
Slavnov-Taylor identity in non
ommutative geometryRaimar WulkenhaarInstitute for Theoreti
al Physi
s, University of ViennaBoltzmanngasse 5, 1090 Wien, AustriaAbstra
tWe develop a framework to de�ne quantum Yang-Mills theories on gen-eral di�erential algebras imitating the standard pro
edure.1 Field theories on general di�erential algebrasLet A be an asso
iative *-algebra over C and (
; d) an N-graded di�erential*-algebra over A, i.e. 
 =L1n=0
n with 
0 = A and
0 =A ; 
k
l � 
k+l ; d : 
n ! 
n+1 ; � : 
n ! 
n ; (1)(!k~!l)� = (~!l)�(!k)� ; (z!k)� = �z!k ; (2)d(!k~!l) = d(!k) ~!l + (�1)l!k d(~!l) ; d(d!k) = 0 ; (3)for !k 2 
k, ~!l 2 
l and z 2 C . Moreover, let 
n, for ea
h degree n, be equippedwith a symmetri
 non-degenerate positive bilinear form h; in : 
n�
n ! C whi
hsatis�esh!; ~!in = h~!; !in ; h!a; ~!in = h!; a~!in ; for !; ~! 2 
n ; a 2 A ;h!; !�in� 0 8! 2 
n ; h!; !�in = 0 , ! = 0 : (4)The 
odi�erential d� : 
n+1 ! 
n is de�ned as the adjoint of d via h ; in ,hda; bin+1 =: ha; d�bin ; a 2 
n ; b 2 
n+1 : (5)Our goal is to formulate �eld theories, i.e. dynami
al systems of amplitudes.For this purpose it is ne
essary to assume that there is a basis fupg in 
n labelledby possibly 
ontinuous parameters. Instead of taking 
omplex numbers for theamplitudes we allow for Grassmann valued amplitudes �pq;�q 2 Vq;�q, with�pq;�q�qr;�r = (�1)(q��q)(r��r)�qr;�r�pq;�q : (6)Let G = Lq;�q G q;�q be the bigraded Grassmann algebra generated by the ampli-tudes f�pi;q;�qg a

ording to (6). Let 
nq;�q be the spa
e of G q;�q -valued n-forms whi
h
ontains in parti
ular elements �i = �pi;q;�qup linear in the amplitudes �pi;q;�q 2 Vq;�q.Multipli
ation, di�erential and bilinear form are extended by linearity from 
�to 
��;�. Finally, letC(
) = fz 2 A : dz � 0 ; [z; !℄ � 0 8! 2 
��;� g (7)1



be the set of `
onstant' 
entral elements of 
��;�.Let F 2 G r;�r be some power series of f�pi;s;�sg. We de�ne fun
tional derivatives���i : G r;�r 3 F 7! �F��i 2 
nr�q;�r��q by (8)lim�!0 1��F ����pi 7!�pi +�xp � F � D�x; �F��iEn� = 0 ; 8 x = upxp 2 
nq;�q :De�nition 1 A �eld is a homogeneous element of 
nq;�q linear in the amplitudesspanning Vq;�q with a dimension dim = n + q + �q (9)assigned to the amplitudes of the �eld. The numbers (n; q; �q) are 
alled (degree;ghost number, antighost number) of the �eld. The di�erential d : 
nq;�q ! 
n+1q;�qis 
ounted as an element of type (1; 0; 0).A lo
al �eld monomial is the produ
t (in 
��;�) of �elds and di�erentials of�elds. The dimension of the �eld monomial is the sum of the dimensions of �eldsand di�erentials in it. (By 
onstru
tion, degree and ghost-antighost numbers the�eld monomial is the sum of the degrees and ghost-antighost numbers, respe
tively,of the �elds and di�erentials in it.)An integrated lo
al �eld monomial is the 
ontra
tion of two lo
al �eld mono-mials of the same degree n via the weighted bilinear form hz : ; : in, with invertiblez 2 C(
).A 
lassi
al a
tion is a linear 
ombination of integrated lo
al �eld monomials(with di�erent weights z) of dimension � D and balan
ed ghost-antighost numbersq = �q.De�nition 2 A Yang-Mills theory on 
��;� in dimension D = 4 is a theory ofthe �elds A; �; 
; �; �
; B whose degrees n, ghost-antighost numbers q � �q and di-mensions dim are given in the following table:A � 
 � �
 B dn 1 1 0 0 0 0 1q 0 0 1 0 0 1 0�q 0 1 0 2 1 1 0dim 1 2 1 2 1 2 1We assume that there exist 
on�gurations A; 
 su
h that�A

 + � 

A = 0 ; 
 d(

) = 0 ; (10)for �; : : : ; � 2 C(
) not ne
essarily positive, have only the solution �=: : :=�=0.Then, the theory is governed by the Slavnov-Taylor operator S de�ned on fun
-tionals � 2 G of the amplitudes of A; �; 
; �; �
; B byS(�) = D���� ; ���AE1 + D���� ; ���
 E0 + DB; ����
 E0 : (11)2



