Slavnov-Taylor identity in noncommutative geometry

Raimar Wulkenhaar
Institute for Theoretical Physics, University of Vienna
Boltzmanngasse 5, 1090 Wien, Austria

Abstract

We develop a framework to define quantum Yang-Mills theories on general differential algebras imitating the standard procedure.

1 Field theories on general differential algebras

Let \mathcal{A} be an associative ${ }^{*}$-algebra over \mathbb{C} and (Ω, d) an \mathbb{N}-graded differential *-algebra over \mathcal{A}, i.e. $\Omega=\bigoplus_{n=0}^{\infty} \Omega^{n}$ with $\Omega^{0}=\mathcal{A}$ and

$$
\begin{align*}
& \Omega^{0}=\mathcal{A}, \quad \Omega^{k} \Omega^{l} \subset \Omega^{k+l}, \quad d: \Omega^{n} \rightarrow \Omega^{n+1}, \quad{ }^{*}: \Omega^{n} \rightarrow \Omega^{n}, \tag{1}\\
& \left(\omega^{k} \tilde{\omega}^{l}\right)^{*}=\left(\tilde{\omega}^{l}\right)^{*}\left(\omega^{k}\right)^{*}, \quad\left(z \omega^{k}\right)^{*}=\bar{z} \omega^{k}, \tag{2}\\
& d\left(\omega^{k} \tilde{\omega}^{l}\right)=d\left(\omega^{k}\right) \tilde{\omega}^{l}+(-1)^{l} \omega^{k} d\left(\tilde{\omega}^{l}\right), \quad d\left(d \omega^{k}\right)=0, \tag{3}
\end{align*}
$$

for $\omega^{k} \in \Omega^{k}, \tilde{\omega}^{l} \in \Omega^{l}$ and $z \in \mathbb{C}$. Moreover, let Ω^{n}, for each degree n, be equipped with a symmetric non-degenerate positive bilinear form $\langle,\rangle_{n}: \Omega^{n} \times \Omega^{n} \rightarrow \mathbb{C}$ which satisfies

$$
\begin{align*}
& \langle\omega, \tilde{\omega}\rangle_{n}=\langle\tilde{\omega}, \omega\rangle_{n}, \quad\langle\omega a, \tilde{\omega}\rangle_{n}=\langle\omega, a \tilde{\omega}\rangle_{n}, \quad \text { for } \omega, \tilde{\omega} \in \Omega^{n}, a \in \mathcal{A}, \\
& \left\langle\omega, \omega^{*}\right\rangle_{n} \geq 0 \quad \forall \omega \in \Omega^{n}, \quad\left\langle\omega, \omega^{*}\right\rangle_{n}=0 \quad \Leftrightarrow \quad \omega=0 . \tag{4}
\end{align*}
$$

The codifferential $d^{*}: \Omega^{n+1} \rightarrow \Omega^{n}$ is defined as the adjoint of d via \langle,\rangle_{n},

$$
\begin{equation*}
\langle d a, b\rangle_{n+1}=:\left\langle a, d^{*} b\right\rangle_{n}, \quad a \in \Omega^{n}, \quad b \in \Omega^{n+1} . \tag{5}
\end{equation*}
$$

Our goal is to formulate field theories, i.e. dynamical systems of amplitudes. For this purpose it is necessary to assume that there is a basis $\left\{u_{\mathbf{p}}\right\}$ in Ω^{n} labelled by possibly continuous parameters. Instead of taking complex numbers for the amplitudes we allow for Grassmann valued amplitudes $\phi_{\mathrm{q}, \overline{\mathrm{q}}}^{\mathbf{p}} \in V_{\mathrm{q}, \overline{\mathrm{q}}}$, with

$$
\begin{equation*}
\phi_{\mathbf{q}, \overline{\mathrm{q}}}^{\mathbf{p}} \phi_{\mathrm{r}, \overline{\mathrm{r}}}^{\mathbf{q}}=(-1)^{(\mathbf{q}-\overline{\mathrm{q}})(\mathrm{r}-\overline{\mathrm{r}})} \phi_{\mathbf{r}, \overline{\mathrm{r}}}^{\mathbf{q}} \phi_{\mathrm{q}, \overline{\mathrm{q}}}^{\mathbf{p}} . \tag{6}
\end{equation*}
$$

