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We present the main ideas of our proof that the real φ4-models on noncommutative
R2 and noncommutative R4 are renormalisable to all orders when working in the
matrix base. The proof uses renormalisation group techniques, power-counting
theorems for ribbon graphs as well as orthogonal polynomials.

1. Introduction

Quantum field theory on Euclidean or Minkowski space is extremely suc-

cessful. For suitably chosen action functionals one achieves a remarkable

agreement of up to 10−11 between theoretical predictions and experimental

data. However, combining the fundamental principles of both general rela-

tivity and quantum mechanics one concludes that space(-time) cannot be a

differentiable manifold [1]. To the best of our knowledge, such a possibility

was first discussed in [2].

To make this transparent, let us ask how we explore technically the

geometry of space(-time). The building blocks of a manifold are the points

labelled by coordinates {xµ} in a given chart. Points enter quantum field

theory via the values of the fields at the point labelled by {xµ}. This

observation provides a way to “visualise” the points: we have to prepare

a distribution of matter which is sharply localised around {xµ}. For a

perfect visualisation we need a δ-distribution of the matter field. This is

physically not possible, but one would think that a δ-distribution could

be arbitrarily well approximated. However, that is not the case, there are

1
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limits of localisability long before the δ-distribution is reached.

Let us assume that there is a matter distribution which is believed to

have two separated peaks within a space-time region R of diameter d. How

do we test this conjecture? We perform a scattering experiment in the hope

to find interferences which tell us about the internal structure in the region

R. We clearly need test particles of de Broglie wave length λ = ~c
E

. d,

otherwise we can only resolve a single peak. For λ → 0 the gravitational

field of the test particles becomes important. The gravitational field created

by an energy E can be measured in terms of the Schwarzschild radius

rs =
2GNE

c4
=

2GN~

λc3
&

2GN~

dc3
, (1)

where GN is Newton’s constant. If the Schwarzschild radius rs becomes

larger than the radius d
2 , the inner structure of the region R can no longer

be resolved (it is behind the horizon). Thus, d
2 ≥ rs leads to the condition

d

2
& ℓP :=

√

GN~

c3
, (2)

which means that the Planck length ℓP is the fundamental length scale be-

low of which length measurements become meaningless. Space-time cannot

be a manifold.

Since geometric concepts are indispensable in physics, we need a re-

placement for the space-time manifold which still has a geometric inter-

pretation. Quantum physics tells us that whenever there are measurement

limits we have to describe the situation by non-commuting operators on a

Hilbert space. Fortunately for physics, mathematicians have developed a

generalisation of geometry, baptised noncommutative geometry [3], which

is perfectly designed for our purpose. However, in physics we need more

than just a better geometry: We need renormalisable quantum field theories

modelled on such a noncommutative geometry.

Remarkably, it turned out to be very difficult to renormalise quantum

field theories even on the simplest noncommutative spaces [4]. It would be a

wrong conclusion, however, that this problem singles out the standard com-

mutative geometry as the only one compatible with quantum field theory.

The problem tells us that we are still at the very beginning of understanding

quantum field theory. Thus, apart from curing the contradiction between

gravity and quantum physics, in doing quantum field theory on noncom-

mutative geometries we learn a lot about quantum field theory itself.
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2. Field theory on noncommutative R
D in momentum space

The simplest noncommutative generalisation of Euclidean space is the so-

called noncommutative R
D. Although this space arises naturally in a cer-

tain limit of string theory [5], we should not expect that it is a good model

for nature. In particular, the noncommutative R
D does not allow for grav-

ity. For us the main purpose of this space is to develop an understanding

of quantum field theory which has a broader range of applicability.

The noncommutative R
D, D = 2, 4, 6, . . . , is defined as the algebra R

D
θ

which as a vector space is given by the space S(RD) of (complex-valued)

Schwartz class functions of rapid decay, equipped with the multiplication

rule

(a ⋆ b)(x) =

∫

dDk

(2π)D

∫

dDy a(x+1
2θ·k) b(x+y) eik·y , (3)

(θ·k)µ = θµνkν , k·y = kµyµ , θµν = −θνµ .

