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Abstract

We review a sequence of papers in which we construct the λφ?44 -model and the
λφ?32,4,6-models on noncommutative Moyal space by a common method. Thereby
we show that not only the Kontsevich model λΦ3 but also the λΦ4

4-model is
integrable in a certain scaling limit which corresponds to infinitely large Moyal
deformation parameter. Surprisingly, this limit gives rise to Schwinger functions
on commutative Euclidean space. Our explicit formulae permit us to discuss
reflection positivity of these Schwinger functions.
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1. Introduction

The programme which we are going to review goes back to the influen-
tial paper [CDS98] by Connes, Douglas and Schwarz in which they proposed
to compactify M-theory on the noncommutative torus. This paper, together
with the prior analysis of Yang-Mills theory on noncommutative tori by Connes
and Rieffel [CR87], motivated the one-loop computation of quantum Yang-Mills
theory on the noncommutative 4-torus [KW99]. The Connes-Douglas-Schwarz
paper also led Schomerus [Sch99] and shortly later Seiberg and Witten [SW99]
to their discoveries that quantum field theories on noncommuatiative geometries
arise in certain limits of string theory in presence of magnetic background fields.
In this setting, Minwalla, van Raamsdonk and Seiberg demonstrated [MVS99]
that quantum field theories on noncommutative spaces generate a severe prob-
lem in higher loop order (UV/IR-mixing). The mechanism was thoroughly
analysed in two papers by Chepelev and Roiban [CR99, CR00].
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20 years after [CDS98] it is time to look back. In the beginning of the century
it seemed a fact that quantum field theories on noncommutative geometries are
pathological. Today we know the opposite is true: The tools of noncommutative
geometry [Con94] allow us to do something in the noncommutative regime what
ordinary quantum field theory would dream to do: a rigorous construction in
four dimensions. This contribution tries to review the main steps. We would like
to thank Alain for having uncovered the wonderful world of noncommutative
geometry, for the encouraging atmosphere in the community and for his support
throughout these two decades. Happy birthday Alain, and may many more
follow.

2. First steps

In 2002 we started a renormalisation group approach [Pol84] to the UV/IR-
mixing problem in the matrix basis [GV88] of the Moyal space. In this basis the
Laplacian is represented by a kernel operator ∆kl;mn which contains a local in-
teraction and nearest-neighbour interaction. We found that the local part alone
would produce a well-defined power-counting behaviour, which however is des-
troyed by the the nearest-neighbour interaction. Scaling the nearest-neighbour
interaction down by a factor 0 < ω < 1 cures the UV/IR-mixing problem. The
kernel operator with reduced nearest-neighbour interaction corresponds to the
harmonic oscillator Schrödinger operator HΩ = −∆ + 4Ω2‖Θ−1x‖2 instead of
the Laplacian −∆, where Θ is the deformation matrix which defines the Moyal
product ?, and 0 < Ω ≤ 1. Working out the details, we proved:

Theorem 1 ([GW05b]+[GW05a]). Let ? be the Moyal product between
functions on R4 and HΩ the harmonic oscillator Schrödinger operator. Then
the scalar Euclidean quantum field theory defined by the action functional

S(φ) =

∫
R4

dx
(Z

2
φ(HΩ + µ2)φ+

Z2λ

4
φ ? φ ? φ ? φ

)
(x) (1)

is renormalisable to all orders in perturbation theory.

This anounts to prove (in the class of formal power series in λ) that there
exists a suitable dependence of Z, µ, λ,Ω on cut-off and normalisation conditions
such that all correlation functions are well-defined. Translation invariance is
explicitly broken, but will be recovered in a certain limit discussed in this review.
On the other hand, the action is covariant under a duality found by Langmann
and Szabo [LS02].

The one-loop renormalisation group flow of the coupling constant λ and of
the harmonic oscillator frequency Ω was computed in [GW04]. This flow leaves

the ratio Ω2

λ constant. Since Ω flows into the UV-fixed point Ω∗ = 1, the
flow of the coupling constant is bounded, i.e. there is (at one-loop) no Landau
ghost in the scalar λφ?44 -model [GW05c]! This observation gave rise to the hope
that the noncommutative λφ?44 -model can eventually be constructed. The first
step along the usual construction strategy [Riv91], the multiscale analysis of
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the λφ?44 -model, was achieved in [RVW06]. Later a novel construction scheme,
the loop vertex expansion [Riv07], which combines the Hubbard-Stratonovich
transform with the BKAR forest formula [AR95], was developed for this purpose
and used to rigorously construct the λφ?42 -model [Wan12].

The most important achievement started with a remarkable three-loop com-
putation of the β-function of the coupling constant by Disertori and Rivasseau
[DR07] in which they confirmed that at Ω = 1, β vanishes to three-loop or-
der. Eventually, Disertori, Gurau, Magnen and Rivasseau proved in [DGMR07]
that the β-function vanishes to all orders in perturbation theory. The key step
consists in an ingenious combination of Ward identities with Schwinger-Dyson
equations. We felt that the result of [DGMR07] goes much deeper: Using these
tools it must be possible to solve the model!

3. From field theory on Moyal space to matrix models

The Moyal product in D dimensions is defined by the oscillatory integral

(f ? g)(x) :=

∫
RD×RD

dy dk

(2π)D
f(x+ 1

2Θ · k) g(x+ y)ei〈k,y〉 , (2)

where Θ ∈ MD(R) is skew-adjoint. It falls into the class of strict deforma-
tion quantisations by RD-action introduced by Rieffel [Rie93]. The following
functions give rise to a convenient matrix basis [GV88]:

fmn(x) := fm1n1
(x1 + ix2) · · · fmD/2nD/2(xD−1 + ixD) ,

fmn(z) = 2(−1)m
√
m!

n!

(√2

θ
z
)n−m

Ln−mm

(2|z|2)

θ

)
e−
|z|2
θ , m, n ∈ N. (3)

Here m = (m1, . . . ,mD/2), a deformation matrix Θ =

(
0 θ
−θ 0

)
⊗ ID

2 ×
D
2

is

assumed, the Lαm(t) are associated Laguerre polynomials of degree m in t and
(x1, x2) is identified with z = x1 + ix2. These functions satisfy (fkl ? fmn)(x) =

δmlfkn(x) and
∫
RD dx fmn(x) =

√
|det(2πΘ)|δmn. Coincidently, these functions

are also eigenfunctions (H1fmn)(x) = Hmnfmn(x) of the harmonic oscillator
Schrödinger operator H1 at frequency Ω = 1 with eigenvalues Hmn = 4

θ (|m| +
|n| + D

2 ), where |m| := m1 + · · · + mD/2. Viewing the fmn as matrix bases
and expanding scalar fields as φ(x) =

∑
m,n∈ND/2 Φmnfmn(x), the following

representation of a general class of action functionals for scalar fields is achieved:

S(φ) =
1

(8π)
D
2

∫
RD

dx
(1

2
φ ? H1(φ) +

s∑
p=1

λp
p
φ?p
)

(x)

= V Tr
(
EΦ2 +

s∑
p=1

λp
p

Φp
)
, V :=

(θ
4

)D
2

, (4)

where E = (Emδmn), with Em := 4
θ (|m|+ D

4 ), with respect to the matrix basis.
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We define quantum field theory via its Euclidean approach, which to
an action functional S(Φ), bounded from below, assigns a formal measure
dν(Φ) := 1