Let $\mathbb{G}=\bigoplus_{\mathrm{q}, \overline{\mathrm{q}}} \mathbb{G}_{\mathrm{q}, \overline{\mathrm{q}}}$ be the bigraded Grassmann algebra generated by the amplitudes $\left\{\phi_{i, \mathrm{q}, \overline{\mathrm{q}}}^{\mathrm{p}}\right\}$ according to (6). Let $\Omega_{\mathrm{q}, \overline{\mathrm{q}}}^{n}$ be the space of $\mathbb{G}_{\mathrm{q}, \overline{\mathrm{q}}}$-valued n-forms which contains in particular elements $\phi_{i}=\phi_{i, \mathrm{q}, \overline{\mathrm{q}}}^{\mathrm{p}} u_{\mathrm{p}}$ linear in the amplitudes $\phi_{i, \mathrm{q}, \overline{\mathrm{q}}}^{\mathrm{p}} \in V_{\mathrm{q}, \overline{\mathrm{q}}}$. Multiplication, differential and bilinear form are extended by linearity from Ω^{*} to $\Omega_{*, *}^{*}$. Finally, let

$$
\begin{equation*}
\mathcal{C}(\Omega)=\left\{z \in \mathcal{A}: \quad d z \equiv 0, \quad[z, \omega] \equiv 0 \quad \forall \omega \in \Omega_{*, *}^{*}\right\} \tag{7}
\end{equation*}
$$

be the set of 'constant' central elements of $\Omega_{*, *}^{*}$.
Let $F \in \mathbb{G}_{\mathrm{r}, \overline{\mathrm{r}}}$ be some power series of $\left\{\phi_{i, \mathrm{~s}, \overline{\mathrm{~s}}}^{\mathrm{p}}\right\}$. We define functional derivatives

$$
\begin{align*}
& \frac{\partial}{\partial \phi_{i}}: \mathbb{G}^{\mathrm{r}, \overline{\mathrm{r}}} \ni F \mapsto \frac{\partial F}{\partial \phi_{i}} \in \Omega_{\mathrm{r}-\mathrm{q}, \overline{\mathrm{r}}-\overline{\mathrm{q}}}^{n} \quad \text { by } \tag{8}\\
& \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\left.F\right|_{\phi_{i}^{\mathbf{p}} \mapsto \phi_{i}^{\mathbf{P}}+\epsilon x^{\mathbf{p}}}-F-\left\langle\epsilon x, \frac{\partial F}{\partial \phi_{i}}\right\rangle_{n}\right)=0, \quad \forall x=u_{\mathbf{p}} x^{\mathbf{p}} \in \Omega_{\mathrm{q}, \overline{\mathrm{q}}}^{n}
\end{align*}
$$

Definition 1 A field is a homogeneous element of $\Omega_{\mathrm{q}, \overline{\mathrm{q}}}^{n}$ linear in the amplitudes spanning $V_{\mathrm{q}, \overline{\mathrm{q}}}$ with a dimension

$$
\begin{equation*}
\operatorname{dim}=n+q+\bar{q} \tag{9}
\end{equation*}
$$

assigned to the amplitudes of the field. The numbers ($n ; \mathrm{q}, \overline{\mathrm{q}}$) are called (degree; ghost number, antighost number) of the field. The differential $d: \Omega_{\mathrm{q}, \overline{\mathrm{q}}}^{n} \rightarrow \Omega_{\mathrm{q}, \overline{\mathrm{q}}}^{n+1}$ is counted as an element of type $(1 ; 0,0)$.

A local field monomial is the product (in $\Omega_{*, *}^{*}$) of fields and differentials of fields. The dimension of the field monomial is the sum of the dimensions of fields and differentials in it. (By construction, degree and ghost-antighost numbers the field monomial is the sum of the degrees and ghost-antighost numbers, respectively, of the fields and differentials in it.)

An integrated local field monomial is the contraction of two local field monomials of the same degree n via the weighted bilinear form $\langle z ., .\rangle_{n}$, with invertible $z \in \mathcal{C}(\Omega)$.

A classical action is a linear combination of integrated local field monomials (with different weights z) of dimension $\leq D$ and balanced ghost-antighost numbers $\mathrm{q}=\overline{\mathrm{q}}$.

