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We sketch our proof that the real Euclidean φ4-model on the four-dimensional Moyal
plane is renormalisable to all orders. The bare action of relevant and marginal couplings
of the model is parametrised by four (divergent) quantities which require normalisation
to the experimental data. The corresponding physical parameters are the mass, the field
amplitude (to be normalised to 1), the coupling constant and—in addition to the commu-
tative version—the frequency of a harmonic oscillator potential.
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1 Introduction

In recent years there has been considerable interest in quantum field theories
on the Moyal plane characterised by the ⋆-product

(a ⋆ b)(x) :=

∫

d4y
d4k

(2π)4
a(x+ 1

2θ·k)b(x+y) eiky , θµν = −θνµ ∈ R . (1)

The interest was to a large extent motivated by the observation that this kind of field
theories arise in the zero-slope limit of open string theory in presence of a magnetic
background field [1]. A few months later it was discovered [2] (first for scalar models)
that these noncommutative field theories are not renormalisable beyond a certain
loop order due to the mixing of ultraviolet and infrared divergences. A more rigorous
explanation was given in [3] where the problem was traced back to divergences
in some of the Hepp sectors which correspond to disconnected ribbon subgraphs
wrapping the same handle of a Riemann surface.

We have proven in [4, 5] that the φ4-model on the four-dimensional Moyal plane
is renormalisable to all orders. Our proof rests on two concepts:

– the use of the harmonic oscillator base of the Moyal plane, which avoids the
phase factors appearing in momentum space,

– the renormalisation by flow equations.

The renormalised φ4-model corresponds to the classical action

S =

∫

d4x
(1

2
∂µφ ⋆ ∂µφ +

Ω2

2
(x̃µφ) ⋆ (x̃µφ) +

µ2
0

2
φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) , (2)
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with x̃µ := 2(θ−1)µν xν . The appearance of the harmonic oscillator term Ω2

2 (x̃µφ) ⋆

(x̃µφ) in the action (2) is a result of the renormalisation proof.

2 The φ4-action in the matrix base

Expanding the fields φ(x) =
∑

m,n∈N2 φmnbmn(x) in the matrix base (harmonic
oscillator base) of the Moyal plane (see e.g. [6]), the action (2) takes the form

S = (2πθ)2
∑

m,n,k,l∈N2

(1

2
φmnGmn;klφkl +

λ

4!
φmnφnkφklφlm

)

, (3)

Gm1

m2
n1

n2 ; k1

k2
l1

l2

=
(

µ2
0+

2+2Ω2

θ
(m1+n1+m2+n2+2)

)

δn1k1δm1l1δn2k2δm2l2

− 2−2Ω2

θ

(
√

k1l1 δn1+1,k1δm1+1,l1+
√

m1n1 δn1−1,k1δm1−1,l1
)

δn2k2δm2l2

− 2−2Ω2

θ

(
√

k2l2 δn2+1,k2δm2+1,l2+
√

m2n2 δn2−1,k2δm2−1,l2
)

δn1k1δm1l1 .

(4)

We assume for simplicity that θ12 = −θ21 = θ34 = −θ43 are the only non-vanishing
components.

The quantum field theory is constructed as a perturbative expansion about the
free theory, which is solved by the propagator ∆mn;kl, the inverse of Gmn;kl. After
diagonalisation of Gmn;kl (which leads to orthogonal Meixner polynomials) and the
use of identities for hypergeometric functions one arrives at

∆m1

m2
n1

n2 ; k1

k2
l1

l2

=
θ

2(1+Ω)2

m
1+l

1

2
∑

v1= |m1−l1|
2

m
2+l

2

2
∑

v2= |m2−l2|
2

B
(

1+
µ2

0θ

8Ω +1
2 (m1+k1+m2+k2)−v1−v2, 1+2v1+2v2

)

× 2F1

(

1+2v1+2v2 ,
µ2

0θ

8Ω − 1
2 (m1+k1+m2+k2)+v1+v2

2+
µ2

0θ

8Ω +1
2 (m1+k1+m2+k2)+v1+v2

∣

∣

∣

∣

(1−Ω)2

(1+Ω)2

)

(1−Ω

1+Ω

)2v1+2v2

×
2

∏

i=1

δmi+ki,ni+li

√

(

ni

vi+ni−ki

2

)(

ki

vi+ki−ni

2

)(

mi

vi+mi−li

2

)(

li

vi+ li−mi

2

)

. (5)

It is important that the sums in (5) are finite.

