Slavnov-Taylor identity in noncommutative geometry

RAIMAR WULKENHAAR
Institute for Theoretical Physics, University of Vienna
Boltzmanngasse 5, 1090 Wien, Austria

Abstract

We develop a framework to define quantum Yang-Mills theories on gen-
eral differential algebras imitating the standard procedure.
1 Field theories on general differential algebras

Let A be an associative *-algebra over C and (Q,d) an N-graded differential
*-algebra over A, i.e. @ = @7 Q" with Q° = A and

A=A, QAo g0nQ i Qr Ot (1)
(Wrhah)r = @) (W), (b)) =2k, (2)
dwra") = dw*) &' + (-1)'WFd@),  d(dw*) =0, (3)

for wk € QF, &' € Ol and z € C. Moreover, let Q", for each degree n, be equipped
with a symmetric non-degenerate positive bilinear form (, ),, : 2" x Q" — C which
satisfies

(W, WYy = {0, W)y , (wa,0), = (w, a), , forw,oeQ", ac A,
(W,w ) >0 Yw e Q" (W,wH, =0 & w=0. (4)

The codifferential d* : Q"' — Q" is defined as the adjoint of d via (, ), ,
(da, bysr = {a,d" D), @€ Q" beQurl, (5)

Our goal is to formulate field theories, i.e. dynamical systems of amplitudes.
For this purpose it is necessary to assume that there is a basis {up} in Q" labelled
by possibly continuous parameters. Instead of taking complex numbers for the
amplitudes we allow for Grassmann valued amplitudes ¢g 4 € V; 4, with

¢g,q¢gf = (_1)(q_®(r_f)d’?,f¢g,q . (6)

Let G = @q’q Gq,q be the bigraded Grassmann algebra generated by the ampli-
tudes {¢}, 4} according to (6). Let 7 = be the space of G, q-valued n-forms which
contains in particular elements ¢; = ¢£q’qup linear in the amplitudes qﬁf’q’q € Vg
Multiplication, differential and bilinear form are extended by linearity from 2*

to Q.. Finally, let

CY={z€eA: dz=0, [z,w]=0 YweQ, } (7)



be the set of ‘constant’ central elements of (2} ,.

Let I € G, be some power series of {¢};;}. We define functional derivatives
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Definition 1 A field is a homogeneous element of (4 . linear in the amplitudes
spanning Vyq with a dimension

dim=n+q+q (9)

assigned to the amplitudes of the field. The numbers (n;q,q) are called (degree;
ghost number, antighost number) of the field. The differential d : Qoqg — Qg}gl
is counted as an element of type (1;0,0).

A local field monomial is the product (in €2 ,) of fields and differentials of
fields. The dimension of the field monomaial is the sum of the dimensions of fields
and differentials in it. (By construction, degree and ghost-antighost numbers the
field monomial is the sum of the degrees and ghost-antighost numbers, respectively,
of the fields and differentials in it.)

An integrated local field monomial is the contraction of two local field mono-
mials of the same degree n via the weighted bilinear form (z ., . )y, with invertible
z € C(9).

A classical action is a linear combination of integrated local field monomials
(with different weights z) of dimension < D and balanced ghost-antighost numbers
q=q.

Definition 2 A Yang-Mills theory on Q) , in dimension D = 4 is a theory of
the fields A, p, c,0, ¢, B whose degrees n, ghost-antighost numbers q — q and di-
mensions dim are given in the following table:

A P c o ¢ B d

n 1 1 0 0 0 0 1
q 0 0 1 0 0 1 0
q o 1/0 2|1 110
dim 1 2 1 2 1 2 1

We assume that there exist configurations A, c such that
aAcc+ fecA=0, vd(ce) =0, (10)

for a, ..., € C(Q) not necessarily positive, have only the solution a=...=(=0.
Then, the theory is governed by the Slavnov-Taylor operator S defined on func-
tionals I' € G of the amplitudes of A, p, ¢,o0, ¢, B by

S = (35 3+ (50 5c)o (B 50), - a




We are looking for the most general solution I' of the Slavnov-Taylor identity
S(T') = 0, where T is a classical action, i.e. an integrated local field polynomial in
A, p, ¢,0, ¢, B with dimension < 4 and balanced ghost-antighost number q = q.
The answer is

