Avoiding the \projection" to the Mainz-Marseille al-gebra, but nevertheless using the ideas of [4], it is possible to derive the standardmodel from the simplest two-point K-cycle originally used in [3] to derive theelectroweak theory, see the last section of [6] and for details [7].�Presented at the II German{Polish Symposium \New Ideas in the Theory of FundamentalInteractions", Zakopane, Poland, September 1995.
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2. 
DA for the simplest two-point K-cycleWe will freely use several notions of noncommutative geometry whose de�nitionseems to be by now standard. We refer to [2, 3, 5, 6] and the references giventhere for a detailed presentation. The �rst notion we will use is that of an even K-cycle (A; h; �;D;�) over an algebra. Every such K-cycle gives rise to a di�erentialalgebra 
DA over A. We will need the following example:Let X be a N = 2n-dimensional compact Riemannian spin manifold, letL2(X;S) be the Hilbert space of square integrable sections of the spinor bun-dle, let Dcl be the classical Dirac operator, and let N+1 be the product of Northonormal sections of the linear part of the Cli�ord bundle. Moreover, letM = � 0 MM� 0 � ; ~� = � 1n�n 00 �1n�n � ;where M 2MnC with MM� =2 C1n�n. Consider the K-cycle consisting ofA = C1(X)
C2; h = L2(X;S)
 (Cn �Cn) = L2(X;S)
Cn 
C2;D = Dcl 
 id+ N+1 
M = � Dcl 
 1n�n N+1 
MN+1 
M� Dcl 
 1n�n � ;�� f1f2 � = � f1 
 1n�n 00 f2 
 1n�n � ; � = N+1 
 ~�;This K-cycle was used in [3] for a construction of the Weinberg-Salam theory.An explicit description of 
DA for this K-cycle was given in [5]. The resultsobtained there may be summarized as follows: Let us denote M t1 = (MM�)t,M t2 = M t1M , M t4 = (M�M)t, M t3 = M�M t4 and notice that there is a positiveinteger m such that in each series (M tq)t=0;1;::: (q = 1; 2; 3; 4) just the �rst m termsare linearly independent in MnC. Then we have
kDA = � Lmt=0 �k�2t 
CM t1 Lmt=0 �k�2t�1N+1 
CM t2Lmt=0 �k�2t�1N+1 
CM t3 Lmt=0 �k�2t 
CM t4 � ;where �k denotes the space of di�erential k-forms on X and the right multiplica-tion with N+1 is nothing but (a certain variant of) the Hodge star. The product� in 
DA is given by� �1 
M t11 �2N+1 
M t22�3N+1 
M t33 �4 
M t44 � � � �l11 
M s11 �l22 N+1 
M s22�l33 N+1 
M s33 �l44 
M s44 �
= 0BBBB@ �1 ^ �l11 
M t1+s21+(�1)l3�2 ^ �l33 
M t2+s3+11 �1 ^ �l22 N+1 
M t1+s22+(�1)l4�2 ^ �l44 
M t2+s42(�1)l1�3 ^ �l11 N+1 
M t3+s13+�4 ^ �l33 N+1 
M t4+s33 (�1)l2�3 ^ �l22 
M t3+s2+14+�4 ^ �l44 
M t4+s44

1CCCCA ; (1)2



where we put M ti = 0 for t > m, and the upper index of the �'s denotes theform degree. This is just multiplication of 2� 2-matrices combined with exteriorproduct of di�erential forms plus suitable signs arising from the exchange ofa di�erential form with N+1, and the following rules for the multiplication ofthe M ti (coming also from matrix multiplication): M t2M s3 = M t+s+11 , M t3M s2 =M t+s+14 , M tiM sj = M t+sk(i;j) for the other values of (i; j) (k(1; 1) = 1, k(1; 2) = 2,k(2; 4) = 2, k(3; 1) = 3, k(4; 3) = 3, k(4; 4) = 4). The di�erential d̂ can bewritten d̂ = d+ [!N+1; :]g;where d is the componentwise usual exterior di�erential, i.e.d� �1 
M t11 �2N+1 
M t22�3N+1 
M t33 �4 
M t44 � = � d�1 
M t11 d�2N+1 
M t22d�3N+1 
M t33 d�4 
M t44 � ;!N+1 = �i� 0 N+1 
MN+1 
M� 0 � 2 
1DA, and [:; :]g denotes the gradedcommutator with respect to the product �. Notice that 
DA is also a di�erentialalgebra with di�erential d.3. The algebraic structure of the Mainz-Marseille approachThe central mathematical object of this approach is a certain Z2-graded Lie alge-bra with derivation contained in the Z2-graded di�erential algebra �(X)
M4C,the latter one being considered as the Z2-graded tensor product of �(X) andM4C. Even and odd parts of M = � A BC D � 2 M4C are de�ned to beM0 = � A 00 D � and M1 = � 0 BC 0 �. With the usual matrix multiplica-tion, M4C becomes a Z2-graded algebra, and with the corresponding gradedcommutator a Z2-graded Lie algebra, which we denote by pl(2; 2). The gradeddi�erential is introduced as the graded commutator with the odd element m =�i� 0 12�212�2 0 �. It is also a graded di�erential of the graded Lie subalgebrasl(2; 2) = fM 2 M4Cjtr(�0M) = 0g of pl(2; 2), where �0 = � 12�2 00 �12�2 � 2M4C. Now, it is standard to de�ne the graded tensor product �(X) 
M4C ofdi�erential algebras. Notice, in particular, that the di�erential d can be writtenin the form d(b = � 
M) = d� 
M + (�1)@�� 
 [m;M ] = db + [1 
m; b]g.It turns out that �(X) 
 spl(2; 2) � �(X) 
M4C as a graded di�erential Liesubalgebra. Now, de�ne a graded Lie subalgebra of �(X)
 spl(2; 2) by�(X)
 spl(2; 1) = fb 2 �(X)
 spl(2; 2)jb = ebeg;3