Definition 2 A Yang-Mills theory on $\Omega_{*, *}^{*}$ in dimension $D=4$ is a theory of the fields $A, \rho, c, \overline{\sigma,} \bar{c}, B$ whose degrees n, ghost-antighost numbers $\mathrm{q}-\overline{\mathrm{q}}$ and dimensions dim are given in the following table:

	A	ρ	c	σ	\bar{c}	B	d
n	1	1	0	0	0	0	1
q	0	0	1	0	0	1	0
$\overline{\mathrm{q}}$	0	1	0	2	1	1	0
dim	1	2	1	2	1	2	1

We assume that there exist configurations A, c such that

$$
\begin{equation*}
\alpha A c c+\beta c c A=0, \quad \gamma d(c c)=0 \tag{10}
\end{equation*}
$$

for $\alpha, \ldots, \zeta \in \mathcal{C}(\Omega)$ not necessarily positive, have only the solution $\alpha=\ldots=\zeta=0$. Then, the theory is governed by the Slavnov-Taylor operator \mathcal{S} defined on functionals $\Gamma \in \mathbb{G}$ of the amplitudes of $A, \rho, c, \sigma, \bar{c}, B$ by

$$
\begin{equation*}
\mathcal{S}(\Gamma)=\left\langle\frac{\partial \Gamma}{\partial \rho}, \frac{\partial \Gamma}{\partial A}\right\rangle_{1}+\left\langle\frac{\partial \Gamma}{\partial \sigma}, \frac{\partial \Gamma}{\partial c}\right\rangle_{0}+\left\langle B, \frac{\partial \Gamma}{\partial \bar{c}}\right\rangle_{0} . \tag{11}
\end{equation*}
$$

We are looking for the most general solution Γ of the Slavnov-Taylor identity $\mathcal{S}(\Gamma)=0$, where Γ is a classical action, i.e. an integrated local field polynomial in $A, \rho, c, \sigma, \bar{c}, B$ with dimension ≤ 4 and balanced ghost-antighost number $\mathrm{q}=\overline{\mathrm{q}}$. The answer is

Proposition 3 If (10) is true and if $\frac{\partial \Gamma}{\partial \rho} \not \equiv 0$ and $\frac{\partial \Gamma}{\partial \sigma} \not \equiv 0$, the most general classical non-abelian Yang-Mills action satisfying the Slavnov-Taylor identity is

$$
\begin{align*}
\Gamma & =-\left\langle\frac{1}{4 g^{2}} F, F\right\rangle_{2}+\left\langle\frac{\alpha}{2} B, B\right\rangle_{0}+\langle d \bar{c}+\rho, d c+[A, c]\rangle_{1}-\langle d B, A\rangle_{1}-\langle\sigma, c c\rangle_{0} \tag{12}\\
& +\langle\beta \bar{c} \bar{c}, c c\rangle_{0}-\langle\beta B,\{\bar{c}, c\}\rangle_{0}+\langle\gamma B A, A\rangle_{1}+\langle\gamma d c,\{A, \bar{c}\}\rangle_{1}+\langle\gamma A\{\bar{c}, c\}, A\rangle_{1}
\end{align*}
$$

with $F=d A+A A$, up to a rescaling $A_{\mu} \mapsto \xi_{1} A_{\mu}, \rho^{\mu} \mapsto \rho^{\mu} / \xi_{1}, c \mapsto \xi_{2} c, \sigma \mapsto \sigma / \xi_{2}$, $\bar{c} \mapsto \xi_{3} \bar{c}$ and $B \mapsto \xi_{3} B$, which leave the Slavnov-Taylor identity unchanged. Here, $g, \alpha, \beta, \gamma, \xi_{i}$ are positive central elements of \mathcal{A}.

There are three degenerate (static) solutions where some parts whose coefficients in (12) are normalized to 1 are missing, given as combinations of

1) $d A=0$ and $d c=0, \quad g \mapsto 1, \quad$ additional term $-\left\langle\frac{m^{2}}{2} A, A\right\rangle_{1}$,
2) $d B=0$ and $d \bar{c}=0, \quad \beta \mapsto 1$,
(although these differentials may actually be non-zero).
For the proof one writes down the most general local field polynomial of dimension ≤ 4 and balanced ghost-antighost number and applies the SlavnovTaylor operator.