The entries θµν in (3) have the dimension of an area. The physical inter-

pretation is ‖θ‖ ≈ ℓ2P . Much information about the noncommutative R
D

can be found in [6].

A field theory is defined by an action functional. We obtain action

functionals on R
D
θ by replacing in standard action functionals the ordinary

product of functions by the ⋆-product. For example, the noncommutative

φ4-action is given by

S[φ] :=

∫

dDx
(1

2
∂µφ ⋆ ∂µφ +

1

2
m2φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

. (4)

The action (4) is then inserted into the partition function

Z[j] :=

∫

Dφ e−
1
~
(S[φ]−

R

d4x φ(x)j(x)) , (5)

which gives rise to the correlation functions (= expectation values)

〈φ(x1) . . . φ(xn)〉 = Z[0]−1
~

n δnZ[j]

δj(x1) . . . δj(xn)

∣

∣

∣

j(x)=0
. (6)

As usual we solve (5) perturbatively by Feynman graphs. Due to
∫

dDx (a⋆

b)(x) =
∫

dDx a(x)b(x), the propagator in momentum space is unchanged.

For later purpose it is, however, convenient to write it as a double line,
p

= (p2 + m2)−1. The novelty are phase factors in the vertices,
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which we also write in double line notation,

�
�

�
�

@
@
@

@

@
@

@
@

�
�

�
�

p1

p4

p3

p2

=
λ

4!
e−

i
2

P

i<j p
µ
i pν

j θµν . (7)

The double line notation reflects the fact that the vertex (7) is invariant only

under cyclic permutations of the legs (using momentum conservation). The

resulting Feynman graphs are ribbon graphs which depend crucially on how

the valences of the vertices are connected. For planar graphs the total phase

factor of the integrand is independent of internal momenta, whereas non-

planar graphs have a total phase factor which involves internal momenta.

For example, the one-loop contribution to the two-point function splits as

follows into a planar part

������

������

??????

??????
p p

kk
=

λ

6

∫

d4k

(2π)4
1

k2 + m2
(8)

and a non-planar part

������

������

��
��

�
��

��
�

����

p

k

p

k
=

λ

12

∫

d4k

(2π)4
eipµkνθµν

k2 + m2
=

λ

48π2

√

m2

p̃2
K1

(

√

m2p̃2
)

, (9)

where p̃µ := θµνpν .

Planar graphs are treated as usual. The resulting phase factor is pre-

cisely of the form of the original two-point function or vertex (7) so that

the divergence can be removed via the normalisation conditions. Here, the

contribution (8) can entirely be removed by a suitable normalisation con-

dition for the physical mass. The contribution from the non-planar graph

(9) is—at first sight—finite, which is a relict of the original motivation that

noncommutativity would serve as regulator. The finiteness is important,

because the momentum dependence (9) does not appear in the original ac-

tion (4), which means that a divergence of the form (9) cannot be absorbed

by multiplicative renormalisation.

However, the expansion of the modified Bessel function K1 shows that

the contribution (9) behaves ∼ p̃−2 for small momenta. If we insert the

graph (9) declared as finite as a subgraph into a bigger graph, one easily
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builds examples (with an arbitrary number of external legs) which lead

to non-integrable integrals at small inner momenta. This is the so-called

UV/IR-mixing problem [4].

The heuristic argumentation can be made exact: Chepelev and Roiban

have proven a power-counting theorem [7, 8] which relates the power-

counting degree of divergence to the topology of the ribbon graph. The

rough summary of the power-counting theorem is that noncommutative

field theories with quadratic divergences become meaningless beyond a cer-

tain loop order. The situation is better for field theories with logarithmic

UV/IR-divergences, e.g. supersymmetric models. These can be formulated

to any loop order. However, the logarithmic IR-divergences at exceptional

external momenta are still present so that the correlation functions are un-

bounded: For every δ > 0 one finds non-exceptional momenta such that
∣

∣〈φ(p1) . . . φ(pn)〉
∣

∣ > 1
δ
. In the remainder of this article we present an ap-

proach which solves these problems.

