Slavnov-Taylor identity in noncommutative geometry

RAIMAR WULKENHAAR

Institute for Theoretical Physics, University of Vienna Boltzmanngasse 5, 1090 Wien, Austria

Abstract

We develop a framework to define quantum Yang-Mills theories on general differential algebras imitating the standard procedure.

1 Field theories on general differential algebras

Let \mathcal{A} be an associative *-algebra over \mathbb{C} and (Ω, d) an N-graded differential *-algebra over \mathcal{A} , i.e. $\Omega = \bigoplus_{n=0}^{\infty} \Omega^n$ with $\Omega^0 = \mathcal{A}$ and

$$\Omega^{0} = \mathcal{A} , \qquad \Omega^{k} \Omega^{l} \subset \Omega^{k+l} , \qquad d : \Omega^{n} \to \Omega^{n+1} , \qquad ^{*} : \Omega^{n} \to \Omega^{n} , \qquad (1)$$

$$(\omega^k \tilde{\omega}^l)^* = (\tilde{\omega}^l)^* (\omega^k)^* , \qquad (z\omega^k)^* = \bar{z}\omega^k , \qquad (2)$$

$$d(\omega^k \tilde{\omega}^l) = d(\omega^k) \,\tilde{\omega}^l + (-1)^l \omega^k \, d(\tilde{\omega}^l) \,, \qquad d(d\omega^k) = 0 \,, \tag{3}$$

for $\omega^k \in \Omega^k$, $\tilde{\omega}^l \in \Omega^l$ and $z \in \mathbb{C}$. Moreover, let Ω^n , for each degree *n*, be equipped with a symmetric non-degenerate positive bilinear form $\langle , \rangle_n : \Omega^n \times \Omega^n \to \mathbb{C}$ which satisfies

$$\langle \omega, \tilde{\omega} \rangle_n = \langle \tilde{\omega}, \omega \rangle_n , \qquad \langle \omega a, \tilde{\omega} \rangle_n = \langle \omega, a \tilde{\omega} \rangle_n , \qquad \text{for } \omega, \tilde{\omega} \in \Omega^n , \ a \in \mathcal{A} , \langle \omega, \omega^* \rangle_n \ge 0 \quad \forall \omega \in \Omega^n , \qquad \langle \omega, \omega^* \rangle_n = 0 \quad \Leftrightarrow \quad \omega = 0 .$$
 (4)

The codifferential $d^*: \Omega^{n+1} \to \Omega^n$ is defined as the adjoint of d via $\langle \ , \ \rangle_n$,

$$\langle da, b \rangle_{n+1} =: \langle a, d^*b \rangle_n , \qquad a \in \Omega^n , \quad b \in \Omega^{n+1} .$$
 (5)

Our goal is to formulate field theories, i.e. dynamical systems of *amplitudes*. For this purpose it is necessary to assume that there is a basis $\{u_{\mathbf{p}}\}$ in Ω^n labelled by possibly continuous parameters. Instead of taking complex numbers for the amplitudes we allow for Grassmann valued amplitudes $\phi_{\mathbf{q},\bar{\mathbf{q}}}^{\mathbf{p}} \in V_{\mathbf{q},\bar{\mathbf{q}}}$, with

$$\phi_{q,\bar{q}}^{\mathbf{p}}\phi_{r,\bar{r}}^{\mathbf{q}} = (-1)^{(q-\bar{q})(r-\bar{r})}\phi_{r,\bar{r}}^{\mathbf{q}}\phi_{q,\bar{q}}^{\mathbf{p}} .$$
(6)

Let $\mathbb{G} = \bigoplus_{q,\bar{q}} \mathbb{G}_{q,\bar{q}}$ be the bigraded Grassmann algebra generated by the amplitudes $\{\phi_{i,q,\bar{q}}^{\mathbf{p}}\}$ according to (6). Let $\Omega_{q,\bar{q}}^{n}$ be the space of $\mathbb{G}_{q,\bar{q}}$ -valued *n*-forms which contains in particular elements $\phi_{i} = \phi_{i,q,\bar{q}}^{\mathbf{p}} u_{\mathbf{p}}$ linear in the amplitudes $\phi_{i,q,\bar{q}}^{\mathbf{p}} \in V_{q,\bar{q}}$. Multiplication, differential and bilinear form are extended by linearity from Ω^{*} to $\Omega_{*,*}^{*}$. Finally, let

$$\mathcal{C}(\Omega) = \{ z \in \mathcal{A} : dz \equiv 0 , [z, \omega] \equiv 0 \quad \forall \omega \in \Omega^*_{*,*} \}$$
(7)

be the set of 'constant' central elements of $\Omega^*_{*,*}$.