It is convenient to impose the gauge fixing condition

$$
\begin{equation*}
\frac{\partial \Gamma}{\partial B}=\alpha B-d^{*} A \tag{13}
\end{equation*}
$$

2 Generating functionals

The classical action $\Gamma[A, \rho, c, \sigma, \bar{c}, B]$ is regarded as a special example of a generating functional of 1PI (one-particle irreducible) Green's functions. In general, deriving such a functional with respect to the fields $\phi_{i}=\{A, \rho, c, \sigma, \bar{c}, B\}$ (considered as test functions), $\Gamma_{1 \ldots n}:=\left.\frac{\partial^{n} \Gamma}{\partial \phi_{1} \ldots \partial \phi_{n}}\right|_{\phi_{i}=0}$, one can associate to $\Gamma_{1 \ldots . n}$ a graph which remains connected after cutting an arbitrary line. In particular, external lines of $\Gamma_{1 \ldots . . n}$ are amputated.

In the general case on can pass from Γ to a generating functional Z^{c} of connected Green's functions by Legendre transformation

$$
\begin{equation*}
Z^{c}[J, \mathcal{J}, \bar{\jmath}, j, \rho, \sigma]:=\Gamma[A, B, c, \bar{c}, \rho, \sigma]+\langle A, J\rangle_{1}+\langle B, \mathcal{J}\rangle_{0}+\langle\bar{\jmath}, c\rangle_{0}+\langle j, \bar{c}\rangle_{0} \tag{14}
\end{equation*}
$$

where the fields A, B, c, \bar{c} have to be replaced by the (inverse) solution of

$$
\begin{equation*}
J=-\frac{\partial \Gamma}{\partial A} \in \Omega_{0}^{1}, \quad \mathcal{J}=-\frac{\partial \Gamma}{\partial B} \in \Omega_{0}^{0}, \quad j=\frac{\partial \Gamma}{\partial \bar{c}} \in \Omega_{1}^{0}, \quad \bar{\jmath}=\frac{\partial \Gamma}{\partial c} \in \Omega_{-1}^{0} \tag{15}
\end{equation*}
$$

with $\Omega_{Q}^{n}=\bigoplus_{q=\max (-Q, 0)}^{\infty} \Omega_{\mathrm{q}+\mathrm{Q}, \mathrm{q}}^{n}$. The generating functional of general (not necessarily connected) Green's functions is defined as

$$
\begin{equation*}
Z:=\mathrm{e}^{-\frac{1}{\hbar} Z^{c}} \tag{16}
\end{equation*}
$$

In particular, we can take for Γ the bilinear part $\Gamma_{\text {bil }}$ of the gauge fixed classical action Γ_{cl} :

$$
\begin{align*}
\Gamma_{\mathrm{bil}}= & -\left\langle\frac{1}{4 g^{2}} d A, d A\right\rangle_{2}+\left\langle\frac{\alpha}{2} B, B\right\rangle_{0}-\langle d B, A\rangle_{1}+\langle d \bar{c}, d c\rangle_{1} . \tag{17}\\
& -(s-1)^{2} M^{2}\left\langle\frac{1}{2 g^{2}} A, A\right\rangle_{1}+(s-1)^{2} M^{2}\left\langle\frac{\alpha}{g^{2}} \bar{c}, c\right\rangle_{0} . \tag{18}
\end{align*}
$$

The mass terms proportional to $(s-1)^{2} M^{2}$ are auxiliary ones to deal with possible infrared divergences. It is convenient not to include $\langle\rho, d c\rangle_{1}$ in $\Gamma_{\text {bil }}$.

Restricted for the moment to the bilinear part we obtain

$$
\begin{array}{ll}
J=\frac{1}{g^{2}}\left(\frac{1}{2} d^{*} d+(s-1)^{2} M^{2}\right) A+d B, & j=\left(d^{*} d+\frac{\alpha}{g^{2}}(s-1)^{2} M^{2}\right) c, \tag{19}\\
\mathcal{J}=-\alpha B+d^{*} A, & \bar{\jmath}=-\left(d^{*} d+\frac{\alpha}{g^{2}}(s-1)^{2} M^{2}\right) \bar{c} .
\end{array}
$$

This gives

$$
\begin{array}{ll}
A=-g^{2} \tilde{\Delta}\left(J+\frac{1}{\alpha} d \mathcal{J}\right), & c=-\Delta j, \\
B=-\frac{g^{2}}{\alpha} d^{*} \tilde{\Delta} J+\frac{1}{g^{2}}(s-1)^{2} M^{2} \Delta \mathcal{J}, & \bar{c}=\Delta \bar{\jmath}, \tag{20}
\end{array}
$$

with the propagators $\tilde{\Delta}, \Delta$ defined by

$$
\tilde{\Delta}\left(\frac{1}{2} d^{*} d+\frac{g^{2}}{\alpha} d d^{*}+(s-1)^{2} M^{2}\right)=-\operatorname{id}_{\Omega^{1}}, \quad \Delta\left(d^{*} d+\frac{\alpha}{g^{2}}(s-1)^{2} M^{2}\right)=-\operatorname{id}_{\mathcal{A}}
$$