Z e
−S(Φ)DΦ. Such a measure can only make sense after regularisation

which in our case consists in a restriction to finite matrix size n ∈ ND/2N :=
{k ∈ ND/2 : |k| ≤ N} of any multiple matrix index. On the space of such
matrices, DΦ =

∏
n,m∈ND/2N

dφmn is then a well-defined Lebesque measure (pos-

sibly further restricted by symmetry requirements such as Φ = Φ∗). Candidate
Schwinger functions are the moments of such a measure dν(Φ), which are con-
veniently generated by the Fourier transform Z[J ] :=

∫
dν(Φ) exp(iV Tr(JΦ)),

where J is a matrix which is either finite or has rapidly decaying entries. Up to
an irrelevant constant, the Fourier transform can be evaluated symbolically to

Z(J) = exp
(
− V

s∑
p=1

λp
p(iV )p

∑
n1,...,np

∂p

∂Jn1n2
· · · ∂Jnp−1np∂Jnpn1

)
Zfree(J) ,

Zfree(J) = exp
(
− V

2

∑
m,n

JmnJnm
Em + En

)
. (5)

The task of a quantum field theory consists in constructing the limit of the first
line of (5) for removed regulator, in our case the limit N → ∞ and possibly
removed oscillator potential. Such a construction involves a careful choice –
called renormalisation – of the parameters (e.g. µ,Z, λp) in the action as function
of the cut-off. This is a very difficult programme which rigorously succeeded in
very few cases. Often the only achievement is the construction of the limit as a
formal power series in λp.

For dynamical matrix models of the type (4) the construction programme
can be pushed much further than in standard quantum field theory. A famous
example is the Kontsevich model [Kon92] given by s = 3 in (4) and Φ = Φ∗ ∈
MN (C). The Kontsevich model is of paramount importance because it elegantly
proves Witten’s conjecture [Wit91] about the equivalence of two approaches to
quantum gravity in two dimensions: the Hermitean one-matrix model versus
the intersection theory on the moduli space of Riemann surfaces. See [Wit92].
By a shift of the matrix Φ a standard form Tr(YM + i

6M
3) of the action can be

achieved. Diagonalisation M = U∗XU with X = diag(x1, x2, . . . ) and Jacobian

dM = (2π)N(N−1)/2∏N
p=1 p!

(∏
j<i(xi−xj)2

)(∏N
i=1 dxi

)
dU gives rise to an integral over

the unitary group U(N ) which is evaluated by the Harish-Chandra–Itzykson–
Zuber formula. The remaining integral over the eigenvalues xi can be treated
by several methods. One particularly elegant approach uses the fact that these
integrals are unchanged under diffeomorphisms of xi generated by xn+1

i
d
dxi

.
The corresponding Virasoro constraints all descend from a master constraint
which was solved by Makeenko-Semenoff [MS91]. We come back to this point
in section 5.

A similar approach for the quartic model given by s = 4 in (4) does not seem
to work. Inspired by Disertori et al [DGMR07] we developed in [GW14a] a new
solution strategy for the quartic model. Later it turned out that this strategy
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can also be applied to the cubic Kontsevich model where it yields a complete
and explicit solution [GSW17, GSW18].

Our strategy relies on the observation that the Fourier transform Z(J) =∫
dν(Φ) exp(iV Tr(JΦ)) of the formal measure is invariant under a renaming

Φ 7→ U∗ΦU . This gives rise to constraints

0 =
∑
n∈N

D
2

( (Ep − Ea)

V

∂2Z
∂Jan∂Jnp

+ Jpn
∂Z
∂Jan

− Jna
∂Z
∂Jnp

)
. (6)

These constraints were already obtained in [DGMR07]; they can be regarded as
analogues of the Virasoro constraints in the Kontsevich model. In a later step
it will be essential that p 7→ Ep is injective. Strictly speaking this is not the

case for D > 2 but can be achieved by passing to the 1-norms |p| at expense of
a measure that reflects the multiplicities.

To use the constraints (6) we need to collect some topological information.
The partition function Z(J) of a matrix model is formally a sum over discon-
nected ribbon graphs. Passing to the logarithm logZ(J) amounts to restrict to
connected ribbon graphs. Viewed as simplicial complex, a ribbon graph encodes
the topology (B, g) of a genus-g Riemann surface with B disconnected boundary
components tBβ=1S1. Every boundary circle S1 carries a cycle of source matrices

J , i.e. a Nβ-fold cyclic product Jpi...pNβ :=
∏Nβ
i=1 Jpipi+1 with Nβ + 1 ≡ 1. Con-

sequently, logZ(J) has an expansion according to the boundary structure:

log
Z(J)

Z(0)
=

∞∑
B=1

∞∑
1≤N1≤···≤NB

∑
p1

1,p
1
2,...,p

B
NB
∈N

D
2

V 2−B

SN1...NB

G|p1
1...p

1
N1
|...|pB1 ...pBNB |

×
B∏
β=1

Jpβ1 ...pβNβ
(−i)NβNβ

. (7)

The symmetry factor SN1...NB is obtained as follows: If νi of the B numbers Nβ
in a given tuple (N1, . . . , NB) are equal to i, then SN1...NB =

∏NB
i=1 νi!.

As long as we work with finite matrices we can interpret (7) as a definition of
G|p1

1...p
1
N1
|...|pB1 ...pBNB |

. Differentiations with respect to several Jab, simultaneously

applied to (5) and to (7), give rise to identities called Schwinger-Dyson equa-
tions. They are the quantum analogue of equations of motion. In addition we
have constraints resulting from (6). At that point we change the perspective and
declare the quantum field theory as defined by the functions G|p1

1...p
1
N1
|...|pB1 ...pBNB |

together with the previously derived identities between them. The advantage of
this point of view is that the limit of removed regularisation is much easier for
these equations than for the measure dν(Φ). We will show in the sequel that, at
least in examples, the Schwinger-Dyson equations plus constraints completely
fix the weight functions G|p1

1...p
1
N1
|...|pB1 ...pBNB |

and thereby construct the quantum

field theory.
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A key step for this construction consists in turning the constraint (6) into

a formula for the second derivative
∑
n∈ND/2

∂2Z(J)
∂Jan∂Jnp

of the partition func-

tion, thus giving new relations for G.... We have to identify the kernel of
multiplication by (Ep − Ea). For injective m 7→ Em this kernel is given by

Wa(J)Z(J)δap for some function Wa(J). This function is identified by inserting

(7) into
∑
n∈ND/2

∂2Z(J)
∂Jan∂Jnp

and carefully registering the possibilities which give

rise to a factor δap. We find the following Ward-Takahashi identity [GW14a]:

Theorem 2.

−
∑
n∈N

D
2

∂2Z(J)

∂Jan∂Jnp
= δapWa(J)Z(J) +

V

Ep−Ea

∑
n∈N

D
2

(
Jpn

∂Z(J)

∂Jan
−Jna

∂Z(J)

∂Jnp

)
,

(8)

Wa(J) := V 2
∑
(K)

JP 1 · · · JPK
S(K)

( ∑
n∈ND/2

G|an|P 1|...|PK |

V K+1
+
G|a|a|P 1|...|PK |

V K+2

+
∑
r≥1

∑
q1,...,qr∈ND/2

G|q1aq1...qr|P 1|...|PK |Jq1...qr

V K+1

)

+ V 4
∑

(K),(K′)

JP 1 · · ·JPKJQ1 · · ·JQK′

S(K)S(K′)

G|a|P 1|...|PK |

V K+1

G|a|Q1|...|QK′ |

V K′+1
.

