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Abstract: We give the main ideas our proof that the noncommutative φ4-model is renor-
malisable to all orders. Compared with the commutative case, the bare action of relevant
and marginal couplings contains necessarily an additional term: an harmonic oscillator
potential in the free field action which solves the UV/IR-mixing problem.

1 Introduction

There is no doubt that at very short distance scales, space-time can no longer be described
by a differentiable manifold. To the most advanced frameworks towards more realistic
short-distance structures belong string theory and noncommutative geometry. Although
these two approaches are very different in their strategy, a remarkable connection between
them has been established [1]: Field theories on noncommutative spaces arise in the
zero-slope theory limit of string theory in presence of D-branes with Neveu-Schwarz B-
field. The simplest noncommutative geometry obtained in this way is the Moyal plane
characterised by the ⋆-product (in 4 dimensions)

(a ⋆ b)(x) :=

∫

d4y
d4k

(2π)4
a(x+ 1

2
θ·k)b(x+y) eiky , θµν = −θνµ ∈ R . (1)

Although from string theory’s point of view there is no reason that the limit is a
well-defined quantum field theory, there has been an enormous activity aiming at renor-
malisation proofs for noncommutative quantum field theories. It turned out that the
noncommutative analogues of typical field theoretical (in particular four-dimensional)
models are not renormalisable due to the UV/IR-mixing problem [2]. The construction
of dangerous non-planar graphs was made precise in [3] where the problem was traced
back to divergences in some of the Hepp sectors which correspond to disconnected ribbon
subgraphs wrapping the same handle of a Riemann surface.

We have proven in [4, 5] that the φ4-model on the four-dimensional Euclidean Moyal
plane is renormalisable to all orders. A summary is given in [6]. Our proof rests on two
concepts:
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– the use of the harmonic oscillator base of the Moyal plane, which avoids the phase
factors appearing in momentum space,

– the renormalisation by flow equations.

The renormalised φ4-model corresponds to the classical action

S =

∫

d4x
(1

2
∂µφ ⋆ ∂µφ +

Ω2

2
(x̃µφ) ⋆ (x̃µφ) +

µ2
0

2
φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) , (2)

with x̃µ := 2(θ−1)µν xν . The appearance of the harmonic oscillator term Ω2

2
(x̃µφ) ⋆ (x̃µφ)

in the action (2) is a result of the renormalisation proof.
The harmonic oscillator term is the solution of the UV/IR-mixing problem. It can be

motivated by the Langmann-Szabo duality [7]: The replacement

pµ ↔ x̃µ , φ̂(p) ↔ π2
√

| det θ| φ(x) (3)

in a φ2n mass or interaction term and application of the Fourier transformation φ̂(pa) =
∫

d4x e(−1)aipa,µx
µ
aφ(xa) for a being a cyclic label leaves

∫

d4x (φ⋆ · · ·⋆φ)(x) invariant. This
implies that with

(

�� ?? �� __

??��__��

�� ��__ ??

)

(p1, p2, p3, p4) , (4)

also its dual is divergent. Then, as the same rules for propagators and vertices are used,
it is plausible that also the dual of

(

oo
// //

oooo
//

�� ��
OO OO

)

(p1, p2) (5)

will be divergent. We need a counterterm in the initial action to absorb this divergence,
which is precisely the harmonic oscillator term in (2).

2 The φ4-action in the matrix base

Clearly, the action (2) is difficult to treat in momentum space. Therefore, we use the very
convenient matrix base {bmn}m,n∈N2 of the Moyal plane which is distinguished by

(bmn ⋆ bkl)(x) = δnkbml(x) ,

∫

d4x bmn(x) = (2πθ)2δmn . (6)

We assume for simplicity that θ12 = −θ21 = θ34 = −θ43 are the only non-vanishing
components. Then, expanding the fields φ(x) =

∑

m,n∈N2 φmnbmn(x) in the matrix base,

the interaction term in (2) becomes a simple matrix product, at the price of a rather
complicated bilinear term:

S = (2πθ)2
∑

m,n,k,l∈N2

(1

2
φmnGmn;klφkl +

λ

4!
φmnφnkφklφlm

)

, (7)

Gm1

m2
n1

n2 ; k1

k2
l1

l2
=
(

µ2
0+

2+2Ω2

θ
(m1+n1+m2+n2+2)

)

δn1k1δm1l1δn2k2δm2l2

− 2−2Ω2

θ

(

√
k1l1 δn1+1,k1δm1+1,l1+

√
m1n1 δn1−1,k1δm1−1,l1

)

δn2k2δm2l2

− 2−2Ω2

θ

(

√
k2l2 δn2+1,k2δm2+1,l2+

√
m2n2 δn2−1,k2δm2−1,l2

)

δn1k1δm1l1 . (8)
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The quantum field theory is constructed as a perturbative expansion about the free
theory, which is solved by the propagator ∆mn;kl, the inverse of Gmn;kl. After diagonalisa-
tion of Gmn;kl (which leads to orthogonal Meixner polynomials) and the use of identities
for hypergeometric functions one arrives at