3. Renormalisation group approach to noncommutative

scalar models

We have seen that quantum field theories on noncommutative R
D are not

renormalisable by standard Feynman graph evaluations. One may spec-

ulate that the origin of this problem is the too näıve way one performs

the continuum limit. A way to treat the limit more carefully is the use

of flow equations. The idea goes back to Wilson [9]. It was then used

by Polchinski [10] to give a very efficient renormalisability proof of com-

mutative φ4-theory. Applying Polchinski’s method to the noncommutative

φ4-model, we can hope to be able to prove renormalisability to all orders,

too. There is, however, a serious problem of the momentum space proof.

We have to guarantee that planar graphs only appear in the distinguished

interaction coefficients for which we fix the boundary condition at the renor-

malisation scale ΛR. Non-planar graphs have phase factors which involve

inner momenta. Polchinski’s method consists in taking norms of the inter-

action coefficients, and these norms ignore possible phase factors. Thus, we

would find that boundary conditions for non-planar graphs at ΛR are re-

quired. Since there is an infinite number of different non-planar structures,

the model is not renormalisable in this way. A more careful examination of

the phase factors is also not possible because the cut-off integrals prevent

the Gaußian integration required for the parametric integral representation

[7, 8].
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Fortunately, there is a matrix representation of the noncommutative R
D

where the ⋆-product becomes a simple product of infinite matrices. The

price for this simplification is that the propagator becomes complicated,

but the difficulties can be overcome.

3.1. Matrix representation

For simplicity we restrict ourselves to the noncommutative R
2. There exists

a matrix base {fmn(x)}m,n∈N of the noncommutative R
2 which satisfies

(fmn ⋆ fkl)(x) = δnkfml(x) ,

∫

d2x fmn(x) = 2πθ1 , (10)

where θ1 := θ12 = −θ21. In terms of radial coordinates x1 = ρ cosϕ, x2 =

ρ sin ϕ one has

fmn(ρ, ϕ) = 2(−1)mei(n−m)ϕ
√

m!
n!

(

√

2ρ2

θ1

)n−m

Ln−m
m

(

2ρ2

θ1

)

e−
ρ2

θ1 , (11)

where Lα
n(z) are the Laguerre polynomials. See also [6]. The matrix repre-

sentation was also used to obtain exactly solvable noncommutative quan-

tum field theories [11, 12].

Now we can write down the noncommutative φ4-action in the matrix

base by expanding the field as φ(x) =
∑

m,n∈N
φmnfmn(x). It turns out,

however, that in order to prove renormalisability we have to consider a

more general action than (4) at the initial scale Λ0. This action is obtained

by adding a harmonic oscillator potential to the standard noncommutative

φ4-action:

S[φ] :=

∫

d2x
(1

2
∂µφ ⋆ ∂µφ + 2Ω2(x̃µφ) ⋆ (x̃µφ) +

1

2
µ2

0φ ⋆ φ

+
λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x)

= 2πθ1

∑

m,n,k,l

(1

2
Gmn;klφmnφkl +

λ

4!
φmnφnkφklφlm

)

, (12)

where x̃µ := θµνxν and

Gmn;kl :=

∫

d2x

2πθ1

(

∂µfmn ⋆ ∂µfkl + 4Ω2(x̃µfmn) ⋆ (x̃µfkl) + µ2
0fmn ⋆ fkl

)

.

(13)

We view Ω as a regulator and refer to the action (12) as describing a

regularised φ4-model. The action (12) could also be obtained by restricting
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a complex φ4-model with magnetic field [11, 12] to the real part. One finds

Gmn;kl =
(

µ2
0+

2

θ1
(1+Ω2)(n+m+1)

)

δnkδml

− 2

θ1
(1−Ω2)

(
√

(n+1)(m+1) δn+1,kδm+1,l −
√

nmδn−1,kδm−1,l

)

.