We have used the identity $\frac{g^{2}}{\alpha} \tilde{\Delta} d=d \Delta$.
A lengthy but straightforward computation leads to

$$
\begin{equation*}
Z_{\mathrm{bil}}^{c}=-\left\langle\frac{g^{2}}{2} J, \tilde{\Delta} J\right\rangle_{1}-\left\langle\frac{g^{2}}{\alpha} d \mathcal{J}, \tilde{\Delta} J\right\rangle_{1}+(s-1)^{2} M^{2}\left\langle\frac{1}{2 g^{2}} \mathcal{J}, \Delta \mathcal{J}\right\rangle_{0}-\langle\bar{\jmath}, \Delta j\rangle_{0} \tag{21}
\end{equation*}
$$

and consequently to

$$
\begin{equation*}
Z_{\text {bil }}[J, \mathcal{J}, j, \bar{\jmath}]=\mathrm{e}^{\left(\left\langle\frac{g^{2}}{2 \hbar} J, \tilde{\Delta} J\right\rangle_{1}+\left\langle\frac{g^{2}}{\alpha \hbar} d \mathcal{J}, \tilde{\Delta} J\right\rangle_{1}-(s-1)^{2} M^{2}\left\langle\frac{1}{2 g^{2} \hbar} \mathcal{J}, \Delta \mathcal{J}\right\rangle_{0}+\frac{1}{\hbar}\langle\bar{J}, \Delta j\rangle_{0}\right)} . \tag{22}
\end{equation*}
$$

We quantize our theory axiomatically by the principle that the full generating functional is given by

$$
\begin{align*}
& Z\left[\rho, \sigma, J, J_{B}, j, \bar{\jmath}\right] \tag{23}\\
& \quad:=\left.\mathcal{N} \mathrm{e}^{-\frac{1}{\hbar} \Gamma_{\mathrm{int}}[A, c, \bar{c}, B, \rho, \sigma]}\right|_{A \mapsto-\hbar \frac{\partial}{\partial J}, c \mapsto-\hbar \frac{\partial}{\partial \bar{j}}, \bar{c} \mapsto-\hbar \frac{\partial}{\partial J}, B \mapsto-\hbar \frac{\partial}{\partial J}} Z_{\mathrm{bil}}[J, \mathcal{J}, j, \bar{\jmath}]
\end{align*}
$$

where $\Gamma_{\mathrm{int}}=\Gamma_{\mathrm{cl}}-\left.\Gamma_{\mathrm{bil}}\right|_{s=1}$ and \mathcal{N} is an (ill-defined) normalization factor determined by $Z[0]=1$. In many cases the expansion of (23) leads to infinities even if
the possible problem with \mathcal{N} is ignored. We have to fix a regularization scheme so that (23) becomes a formal power series in \hbar consisting of finite terms. It is not important for us whether the series converges or not.

Due to $\frac{\partial Z^{c}}{\partial \rho}=\frac{\partial \Gamma}{\partial \rho}$ and $\frac{\partial Z^{c}}{\partial \sigma}=\frac{\partial \Gamma}{\partial \sigma}$ we have

$$
\begin{align*}
\mathcal{S} \Gamma & =\left\langle\frac{\partial \Gamma}{\partial \rho}, \frac{\partial \Gamma}{\partial A}\right\rangle_{1}+\left\langle\frac{\partial \Gamma}{\partial \sigma}, \frac{\partial \Gamma}{\partial c}\right\rangle_{0}+\left\langle B, \frac{\partial \Gamma}{\partial \bar{c}}\right\rangle_{0} \\
& =\left\langle-J, \frac{\partial Z^{c}}{\partial \rho}\right\rangle_{1}+\left\langle\bar{\jmath}, \frac{\partial Z^{c}}{\partial \sigma}\right\rangle_{0}+\left\langle j, \frac{\partial Z^{c}}{\partial \mathcal{J}}\right\rangle_{0} \equiv \mathcal{S} Z^{c} \tag{24}
\end{align*}
$$

when expressing both lines of the equation in terms of the same variables. Since we have a more explicit formula for Z than for Z^{c}, the identity (24) suggests to study the problem

$$
\begin{equation*}
\mathcal{S} Z:=\left\langle-J, \frac{\partial Z}{\partial \rho}\right\rangle_{1}+\left\langle\bar{\jmath}, \frac{\partial Z}{\partial \sigma}\right\rangle_{0}+\left\langle j, \frac{\partial Z}{\partial \mathcal{J}}\right\rangle_{0} . \tag{25}
\end{equation*}
$$