where e = 0@ 12�2 00 � 1 00 0 � 1A. Elements of �(X)
 spl(2; 1) just have zeroesin the last row and column. The di�erential d descends to a derivation (not adi�erential!) of �(X)
 spl(2; 1) given byDb = edb = db+ [1
 eme; b]g:A connection in the Mainz-Marseille approach is an expressionr = ed + awith a = �a� = 0BB@ A11 A12 �i�1 0A21 A22 �i�2 0�i�1 �i�2 B 00 0 0 0 1CCA 2 �(X)
 spl(2; 1)and Aij = � �Aji 2 �1(X), B = � �B 2 �1(X), A11 + A22 = B, �i 2 �0(X).The curvature of such a connection is de�ned by f = r2 = e(de)(de)e + Da +12 [a; a]g: Gauge transformations are de�ned on the in�nitesimal level: t(a) =a�Dt+ [t; a]g with t = �t� = 0BB@ T11 T12 0 0T21 T22 0 00 0 T33 00 0 0 0 1CCA 2 �(X)
 spl(2; 1), whereTij = � �Tji 2 �0(X) and tr(�0t) = 0. In [4], the gauge and Higgs bosons ofthe electroweak theory were uni�ed in the \connection form" a. Notice that theabove constructions may be easily generalized usingM2pC instead ofM4C, whichleads to pl(p; p), spl(p; p) etc.4. A general construction of graded Lie algebras with derivationLet us start with the following data: Let A be a unital �-algebra over C, let(�A; �; �; d) be an involutive di�erential algebra over A (�0A = A), and let E = eApbe a �nite projective right A-module with Hermitian structure (:; :)E . We putE� = 1Mk=0 Ek;where Ek = E 
A �kA:E� is a right �A-module in a natural way, and there are natural extensions of theHermitian metric to mappings (:; :)k;lE : Ek � E l �! �k+lA . Now, we de�neH = 1Mk=0 Hk; Hk = HomA(E ; Ek):4



H can be given the structure of an associative N-graded involutive algebra overC: The product � is de�ned by(�k � �l)(�) = (idE 
A �) � (�k 
A id�lA) � �l(�):idE is the unit for this multiplication, and the involution is de�ned by(�; (�k)�(�0))0;kE = (�k(�); �0)k;0E :With the graded commutator, H becomes also an N-graded Lie algebra, and itacts from the left on E�: �k � �l = (idE 
A �) � (�k 
A id�lA)(�l). Finally, there isa graded derivation DH : Hk �! Hk+1 inherited from the canonical compatibleconnection r0 on E , which stems from the di�erential d of �A:(DH�k)(�) = r0(�k(�))� (�1)k�k � (r0(�)):DH fails to be a di�erential:D2H(�) = �0 � �� � ��0;where �0 is the curvature of r0. For the curvature of a connection r = r0 + �,one obtains � = �0 +DH�+ � � �:These de�nitions have a nice matrix form: Let (�i)pi=1 be the canonical basisof Ap (�i having the unit of A as entry at the i-th place, zeroes at the otherplaces). Then, the projection e is given by e(�i) = �jeji, eji 2 A with eijejk = eik.� 2 E is characterized by (e�)i = eij�j = �i. An element � 2 Hk is characterizedby a matrix (�ij)pi;j=1, �ij 2 �kA, with eij�jkekl = �il (in short, e�e = �), themultiplication in H is given by matrix multiplication, (� � �0)ij = �ik � �0kj, andthe derivation DH is given by componentwise action of d: (DH�)ij = eikd�klelj(DH� = ed�e). Notice that (�0)ij = eikdekl � delmemj.In order to come from these general de�nition of an algebra with derivationto the algebraic structure of the Mainz-Marseille approach, we have �rst to spe-cify the data of our de�nition. For the chosen case, it is possible to introduce asuitable condition of tracefreeness on H and a certain surjective mapping whoseapplication just leads to the structures of the foregoing section. First, we take thealgebra A = C1(X)
C2 and the di�erential algebra �A = 
DA of the K-cycledescribed in the example of section 2. For this case, and for any module E , wecan construct a certain graded Lie subalgebra H0 of H as follows: We de�ne aC-linear map T� : �A �! �(X) byT��� �1 
M t11 �2N+1 
M t22�3N+1 
M t33 �4 
M t44 �� = �1 + �4:5