∆m1

m2
n1

n2 ; k1

k2
l1

l2

=
θ

2(1+Ω)2

m1
+l1

2
∑

v1=
|m1−l1|

2

m2
+l2

2
∑

v2=
|m2−l2|

2

B
(

1+
µ2

0
θ

8Ω
+1

2
(m1+k1+m2+k2)−v1−v2, 1+2v1+2v2

)

× 2F1

(

1+2v1+2v2 ,
µ2

0θ

8Ω
−1

2
(m1+k1+m2+k2)+v1+v2

2+
µ2

0
θ

8Ω
+1

2
(m1+k1+m2+k2)+v1+v2

∣

∣

∣

∣

(1−Ω)2

(1+Ω)2

)

(1−Ω

1+Ω

)2v1+2v2

×
2
∏

i=1

δmi+ki,ni+li

√

(

ni

vi+ni−ki

2

)(

ki

vi+ki−ni

2

)(

mi

vi+mi−li

2

)(

li

vi+ li−mi

2

)

. (9)

It is important that the sums in (9) are finite. This allows a fast numerical evaluation of
the propagator as well as analytical estimations.

3 Renormalisation group approach to dynamical matrix models

The (Euclidean) quantum field theory is defined by the partition function

Z[J ] =

∫

D[φ] exp
(

− S[φ] − (2πθ)2
∑

m,n

φmnJnm

)

. (10)

Instead of expanding the partition function into Feynman graphs, we use the Wilson-
Polchinski approach [8, 9] adapted to our case of dynamical matrix models [4]. The idea
is to integrate out the modes of the field with matrix indices larger than Λ2θ (in a smooth
way). This results in replacing the original φ4-interaction by an effective action L[φ, Λ].
Then, renormalisation of the model amounts to prove that the matrix Polchinski equation

Λ
∂L[φ, Λ]

∂Λ
=

∑

m,n,k,l∈N2

1

2
Qmn;kl(Λ)

(∂L[φ, Λ]

∂φmn

∂L[φ, Λ]

∂φkl

− 1

(2πθ)2

∂2L[φ, Λ]

∂φmn ∂φkl

)

, (11)

admits a regular solution which depends on finitely many initial data. Here,

Qmn;kl(Λ) := Λ
∂

∂Λ

(

∏

i∈m1,m2,...,l1,l2

K
[ i

θΛ2

]

∆mn;kl(Λ)

)

(12)

is the differentiated cut-off propagator, where K[x] is the smooth cut-off function with
K[x] = 1 for x ≤ 1 and K[x] = 0 for x ≥ 2.

Expanding the effective action L[φ, Λ] in a Taylor series with respect to φmn, we obtain
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a graphical interpretation of the Polchinski equation,

Λ
∂

∂Λ
_^]\XYZ[ oo

//

�� ??

__��

............. . . . . .

n1

m1

n2
m2

mN

nN

=
1

2

∑

m,n,k,l

N−1
∑

N1=1

_^]\XYZ[ _^]\XYZ[oo
//

�� __ �� ??

aa!!??��

:::::::: : : ::::::::
m1

n1

nN1

mN1
mN1+1

nN1+1

nNmN

k

l

n

m
− 1

4πθ

∑

m,n,k,l

_^]\XYZ[��

RR

�� __ �� ??

aa!!??��

:::::::: : :::::::::
m1

n1

ni−1

mi−1

mi

ni

nN
mN

n m

k l

(13)

where
oo

//
n

lm

k

= Qmn;kl. The resulting ribbon graphs define a Riemann surface on which they

can be drawn. In a perturbative expansion with respect to the number V of vertices, the
Riemann surface is characterised by its genus g computable via the Euler characteristic
of the graph, g = 1− 1

2
(L− I + V ), and the number B of holes. Here, L is the number of

single-line loops if we close the external lines of the graph, I is the number of double-line
propagators and V the number of vertices. The number B of holes coincides with the
number of single-line cycles which carry external legs. Accordingly, we label the expansion

coefficients of L[φ, Λ] by the topology, A
(V,B,g)
m1n1;...;mN nN .

4 Power-counting theorem for the noncommutative φ4-model

The asymptotic behaviour of the propagator and the topology of the graph determine the
power-counting estimation of the expansion coefficients of the effective action:
∣

∣A(V,B,g)
m1n1;...;mN nN

[Λ]
∣

∣

≤
(
√

θΛ
)(4−N)+4(1−B−2g)

P 4V −N
[max(‖m1‖, ‖n1‖, . . .‖nN‖)

θΛ2

]

P 2V −N
2

[

ln
Λ

ΛR

]

, (14)

where P q[X] stands for a polynomial of degree q in X.
There are two ingredients to the proof. First, the cut-off propagator Qmn;kl(Λ) decays

quadratically in Λ−1:

|Qmn;kl(Λ)| <
C0

ΩθΛ2
δm+k,n+l . (15)

Thus, the propagator and the volume of a loop summation have the same power-counting
dimensions as a commutative φ4-model in momentum space, giving the total power-
counting degree 4 − N for an N -point function.