For a given model, i.e. given $(\Omega, d,\langle\rangle$,$) , it is possible to compute \mathcal{S} Z$. On a formal level one always obtains $\mathcal{S} Z=0$, however, the counterterms introduced to remove the infinities will lead in general to corrections breaking the SlavnovTaylor identity. These corrections have to be characterized by the quantum action principle concerning dimension, ghost-antighost numbers and structure of the field monomials. The model is called perturbatively renormalizable if $\mathcal{S} Z=0$ can be achieved when replacing the classical action Γ_{cl} defining Z by a power series in \hbar of the same form as Γ_{cl}.

Out of Z given by (23) we obtain the generating functional of the connected Green's functions Z^{c} via (16) and the generating functional Γ of the 1PI Green's functions by inverting (14):

$$
\Gamma[\rho, \sigma, A, c, \bar{c}, B]=Z^{c}[\rho, \sigma, J, \mathcal{J}, j, \bar{\jmath}]-\langle A, J\rangle_{1}-\langle B, \mathcal{J}\rangle_{0}-\langle\bar{\jmath}, c\rangle_{0}-\langle j, \bar{c}\rangle_{0},
$$

where the sources $J, \mathcal{J}, j, \bar{\jmath}$ are replaced by the solution of

$$
A=\frac{\partial Z^{c}}{\partial J}, \quad c=\frac{\partial Z^{c}}{\partial \bar{\jmath}}, \quad \bar{c}=\frac{\partial Z^{c}}{\partial j}, \quad B=\frac{\partial Z^{c}}{\partial \mathcal{J}}
$$

The functional Γ is a formal power series in $\hbar, \Gamma=\sum_{n=0}^{\infty} \hbar^{n} \Gamma_{(n)}$, and one can check that $\Gamma_{(0)}=\Gamma_{\mathrm{cl}, s}=\Gamma_{\mathrm{int}}+\Gamma_{\text {bil }}$. Moreover, the contributions to $\Gamma_{(n)}$ correspond to Feynman graphs with n loops. One easily convinces oneself that $\Gamma_{(n)}$ for $n>0$ cannot be written as contractions via \langle,\rangle_{k}. The only way to evaluate it is in components with respect to a basis for a concrete model.

The three Slavnov-Taylor identities $\mathcal{S} Z=0, \mathcal{S} Z^{c}=0$ and $\mathcal{S} \Gamma=0$ for generating functionals of renormalized Green's functions are equivalent.

3 Example: The noncommutative \mathbb{R}^{4}

An example of an algebra fitting into our setting is the noncommutative \mathbb{R}^{4}. We consider four hermitian 'coordinates' $x_{\mu}, \mu=1, \ldots, 4$, satisfying

$$
\left[x_{\mu}, x_{\mu}\right]=-2 \mathrm{i} \pi \theta_{\mu \nu}, \quad \theta_{\mu \nu}=-\theta_{\nu \mu} \in \mathbb{R}
$$

Introducing $u_{p}:=\exp \left(2 \mathrm{i} \pi p^{\mu} x_{\mu}\right)=1+2 \mathrm{i} \pi p^{\mu} x_{\mu}+(1 / 2!)\left(2 \mathrm{i} \pi p^{\mu} x_{\mu}\right)^{2}+\ldots$, with $p=\left(p^{1}, p^{2}, p^{3}, p^{4}\right) \in \mathbb{R}^{4}$, the Baker-Campbell-Hausdorff formula gives

$$
\begin{equation*}
u_{p} u_{q}=\mathrm{e}^{\mathrm{i} \theta(p, q)} u_{p+q}, \quad \theta(p, q)=-\theta(q, p)=\theta_{\mu \nu} p^{\mu} q^{\nu} . \tag{26}
\end{equation*}
$$