Let $F \in \mathbb{G}_{\mathbf{r},\mathbf{\bar{r}}}$ be some power series of $\{\phi_{i,\mathbf{s},\mathbf{\bar{s}}}^{\mathbf{p}}\}$. We define functional derivatives

$$\frac{\partial}{\partial \phi_i} : \mathbb{G}^{\mathbf{r}, \mathbf{\bar{r}}} \ni F \mapsto \frac{\partial F}{\partial \phi_i} \in \Omega^n_{\mathbf{r}-\mathbf{q}, \mathbf{\bar{r}}-\mathbf{\bar{q}}} \quad \text{by}$$

$$\lim_{\epsilon \to 0} \left. \frac{1}{\epsilon} \left(F \right|_{\phi_i^{\mathbf{p}} \mapsto \phi_i^{\mathbf{p}} + \epsilon x^{\mathbf{p}}} - F - \left\langle \epsilon x, \frac{\partial F}{\partial \phi_i} \right\rangle_n \right) = 0 , \quad \forall x = u_{\mathbf{p}} x^{\mathbf{p}} \in \Omega^n_{\mathbf{q}, \mathbf{\bar{q}}} .$$
(8)

Definition 1 A field is a homogeneous element of $\Omega_{q,\bar{q}}^n$ linear in the amplitudes spanning $V_{q,\bar{q}}$ with a dimension

$$\dim = n + q + \bar{q} \tag{9}$$

assigned to the amplitudes of the field. The numbers $(n; q, \bar{q})$ are called (degree; ghost number, antighost number) of the field. The differential $d: \Omega_{q,\bar{q}}^n \to \Omega_{q,\bar{q}}^{n+1}$ is counted as an element of type (1; 0, 0).

A local field monomial is the product (in $\Omega_{*,*}^*$) of fields and differentials of fields. The dimension of the field monomial is the sum of the dimensions of fields and differentials in it. (By construction, degree and ghost-antighost numbers the field monomial is the sum of the degrees and ghost-antighost numbers, respectively, of the fields and differentials in it.)

An integrated local field monomial is the contraction of two local field monomials of the same degree n via the weighted bilinear form $\langle z . , . \rangle_n$, with invertible $z \in C(\Omega)$.

A <u>classical action</u> is a linear combination of integrated local field monomials (with different weights z) of dimension $\leq D$ and <u>balanced</u> ghost-antighost numbers $q = \bar{q}$.

Definition 2 A <u>Yang-Mills theory</u> on $\Omega^*_{*,*}$ in dimension D = 4 is a theory of the fields $A, \rho, c, \overline{\sigma}, \overline{c}, \overline{B}$ whose degrees n, ghost-antighost numbers $q - \overline{q}$ and dimensions dim are given in the following table:

	A	ρ	c	σ	\bar{c}	B	d
n	1	1	0	0	0	0	1
q	0	0	1	0	0	1	0
$\bar{\mathrm{q}}$	0	1	0	2	1	1	0
dim	1	2	1	2	1	2	1

We assume that there exist configurations A, c such that

$$\alpha Acc + \beta ccA = 0 , \qquad \gamma d(cc) = 0 , \qquad (10)$$

for $\alpha, \ldots, \zeta \in \mathcal{C}(\Omega)$ not necessarily positive, have only the solution $\alpha = \ldots = \zeta = 0$. Then, the theory is governed by the <u>Slavnov-Taylor operator</u> S defined on functionals $\Gamma \in \mathbb{G}$ of the amplitudes of $A, \rho, c, \sigma, \overline{c}, B$ by

$$\mathcal{S}(\Gamma) = \left\langle \frac{\partial \Gamma}{\partial \rho}, \frac{\partial \Gamma}{\partial A} \right\rangle_{1} + \left\langle \frac{\partial \Gamma}{\partial \sigma}, \frac{\partial \Gamma}{\partial c} \right\rangle_{0} + \left\langle B, \frac{\partial \Gamma}{\partial \bar{c}} \right\rangle_{0} \,. \tag{11}$$