(14)

The kinetic matrix Gmn;kl has the important property that Gmn;kl = 0

unless m + k = n + l. The same relation is induced for the propagator

∆nm;lk defined by
∑∞

k,l=0 Gmn;kl∆lk;sr =
∑∞

k,l=0 ∆nm;lkGkl;rs = δmrδns.

In order to evaluate the propagator we first diagonalise the kinetic matrix

Gmn;kl:

Gm,m+α;l+α,l =
∑

y∈N

U (α)
my

(

µ2
0+

4Ω
θ

(2y+α+1)
)

U
(α)
yl , (15)

U (α)
ny =

√

(

α+n

n

)(

α+y

y

)

(1−Ω

1+Ω

)2n+2y+α+1( 4Ω

1−Ω2

)α+1

× Mn

(

y; 1+α,
(1−Ω)2

(1 + Ω)2

)

, (16)

where Mn(y; β, c) = 2F1

(

−n,−y
β

∣

∣1−c
)

are the (orthogonal) Meixner poly-

nomials [13]. A lengthy calculation gives

∆mn;kl =
θ1

2(1+Ω2)
δm+k,n+l

min(m+l,k+n)
2

∑

v= |m−l|
2

B
(

1
2+

µ2
0θ1

8Ω +1
2 (m+k)−v, 1+2v

)

×
√

(

n

v+n−k
2

)(

k

v+k−n
2

)(

m

v+m−l
2

)(

l

v+ l−m
2

)

(1−Ω

1+Ω

)2v

× 2F1

(

1+2v , 1
2 +

µ2
0θ1

8Ω − 1
2 (m+k)+v

3
2+

µ2
0

2
√

1−ω µ2 +1
2 (m+k)+v

∣

∣

∣

∣

(1−Ω)2

(1+Ω)2

)

. (17)

Here, B(a, b) is the Beta-function and F (a, b
c

; z) the hypergeometric func-

tion. We recall that in the momentum space version of the φ4-model, the

interactions contain oscillating phase factors which make a renormalisation

by flow equations impossible. Here we use an adapted base which eliminates

the phase factors from the interaction. We see from (17) that these oscil-

lations do not reappear in the propagator. Note that all matrix elements

∆nm;lk are non-zero for m + k = n + l.
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3.2. The Polchinski equation for matrix models

We summarise here our derivation [14] of the Polchinski equation for the

noncommutative φ4-theory in the matrix base. According to Polchinski’s

derivation of the exact renormalisation group equation [10] we now consider

a (at first sight) different problem than the matrix version of (5):

Z[J, Λ] =

∫

(

∏

a,b

dφab

)

exp
(

− S[φ, J, Λ]
)

,

S[φ, J, Λ] = (2πθ1)
(

∑

m,n,k,l

1

2
φmnGK

mn;kl(Λ) φkl +
∑

m,n,k,l

φmnFmn;kl[Λ]Jkl

+
∑

m,n,k,l

1

2
JmnEmn;kl[Λ]Jkl + L[φ, Λ] + C[Λ]

)

,

GK
mn;kl(Λ) =

∏

i∈{m,n,k,l}
K

[

i
Λ2θ1

]−1
Gmn;kl . (18)

with L[0, Λ] = 0. The cut-off function K(x) is a smooth decreasing function

with K(x) = 1 for 0 ≤ x ≤ 1 and K(x) = 0 for x ≥ 2. Accordingly, we

define

∆K
nm;lk(Λ) =

∏

i∈{m,n,k,l}
K

[

i
Λ2θ1

]

∆nm;lk . (19)

The function C[Λ] is the vacuum energy and the matrices E and F , which

are not necessary in the commutative case, must be introduced because

the propagator ∆ is non-local. It is in general not possible to separate the

support of the sources J from the support of the Λ-variation of K. We

would obtain the original problem for the choice

L[φ,∞] =
∑

m,n,k,l

λ

4!
φmnφnkφklφlm ,

C[∞] = 0 , Emn;kl[∞] = 0 , Fmn;kl[∞] = δmlδnk . (20)

However, we shall expect divergences in the partition function which require

a renormalisation, i.e. additional (divergent) counterterms in L[φ,∞]. In

the Feynman graph solution of the partition function one carefully adapts

these counterterms so that all divergences disappear. If such an adapta-

tion is possible and all counterterms are local, the model is considered as

perturbatively renormalisable.