The sums over (K) stand for
∑

(K) =
∑∞
K=1

∑
P 1,...PK , where every P β is a

chain of multiple matrix indices P β = pβ1 . . . p
β
Nβ

of length Nβ. Similarly for Qβ

and (K ′). The symmetry factor is S(K) := SN1...NK

∏K
β=1(−i)NβNβ.

Formula (8) is the core of our approach. It is a consequence of the unitary
group action and the cycle structure of the partition function. The importance
lies in the fact that the formula allows to kill two J-derivatives in the partition
function. As we describe below, this is the key step in breaking up the tower of
Schwinger-Dyson equations.

4. Solution of the λΦ4-model

4.1. Schwinger-Dyson equations

We consider the quartic interaction s = 4 in (4). After a shift of Φ we can
assume λ3 = 0, and λ2 = 0 and λ1 = 0 can be assumed after redefinition of E

and J . From (7) we deduce G|ab| = −1
VZ(0)

∂2Z(J)
∂Jba∂Jab

∣∣
J=0

for the 2-point function

at a 6= b. Applying these derivatives to (5) gives

G|ab| =
1

Ea + Eb
− λ4

V 3(Ea + Eb)Z(0)

∑
p,n∈N

D
2

∂2

∂Jpb∂Jba

∂2

∂Jan∂Jnp
Z(J)

∣∣∣
J=0

.

(9)
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The two rightmost derivatives are expressed by the Ward-Takahashi identity
(8); then the remaining two derivatives are easily evaluated and give [GW14a]:

G|ab| =
1

Ea + Eb
− λ4

Ea + Eb

1

V

∑
p∈N

D
2

(
G|ab|G|ap| −

G|pb| −G|ab|
Ep − Ea

) }
(10a)

− λ4

V 2(Ea + Eb)

(
G|a|a|G|ab| +

1

V

∑
n∈N

D
2

G|an|ab|

+G|aaab| +G|baba| −
G|b|b| −G|a|b|
Eb − Ea

)
 (10b)

− λ4

V 4(Ea + Eb)
G|a|a|ab| .

}
(10c)

It can be checked [GW14a] that in a genus expansion G... =
∑∞
g=0 V

−2gG(g)
...

precisely the line (10a) preserves the genus, the lines (10b) increase g 7→ g + 1,
and the line (10c) increases g 7→ g + 2.

We will not rely on a genus expansion. Instead we consider a scaling limit
V → ∞ such that the densitised index summation 1

V

∑
p∈ND/2 remains finite.

Then the exact Schwinger-Dyson equation for G|ab| coincides with its restriction

(10a) to the planar sector g = 0 – a closed non-linear equation for G
(0)
|ab| alone.

Nonetheless a non-trivial topology survives: The higher boundary components
B ≥ 2 are not suppressed; and in fact these contributions from B ≥ 2 make the
model interesting!

By similar calculation we derive the Schwinger-Dyson equation for higher N -
point functions. This expresses the N -point function G|ab1...bN−1| in terms of its

summation
λ4

Ea + Eb1

1

V

∑
p∈ND/2

(
G|ap|G|ab1...bN−1|−

G|pb1...bN−1| −G|ab1...bN−1|

Ep − Ea

)
and several other functions [GW14a]. It turns out that a real theory with
Φ = Φ∗ admits a short-cut which directly gives the higher N -point func-
tions without any index summation. Since the equations for G... are real
and Jab = Jba, the reality Z = Z implies invariance under orientation re-
versal G|p1

1p
1
2...p

1
N1
|...|pB1 pB2 ...pBNB |

= G|p1
1p

1
N1
...p1

2|...|pB1 pBNB ...p
B
2 |. These identities

lead to many cancellations which result in a universal algebraic recursion for-
mula [GW14a]:

Theorem 3. Given a quartic matrix model S[Φ] = V tr(EΦ2 + λ4

4 Φ4) on D-
dimensional Moyal space with harmonic oscillator hamiltonian. Then in a scal-
ing limit V → ∞ with 1

V

∑
p∈ND/2 finite, the (B = 1)-sector of logZ is given

by

G|ab| =
1

Ea + Eb
− λ4

Ea + Eb

1

V

∑
p∈N

D
2

(
G|ab|G|ap| −

G|pb| −G|ab|
Ep − Ea

)
, (11a)
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G|b0b1...bN−1| (11b)

= (−λ4)

N−2
2∑
l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| −G|b2lb1...b2l−1|G|b0b2l+1...bN−1|

(Eb0 − Eb2l)(Eb1 − EbN−1
)

.

Corollary 4. If the 2-point function can be normalised by an affine transform-
ation E 7→ ZE + C together with a corresponding rescaling λ4 7→ Z2λ4 of the
coupling constant, then all higher N -point functions are already well-defined. In
particular, the β-function is identically zero.

The self-consistency equation (11a) was first obtained in [GW09] for the Moyal
model by the graphical method proposed by [DGMR07]. There we also solved
the renormalisation problem resulting from the divergent summation

∑
p∈ND/2 .

The non-linearity of (11a) was a considerable challenge which we successfully
addressed in [GW14a, GW14b].

The other topological sectors B ≥ 2 made of (N1+ . . .+NB)-point functions
G|b11...b1N1

|...|b11...bBNB |
are similar in the following sense [GW14a]: The basic func-

tions with all Ni ≤ 2 satisfy an equation with index summation as (11a), but in
contrast to the 2-point function these equations are linear. The other functions
with one Ni ≥ 3 are purely algebraic.

We remark that the algebraic equations for Ni ≥ 3 have a graphical realisa-
tion in terms of non-crossing chord diagrams with additional decoration which
describe the denominators 1

Ebi−Ebj
. The different chord structures are counted

by the Catalan numbers. These functions alone would make the higher N -point
functions very close to trivial. It is the inclusion of the (2+2+ . . .+2)-point
functions which gives a rich structure.

4.2. Infinite volume limit and renormalisation

We specify (11a) to the λφ?44 -model on (D = 4)-dimensional Moyal space and
combine mass term, kinetic term and renormalisation parameters into Em =

Z( |m|√
V

+
µ2
bare

2 ). The coupling constant is λ4 = Z2λ because the vanishing β-

function (Corollary 4) makes a bare coupling λbare not necessary. The matrix
indices have ranges a, · · · ∈ N2

N , i.e. pairs of natural numbers with certain cut-
off. The index sum diverges for N2

N 7→ N2.
It is important that all functions only depend on the spectrum of Em,

i.e. on the 1-norms |m| = m1 + m2 and not on m1,m2 separately. Renor-
malisation respects this degeneracy. Therefore, all index sums reduce to∑
p∈N2

N
f(|p|) =

∑N
|p|=0(|p|+1)f(|p|). In these sums we study the scaling limit

V,N → ∞ with fixed ratio N√
V µ4

= Λ2(1+Y). Note that V =
(
θ
4

)2 → ∞ is

a limit of extreme noncommutativity! The new parameter (1+Y) corresponds
to a finite wavefunction renormalisation, identified later to decouple our equa-
tions, and µ will be the renormalised mass. The parameter Λ2 represents an
ultraviolet cut-off which is sent to Λ → ∞ in the very end (continuum limit).