We are looking for the most general solution Γ of the Slavnov-Taylor identity $\mathcal{S}(\Gamma) = 0$, where Γ is a classical action, i.e. an *integrated local field polynomial* in $A, \rho, c, \sigma, \bar{c}, B$ with dimension ≤ 4 and balanced ghost-antighost number $q = \bar{q}$. The answer is

Proposition 3 If (10) is true and if $\frac{\partial\Gamma}{\partial\rho} \neq 0$ and $\frac{\partial\Gamma}{\partial\sigma} \neq 0$, the most general classical non-abelian Yang-Mills action satisfying the Slavnov-Taylor identity is

$$\Gamma = -\langle \frac{1}{4g^2} F, F \rangle_2 + \langle \frac{\alpha}{2} B, B \rangle_0 + \langle d\bar{c} + \rho, \ dc + [A, c] \rangle_1 - \langle dB, A \rangle_1 - \langle \sigma, cc \rangle_0$$
(12)
+ $\langle \beta \ \bar{c}\bar{c}, cc \rangle_0 - \langle \beta \ B, \{\bar{c}, c\} \rangle_0 + \langle \gamma \ BA, A \rangle_1 + \langle \gamma \ dc, \{A, \bar{c}\} \rangle_1 + \langle \gamma \ A\{\bar{c}, c\}, A \rangle_1 ,$

with F = dA + AA, up to a rescaling $A_{\mu} \mapsto \xi_1 A_{\mu}$, $\rho^{\mu} \mapsto \rho^{\mu} / \xi_1$, $c \mapsto \xi_2 c$, $\sigma \mapsto \sigma / \xi_2$, $\bar{c} \mapsto \xi_3 \bar{c}$ and $B \mapsto \xi_3 B$, which leave the Slavnov-Taylor identity unchanged. Here, $g, \alpha, \beta, \gamma, \xi_i$ are positive central elements of \mathcal{A} .

There are three degenerate (static) solutions where some parts whose coefficients in (12) are normalized to 1 are missing, given as combinations of

1) dA = 0 and dc = 0, $g \mapsto 1$, additional term $-\langle \frac{m^2}{2}A, A \rangle_1$,

2)
$$dB = 0$$
 and $d\bar{c} = 0$, $\beta \mapsto 1$

(although these differentials may actually be non-zero).

For the proof one writes down the most general local field polynomial of dimension ≤ 4 and balanced ghost-antighost number and applies the Slavnov-Taylor operator.

It is convenient to impose the gauge fixing condition

$$\frac{\partial \Gamma}{\partial B} = \alpha B - d^* A . \tag{13}$$

2 Generating functionals

The classical action $\Gamma[A, \rho, c, \sigma, \bar{c}, B]$ is regarded as a special example of a generating functional of 1PI (one-particle irreducible) Green's functions. In general, deriving such a functional with respect to the fields $\phi_i = \{A, \rho, c, \sigma, \bar{c}, B\}$ (considered as test functions), $\Gamma_{1...n} := \frac{\partial^n \Gamma}{\partial \phi_1 ... \partial \phi_n} \Big|_{\phi_i=0}$, one can associate to $\Gamma_{1...n}$ a graph which remains connected after cutting an arbitrary line. In particular, external lines of $\Gamma_{1...n}$ are amputated.

In the general case on can pass from Γ to a generating functional Z^c of connected Green's functions by Legendre transformation

$$Z^{c}[J,\mathcal{J},\bar{j},j,\rho,\sigma] := \Gamma[A,B,c,\bar{c},\rho,\sigma] + \langle A,J \rangle_{1} + \langle B,\mathcal{J} \rangle_{0} + \langle \bar{j},c \rangle_{0} + \langle j,\bar{c} \rangle_{0} , \quad (14)$$

where the fields A, B, c, \bar{c} have to be replaced by the (inverse) solution of

$$J = -\frac{\partial\Gamma}{\partial A} \in \Omega_0^1, \quad \mathcal{J} = -\frac{\partial\Gamma}{\partial B} \in \Omega_0^0, \quad j = \frac{\partial\Gamma}{\partial \bar{c}} \in \Omega_1^0, \quad \bar{j} = \frac{\partial\Gamma}{\partial c} \in \Omega_{-1}^0.$$
(15)

with $\Omega_Q^n = \bigoplus_{q=\max(-Q,0)}^{\infty} \Omega_{q+Q,q}^n$. The generating functional of general (not necessarily connected) Green's functions is defined as

$$Z := e^{-\frac{1}{\hbar}Z^c} . \tag{16}$$

In particular, we can take for Γ the bilinear part Γ_{bil} of the gauge fixed classical action $\Gamma_{\rm cl}$:

$$\Gamma_{\rm bil} = -\langle \frac{1}{4q^2} \, dA, dA \rangle_2 + \langle \frac{\alpha}{2} \, B, B \rangle_0 - \langle dB, A \rangle_1 + \langle d\bar{c}, dc \rangle_1 \,. \tag{17}$$

$$-(s-1)^2 M^2 \langle \frac{1}{2g^2} A, A \rangle_1 + (s-1)^2 M^2 \langle \frac{\alpha}{g^2} \bar{c}, c \rangle_0 .$$
(18)