Proposition 3 If (10) is true and if g—g % 0 and 9- # 0, the most general
classical non-abelian Yang-Mills action satisfying the Slavnov-Taylor identity is

= —(ﬁ F,F)y+ (§ B, B)o + (dc+p, de+[A, c])y — (dB, A)1 — (0, cc)o (12)
+ <6 cc, CC>0 - <BBa {Ea C}>0 + <7 BA, A>1 + <’)/dC, {Aa 5}>1 + <7A{éa C}a A>1 )

with F' = dA+AA, up to a rescaling A, — & Ay, p'— pt/&, c— &oc, 0= 0 /&,
¢ +— &c and B — & B, which leave the Slavnov-Taylor identity unchanged. Here,
g,a, 3,7,& are positive central elements of A.

There are three degenerate (static) solutions where some parts whose coeffi-
cients in (12) are normalized to 1 are missing, given as combinations of

1) dA=0 and dc =0, g— 1, additional term —(mTZA,Ah ,

2) dB=0anddé=0, Br—1,
(although these differentials may actually be non-zero).

For the proof one writes down the most general local field polynomial of
dimension < 4 and balanced ghost-antighost number and applies the Slavnov-
Taylor operator.

It is convenient to impose the gauge fixing condition

or )

2 Generating functionals

The classical action T'[A, p, ¢, 0, ¢, B] is regarded as a special example of a gener-
ating functional of 1PI (one-particle irreducible) Green’s functions. In general,
deriving such a functional with respect to the fields ¢; = { A, p, ¢, 0, ¢, B} (consid-
which remains connected after cutting an arbitrary line. In particular, external
lines of I'y_,, are amputated.

In the general case on can pass from I' to a generating functional Z¢ of con-

nected Green’s functions by Legendre transformation

ered as test functions), I’y _, := , one can associate to 'y, a graph

ZC[Ja jajajapao-] = F[A,B,C, Eapao-]-'—(Aa ']>1+ <B7j>0+<j7 C>0+ <.j76>0 ) (14)
where the fields A, B, ¢, ¢ have to be replaced by the (inverse) solution of

or or ,
J:—a—AGQ(I], j:—a—BEan J

_or
- 0¢

__or
ey, ]:%eﬂ‘il. (15)



with Qf = EBZO:maX(_Q’O) Q4.qq The generating functional of general (not nec-

essarily connected) Green’s functions is defined as
7 =en”" (16)

In particular, we can take for " the bilinear part I'y; of the gauge fixed classical
action I'y:

Fbil = _<$ dA7 dA>2 + <% Ba B>0 - <dBa A>1 + <d57 dC>1 . (17)

—(s=1)?M?(5p A, Ay + (s—1)’M* (S ¢,0) - (18)

The mass terms proportional to (s—1)?M? are auxiliary ones to deal with possible

infrared divergences. It is convenient not to include (p, de); in T'yy.
Restricted for the moment to the bilinear part we obtain

J=%Gdd+ (s—1)2M*)A+dB,  j=(d"d+ &(s—1)*M?)c, 9
J=-aB+d'A, J=—(dd+ F(s=1)*M*)c . 1
This gives ~
A=—g?A(J + 2dT) AV (20)
. 20
B=-Ld*'AJ + 5(s—1)’M’AJ ,  E=A7,

with the propagators A, A defined by
A(Ldd+ Ldd* + (s—1)*M?) = —idgr ,  A(d"d + S(s—1)>M?) = —id .

We have used the identity %Ad = dA.
A lengthy but straightforward computation leads to

Zgy = —(% T AT = (£ dT, ATy + (s=1)2M* (5 T, AT )o — (7. Ajo (21)
and consequently to

ZoalJ, T, 5, 7] = e(<%J’AJ>1+<§_Zd7’5‘7>1*(5*1)2M2<2g12n 7.87),+5(745),) . (22)

We quantize our theory axiomatically by the principle that the full generating
functional is given by

Zlp,0,J. I, j, ]] (23)

1 —
—+Ty [Accha}‘
7+ int[4,6,C0,0, ;0 20 L _ 5O _p_ 0 .