Following Polchinski [10] we proceed differently to prove renormalis-

ability. We first ask ourselves how we have to choose L, C, E, F in order to
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make Z[J, Λ] independent of Λ. After straightforward calculation one finds

the answer

Λ
∂L[φ, Λ]

∂Λ
=

∑

m,n,k,l

1

2
Λ

∂∆K
nm;lk(Λ)

∂Λ

(

∂L[φ, Λ]

∂φmn

∂L[φ, Λ]

∂φkl

− 1

2πθ1

[ ∂2L[φ, Λ]

∂φmn ∂φkl

]

φ

)

, (21)

where
[

f [φ]
]

φ
:= f [φ] − f [0]. The corresponding differential equations for

C, E, F are easy to integrate [14]. Now, instead of computing Green’s func-

tions from Z[J,∞] we can equally well start from Z[J, ΛR], where it leads

to Feynman graphs with vertices given by the Taylor expansion coefficients

A
(V )
m1n1;...;mN nN in

L[φ, Λ]

= λ

∞
∑

V =1

(

2πθ1λ
)V −1

∞
∑

N=2

1

N !

∑

mi,ni

A(V )
m1n1;...;mN nN

[Λ]φm1n1
· · ·φmN nN

.

(22)

These vertices are connected with each other by internal lines ∆K
nm;lk(Λ)

and to sources Jkl by external lines ∆K
nm;lk(Λ0). Since the summation

variables are cut-off in the propagator (19), loop summations are finite,

provided that the interaction coefficients A
(V )
m1n1;...;mN nN [Λ] are bounded.

Thus, renormalisability amounts to prove that for certain initial conditions

(parametrised by finitely many parameters!) the evolution of L according

to (21) does not produce any divergences.

Inserting the expansion (22) into (21) and restricting to the part with

N external legs we get the graphical expression

Λ
∂

∂Λ
gfed`abc oo//

�� ??

__��

.
....

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.
. . .

.

n1

m1

n2m2

mN

nN

=
1

2

∑

m,n,k,l

N−1
∑

N1=1

ONMLHIJK ONMLHIJKoo //

�� __ �� ??

aa!!??��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m1
n1

nN1
mN1 mN1+1

nN1+1

nNmN

k

l

n

m

− 1

4πθ1

∑

m,n,k,l

ONMLHIJK��

RR

�� __ �� ??

aa!!??��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m1
n1

ni−1

mi−1

mi

ni

nN

mN

n m

k l

(23)
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Combinatorical factors are not shown and symmetrisation in all indices

mini has to be performed. On the rhs of (23) the two valences mn and kl

of subgraphs are connected to the ends of a ribbon which symbolises the

differentiated propagator oo //
n

lm

k
= Λ ∂

∂Λ∆K
nm;lk. We see that for the simple

fact that the fields φmn carry two indices, the effective action is expanded

into ribbon graphs.

In the expansion of L there will occur very complicated ribbon graphs

with crossings of lines which cannot be drawn any more in a plane. A

general ribbon graph can, however, be drawn on a Riemann surface of some

genus g. In fact, a ribbon graph defines the Riemann surfaces topologically

through the Euler characteristic χ. We have to regard here the external

lines of the ribbon graph as amputated (or closed), which means to directly

connect the single lines mi with ni for each external leg mini. A few

examples may help to understand this procedure:

oo//

�� OO

//oo//oo

OO��
OO

��

//oo

OO��

OO

//

n1

m1

m3

n3

m4

n4

m2
n2

n5
m5

n6
m6

⇒
//oo

OO

��OO

//
L̃ = 2

I = 3

V = 3

g = 0

B = 2

N = 6

// oo�� MMQQ//oo oo//
n1

m1

m2

n2

⇒
// oo�� MMQQ

L̃ = 1

I = 3

V = 2

g = 1

B = 1

N = 2

(24)