The mass terms proportional to $(s-1)^2 M^2$ are auxiliary ones to deal with possible infrared divergences. It is convenient not to include $\langle \rho, dc \rangle_1$ in Γ_{bil} .

Restricted for the moment to the bilinear part we obtain

$$J = \frac{1}{g^2} (\frac{1}{2} d^* d + (s-1)^2 M^2) A + dB , \qquad j = (d^* d + \frac{\alpha}{g^2} (s-1)^2 M^2) c ,$$

$$\mathcal{J} = -\alpha B + d^* A , \qquad \qquad \bar{\jmath} = -(d^* d + \frac{\alpha}{g^2} (s-1)^2 M^2) \bar{c} . \qquad (19)$$

This gives

$$A = -g^2 \tilde{\Delta} (J + \frac{1}{\alpha} d\mathcal{J}) , \qquad c = -\Delta j ,$$

$$B = -\frac{g^2}{\alpha} d^* \tilde{\Delta} J + \frac{1}{g^2} (s-1)^2 M^2 \Delta \mathcal{J} , \qquad \bar{c} = \Delta \bar{j} ,$$
(20)

with the propagators $\tilde{\Delta}, \Delta$ defined by

$$\tilde{\Delta}\left(\frac{1}{2}d^*d + \frac{g^2}{\alpha}dd^* + (s-1)^2M^2\right) = -\mathrm{id}_{\Omega^1} , \quad \Delta\left(d^*d + \frac{\alpha}{g^2}(s-1)^2M^2\right) = -\mathrm{id}_{\mathcal{A}} .$$

We have used the identity $\frac{g^2}{\alpha}\tilde{\Delta}d = d\Delta$. A lengthy but straightforward computation leads to

$$Z_{\text{bil}}^c = -\langle \frac{g^2}{2}J, \tilde{\Delta}J \rangle_1 - \langle \frac{g^2}{\alpha} d\mathcal{J}, \tilde{\Delta}J \rangle_1 + (s-1)^2 M^2 \langle \frac{1}{2g^2}\mathcal{J}, \Delta\mathcal{J} \rangle_0 - \langle \bar{\jmath}, \Delta j \rangle_0 \quad (21)$$

and consequently to

$$Z_{\text{bil}}[J,\mathcal{J},j,\bar{\jmath}] = e^{\left(\left\langle \frac{g^2}{2\hbar} J,\tilde{\Delta}J \right\rangle_1 + \left\langle \frac{g^2}{\alpha\hbar} d\mathcal{J},\tilde{\Delta}J \right\rangle_1 - (s-1)^2 M^2 \left\langle \frac{1}{2g^2\hbar} \mathcal{J},\Delta\mathcal{J} \right\rangle_0 + \frac{1}{\hbar} \left\langle \bar{\jmath},\Delta j \right\rangle_0 \right)} \quad . \tag{22}$$

We quantize our theory axiomatically by the principle that the full generating functional is given by

$$Z[\rho, \sigma, J, J_B, j, \bar{j}]$$

$$:= \mathcal{N} e^{-\frac{1}{\hbar} \Gamma_{int}[A, c, \bar{c}, B, \rho, \sigma] \Big|_{A \mapsto -\hbar} \frac{\partial}{\partial J}, \ c \mapsto -\hbar} \frac{\partial}{\partial \bar{j}}, \ \bar{c} \mapsto -\hbar} \frac{\partial}{\partial \bar{j}} Z_{bil}[J, \mathcal{J}, j, \bar{j}],$$
(23)

where $\Gamma_{int} = \Gamma_{cl} - \Gamma_{bil}|_{s=1}$ and \mathcal{N} is an (ill-defined) normalization factor determined by Z[0] = 1. In many cases the expansion of (23) leads to infinities even if the possible problem with \mathcal{N} is ignored. We have to fix a regularization scheme so that (23) becomes a formal power series in \hbar consisting of finite terms. It is not important for us whether the series converges or not.