In the scaling limit, functions of
|p|
√
V

=: µ2(1 + Y)p converge to functions of
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‘continuous matrix indices’ p ∈ [0,Λ2], and the densitised index summation
converges to a Riemann integral. After all these steps, the unrenormalised
function Gu(a, b) := limV,N→∞ µ2G|ab| satisfies the following equation resulting
from (11a):

Gu(a, b) =
1

Z
(µ2

bare

µ2 + (a+ b)(1 + Y)
){1− (12)

− Z2λ(1 + Y)2

∫ Λ2

0

pdp
(
Gu(a, b)Gu(a, p)− Gu(p, b)−Gu(a, b)

(1 + Y)Z(p−a)

)}
.

Renormalisation amounts to normalisation conditions Γ(0, 0) := 0 and
(∂Γ)(0, 0) := 0 for the renormalised one-particle irreducible function defined by

Γ(a, b) =
(
Gu(a, b)

)−1− (a+ b)(1 +Y)− 1. This definition can be implemented
directly in (12) and amounts to a renormalisation of all Feynman graphs at once!
The three equations (12) plus Γ(0, 0) := 0 and (∂Γ)(0, 0) := 0 can be solved for
the three quantities Γ(a, b), µbare, Z once a relation between Y and Γ(a, b) is
given. This is easy for µbare but difficult for Z because of the non-linearity
in (12). We propose the following trick which postpones the non-linearity: If

we multiply (12) by
Z(

µ2
bare
µ2 +(a+b)(1+Y))

Gu(a,b) , then the previously non-linear term is

independent of b. So we subtract from that equation the equation at b = 0. Our
problem is then equivalent to the difference equation plus (12) at b = 0. Chosing

Y := −λ limb→0

∫ Λ2

0
dp

Gpb−Gp0

b we obtain Z−1

(1+Y) = 1− λ
∫ Λ2

0
dp Gp0 and a lin-

ear integral equation for the difference function D(a, b) := a
b (G(a, b)−G(a, 0))

to the boundary. The non-linearity restricts to the boundary function G(a, 0)
where the second index is put to zero. Assuming a 7→ G(a, b) Hölder-continuous,
we can pass to Cauchy principal values. In terms of the finite Hilbert transform

HΛ
a [f(•)] :=

1

π
lim
ε→0

(∫ a−ε

0

+

∫ Λ2

a+ε

)f(q) dq

q − a
, (13)

the integral equation becomes( b
a

+
1 + λπaHΛ

a

[
G(•, 0)

]
aG(a, 0)

)
D(a, b)− λπHΛ

a

[
D(•, b)

]
= −G(a, 0) . (14)

Equation (14) is a well-known singular integral equation of Carleman type
[Car22, Tri57] which can be algebraically solved by techniques for boundary
values of holomorphic functions:

Theorem 5 ([GW14b]). The matrix 2-point function G(a, b) of the λφ?44 -
model is in infinite volume limit given in terms of the boundary 2-point function
G(a, b) by the equation

G(a, b) =
sin(τb(a))

|λ|πa
esign(λ)(HΛ

0 [τ0(•)]−HΛ
a [τb(•)]) , (15)
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τb(a) := arctan
[0, π]

(
|λ|πa

b+
1+λπaHΛ

a [G(•,0)]
G(a,0)

)
,

provided that λ < 0. For λ > 0 the solution can only be obtained up to a multi-

plicative correction
(
1+Ca+bF (b)

Λ2−a
)

on the rhs of (15), where C is a undetermined
constant and b F (b) an undetermined function of b vanishing at b = 0.

Some remarks:

• We proved this theorem in 2012 for λ > 0 under the assumption that
the multiplicative correction is absent, but knew that it could arise in
principle. That no such term arises for λ < 0 was later shown in [GW14b].

• Eq. (15) implies G(a, b) ≥ 0 for λ < 0. This is a truly non-perturbative
result; individual Feynman graphs show no positivity at all! Of course
positivity should also hold for λ > 0, but couldn’t be proved.

• As in [GW09], the equation for G(a, b) can be solved perturbatively. This
reproduces exactly [GW14a] the Feynman graph calculation! Matching
at λ = 0 requires C,F to be flat functions of λ (all derivatives vanish at
zero).

• Because of HΛ
a [G(•, 0)]

a→Λ2

−→ −∞, the näıve arctan series is dangerous for
λ > 0. Unless there are cancellations, we expect zero radius of conver-
gence!

• The partition function Z is undefined for λ < 0. But the Schwinger-Dyson
equations for G(a, b) and for higher functions, and with them logZ, extend
to λ < 0. These extensions are unique but probably not analytic in a
neighbourhood of λ = 0.

It remains to identify the boundary function G(a, 0) which is determined by
(12) at b = 0. The equation involves subtle cancellations so that we employ
another strategy based on a symmetry argument: Given the boundary function
G(a, 0), the Carleman theory computes the full 2-point function G(a, b) via (15).
In particular, we get G(0, b) as function of G(a, 0). But the 2-point function is
symmetric, G(a, b) = G(b, a), and the special case a = 0 leads to the following
self-consistency equation:

Proposition 6. The limit θ → ∞ of λφ4
4-theory on Moyal space is for λ ≤ 0

determined by the solution of the fixed point equation G = TG,

G(b, 0) ≡ G(0, b) =
1

1 + b
exp

(
−λ
∫ b

0

dt

∫ Λ2

0

dp

(λπp)2 +
(
t+

1+λπpHΛ
p [G(•,0)]

G(p,0)

)2
)
.

(16)

At this point we can eventually send Λ → ∞. Any solution of (16) is auto-
matically smooth and monotonously decreasing. We proved in [GW14b] that

10



any solution of (16) which maintains the symmetry G(a, b) = G(b, a) necessarily
solves the true equation (12). This solution then provides all higher correlation
functions via the universal algebraic recursion formulae (11b), or via the linear
equations for the basic (N1+ . . .+NB)-point functions [GW14a].

4.3. Existence of a solution

Remains to prove existence, if possible also uniqueness, of a solution of
(16). This is relatively easy for λ > 0 [GW14a] because of obvious bounds
0 ≤ G(0, b) ≤ 1

1+b and similarly for the first and second derivative. The case
λ < 0 is harder and was achieved in [GW16]. It involves the fixed point problem
for the function f(x) = logG(0, x) which takes the form

Tf(b) := − log(1+b) +

∫ ∞
0

dt

πt

(
arctan

b+Rf(t)

|λ|πt
− arctan

Rf(t)

|λ|πt

)
, (17)

Rf(a) :=
1− |λ|πaH∞a [ef(•)]

ef(a)
.

We prove in [GW16]:

Theorem 7. Consider the Banach space

LB :=
{
f ∈ C1(R+) : f(0) = 0 , |f ′(x)| ≤ C

1 + x
for some C ≥ 0

}
(18)

of logarithmically bounded differentiable functions, equipped with the norm
‖f‖LB := |f(0)|+ supx≥0

∣∣(1 + x)f ′(x)
∣∣. Then

Kλ =
{
f ∈ LB : f(0) = 0 , −1− |λ|

1 + x
≤ f ′(x) ≤ −

1− |λ|
1−2|λ|

1 + x

}
(19)

is a norm-closed subset of LB on which the map T given in (17) is defined. For
any f ∈ Kλ and − 1

6 ≤ λ ≤ 0 one has:

i) Tf ∈ Kλ.

ii) T : Kλ → Kλ is norm-continuous.

iii) The restriction of TKλ to any interval [0,Λ2] is relatively compact in
norm-topology.