The genus is computed from the number L̃ of single-line loops, the number

I of internal (double) lines and the number V of vertices of the graph

according to Euler’s formula χ = 2 − 2g = L̃ − I + V . The number B

of boundary components of a ribbon graph is the number of those loops

which carry at least one external leg. There can be several possibilities to

draw the graph and its Riemann surface, but L̃, I, V, B and thus g remain

unchanged. Indeed, the Polchinski equation (21) interpreted as in (23)

tells us which external legs of the vertices are connected. It is completely

irrelevant how the ribbons are drawn between these legs. In particular,

there is no distinction between overcrossings and undercrossings.
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We expect that non-planar ribbon graphs with g > 0 and/or B > 1

behave differently under the renormalisation flow than planar graphs having

B = 1 and g = 0. This suggests to introduce a further grading in g, B in

the interactions coefficients A
(V,B,g)
m1n1;...;mN nN . Technically, our strategy is to

apply the summations in (23) either to the propagator or the subgraph

only and to maximise the other object over the summation indices. For

that purpose one has to introduce further characterisations of a ribbon

graph which disappear at the end, see [14].

3.3. φ4-theory on noncommutative R
2

First one estimates the A-functions by integrating (21) perturbatively be-

tween an initial scale Λ0 to be sent to ∞ later on and the renormalisation

scale ΛR:

Lemma 3.1. The homogeneous parts A
(V,B,g)
m1n1;...;mN nN of the coefficients of

the effective action describing a regularised φ4-theory on R
2
θ in the matrix

base are for 2 ≤ N ≤ 2V +2 and
∑N

i=1(mi−ni) = 0 bounded by
∣

∣A(V,B,g)
m1n1;...;mN nN

[Λ, Λ0, Ω, ρ0]
∣

∣

≤
(

Λ2θ1

)2−V −B−2g
( 1

Ω

)3V −N
2 +B+2g−2

P 2V −N
2

[

ln
Λ0

ΛR

]

. (25)

We have A
(V,B,g)
m1n1;...;mN nN ≡ 0 for N > 2V +2 or

∑N
i=1(mi−ni) 6= 0. By

P q[x] we denote a polynomial in x of degree q.

The proof of (25) for general matrix models by induction goes over 20 pages!

The formula specific for the φ4-model on R
2
θ follows from the asymptotic be-

haviour of the cut-off propagator (19), (17) and a certain index summation,

see [14, 15].

We see from (25) that the only divergent function is

A(1,1,0)
m1n1;m2n2

= A
(1,1,0)
00;00 δm1n2

δm2n1

+
(

A(1,1,0)
m1n1;m2n2

[Λ, Λ0, ρ
0] − A

(1,1,0)
00;00 δm1n2

δm2n1

)

, (26)

which is split into the distinguished divergent function

ρ[Λ, Λ0, Ω, ρ0] := A
(1,1,0)
00;00 [Λ, Λ0, Ω, ρ0] (27)

for which we impose the boundary condition ρR := ρ[ΛR, Λ0, Ω, ρ0] = 0 and

a convergent part with boundary condition at Λ0.

One remarks that the limit Ω → 0 in (25) is singular. In fact the esti-

mation for Ω = 0 with an optimal choice of the ρ-coefficients (different than
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(27)!) would grow with
(

Λ
√

θ1

)V −N
2 −B−2g+2

. Since the exponent of Λ can

be arbitrarily large, there would be an infinite number of divergent inter-

action coefficients, which means that the φ4-model is not renormalisable

when keeping Ω = 0.

In order to pass to the limit Λ0 → ∞ one has to control the total

Λ0-dependence of the functions A
(V,B,g)
m1n1;...;mN nN [Λ, Λ0, Ω[Λ0], ρ

0[ΛR, Λ0, ρR]].