Due to
$$\frac{\partial Z^c}{\partial \rho} = \frac{\partial \Gamma}{\partial \rho}$$
 and $\frac{\partial Z^c}{\partial \sigma} = \frac{\partial \Gamma}{\partial \sigma}$ we have

$$\mathcal{S}\Gamma = \left\langle \frac{\partial \Gamma}{\partial \rho}, \frac{\partial \Gamma}{\partial A} \right\rangle_1 + \left\langle \frac{\partial \Gamma}{\partial \sigma}, \frac{\partial \Gamma}{\partial c} \right\rangle_0 + \left\langle B, \frac{\partial \Gamma}{\partial \bar{c}} \right\rangle_0$$

$$= \left\langle -J, \frac{\partial Z^c}{\partial \rho} \right\rangle_1 + \left\langle \bar{\jmath}, \frac{\partial Z^c}{\partial \sigma} \right\rangle_0 + \left\langle j, \frac{\partial Z^c}{\partial \mathcal{J}} \right\rangle_0 \equiv \mathcal{S}Z^c , \qquad (24)$$

when expressing both lines of the equation in terms of the same variables. Since we have a more explicit formula for Z than for Z^c , the identity (24) suggests to study the problem

$$SZ := \left\langle -J, \frac{\partial Z}{\partial \rho} \right\rangle_1 + \left\langle \bar{\jmath}, \frac{\partial Z}{\partial \sigma} \right\rangle_0 + \left\langle j, \frac{\partial Z}{\partial \mathcal{J}} \right\rangle_0 \,. \tag{25}$$

For a given model, i.e. given $(\Omega, d, \langle , \rangle)$, it is possible to compute SZ. On a formal level one always obtains SZ = 0, however, the counterterms introduced to remove the infinities will lead in general to corrections breaking the Slavnov-Taylor identity. These corrections have to be characterized by the quantum action principle concerning dimension, ghost-antighost numbers and structure of the field monomials. The model is called perturbatively renormalizable if SZ = 0 can be achieved when replacing the classical action Γ_{cl} defining Z by a power series in \hbar of the same form as Γ_{cl} .

Out of Z given by (23) we obtain the generating functional of the connected Green's functions Z^c via (16) and the generating functional Γ of the 1PI Green's functions by inverting (14):

$$\Gamma[\rho,\sigma,A,c,\bar{c},B] = Z^{c}[\rho,\sigma,J,\mathcal{J},j,\bar{j}] - \langle A,J \rangle_{1} - \langle B,\mathcal{J} \rangle_{0} - \langle \bar{j},c \rangle_{0} - \langle j,\bar{c} \rangle_{0} ,$$

where the sources $J, \mathcal{J}, j, \bar{j}$ are replaced by the solution of

$$A = \frac{\partial Z^c}{\partial J}$$
, $c = \frac{\partial Z^c}{\partial \bar{j}}$, $\bar{c} = \frac{\partial Z^c}{\partial j}$, $B = \frac{\partial Z^c}{\partial \mathcal{J}}$.

The functional Γ is a formal power series in \hbar , $\Gamma = \sum_{n=0}^{\infty} \hbar^n \Gamma_{(n)}$, and one can check that $\Gamma_{(0)} = \Gamma_{cl,s} = \Gamma_{int} + \Gamma_{bil}$. Moreover, the contributions to $\Gamma_{(n)}$ correspond to Feynman graphs with *n* loops. One easily convinces oneself that $\Gamma_{(n)}$ for n > 0 cannot be written as contractions via \langle , \rangle_k . The only way to evaluate it is in components with respect to a basis for a concrete model.

The three Slavnov-Taylor identities SZ = 0, $SZ^c = 0$ and $S\Gamma = 0$ for generating functionals of renormalized Green's functions are equivalent.