The Schauder fixed point theorem then guarantees that T has a fixed point f∗ =
Tf∗ ∈ K

∣∣
[0,Λ2]

which we denote logG(0, b) := f∗(b).

For the proof of i) one first has to control
H∞a [ef(•)]

ef(a) for f ∈ Kλ, which succeeds

although no reasonable bound for H∞a [ef(•)] alone is possible. Then an upper
bound (Rf)(a) ≤ 1+ |λ|πa cot(|λ|π) is releatively easy to prove, whereas a lower
bound of (Rf)(a) by a piece-wise linear function in a is tedious. The proof of
uniform continuity ‖Tf − Tg‖LB ≤ c(λ)‖f − g‖LB in ii) is also involved. The
constant c(λ) ranges from 1 + 1

e at λ = 0 to about 4 at λ = − 1
6 and slightly

misses contractivity which would imply uniqueness by the Banach fixed point
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theorem. Maybe a better control of the asymptotic behaviour of (logG(0, x))′

for large x rescues contractivity. So far we have to employ the Schauder fixed
point theorem where step iii) follows from a variant of the Arzelà-Ascoli theorem.

A numerical iteration of T converges [GW14b] and supports the conjecture
of a unique fixed point f∗ = Tf∗. As discussed later in sec. 6, for reflection
positivity of the 2-point function we need to know that x 7→ G(0, x) is a Stieltjes
function. This is true for the boundaries of the region Kλ and very plausible for
the numerically found fixed point, but a rigorous proof is still missing.

Note added in proof. In [PW18] a new solution strategy of eq. (11a) was found
(for the matrix E of the λΦ4

2-model on Moyal space). It gives rise to the same
equation (15) but a new equation to determine the angle function τb(a). It
was possible to guess the perturbative solution of the τb(a)-equation and to
resum it to the Lambert-W function. This yields an explicit exact solution of
G(a, b) for any coupling constant λ > − 1

2 log 2 (for 2D) in terms of the Lambert
function and another function for which an integral representation was derived.
The latter function expands into Nielsen polylogarithms, Lambert-W expands
into logarithms. It should be possible to extend [PW18] to four dimensions
and to complete for the the λΦ4

4-model the programme described below for the
λΦ3-model.

5. Solution of the λΦ3-model

In a recent joint work with Akifumi Sako from Tokyo we completely solved
the matricial λΦ3-model, i.e. the renormalised Kontsevich model. Considerable
progress with this model has already been achieved long ago in a series of papers
[GS06a, GS06b, GS08] of H.G. with H. Steinacker. Formulae for the renormal-
ised 2-point function and the 1+1-point functions are given in [GS06a], but a
complete solution for all functions is new.

Renormalisation requires the following ansatz for the action functional:

S(Φ) :=
1

(8π)
D
2

∫
RD

dx
(Z

2
φ ? H1(φ) + κφ+

ν

2
H1(φ) +

ζ

4
H1(H1(φ))

+
µ2
bare

2
φ ? φ+

λbareZ
3
2

3
φ ? φ ? φ

)
(x) (20)

= V
( ∑
n,m∈ND/2N

ZΦmnΦnm
Em + En

2
+
∑

n∈ND/2N

(κ+νEn+ζE2
n)Φnn

+
λbareZ

3
2

3

∑
n,m,l∈ND/2N

ΦnmΦmlΦln

)
,

where κ, ν, ζ, Z, µ2
bare, λbare are functions of (V,N ) and renormalised parameters

(λr, µ
2). In the step to the last two lines we have absorbed En 7→ En+

µ2
bare

2Z and
redefined κ, ν, ζ. In low dimension not all parameters are necessary: ν = ζ = 0,
Z = 1, µ2

bare = µ2, and λbare = λ for D = 2; ζ = 0, Z = 1 and λbare = λ for
D = 4. As before, V := ( θ4 )D/2 for Moyal space and Hmn := Em + En.
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5.1. Schwinger-Dyson equations and their solution for B = 1

Combining V Tr((νE + ζE2)Φ) in (20) with the term iV Tr(JΦ) from the
Fourier transform, the Ward-Takahashi identity (8) becomes

−
∑

n∈ND/2N

∂2Z(J)

∂Jbn∂Jna
= δabWa(J)Z(J)− V

Z
(ν + ζHab)

∂Z(J)

i∂J|ba|

+
∑

n∈ND/2N

V

Z(Ea − Eb)

(
Jan

∂

∂Jbn
− Jnb

∂

∂Jna

)
Z(J) , (21)

where Wa is the same as in (8). Applying the derivative in the 1-point G|a| =
1

VZ(0)
∂Z(J)
i∂Jaa

∣∣
J=0

to (5) gives (without using (21))

G|a| =
1

ZHaa

{
− κ− νEa − ζE2

a − λbareZ
3
2

(
G2
|a| +

1

V

∑
m∈ND/2N

G|am| +
G|a|a|

V 2

)}
.

(22)

The same steps as in the derivation of (10) yield

G|ab| =
1

ZHab

(
1 + λbareZ

1
2

(G|a|−G|b|)
Ea − Eb

+ λbareZ
1
2 (ν + ζHab)G|ab|

)
. (23)

Higher N -point functions are algebraically expressed by (N−1)-point functions
where their finiteness requires the following identities between the renormalisa-
tion constants: λr =

√
Zλbare, Fa := Ea − 1

2λrν and λrζ = Z − 1 for finite
λr, Fa. Then

G|ab| =
1

Fa + Fb
+ λr

G|a|−G|b|
F 2
a − F 2

b

, G|a1a2...aN | = λr
G|a1a3...aN | −G|a2a3...aN |

(F 2
a1
− F 2

a2
)

.

(24)

Inserting the first identity into (22) gives

W 2
|a| + 2λrνW|a| =

4

Z
F 2
a −

(
4
λrκ

Z
+
(

1+
1

Z

)
(λrν)2

)
− 2λ2

r

V

∑
n∈ND/2N

W|a| −W|n|
F 2
a − F 2

n

− 4λ2
r

V 2
G|a|a| , (25)

where
W|a|
2λr

:= G|a| +
Fa
λr

(and thus G|ab| = 1
2

W|a|−W|b|
F 2
a−F 2

b
). The last term in

(25) vanishes for V → ∞ so that a closed equation for W is obtained. The
remaining parameters ν, κ, Z are fixed by normalisation conditions, depending
on dimension D.

The steps are the same as before in the λΦ4
4-model. All functions depend

only on the 1-norms of multiple matrix indices so that index sums reduce to
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∑
m∈ND/2N

f(|m|) =
∑N
|m|=0

(|m|+D
2 −1

D
2 −1

)
f(|m|). Next the limit N , V → ∞ is

taken subject to fixed ratio N
V

2
D

= µ2Λ2. This limit maps 1-norms of matrix

indices into |a| 7→ V
2
D µ2a with a ∈ [0,Λ2], in particular Fa 7→ µ2(a+ 1

2 ). Sums
over matrix indices converge to a Riemann integrals over [0,Λ2]. The occurrence
of F 2

a in (25) and (24) then suggests a substitution A(a) = (2a + 1)2. In these
variables and in mass-dimensionless quantities, (25) becomes

(W (A))2 + 2λrνW (A) +

∫ (1+2Λ2)2

1

dT ρ(T )
W (A)−W (T )

A− T
− A

Z
= const, (26)

ρ(T ) :=
λ2
r(
√
T − 1)

D
2 −1

2
D
2 −4Γ(D2 )

√
T

, G(a) ≡ W ((2a+ 1)2)− (2a+ 1)

2λr
.