We are looking for the most general solution � of the Slavnov-Taylor identityS(�) = 0, where � is a 
lassi
al a
tion, i.e. an integrated lo
al �eld polynomial inA; �; 
; �; �
; B with dimension � 4 and balan
ed ghost-antighost number q = �q.The answer isProposition 3 If (10) is true and if ���� 6� 0 and ���� 6� 0, the most general
lassi
al non-abelian Yang-Mills a
tion satisfying the Slavnov-Taylor identity is�=�h 14g2 F; F i2 + h�2 B;Bi0 + hd�
+�; d
+[A; 
℄i1 � hdB;Ai1 � h�; 

i0 (12)+ h� �
�
; 

i0 � h� B; f�
; 
gi0 + h
 BA;Ai1 + h
 d
; fA; �
gi1 + h
 Af�
; 
g; Ai1 ;with F = dA+AA, up to a res
aling A� 7! �1A�, �� 7! ��=�1, 
 7! �2
, � 7! �=�2,�
 7! �3�
 and B 7! �3B, whi
h leave the Slavnov-Taylor identity un
hanged. Here,g; �; �; 
; �i are positive 
entral elements of A.There are three degenerate (stati
) solutions where some parts whose 
oeÆ-
ients in (12) are normalized to 1 are missing, given as 
ombinations of1) dA = 0 and d
 = 0 , g 7! 1 , additional term �hm22 A;Ai1 ,2) dB = 0 and d�
 = 0 , � 7! 1 ,(although these di�erentials may a
tually be non-zero).For the proof one writes down the most general lo
al �eld polynomial ofdimension � 4 and balan
ed ghost-antighost number and applies the Slavnov-Taylor operator.It is 
onvenient to impose the gauge �xing 
ondition���B = �B � d�A : (13)2 Generating fun
tionalsThe 
lassi
al a
tion �[A; �; 
; �; �
; B℄ is regarded as a spe
ial example of a gener-ating fun
tional of 1PI (one-parti
le irredu
ible) Green's fun
tions. In general,deriving su
h a fun
tional with respe
t to the �elds �i = fA; �; 
; �; �
; Bg (
onsid-ered as test fun
tions), �1:::n := �n���1:::��n ����i=0, one 
an asso
iate to �1:::n a graphwhi
h remains 
onne
ted after 
utting an arbitrary line. In parti
ular, externallines of �1:::n are amputated.In the general 
ase on 
an pass from � to a generating fun
tional Z
 of 
on-ne
ted Green's fun
tions by Legendre transformationZ
[J;J ; �|; j; �; �℄ := �[A;B; 
; �
; �; �℄ + hA; Ji1+ hB;J i0+ h�|; 
i0+ hj; �
i0 ; (14)where the �elds A;B; 
; �
 have to be repla
ed by the (inverse) solution ofJ = � ���A 2 
10 ; J = � ���B 2 
00 ; j = ����
 2 
01 ; �| = ���
 2 
0�1 : (15)3



with 
nQ = L1q=max(�Q;0)
nq+Q;q. The generating fun
tional of general (not ne
-essarily 
onne
ted) Green's fun
tions is de�ned asZ := e� 1�hZ
 : (16)In parti
ular, we 
an take for � the bilinear part �bil of the gauge �xed 
lassi
ala
tion �
l: �bil =�h 14g2 dA; dAi2 + h�2 B;Bi0 � hdB;Ai1 + hd�
; d
i1 : (17)�(s�1)2M2h 12g2 A;Ai1 + (s�1)2M2h �g2 �
; 
i0 : (18)The mass terms proportional to (s�1)2M2 are auxiliary ones to deal with possibleinfrared divergen
es. It is 
onvenient not to in
lude h�; d
i1 in �bil.Restri
ted for the moment to the bilinear part we obtainJ = 1g2 (12d�d+ (s�1)2M2)A+ dB ; j = (d�d+ �g2 (s�1)2M2)
 ;J =��B + d�A ; �|=�(d�d+ �g2 (s�1)2M2)�
 : (19)This gives A=�g2 ~�(J + 1�dJ ) ; 
=��j ;B =�g2� d� ~�J + 1g2 (s�1)2M2�J ; �
=��| ; (20)with the propagators ~�;� de�ned by~��12d�d+ g2� dd� + (s�1)2M2� = �id
1 ; ��d�d+ �g2 (s�1)2M2� = �idA :We have used the identity g2� ~�d = d�.A lengthy but straightforward 
omputation leads toZ
bil = �hg22 J; ~�Ji1 � hg2� dJ ; ~�Ji1 + (s�1)2M2h 12g2 J ;�J i0 � h�|;�ji0 (21)and 
onsequently toZbil[J;J ; j; �|℄ = e�
 g22�h J; ~�J�1+
 g2��h dJ ; ~�J�1�(s�1)2M2
 12g2�h J ;�J�0+1�h
�|;�j�0� : (22)We quantize our theory axiomati
ally by the prin
iple that the full generatingfun
tional is given byZ[�; �; J; JB; j; �|℄ (23):= N e� 1�h�int[A;
;�
;B;�;�℄��A7!��h ��J ; 
 7!��h ���| ; �
 7!��h ��j ; B 7!��h ��J Zbil[J;J ; j; �|℄ ;where �int = �
l � �biljs=1 and N is an (ill-de�ned) normalization fa
tor deter-mined by Z[0℄ = 1. In many 
ases the expansion of (23) leads to in�nities even if4