Second, the scaling behaviour of non-planar graphs is considerably improved by the
quasi-locality of the propagator:
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As a consequence, for given index m of the propagator Qmn;kl(Λ) =
oo

//
n

lm

k

, the contribution

to a graph is strongly suppressed unless the other index l on the trajectory through m is
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close to m. Thus, the sum over l for given m converges and does not alter (apart from a
factor Ω−1) the power-counting behaviour of (15):

∑

l∈N2

(

max
n,k

|Qmn;kl(Λ)|
)

<
C1

θΩ2Λ2
. (17)

In a non-planar graph like

oo
//

�� OO

//
oo

OO��

oo
//

��
OO

m4

n4

m1
n1

n2

m2

m3

n3

p

(18)

the index n3—fixed as an external index—localises the summation index p ≈ n3. Thus,
we save one volume factor θ2Λ4 compared with a true loop summation. In general, each
hole in the Riemann surface saves one volume factor, and each handle even saves two.

These observations capture the power-counting degree (4 − N) + 4(1 − B − 2g) in
(14). However, this is not the full story. First, one has also to prove that the power-
counting degree is independent on the way one produces the graph1. Second, the previous
arguments on the scaling (15) and (17) concern the rhs of the Polchinski equation (13).
One has to prove that this is preserved after Λ-integration.

There is no problem with irrelevant interaction coefficients, i.e. for (4−N)+4(1−B −
2g) < 0 because the integration can be performed from Λ0 sent to ∞ in the end down to
Λ. For relevant and marginal functions with (4 − N) + 4(1 − B − 2g) ≥ 0 , however, the
integration requires initial conditions at some renormalisation scale ΛR. The problem is
that there are infinitely many relevant and marginal functions distinguished by different
matrix indices, and a model with infinitely many initial data does not make any sense.

The solution of the problem consists in an introduction of reference graphs with vanish-
ing external indices. Taking the example of the planar one-particle irreducible four-point

function with two vertices, A
(2,1,0)1PI
m1n1;...;mNnN , the Polchinski equation (13) provides the Λ-

derivative of that function:

Λ
∂

∂Λ
A

(2,1,0)1PI
mn;nk;kl;lm[Λ] =

∑

p∈N2

(

�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p

)

(Λ) + permutations . (19)

The integration is then defined as follows:

A
(2,1,0)1PI
mn;nk;kl;lm[Λ] = −

∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2

(

�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l
0 0

0 0

p p

)

[Λ′]

+
�� ?? �� __

??��__��
m

m
k

k

n n

l l




∫ Λ

ΛR

dΛ′

Λ′

∑

p∈N2

(

�� ?? �� __

??��__��

�� ��__ ??
0

0

0

0

0 0

0 0

p p

)

[Λ′] + A
(2,1,0)1PI
00;00;00;00[ΛR]



 .

(20)

The second graph on the rhs and the graph in brackets in the last line are identical,
because only the indices on the propagators determine the value of the graph. Moreover,
the vertex in the last line in front of the bracket equals 1. Thus, differentiating (20) with
respect to Λ we obtain indeed (19).

1This part of the proof goes over 20 pages in [4].
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The difference to the reference graph in (20) is reduced to a difference of propagators.
Then, a discrete Taylor expansion of the propagator shows that the integral exists in the
limit Λ0 → ∞:

−
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2

(

�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n
0 0

0 0

p p

)

[Λ′]

=

∫ Λ0

Λ

dΛ′

Λ′

∫ Λ0

Λ′

dΛ′′

Λ′′

∑

p∈N2

(

(Qnp;pn − Q0p;p0)(Λ
′)Qlp;pl(Λ

′′)

+ Q0p;p0(Λ
′)(Qlp;pl − Q0p;p0)(Λ

′′)
)

∼ C(‖n‖ + ‖l‖)
θΩ2Λ2

. (21)

This explains the polynomial in fractions like ‖m‖
θΛ2 in (14).

In total, the following reference functions are required for the Λ-integration:

• A
(V,1,0)1PI
0

0

0

0
; 0
0

0

0

, which corresponds to the mass renormalisation,

• A
(V,1,0)1PI
1

0

0

0
; 0
0

1

0

− A
(V,1,0)1PI
0

0

0

0
; 0
0

0

0

, which corresponds to the wave function renormalisation,

• A
(V,1,0)1PI
1

0

1

0
; 0
0

0

0

, which has no commutative counterpart and corresponds to the renormal-

isation of the oscillator potential in (2),

• A
(V,1,0)1PI
0

0

0

0
; 0
0

0

0
; 0
0

0

0
; 0
0

0

0

, which corresponds to the renormalisation of the coupling constant.

We refer to [5] for details.
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