3 Renormalisation group approach to dynamical matrix models

The (Euclidean) quantum field theory is defined by the partition function

Z[J ] =

∫

D[φ] exp
(

− S[φ] − (2πθ)2
∑

m,n

φmnJnm

)

. (6)

The idea inspired by [7] is to change the weights of the matrix indices in the
kinetic part of S[φ] as a smooth function of an energy scale Λ and to compensate
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this by a careful adaptation of the effective action L[φ, Λ] such that Z[J ] becomes
independent of the scale Λ. If the modification of the weights of a matrix index
m ∈ N is described by a function K

(

m
θΛ2 ), then the required Λ-dependence of the

expansion coefficients of the effective action

L[φ, Λ] =

∞
∑

V =1

λV

2V +2
∑

N=2

(2πθ)
N

2
−2

N !

∑

m1,ni∈N2

A(V )
m1n1;...;mN nN

[Λ]φm1n1
· · ·φmN nN

. (7)

is described by a differential equation for ribbon graphs :

Λ
∂

∂Λ
_^]\XYZ[ oo

//

�� ??

__��

..
.

.

.

.

.

.

..

.

.

.

.

.

. .
.

n1

m1

n2
m2

mN

nN

=
1

2

∑

m,n,k,l

N−1
∑

N1=1

_^]\XYZ[ _^]\XYZ[oo
//

�� __ �� ??

aa!!??��

:::::::: : : ::::::::
m1

n1

nN1

mN1
mN1+1

nN1+1

nNmN

k

l

n

m
− 1

4πθ

∑

m,n,k,l

_^]\XYZ[��

RR

�� __ �� ??

aa!!??��

:::::::: : :::::::::
m1

n1

ni−1

mi−1

mi

ni

nN
mN

n m

k l

(8)

An internal double line
oo

//
n

lm

k

symbolises the propagator

Qmn;kl(Λ) := Λ
∂

∂Λ

(

∏

i∈m1,m2,...,l1,l2

K
( i

θΛ2

)

∆mn;kl(Λ)

)

. (9)

In this way, very complicated ribbon graphs can be produced which cannot be
drawn any more in a plane. Ribbon graphs define a Riemann surface on which they
can be drawn. The Riemann surface is characterised by its genus g computable via
the Euler characteristic of the graph, g = 1 − 1

2 (L − I + V ), and the number B of
holes. Here, L is the number of single-line loops if we close the external lines of the
graph, I is the number of double-line propagators and V the number of vertices.
The number B of holes coincides with the number of single-line cycles which carry
external legs. Accordingly, we also label the expansion coefficients in (7) by the

topology, A
(V,B,g)
m1n1;...;mN nN

.
We have proven in [4] a power-counting estimation for these coefficients which

relates the Λ-scaling of a ribbon graph to the topology of the graph and to two
asymptotic scaling dimensions of the differentiated cut-off propagator Qmn;kl(Λ).
As a result, if these scaling dimensions coincide with the classical momentum space
dimensions, then all non-planar graphs are suppressed by the renormalisation flow.
This is a necessary requirement for the renormalisability of a model. On the other

hand, as the expansion coefficients A
(V )
m1n1;...;mN nN

[Λ] carry an infinite number of
matrix indices, the general power-counting estimation proven in [4] leaves, a pri-
ory, an infinite number of divergent planar graphs. These planar graphs require a
separate analysis which has to be performed model by model.
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4 Renormalisation of the noncommutative φ4-model