The recursion (24) can be explicitly solved. For N > 1 one has [GSW17]:

G(a1, . . . , aN ) =
λN−2
r

2

N∑
k=1

W ((2ak + 1)2)

N∏
l=1,l 6=k

1

(ak + 1
2 )2 − (al + 1

2 )2
. (27)

Thus it remains to solve (26). We can take advantage of the fact that
(26) is, for Z = 1 and ν = 0, exactly the master constraint in the Kontsevich
model from which all Virasoro constaints descend. This master constraint was
solved by Makeenko-Semenoff [MS91] by viewing ρ and W as boundary values
of holomorphic functions on C \ [1, (1 + Λ2)2]. The solution technique is thus
not unrelated to the solution of the Carleman equation (14) by (15) in the λΦ4

4-
model. The Makeenko-Semenoff solution can easily be adapted to include Z, ν
and gives [GSW17]

W (A) :=

√
A+ c√
Z
− λrν +

1

2

∫ (1+Λ2)2

1

dT
ρ(T )

(
√
A+ c+

√
T + c)

√
T + c

, (28)

for some function c(λr, ν, Z). Inserting ρ(T ) from (26) shows that the integral
diverges, if Z, ν where absent, in the limit Λ→∞. This is the usual divergence
in quantum field theory which is avoided by a careful choice of ν, Z according
to normalisation conditions. The standard normalisation conditions on the 1-
and 2-point functions translate into

W (1)
D≥2
= 1 , W ′(1)

D≥4
=

1

2
, W ′′(1)

D=6
= −1

4
. (29)

These conditions determine ν(λr,Λ) Z(λr,Λ) (unless 0 and 1 for small D) as
well as c(λr) = limΛ→∞ c(λr,Λ). For D = 6 the solution reads [GSW18] (for
Λ→∞ where possible)

W (A) =
√
A+ c

√
1 + c− c

+
1

2

∫ ∞
1

dT ρ(T ) (
√
A+ c−

√
1 + c)2

(
√
A+ c+

√
T + c)(

√
1 + c+

√
T + c)2

√
T + c

, (30a)
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−c =

∫ ∞
1

dT ρ(T )

(
√

1 + c+
√
T + c)3

√
T + c

. (30b)

1√
Z(Λ)

=
√

1 + c+
1

2

∫ (1+Λ2)2

1

dT
ρ(T )

(
√

1 + c+
√
T + c)2

√
T + c

. (30c)

We refer to [GSW17] for D = 2 and to [GSW18] for D = 4. The last identity
(which implies Z(Λ) ∈ [0, 1], as it should) is needed in the β-function

βλ := Λ2 dλbare(Λ)

dΛ2
=

2λ3
rΛ

6(√
1+c+

√
(2Λ2+1)2+c

)2√
(2Λ2+1)2+c

Λ→∞−→ λ3
r

4
.

Since βλ has the same sign as λr, |λbare(Λ2)| increases with Λ2 and tends to
∞ for λ → ∞. This is the opposite of asymptotic freedeom; nevertheless the
model can be rigorously constructed! This came as surprise to us. The vanishing
of the β-function in the λΦ4

4-model was originally thought to be essential for
constructing the model – but it isn’t.

The consistency relation (30a) is responsible for complexity of this quantum
field theory. Inserting ρ(T ) from (26) gives the transcendental equation (for
D = 6)

λ2
r =

(−4c)

1− 2
√

1 + c+ 2(1 + c) log(1 + 1√
1+c

)
. (31)

The functions G(. . . ) are then expressed via (30a) and (27) in terms of the in-
verse solution c(λ2

r) which exists by the inverse function theorem. It is easy to
invert (30a) as a formal power series in λ2. We have demonstrated in [GSW18]
that the resulting perturbative expansion of G(a) perfectly agrees with the
renormalised Feynman graph calculation.

5.2. Solution for B > 1 boundary components

Schwinger-Dyson equations for (N1+ . . .+NB)-point functions easily give,
as long as one Ni > 1, a recursion

G|a1
1...a

1
N1
|...|aB1 ...aBNB |

= λr
G|a1

1a
1
3...a

1
N1
|a2

1...a
2
N2
|...|aB1 ...aBNB |

−G|a1
2a

1
3...a

1
N1
|a2

1...a
2
N2
|...|aB1 ...aBNB |

F 2
a1

1
− F 2

a1
2

(32)

which is solved in terms of (1+ . . .+1)-point functions and after passing to the
scaling limit by

G(a1
1, . . . , a

1
N1
| . . . |aB1 , . . . , aBNB ) (33)

=

N1∑
k1=1

· · ·
NB∑
kB=1

G(a1
k1
| . . . |aBkB )

B∏
β=1

Nβ∏
lβ=1,lβ 6=kβ

λr

(aβkβ + 1
2 )2 − (aβlβ + 1

2 )2
.
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For the (1+ . . .+1)-point function one derives the Schwinger-Dyson equation

(W|a1| + νλr)G|a1|a2|...|aB | +
λ2
r

V

∑
n∈ND/2N

G|a1|a2|...|aB | −G|n|a2|...|aB |

(F 2
a1 − F 2

n)
(34)

= −λr
B∑
β=2

G
|a1aβaβ |a2|

β
ˇ......|aB |

− λr
V 2

G|a1|a1|a2|...|aB |

− λr
B−2∑
p=1

∑
2≤i1<···<ip≤B

G|a1|ai1 |...|aip |G|a1|aj1 |...|ajB−p−1 | .

Taking the scaling limit and transforming variables ai to Ai gives [GSW17]

(W (A1) + λ̃ν̃)G(A1|A/{2,...B})

+
1

2

∫ (1+Λ2)2

1

dTρ(T )
G(A1|A/{2,...B})−G(T |A/{2,...B})

(A− T )

= −λr
B∑
β=2

G(A1, Aβ , Aβ |A/{2
β
ˇ......B})

− λr
∑

J⊂{2,...,B}
1≤|J|≤B−2

G(A1|A/J)G(A1|A/{2,...,B}\J) , (35)

where the measure ρ(T ) was defined in (26) and G(A|A/{i1,...,ip}) :=
G(A|Ai1 | . . . |Aip).

The solution of equation (35) goes over 8 pages in [GSW17]. For B = 2
where (35) simplifies considerably one finds the algebraic solution

G(a1|a2) =
4λ̃2√

(2a1+1)2+c ·
√

(2a2+1)2+c · (
√

(2a1+1)2+c+
√

(2a2+1)2+c)2
,

(36)

which was already given in [GS06a]. For B ≥ 3 we found the key ansatz

G(A1| . . . |AB) =
(−2λ̃)3B−4

ρ0

B−3∑
M=0

γMB
dM

dtM

B∏
β=1

1

(Aβ + c− 2t)
3
2

, (37)

where ρ0 := limΛ→∞
1√
Z(Λ)

− 1
2

∫ (1+Λ2)2

1
dTρ(T )

(T+c)3/2 . This leads to γM3 = δM,0 and

a complicated system of non-linear recursion equations for γMB . The solution of
the first of them contains intriguing combinatorial factors which are found to
be described by Bell polynomials Bn,k({x1, . . . , xn−k−1}). The ansatz

γMB =
1

ρB−3
0

B−3−M∑
K=0

(B−3+K)!