A ﬁaj,c»—) ﬁaj,c>—> ﬁaj‘ B— ﬁéJZbil[J,j,],]] ,

= MNe

where Ty = Ty — Thit]s=1 and A is an (ill-defined) normalization factor deter-
mined by Z[0] = 1. In many cases the expansion of (23) leads to infinities even if

4



the possible problem with A is ignored. We have to fix a regularization scheme
so that (23) becomes a formal power series in 7 consisting of finite terms. It is
not important for us whether the series converges or not.

oz¢ oo oz¢ o
Due to = — we have

ap  op a0 B0
st= (55510 (55 3 )+ (B 50,

:<_J’88—ic>1+<‘7’%>0+<j’88—?>05820 ’ (24)

when expressing both lines of the equation in terms of the same variables. Since
we have a more explicit formula for Z than for Z¢, the identity (24) suggests to
study the problem

87 = <_J’86_f>1+<]’g—§>0+<j’g—§>o ’ (25)

For a given model, i.e. given (Q,d, (, }), it is possible to compute SZ. On a
formal level one always obtains SZ = 0, however, the counterterms introduced
to remove the infinities will lead in general to corrections breaking the Slavnov-
Taylor identity. These corrections have to be characterized by the quantum action
principle concerning dimension, ghost-antighost numbers and structure of the
field monomials. The model is called perturbatively renormalizable if SZ = 0 can
be achieved when replacing the classical action ', defining Z by a power series
in /i of the same form as I['.

Out of Z given by (23) we obtain the generating functional of the connected
Green’s functions Z¢ via (16) and the generating functional I of the 1PI Green’s
functions by inverting (14):

F[p,O’,A,C,E,B] = Zc[paaa ']7 ja.]aj] - <A7 J>1 - <B7j>0 - <j7 C>0 - <.]76>0 )
where the sources J, 7, j, 7 are replaced by the solution of

Z° A A zZ°
P =2 p=Y

0.J 97 dj Y

The functional T' is a formal power series in i, I' = Y > ' A"T'(,,y, and one can check
that I'gy = T'es = Tine + pi. Moreover, the contributions to I'(,) correspond to
Feynman graphs with n loops. One easily convinces oneself that I'¢,) for n > 0
cannot be written as contractions via ( , ). The only way to evaluate it is in
components with respect to a basis for a concrete model.

The three Slavnov-Taylor identities SZ = 0, SZ¢ = 0 and ST' = 0 for gener-
ating functionals of renormalized Green’s functions are equivalent.



3 Example: The noncommutative R*

An example of an algebra fitting into our setting is the noncommutative R*. We
consider four hermitian ‘coordinates’ z,, © = 1,...,4, satisfying

[z, x,]) = —2i76,, , 0 =—0,, €R .

Introducing u, := exp(2imp“z,) = 1+ 2irprz, + (1/2)(2irp"z,)? + ..., with
p=(p',p* p* p') € R', the Baker-Campbell-Hausdorff formula gives

upty = P Dy, o O(p,q) = —0(q,p) = 0,,p"q" . (26)

Moreover, (u,)* = u_,. The noncommutative R* is the algebra spanned by {u,}
and will be denoted by Rj. The differential algebra (£2y,d) over R} is the tensor
product of R} with some Grassmann algebra of D = 4 generators {7,},=1.. 4,
satisfying 7,7, = —7,7,. Then,

Q3 = spanc(uy , pER') =R},
Qp = spang(up, = 1y, 1<pu<4, peR'),
Qf = spang (tpu, = Y Yoltty , 1<p<v<4, peR', (27)
€ = spanc (tpup = YW pty » 1 <p<v<p<4, peR'),
Q= spanc (ups = 71727374, , P ER'),
and 2 = 0 for n > 5. The product in 2 is the usual product of tensor prod-

ucts, for instance upuy,tg) = Vu(uptq), (Vutp)(Vwtlq) = Yy (upug), etc. The
differential is defined as

AV Yttp) = 1P YV Yoty (28)

with summation over p from 1 to 4. The sequence v, ---v, might be empty.
Developing the differential in a basis we get

e A e OO .
dupp = dib gy, dit :1(p“5p —p 65‘)6; )
We extend the star to by (v,)* := v,. The bilinear forms are defined by
Vur " Vi Ups Yo *** YomUg)n = Opiywr *** O Op,—g (30)

with p;<p;, v;<v; for i < j. The properties (3) and (4) are easy to verify.