Moreover, $\left(u_{p}\right)^{*}=u_{-p}$. The noncommutative \mathbb{R}^{4} is the algebra spanned by $\left\{u_{p}\right\}$ and will be denoted by \mathbb{R}_{θ}^{4}. The differential algebra $\left(\Omega_{\theta}, d\right)$ over \mathbb{R}_{θ}^{4} is the tensor product of \mathbb{R}_{θ}^{4} with some Grassmann algebra of $D=4$ generators $\left\{\gamma_{\mu}\right\}_{\mu=1, \ldots, 4}$, satisfying $\gamma_{\mu} \gamma_{\nu}=-\gamma_{\nu} \gamma_{\mu}$. Then,

$$
\begin{align*}
& \Omega_{\theta}^{0}=\operatorname{span}_{\mathbb{C}}\left(u_{p}, \quad p \in \mathbb{R}^{4}\right) \equiv \mathbb{R}_{\theta}^{4}, \\
& \Omega_{\theta}^{1}=\operatorname{span}_{\mathbb{C}}\left(u_{p \mu}=\gamma_{\mu} u_{p}, \quad 1 \leq \mu \leq 4, p \in \mathbb{R}^{4}\right), \\
& \Omega_{\theta}^{2}=\operatorname{span}_{\mathbb{C}}\left(u_{p \mu \nu}=\gamma_{\mu} \gamma_{\nu} u_{p}, \quad 1 \leq \mu<\nu \leq 4, p \in \mathbb{R}^{4}\right), \tag{27}\\
& \Omega_{\theta}^{3}=\operatorname{span}_{\mathbb{C}}\left(u_{p \mu \nu \rho}=\gamma_{\mu} \gamma_{\nu} \gamma_{\rho} u_{p}, \quad 1 \leq \mu<\nu<\rho \leq 4, p \in \mathbb{R}^{4}\right), \\
& \Omega_{\theta}^{4}=\operatorname{span}_{\mathbb{C}}\left(u_{p 5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} u_{p}, \quad p \in \mathbb{R}^{4}\right),
\end{align*}
$$

and $\Omega_{\theta}^{n} \equiv 0$ for $n \geq 5$. The product in Ω is the usual product of tensor products, for instance $\left.u_{p} u_{(} \gamma_{\mu} u_{q}\right)=\gamma_{\mu}\left(u_{p} u_{q}\right),\left(\gamma_{\mu} u_{p}\right)\left(\gamma_{\nu} u_{q}\right)=\gamma_{\mu} \gamma_{\nu}\left(u_{p} u_{q}\right)$, etc. The differential is defined as

$$
\begin{equation*}
d\left(\gamma_{\mu} \cdots \gamma_{\nu} u_{p}\right):=\mathrm{i} p^{\rho} \gamma_{\rho} \gamma_{\mu} \cdots \gamma_{\nu} u_{p} \tag{28}
\end{equation*}
$$

with summation over ρ from 1 to 4 . The sequence $\gamma_{\mu} \cdots \gamma_{\nu}$ might be empty. Developing the differential in a basis we get

$$
\begin{align*}
d u_{p} & =d_{p}^{q \mu} u_{q \mu}, & d_{p}^{q \mu} & =\mathrm{i} p^{\mu} \delta_{p}^{q}, \tag{29}\\
d u_{p \rho} & =d_{p \rho}^{q \mu \nu} u_{q \mu \nu}, & d_{p \rho}^{q \mu \nu} & =\mathrm{i}\left(p^{\mu} \delta_{\rho}^{\nu}-p^{\nu} \delta_{\rho}^{\mu}\right) \delta_{p}^{q} .
\end{align*}
$$

We extend the star to Ω by $\left(\gamma_{\mu}\right)^{*}:=\gamma_{\mu}$. The bilinear forms are defined by

$$
\begin{equation*}
\left\langle\gamma_{\mu_{1}} \cdots \gamma_{\mu_{n}} u_{p}, \gamma_{\nu_{1}} \cdots \gamma_{\nu_{n}} u_{q}\right\rangle_{n}=\delta_{\mu_{1} \nu_{1}} \cdots \delta_{\mu_{n} \nu_{n}} \delta_{p,-q} \tag{30}
\end{equation*}
$$

with $\mu_{i}<\mu_{j}, \nu_{i}<\nu_{j}$ for $i<j$. The properties (3) and (4) are easy to verify.