This leads again to a differential equation in Λ, see [15]. It is then not

difficult to see that the regularised φ4-model with Ω > 0 is renormalisable.

It turns out that one can even prove more [15]: On can endow the parameter

Ω for the oscillator frequency with an Λ0-dependence so that in the limit

Λ0 → ∞ one obtains a standard φ4-model without the oscillator term:

Theorem 3.1. The φ4-model on R
2
θ is (order by order in the coupling con-

stant) renormalisable in the matrix base by adjusting the bare mass Λ2
0ρ[Λ0]

to give A
(1,1,0)
00;00 [ΛR] = 0 and by performing the limit Λ0 → ∞ along the

path of regulated models characterised by Ω[Λ0] =
(

1+ ln Λ0

ΛR

)−1
. The limit

A
(V,B,g)
m1n1;...;mN nN [ΛR,∞] := limΛ0→∞ A

(V,B,g)
m1n1;...;mN nN [ΛR, Λ0, Ω[Λ0], ρ

0[Λ0]] of

the expansion coefficients of the effective action L[φ, ΛR, Λ0, Ω[Λ0], ρ
0[Λ0]]

exists and satisfies
∣

∣

∣
λ
(

2πθ1λ
)V −1

A(V,B,g)
m1n1;...;mN nN

[ΛR,∞]

−
(

2πθ1λ
)V −1

A(V,V e,B,g,ι)
m1n1;...;mN nN

[ΛR, Λ0,
1

(1+ln
Λ0
ΛR

)
, ρ0[Λ0]]

∣

∣

∣

≤ Λ4
R

Λ2
0

( λ

Λ2
R

)V ( (1 + ln Λ0

ΛR
)

Λ2
Rθ1

)B+2g−1

P 5V −N−1
[

ln
Λ0

ΛR

]

. (28)

In this way we have proven that the real φ4-model on R
2
θ is perturba-

tively renormalisable when formulated in the matrix base. This proof was

not simply a generalisation of Polchinski’s original proof to the noncommu-

tative case. The näıve procedure would be to take the standard φ4-action at

the initial scale Λ0, with Λ0-dependent bare mass to be adjusted such that

at ΛR it is scaled down to the renormalised mass. Unfortunately, this does

not work. In the limit Λ0 → ∞ one obtains an unbounded power-counting

degree of divergence for the ribbon graphs. The solution is the observation

that the cut-off action at Λ0 is (due to the cut-off) not translation-invariant.

We are therefore free to break the translational symmetry of the action at Λ0

even more by adding a harmonic oscillator potential for the fields φ. There

exists a Λ0-dependence of the oscillator frequency Ω with limΛ0→∞ Ω = 0

such that the effective action at ΛR is convergent (and thus bounded) or-
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der by order in the coupling constant in the limit Λ0 → ∞. This means

that the partition function of the original (translation-invariant) φ4-model

without cut-off and with suitable divergent bare mass can equally well be

solved by Feynman graphs with propagators cut-off at ΛR and vertices

given by the bounded expansion coefficients of the effective action at ΛR.

Hence, this model is renormalisable, and in contrast to the näıve Feynman

graph approach in momentum space [8] there is no problem with excep-

tional configurations. Whereas the treatment of the oscillator potential is

easy in the matrix base, a similar procedure in momentum space will face

enormous difficulties. This makes clear that the adaptation of Polchinski’s

renormalisation programme is the preferred method for noncommutative

field theories.

3.4. φ4-theory on noncommutative R
4

The renormalisation of φ4-theory on R
4
θ in the matrix base is performed in

an analogous way. We choose a coordinate system in which θ1 = θ12 = −θ21

and θ2 = θ34 = −θ43 are the only non-vanishing components of θ. Moreover,

we assume θ1 = θ2 for simplicity. Then we expand the scalar field according

to φ(x) =
∑

m1,n1,m2,n2∈N
φm1

m2

n1
n2

fm1n1
(x1, x2)fm2n2

(x3, x4). The action

(12) with integration over R
4 leads then to a kinetic term generalising (14)

and a propagator generalising (17). Using estimates on the asymptotic

behaviour of that propagator one proves the four-dimensional generalisation

of Lemma 3.1 on the power-counting degree of the N -point functions. For

Ω > 0 one finds that all non-planar graphs (B > 1 and/or g > 0) and all

graphs with N ≥ 6 external legs are convergent.