3 Example: The noncommutative \mathbb{R}^4

An example of an algebra fitting into our setting is the noncommutative \mathbb{R}^4 . We consider four hermitian 'coordinates' x_{μ} , $\mu = 1, \ldots, 4$, satisfying

$$[x_{\mu}, x_{\mu}] = -2i\pi\theta_{\mu\nu} , \qquad \theta_{\mu\nu} = -\theta_{\nu\mu} \in \mathbb{R}$$

Introducing $u_p := \exp(2i\pi p^{\mu}x_{\mu}) = 1 + 2i\pi p^{\mu}x_{\mu} + (1/2!)(2i\pi p^{\mu}x_{\mu})^2 + \dots$, with $p = (p^1, p^2, p^3, p^4) \in \mathbb{R}^4$, the Baker-Campbell-Hausdorff formula gives

$$u_p u_q = e^{i\theta(p,q)} u_{p+q} , \qquad \theta(p,q) = -\theta(q,p) = \theta_{\mu\nu} p^{\mu} q^{\nu} .$$
⁽²⁶⁾

Moreover, $(u_p)^* = u_{-p}$. The noncommutative \mathbb{R}^4 is the algebra spanned by $\{u_p\}$ and will be denoted by \mathbb{R}^4_{θ} . The differential algebra (Ω_{θ}, d) over \mathbb{R}^4_{θ} is the tensor product of \mathbb{R}^4_{θ} with some Grassmann algebra of D = 4 generators $\{\gamma_{\mu}\}_{\mu=1,\dots,4}$, satisfying $\gamma_{\mu}\gamma_{\nu} = -\gamma_{\nu}\gamma_{\mu}$. Then,

$$\Omega_{\theta}^{0} = \operatorname{span}_{\mathbb{C}}(u_{p} , p \in \mathbb{R}^{4}) \equiv \mathbb{R}_{\theta}^{4} ,$$

$$\Omega_{\theta}^{1} = \operatorname{span}_{\mathbb{C}}(u_{p\mu} = \gamma_{\mu}u_{p} , 1 \leq \mu \leq 4, p \in \mathbb{R}^{4}) ,$$

$$\Omega_{\theta}^{2} = \operatorname{span}_{\mathbb{C}}(u_{p\mu\nu} = \gamma_{\mu}\gamma_{\nu}u_{p} , 1 \leq \mu < \nu \leq 4, p \in \mathbb{R}^{4}) ,$$

$$\Omega_{\theta}^{3} = \operatorname{span}_{\mathbb{C}}(u_{p\mu\nu\rho} = \gamma_{\mu}\gamma_{\nu}\gamma_{\rho}u_{p} , 1 \leq \mu < \nu < \rho \leq 4, p \in \mathbb{R}^{4}) ,$$

$$\Omega_{\theta}^{4} = \operatorname{span}_{\mathbb{C}}(u_{p5} = \gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}u_{p} , p \in \mathbb{R}^{4}) ,$$
(27)

and $\Omega_{\theta}^{n} \equiv 0$ for $n \geq 5$. The product in Ω is the usual product of tensor products, for instance $u_{p}u(\gamma_{\mu}u_{q}) = \gamma_{\mu}(u_{p}u_{q}), (\gamma_{\mu}u_{p})(\gamma_{\nu}u_{q}) = \gamma_{\mu}\gamma_{\nu}(u_{p}u_{q})$, etc. The differential is defined as

$$d(\gamma_{\mu}\cdots\gamma_{\nu}u_{p}) := \mathrm{i}p^{\rho}\gamma_{\rho}\gamma_{\mu}\cdots\gamma_{\nu}u_{p} , \qquad (28)$$

with summation over ρ from 1 to 4. The sequence $\gamma_{\mu} \cdots \gamma_{\nu}$ might be empty. Developing the differential in a basis we get

$$\begin{aligned} du_p &= d_p^{q\mu} u_{q\mu} , \qquad \qquad d_p^{q\mu} = i p^{\mu} \delta_p^q , \\ du_{p\rho} &= d_{p\rho}^{q\mu\nu} u_{q\mu\nu} , \qquad \qquad d_{p\rho}^{q\mu\nu} = i (p^{\mu} \delta_{\rho}^{\nu} - p^{\nu} \delta_{\rho}^{\mu}) \delta_p^q . \end{aligned}$$
 (29)

We extend the star to Ω by $(\gamma_{\mu})^* := \gamma_{\mu}$. The bilinear forms are defined by

$$\langle \gamma_{\mu_1} \cdots \gamma_{\mu_n} u_p, \gamma_{\nu_1} \cdots \gamma_{\nu_n} u_q \rangle_n = \delta_{\mu_1 \nu_1} \cdots \delta_{\mu_n \nu_n} \delta_{p,-q} , \qquad (30)$$

with $\mu_i < \mu_j$, $\nu_i < \nu_j$ for i < j. The properties (3) and (4) are easy to verify.