The key is the integration procedure of the Polchinski equation (8), which in-
volves the entire magic of renormalisation. We consider the example of the planar

one-particle irreducible four-point function with two vertices, A
(2,1,0)1PI
m1n1;...;mN nN

. The
Polchinski equation (8) provides the Λ-derivative of that function:

Λ
∂

∂Λ
A

(2,1,0)1PI
mn;nk;kl;lm[Λ] =

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p



 (Λ) + permut’s . (10)

Performing the Λ-integration of (10) from some initial scale Λ0 (sent to ∞ at the

end) down to Λ, we obtain A
(2,1,0)1PI
mn;nk;kl;lm[Λ] ∼ ln Λ0

Λ , which diverges for Λ0 → ∞.
Renormalisation can be understood as the change of the boundary condition for the
integration. Thus, integrating (10) from a renormalisation scale ΛR up to Λ, we have

A
(2,1,0)1PI
mn;nk;kl;lm[Λ] ∼ ln Λ

ΛR
, and there would be no problem for Λ0 → ∞. However,

since there is an infinite number of matrix indices and there is no symmetry which
could relate the amplitudes, that integration procedure entails an infinite number

of initial conditions A
(2,1,0)1PI
mn;nk;kl;lm[ΛR]. To have a renormalisable model, we can only

afford a finite number of integrations from ΛR up to Λ. Thus, the correct choice is

A
(2,1,0)1PI
mn;nk;kl;lm[Λ]

= −
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l
0 0

0 0

p p



[Λ′]

+
�� ?? �� __

??��__��
m

m
k

k

n n

l l 



∫ Λ

ΛR

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??
0

0

0

0

0 0

0 0

p p



[Λ′] + A
(2,1,0)1PI
00;00;00;00[ΛR]



 .

(11)

The second graph in the first line on the rhs and the graph in brackets in the last
line are identical, because only the indices on the propagators determine the value
of the graph. Moreover, the vertex in the last line in front of the bracket equals
1. Thus, differentiating (11) with respect to Λ we obtain indeed (10). As a further
check one can consider (11) for m = n = k = l = 0. Finally, the independence of

A
(2,1,0)1PI
mn;nk;kl;lm[Λ0] on the indices m, n, k, l is built-in. This property is, for Λ0 → ∞,

dynamically generated by the model.
There is a similar Λ0-ΛR-mixed integration procedure for the planar 1PI two-

point functions A
(V,1,0)1PI
m1

m2
n1

n2 ; n1

n2
m1

m2

, A
(V,1,0)1PI
m1+1

m2
n1+1

n2 ; n1

n2
m1

m2

, A
(V,1,0)1PI

m1

m2+1

n1

n2+1
; n1

n2
m1

m2

and all other A
(V,1,0)1PI
mn;nk;kl;lm.

These involve in total four different sub-integrations from ΛR up to Λ. We refer to
[5] for details. All other graphs are integrated from Λ0 down to Λ, e.g.

A(2,2,0)1PI
m1n1;...;m4n4

[Λ] = −
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2









oo
//

�� OO

//
oo

OO��

oo
//

��
OO

m4

n4

m1
n1

n2

m2

m3

n3

p









[Λ′] . (12)
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Theorem 1 The previous integration procedure yields

∣

∣A(V,B,g)
m1n1;...;mN nN

[Λ]
∣

∣

≤
(
√

θΛ
)(4−N)+4(1−B−2g)

P 4V −N
[max(‖m1‖, ‖n1‖, . . . ‖nN‖)

θΛ2

]

P 2V −N

2

[

ln
Λ

ΛR

]

,

(13)

where P q[X ] stands for a polynomial of degree q in X.