This is a generalized trace in the sense that T�(��[�; �0]g) = 0, where �� =� 1
 1n�n 00 �1
 1n�n � 2 A. Now, we de�ne TH : H �! �(X) byTH(�) = pXi=0 T�(���ii);which is also a generalized trace: TH([�; �0]g) = 0. Therefore, H0 = L1k=0Hk0 ,Hk0 = f� 2 HkjTH(�) = 0g; is a graded Lie subalgebra of H.Recall that there are two di�erentials d̂ and d on 
DA. For both we canconstruct, using the corresponding compatible connections r̂0 and r0, gradedderivations D̂H and DH of H, which turn out to be also graded derivations of H0.They are related by D̂H� = DH�+ [�; �]g;where � = e(1p�p 
 !N+1)e 2 H1.To come to the Mainz Marseille setting, we now have to perform two steps:1. In matrix representation, elements of H are p � p-matrices with entries from�A � �(X) 
 End(Cn) 
M2C. We treat them now as 2 � 2-matrices withentries from �(X)
 End(Cn) 
MpC. This is just going from one standardrepresentation of a Kronecker product of matrices to the other one. Moreover,we can remove the N+1 without loosing information. Thus, we get an injectioni : �A 
MpC �! �(X)
MpC
 End(Cn)
M2Cof vector spaces. Elements of i(�kA 
MpC) have the form� Ak�2t11 
M t11 Ak�2t2�12 
M t22Ak�2t3�13 
M t33 Ak�2t44 
M t44 �with Alq 2 �l(X) 
MpC. Moreover, we have i(e) = � e1 00 e4 � with eq =e2q = e�q 2 C1(X)
MpC. Elements of i(H) are characterized by A1 = e1A1e1,A2 = e1A2e4, A3 = e4A3e1, A4 = e4A4e4, those of i(H0) in addition bytrA1 = trA4. Transporting the product � of H leads to a product of thesame form as in �A = 
DA, formula (1). One has to replace there � �! A,� �! B, one has to omit N+1 and one has to interprete ^ as exterior productof forms combined with multiplication of p� p-matrices.2. We de�ne a surjection p : i(�A 
MpC) �! �(X)
M2pC byp� A1 
M t11 A2 
M t22A3 
M t33 A4 
M t44 � = � A1 A2A3 A4 � :6



Theorem 1(i) p � i(H0) = fb 2 �(X)
 spl(p; p)jb = ebegwith e = i(e) = � e1 00 e4 � (see above).(ii) (p � i(�))� = p � i(��), � 2 H.(iii) p � i([�k; �l]g) = [p � i(�k);p � i(�k)]g for k + l � 2m+ 1, �k 2 Hk, �l 2 Hl.(iv) p � i(D̂H(�k)) = D(p � i(�k)) for k � 2m, �k 2 Hk.Notice that also the analogue p � i(DH(�k)) = d(p � i(�k)) of (iv) is true.The theorem says that p � i is a partial homomorphism of Z2-graded in-volutive Lie algebras with derivation. This mapping is not injective on H orH0, its restriction, however, to any sum of subsequent homogeneous compo-nents (�kA � �k+1A ) 
MpC is injective. Since we assume MM� =2 C1, we havem � 1. Therefore, in particular, p is a monomorphism on the graded Lie sub-algebra i(H0 � H1), and it commutes with the derivation of elements of i(H0)and i(H1). However, under the application of p the N-grading of i(H) is lostand only a Z2-grading remains. It is now easy to see, that we arrive at the alge-braic setting of the Mainz-Marseille approach starting with the choice p = 2 ande = 0BB@ � 1 00 1 � 00 � 1 00 0 � 1CCA. Using the above theorem, it is almost obviousthat under the mapping p � i the geometric objects living in the projective mod-ule E = eA2 are transformed into corresponding objects of the Mainz-Marseillescheme. In particular, due to the partial injectivity of p � i discussed above, noinformation about the objects relevant for gauge theories (connections and cur-vatures) is lost. Moreover, the scheme is completed by giving a natural de�nitionof the (nonin�nitesimal) gauge group and of the module where the connectionacts.References[1] A. Connes, Essay on Physics and Non-commutative Geometry,preprint IHES/M/89/69.[2] A. Connes, Non commutative geometry, Academic Press, New York 1994.[3] A. Connes and J. Lott, The Metric Aspect of Noncommutative Geometry, Proceed-ings of 1991 Cargese summer conference, ed. by J. Fr�ohlich et al. (Plenum, NewYork 1992).[4] R. Coquereaux, G. Esposito{Far�ese and F. Scheck, Noncommutative Geometry andGraded Algebras in Electroweak Interactions, Int. J. Mod. Phys. A 7 (1992) 6555{6593.[5] R. Matthes, G. Rudolph and R. Wulkenhaar, On the structure of a di�erentialalgebra used by Connes and Lott, Rep. Math. Phys. 38 (1996) 45-66.7
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8