(B−3−M)!M !
BB−3−M,K

({
− (2r+1)!!ρr

(r + 1)ρ0

}B−2−M−K

r=1

)
,

(38)
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with ρl := − 1
2

∫∞
1

dTρ(T )
(T+c)l+3/2 for l ≥ 1, is then confirmed in a lengthy induc-

tion proof. The solution (38) is inserted into (37) and rewritten in terms of
the generating function of Bell polynomials. Eventually the following result is
established:

Theorem 8 ([GSW17]). The scaling limit of the (1+ . . .+1)-point function
of λΦ3 matricial quantum field theory is given for B ≥ 3 by

G(a1| . . . |aB) =
dB−3

dtB−3

( (−2λr)
3B−4

(R(t))B−2
∏B
β=1((2aβ+1)2+c−2t)

3
2

)∣∣∣∣∣
t=0

, (39)

R(t) := lim
Λ→∞

( 1√
Z(Λ)

−
∫ (1+Λ2)2

1

dTρ(T )√
T+c

1

(
√
T+c+

√
T+c−2t)

√
T+c−2t

)
.

In this way a complete construction of the scaling limit of the renormalised
Kontsevich model λΦ3

D in dimensions D ∈ {2, 4, 6} is achieved.

6. Schwinger functions and reflection positivity

6.1. Reverting the matrix representation

In sections 4 and 5 we have constructed the connected matrix correlation
functions G|q1

1...q
1
N1
|...|qB1 ...qBNB |

of the (θ→∞)-limit of λφ?44 -theory and λφ?3D -

theory on Moyal space. Now we revert the introduction of the matrix basis
(3) to obtain Schwinger functions in position space:

Sc(µx1, . . ., µxN ) := lim
V µD→∞

lim
Λ→∞

1

(8π)
D
2

∑
N1+···+NB=N

∑
qβi ∈N2

N

G|q1
1...q

1
N1
|...|qB1 ...qBNB |

×
∑
σ∈SN

B∏
β=1

fq1q2
(xσ(sβ+1))· · ·fqNβ q1

(xσ(sβ+Nβ))

V µDNβ
, (40)

where sβ := N1+. . .+Nβ−1 and N = Λ2µ2V
2
D for λΦ3 and N = Λ2µ2V

2
D (1 +

Y) for λΦ4. The G... are made dimensionless by appropriate rescaling in µ.
There are two delicate points with this definition: First, we perform the limits
limV µD→∞, limΛ→∞ in different order than before and second the convention
δJmn
δJ(ξ) := µDfmn(ξ) is made.

The next step consists in representing G...|aβ1 ...a
β
Nβ
|..., for every boundary

component, as a Laplace transform in 1√
V µD

(|aβ1 | + · · · + |a
β
Nβ
|) and Fourier

transform in 1√
V µD

(|aβi+1| − |a
β
i |). For example,

G|ab| =

∫ ∞
0

dt

∫ ∞
−∞

dω G(t, ω)e
− t√

V µ4
(|a|+|b|)−i ω√

V µ4
(|a|−|b|)

. (41)
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Using generating functions for Laguerre polynomials, the following identity
can be established [GW13]:

∞∑
m1,...,mN=0

1

θ

N∏
i=1

fmimi+1(xi)z
mi
i

=
2N

θ(1−
∏N
i=1(−zi))

exp

(
−
∑N
i=1 ‖xi‖2

θ

1 +
∏N
i=1(−zi)

1−
∏N
i=1(−zi)

)

× exp

(
− 2

θ

∑
1≤k<l≤N

((
〈xk, xl〉−ixk×xl

) ∏l
j=k+1(−zj)

1−
∏N
i=1(−zi)

+
(
〈xk, xl〉+ixk×xl

) ∏N+k
j=l+1(−zj)

1−
∏N
i=1(−zi)

))
. (42)

The zi are of the form z ∼ exp(− t+iω√
V µD

) as in (41). At this point the limit

V µD → ∞ can be taken where zi converges to 1. Thus for odd N the limit
is zero, whereas for N even one has limθ→∞ θ(1 −

∏N
i=1(−zi)) = 4Nt

µ2 . The
vector product and all Fourier variables ω drop out, and the scalar products
(42) arrange with the norms to µ2‖x1−x2 + · · ·−xN‖2. Absence of the Fourier
variables means that all matrix indices per boundary component are equal.
The Laplace transform is easily reverted after introduction of an auxiliary p-
integration per boundary component. The final result is:

Theorem 9 ([GW13]). The connected N -point Schwinger functions of the
λφ?44 and λφ?3D models on extreme Moyal space θ → ∞ in D dimensions are
given by

Sc(µx1, . . . , µxN )

=
1

(8π)
D
2

∑
N1+...+NB=N

Nβ even

∑
σ∈SN

( B∏
β=1

4Nβ

Nβ

∫
R4

dpβ
4π2µ4

e
i
〈
pβ
µ ,

∑Nβ
i=1(−1)i−1µxσ(sβ+i)

〉)

×G
(
‖p1‖2
2µ2 , · · · , ‖p1‖2

2µ2︸ ︷︷ ︸
N1

∣∣ . . . ∣∣ ‖pB‖22µ2 , · · · , ‖pB‖
2

2µ2︸ ︷︷ ︸
NB

)
. (43)

For the λφ?44 model one must replace µ2 7→ (1 + Y)µ2 in the last line of (43) to
account for the finite wavefuntion renormalisation.

Some comments:

• Only a restricted sector of the underlying matrix model contributes to pos-
ition space: The external matrix indices of the same boundary component
are equal. This is reminiscent of quantum chromodynamics where only
colour-singlets play a physical rôle, whereas internally coloured quarks
and gluons interact. In this sense, (43) corresponds to a confinement of
noncommutativity.

18



• Schwinger functions are symmetric and invariant under the full Euclidean
group. This comes truly surprising since θ 6= 0 breaks both translation in-
variance and manifest rotation invariance. The limit θ →∞ was expected
to make this symmetry violation even worse!

• The most interesting sector is the case where every boundary compon-
ent has Nβ = 2 indices. It is described by the (2+ . . .+2)-point func-

tionsG
(‖p1‖2

2µ2

‖p1‖2
2µ2

∣∣ . . . ∣∣‖pB‖22µ2

‖pB‖2
2µ2

)
. This (2+ . . .+2)-sector describes the

propagation and interaction of B (at the moment Euclidean) particles
without any momentum exchange. Such a behaviour is necessary in any
integrable model [Mos75, Kul76]. It is tempting to speculate that also
for the λφ?44 -model there might be an integrable structure behind that is
responsible for that model being solvable (see [PW18]) and for absence of
momentum transfer. One would also like to make the relation between
the integrable Kontsevich model and the observed structure precise.

• We are aware of the problem that the absence of momentum transfer in
four dimensions is a sign of triviality. Typical triviality proofs rely on
clustering, analyticity in Mandelstam representation or absence of bound
states. All this needs verification.

6.2. Osterwalder-Schrader axioms

Under conditions identified by Osterwalder-Schrader [OS73, OS75],
Schwinger functions of a Eulidean quantum field theory permit an analytical
continuation to Wightman functions [SW64] of a true relativistic quantum field
theory. In simplified terms, the reconstruction theorem of Osterwalder-Schrader
for a field theory on RD reads:

Theorem 10 ([OS73, OS75]). Assume the Schwinger functions
S(x1, . . . , xN ) satisfy

(OS0) factorial growth,

(OS1) Euclidean invariance,

(OS2) reflection positivity,

(OS3) permutation symmetry.