the possible problem with N is ignored. We have to �x a regularization s
hemeso that (23) be
omes a formal power series in �h 
onsisting of �nite terms. It isnot important for us whether the series 
onverges or not.Due to �Z
�� = ���� and �Z
�� = ���� we haveS�= D���� ; ���AE1 + D���� ; ���
 E0 + DB; ����
 E0= D�J; �Z
�� E1 + D�|; �Z
�� E0 + Dj; �Z
�J E0 � SZ
 ; (24)when expressing both lines of the equation in terms of the same variables. Sin
ewe have a more expli
it formula for Z than for Z
, the identity (24) suggests tostudy the problemSZ := D�J; �Z�� E1 + D�|; �Z�� E0 + Dj; �Z�J E0 : (25)For a given model, i.e. given (
; d; h ; i), it is possible to 
ompute SZ. On aformal level one always obtains SZ = 0, however, the 
ounterterms introdu
edto remove the in�nities will lead in general to 
orre
tions breaking the Slavnov-Taylor identity. These 
orre
tions have to be 
hara
terized by the quantum a
tionprin
iple 
on
erning dimension, ghost-antighost numbers and stru
ture of the�eld monomials. The model is 
alled perturbatively renormalizable if SZ = 0 
anbe a
hieved when repla
ing the 
lassi
al a
tion �
l de�ning Z by a power seriesin �h of the same form as �
l.Out of Z given by (23) we obtain the generating fun
tional of the 
onne
tedGreen's fun
tions Z
 via (16) and the generating fun
tional � of the 1PI Green'sfun
tions by inverting (14):�[�; �; A; 
; �
; B℄ = Z
[�; �; J;J ; j; �|℄� hA; Ji1 � hB;J i0 � h�|; 
i0 � hj; �
i0 ;where the sour
es J;J ; j; �| are repla
ed by the solution ofA = �Z
�J ; 
 = �Z
��| ; �
 = �Z
�j ; B = �Z
�J :The fun
tional � is a formal power series in �h, � =P1n=0 �hn�(n), and one 
an 
he
kthat �(0) = �
l;s = �int + �bil. Moreover, the 
ontributions to �(n) 
orrespond toFeynman graphs with n loops. One easily 
onvin
es oneself that �(n) for n > 0
annot be written as 
ontra
tions via h ; ik. The only way to evaluate it is in
omponents with respe
t to a basis for a 
on
rete model.The three Slavnov-Taylor identities SZ = 0, SZ
 = 0 and S� = 0 for gener-ating fun
tionals of renormalized Green's fun
tions are equivalent.5



3 Example: The non
ommutative R4An example of an algebra �tting into our setting is the non
ommutative R4 . We
onsider four hermitian `
oordinates' x�, � = 1; : : : ; 4, satisfying[x�; x�℄ = �2i���� ; ��� = ���� 2 R :Introdu
ing up := exp(2i�p�x�) = 1 + 2i�p�x� + (1=2!)(2i�p�x�)2 + : : : , withp = (p1; p2; p3; p4) 2 R4 , the Baker-Campbell-Hausdor� formula givesupuq = ei�(p;q)up+q ; �(p; q) = ��(q; p) = ���p�q� : (26)Moreover, (up)� = u�p. The non
ommutative R4 is the algebra spanned by fupgand will be denoted by R4� . The di�erential algebra (
�; d) over R4� is the tensorprodu
t of R4� with some Grassmann algebra of D = 4 generators f
�g�=1;:::;4,satisfying 
�
� = �
�
�. Then,
0� = spanC (up ; p 2 R4) � R4� ;
1� = spanC (up� = 
�up ; 1 � � � 4; p 2 R4) ;
2� = spanC (up�� = 
�
�up ; 1 � � < � � 4; p 2 R4) ; (27)
3� = spanC (up��� = 
�
�
�up ; 1 � � < � < � � 4; p 2 R4) ;
4� = spanC (up5 = 
1
2
3
4up ; p 2 R4) ;and 
n� � 0 for n � 5. The produ
t in 
 is the usual produ
t of tensor prod-u
ts, for instan
e upu(
�uq) = 
�(upuq), (
�up)(
�uq) = 
�
�(upuq), et
. Thedi�erential is de�ned asd(
� � � �
�up) := ip�
�
� � � �
�up ; (28)with summation over � from 1 to 4. The sequen
e 
� � � �
� might be empty.Developing the di�erential in a basis we getdup= dq�p uq� ; dq�p = ip�Æqp ;dup�= dq��p� uq�� ; dq��p� = i(p�Æ�� � p�Æ�� )Æqp : (29)We extend the star to 
 by (
�)� := 
�. The bilinear forms are de�ned byh
�1 � � �
�nup; 
�1 � � �
�nuqin = Æ�1�1 � � � Æ�n�nÆp;�q ; (30)with �i<�j ; �i<�j for i < j. The properties (3) and (4) are easy to verify.
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