The remaining infinitely many planar two- and four-point functions have

to be split into a divergent ρ-part and a convergent complement. Using

some sort of locality for the propagator (17), which is a consequence of its

derivation from Meixner polynomials, one proves that

A
planar
m1
m2

n1
n2

; k1
k2

l1
l2

− δm1l1δn1k1
δm2l2δn2k2

(

A
planar
0
0

0
0 ; 00

0
0

+ m1

(

A
planar
1
0

0
0 ; 00

1
0

− A
planar
0
0

0
0 ; 00

0
0

)

+ n1

(

A
planar
0
0

1
0 ; 10

0
0

− A
planar
0
0

0
0 ; 00

0
0

)

+ m2

(

A
planar
0
1

0
0 ; 00

0
1

− A
planar
0
0

0
0 ; 00

0
0

)

+ n2

(

A
planar
0
0

0
1 ; 01

0
0

− A
planar
0
0

0
0 ; 00

0
0

)

)
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−
(
√

(m1+1)(n1+1)δm1+1,l1δn1+1,k1
δm2l2δn2k2

+
√

m1n1δm1−1,l1δn1−1,k1
δm2l2δn2k2

)

A
planar
1
0

1
0 ; 00

0
0

−
(
√

(m2+1)(n2+1)δm2+1,l2δn2+1,k2
δm1l1δn1k1

+
√

m2n2δm2−1,21
δn2−1,k2

δm1l1δn1k1

)

A
planar
0
1

0
1 ; 00

0
0

, (29)

A
planar
m1
m′

1

n1
n′
1
;...;

m4
m′

4

n4
n′
4

−
(

1
6δn1

n′
1

m2
m′

2

δn2
n′
2

m3
m′

4

δn3
n′
3

m4
m′

4

δn4
n′
4

m1
m′

1

+ 5 perm’s
)

A
planar
0
0

0
0 ;...; 00

0
0

,

(30)

are convergent functions, thus identifying

ρ1 := A
planar
0
0

0
0 ; 00

0
0

,

ρ2 := A
planar
1
0

0
0 ; 00

1
0

− A
planar
0
0

0
0 ; 00

0
0

= A
planar
0
1

0
0 ; 00

0
1

− A
planar
0
0

0
0 ; 00

0
0

,

ρ3 := A
planar
1
0

1
0 ; 00

0
0

= A
planar
0
1

0
1 ; 00

0
0

ρ4 := A
planar
0
0

0
0 ; 00

0
0 ; 00

0
0 ; 00

0
0

(31)

as the distinguished divergent ρ-functions for which we impose boundary

conditions at ΛR. Details will be given in [16].

The function ρ3 has no commutative analogue. Due to (29) it corre-

sponds to a normalisation condition for the frequency parameter Ω in (14).

This means that in contrast to the two-dimensional case we cannot remove

the oscillator potential with the limit Λ0 → ∞. In other words, the oscilla-

tor potential in (12) is a necessary companionship to the ⋆-product interac-

tion. This observation is in agreement with the UV/IR-entanglement first

observed in [4]. Whereas the UV/IR-problem prevents the renormalisation

of φ4-theory on R
4
θ in momentum space [8], we have found a self-consistent

solution of the problem by providing the unique (due to properties of the

Meixner polynomials) renormalisable extension of the action. We remark

that the diagonalisation of the free action via the Meixner polynomials leads

to discrete momenta as the only difference to the commutative case. The

inverse of such a momentum quantum can be interpreted as the size of the

(finite!) universe, as it is seriously discussed in cosmology [17].
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