Then the S(ξ1, . . . ξN−1)
∣∣
ξ0
i>0

, with ξi = xi−xi+1, are Laplace-Fourier trans-

forms of Wightman functions in a relativistic quantum field theory. If in addi-
tion the S(x1, . . . , xN ) satisfy

(OS4) clustering

then the Wightman functions satisfy clustering, too.

The Schwinger functions (43) clearly satisfy (OS1)+(OS3). Clustering (OS4)
is not realised. Factorial growth (OS0) is obvious for the λΦ3-model due to (39)
and (33). It shouldn’t be a problem either for λΦ4

4. Thus the remaining problem
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is (OS2) reflection positivity: For each assignment N 7→ fN ∈ S(RND) of test
functions, one has∑

M,N

∫
dx dy S(x1, . . . , xN , y1, . . . , yM )fN (xr1, . . . , x

r
N )fM (y1, . . . , yM ) ≥ 0 ,

where (x0, x1, . . . xD−1)r := (−x0, x1, . . . xD−1). Let Ŝ be the Fourier transform
of the Schwinger function S, viewed as function of its independent momenta.
Then reflection positivity implies for a special choice of test functions that the
temporal Fourier transform of Ŝ (in all independent energies) is, for any spatial
momenta, a positive definite function. Such functions are described by

Theorem 11 (Hausdorff-Bernstein-Widder). For a continuous/smooth
function F on (R+)N 3 t = (t1, . . . , tN ) are equivalent:

1. F is positive definite, i.e.
∑K
i,j=1 cicjF (ti + tj) ≥ 0

2. F is the joint Laplace transform of a positive measure

3. F is completely monotonic, i.e. (−1)k1+···+kN∂k1

t1 . . . ∂
kN
tN
F (t) ≥ 0.

Knowing that the Schwinger functions, considered as function of time differ-
ences, are Laplace transforms constitutes the main part of the Osterwalder-
Schrader theorem.

Thanks to our explicit formulae (39) and (33) of all Schwinger functions a
direct verification of complete monotonicity in the λΦ3-model is realistic. For

the 2-point function this amounts to prove that a 7→ G(a, a) ≡
∫∞

0
d%(m2)
a+m2 is a

Stieltjes function, i.e. the Stieltjes transform of a positive measure d%(m2). The
easiest way to convice oneself that this condition is necessary (sufficiency is clear)
is to compare it with Källén-Lehmann spectral representation of a Wightman 2-
point function. Stieltjes functions have a holomorphic extension to the complex
plane minus the negative reals. The imaginary part of the jump across the
cut ]−∞, 0] is proportional to the Stieltjes measure. It is then straightforward
to determine whether a 7→ G(a, a) is Stieltjes for the λΦ3

D-model. Somewhat
surprisingly, this is the case for D = 4 and D = 6, but not for D = 2! We cite
the result in D = 6:

Theorem 12 ([GSW17]). The diagonal 2-point function of the renormalised
6-dimensional Kontsevich model λφ?36 on Moyal space with harmonic oscillator
potential is, for real coupling constant and in large-(N , V ) limit, a Stieltjes
function. This Stieltjes measure %(t) has support [1 −

√
−c, 1 +

√
−c] ∪ [2,∞[

consisting of an isolated region near t = 1 and the unbounded interval t ≥ 2.
The precise relation is

G̃
( p2

2µ2
,
p2

2µ2

)
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=
λ2
r

4π(σ2 − 1)

∫ π

0

dφ

{
2 log(1+σ)

σ −1 + σ(σ−1) tan2 φ
− tanφ

(
1+σ2 tan2 φ

)(
arctan[0,π](σ tanφ)− φ

)}
1−

√
σ2−1
σ cosφ+ p2

µ2

+
λ2
r

4

∫ ∞
2

dt
t(t− 2)/(t− 1)3

t+ p2

µ2

, (44)

where σ := 1√
1+c

∈ [1,−2W−1(− 1
2
√
e
) − 1] is the inverse solution of λ2

r =

4(σ2−1)
σ2−2σ+2 log(1+σ) ∈ [1,

8W−1(− 1
2
√
e

)

1+2W−1(− 1
2
√
e

)
]. Here, W−1(z) for z ∈ [− 1

e , 0] is the lower

real branch of the Lambert-W function.

The 2-point function G(a, a) is never Stieltjes for λ ∈ iR where the partition
function has a chance to exist. Positivity only holds for λ ∈ R where the action
is unbounded from below, rendering the partition function meaningless. We
have numerical evidence [GW14b] and partial analytic results that exactly the
same is true for the λφ?44 -model: The 2-point function is definitely not reflection
positive in the stable case λ > 0, whereas for λ < 0 positivity seems to hold.

7. Outlook

Reflection positivity of the 2-point function is necessary, but alone not suffi-
cient for a reconstruction of the Wightman theory. All (disconnected) Schwinger
N -point functions must be reflection positive. Work on this question is not yet
completed. We have a simple argument that reflection positivity does not hold
for the whole set of Schwinger functions (43) for the λφ?3-model. The reason is
the fast decay in aβ established in (39) which contradicts complete monotonicity
in Theorem 11. The situation is probably not much better for λφ?44 .

We are therefore exploring another approach. The transition (40) from con-
nected matrix correlation functions

〈
Φa1b1 . . .ΦaNbN

〉
c

to Schwinger functions
by reverting the Moyal matrix basis can be formulated as

Sc(x1, . . . , xN ) :=
∑

a1,b1,...aN ,bN

fa1b1(x1) · · · faNbN (xN )
〈
Φa1b1 . . .ΦaNbN

〉
c
. (45)

From the point of view of noncommutative geometry [Con94] initiated by Alain
Connes, this is probably not what one should do. Topology of a noncommutative
space is encoded in a noncommutative algebra A, whereas geometry needs spec-
tral triples (A,H,D) for which a metric structure is defined on (an appropriate
subspace of) states on A via Connes’ distance formula [Con94]

dist(ω1, ω2) = sup{|ω1(a)− ω2(a)| : ‖[D, a]‖ ≤ 1} . (46)

Therefore, a more consistent definition whould be of the form

Sc(ωN ) =
∑

a1,b1,...aN ,bN

ωN (fa1b1 ⊗ · · · ⊗ faNbN )
〈
Φa1b1 . . .ΦaNbN

〉
c
, (47)
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where ωN is a state on the N -fold tensor product A⊗NΘ of the Moyal algebra.
Comparison shows that previously we used the pointwise evaluation at xi,
ωx1,...,xN (fa1b1 ⊗ · · · ⊗ faNbN ) := fa1b1(x1) · · · faNbN (xN ). However, pointwise
evaluation is not a state on AΘ because positivity is violated: any diagonal faa
is a projection in AΘ, in particular positive, but L0

m(t) (arising via (3) has m
zeros and changes signs between them.

The space of states on the Moyal algebra AΘ is very rich, in fact we are
not aware of a classification. The use of states permits another way to force
translation invariance. As pointed out in [BDKP03], the tensor product of
Moyal algebras factorises into A⊗NΘ = AΘ⊗A⊗N−1

Θ , where the first tensor factor
describes the center-of-motion coordinate and the second one depends only on
coordinate differences. Every state on the center-of-motion algebra gives rise
to translation-invariant Schwinger functions even for finite Moyal deformation
parameter θ. The big question is whether states on A⊗N−1

Θ exist which also
guarantee reflection positivity.
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