Idea of the proof. For the choice K(x) = 1 for 0 ≤ x ≤ 1 and K(x) = 0 for x ≥ 2
of the cut-off function in (9) one has

|Qmn;kl(Λ)| <
C0

ΩθΛ2
δm+k,n+l . (14)

Thus, the propagator and the volume of a loop summation have the same power-
counting dimensions as a commutative φ4-model in momentum space, giving the
total power-counting degree 4 − N for an N -point function.

This is (more or less) correct for planar graphs. The scaling behaviour of non-
planar graphs is considerably improved by the quasi-locality of the propagator:

-10
-5

0

5

10

0

5

10

15

20

0

0.05

0.1

0.15

0

0.05

0.1

6

XXXXz
���1

θ−1∆ 10
0

10+α

0
;
l+α

0
l

0

α

lΩ = 0.1 µ0 = 0
(15)

As a consequence, for given index m of the propagator Qmn;kl(Λ) =
oo

//
n

lm

k

, the

contribution to a graph is strongly suppressed unless the other index l on the
trajectory through m is close to m. Thus, the sum over l for given m converges and
does not alter (apart from a factor Ω−1) the power-counting behaviour of (14):

∑

l∈N2

(

max
n,k

|Qmn;kl(Λ)|
)

<
C1

θΩ2Λ2
. (16)

In a non-planar graph like the one in (12), the index n3—fixed as an external
index—localises the summation index p ≈ n3. Thus, we save one volume factor
θ2Λ4 compared with a true loop summation as in (11). In general, each hole in the
Riemann surface saves one volume factor, and each handle even saves two.

A more careful analysis of (5) shows that also planar graphs get suppressed

with
∣

∣Qm1

m2
n1

n2 ; k1

k2
l1

l2

(Λ)
∣

∣ < C2

ΩθΛ2

∏2
i=1

(max(mi,li)+1
θΛ2

)

|mi−l
i|

2 , for mi ≤ ni, if the in-

dex along a trajectory jumps. This leaves the functions A
(V,1,0)1PI
mn;nk;kl;lm, A

(V,1,0)1PI
m1

m2
n1

n2 ; n1

n2
m1

m2

,
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A
(V,1,0)1PI
m1+1

m2
n1+1

n2 ; n1

n2
m1

m2

and A
(V,1,0)1PI

m1

m2+1

n1

n2+1
; n1

n2
m1

m2

as the only relevant or marginal ones. In

these functions one has to use a discrete version of the Taylor expansion such as

∣

∣

∣Qm1

m2
n1

n2 ; n1

n2
m1

m2

(Λ) − Q 0

0

n1

n2 ; n1

n2
0

0

(Λ)
∣

∣

∣ <
C3

ΩθΛ2

(max(m1, m2)

θΛ2

)

, (17)

which can be traced back to the Meixner polynomials. The discrete Taylor subtrac-
tions are used in the integration from Λ0 down to Λ in prescriptions like (11):

−
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n
0 0

0 0

p p



[Λ′]

=

∫ Λ0

Λ

dΛ′

Λ′

∫ Λ0

Λ′

dΛ′′

Λ′′

∑

p∈N2

(

(Qnp;pn − Q0p;p0)(Λ
′)Qlp;pl(Λ

′′)

+ Q0p;p0(Λ
′)(Qlp;pl − Q0p;p0)(Λ

′′)
)

∼ C(‖n‖ + ‖l‖)
θΩ2Λ2

.

(18)

This explains the polynomial in fractions like ‖m‖
θΛ2 in (13). �

As the estimation (13) is achieved by a finite number of initial conditions at ΛR

(see (11)), the noncommutative φ4-model with oscillator term is renormalisable to
all orders in perturbation theory. These initial conditions correspond to normalisa-
tion experiments for the mass, the field amplitude, the coupling constant and the
oscillator frequency in the bare action related to (2).

We have proven renormalisability of the two-dimensional case in [6], where the
oscillator frequency required in intermediate steps can be switched off at the end.
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