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It was a great pleasure for me (Harald Grosse) to be invited totalk at the meeting celebrating

the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the

last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I

learned from his work on effective chiral Lagrangians. Nextwe met at various conferences and

places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned

from Julius’ and Bruno’s creation of supersymmetry, next werealized our common interests in

noncommutative quantum field theory and did have an intensive exchange. Julius influenced

our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his

advice. And finally I lively remember the sad days when duringmy invitation to Vienna Julius

did have the serious heart attack. So we are very happy, that you recovered so well, and we wish

you all the best for the forthcoming years. Many happy recurrences.

1 Introduction

Four-dimensional quantum field theory suffers from infrared and ultraviolet divergences as well

as from the divergence of the renormalized perturbation expansion. Despite the impressive

agreement between theory and experiments and despite many attempts, these problems are not

settled and remain a big challenge for theoretical physics.Furthermore, attempts to formu-

late a quantum theory of gravity have not yet been fully successful. It is astonishing that the

two pillars of modern physics, quantum field theory and general relativity, seem incompatible.

This convinced physicists to look for more general descriptions: After the formulation of su-

persymmetry (initiated by Bruno Zumino and Julius Wess) andsupergravity, string theory was

developed, and anomaly cancellation forced the introduction of six additional dimensions. On



the other hand, loop gravity was formulated, and led to spin networks and space-time foams.

Both approaches are not fully satisfactory. A third impulsecame from noncommutative geom-

etry developed by Alain Connes, providing a natural interpretation of the Higgs effect at the

classical level. This finally led to noncommutative quantumfield theory, which is the subject of

this contribution. It allows to incorporate fluctuations ofspace into quantum field theory. There

are of course relations among these three developments. In particular, the field theory limit of

string theory leads to certain noncommutative field theory models, and some models defined

over fuzzy spaces are related to spin networks.

The argument that space-time should be modified at very shortdistances goes back to

Schrödinger and Heisenberg. Noncommutative coordinatesappeared already in the work of

Peierls for the magnetic field problem, and are obtained after projecting onto a particular Lan-

dau level. Pauli communicated this to Oppenheimer, whose student Snyder [27] wrote down

the first deformed space-time algebra preserving Lorentz symmetry. After the development of

noncommutative geometry by Connes [8], it was first applied in physics to the integer quantum

Hall effect. Gauge models on the two-dimensional noncommutative tori were formulated, and

the relevant projective modules over this space were classified.

Through interactions with John Madore I realized that such Fuzzy geometries allow to ob-

tain natural cutoffs for quantum field theory [13]. This lineof work was further developed

together with Peter Prešnajder and Ctirad Klimčı́k [12].At almost the same time, Filk [11]

developed his Feynman rules for the canonically deformed four-dimensional field theory, and

Doplicher, Fredenhagen and Roberts [9] published their work on deformed spaces. The sub-

ject experienced a major boost after one realized that string theory leads to noncommutative

field theory under certain conditions [25, 26], and the subject developed very rapidly; see

e.g. [19,30,10].

2 Noncommutative Quantum Field Theory

The formulation of Noncommutative Quantum Field Theory (NCFT) follows a dictionary worked

out by mathematicians. Starting from some manifoldM one obtains the commutative algebra

of smooth functions overM, which is then quantized along with additional structure. Space
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itself then looks locally like a phase space in quantum mechanics. Fields are elements of the

algebra resp. a finitely generated projective module, and integration is replaced by a suitable

trace operation.

Following these lines, one obtains field theory on quantized(or deformed) spaces, and Feyn-

man rules for a perturbative expansion can be worked out. However some unexpected features

such as IR/UV mixing arise upon quantization, which are described below. In 2000 Minwalla,

van Raamsdonk and Seiberg realized [21] that perturbation theory for field theories defined on

the Moyal plane faces a serious problem. The planar contributions show the standard singular-

ities which can be handled by a renormalization procedure. The nonplanar one loop contribu-

tions are finite for generic momenta, however they become singular at exceptional momenta.

The usual UV divergences are then reflected in new singularities in the infrared, which is called

IR/UV mixing. This spoils the usual renormalization procedure: Inserting many such loops to a

higher order diagram generates singularities of any inverse power. Without imposing a special

structure such as supersymmetry, the renormalizability seems lost; see also [6,7].

However, progress was made recently, when we were able to give a solution of this problem

for the special case of a scalar four-dimensional theory defined on the Moyal-deformed space

R
4
θ [16]. The IR/UV mixing contributions were taken into account through a modification of the

free Lagrangian by adding an oscillator term with parameterΩ, which modifies the spectrum

of the free Hamiltonian. The harmonic oscillator term was obtained as a result of the renormal-

ization proof. The model fulfills then the Langmann-Szabo duality [18] relating short distance

and long distance behavior. Our proof followed ideas of Polchinski. There are indications that

a constructive procedure might be possible and give a nontrivial φ4 model, which is currently

under investigation [24]. AtΩ = 1 the model becomes self-dual, and we are presently studying

this model in greater details.

Nonperturbative aspects of NCFT have also been studied in recent years. The most signifi-

cant and surprising result is that the IR/UV mixing can lead to a new phase denoted as “striped

phase” [17], where translational symmetry is spontaneously broken. The existence of such a

phase has indeed been confirmed in numerical studies [4, 20].To understand better the prop-

erties of this phase and the phase transitions, further workand better analytical techniques are

required, combining results from perturbative renormalization with nonperturbative techniques.
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Here a particular feature of scalar NCFT is very suggestive:the field can be described as a

hermitian matrix, and the quantization is defined nonperturbatively by integrating over all such

matrices. This provides a natural starting point for nonperturbative studies. In particular, it

suggests and allows to apply ideas and techniques from random matrix theory.

Remarkably, gauge theories on quantized spaces can also be formulated in a similar way

[1, 5, 28, 2]. The action can be written as multi-matrix models, where the gauge fields are

encoded in terms of matrices which can be interpreted as “covariant coordinates”. The field

strength can be written as commutator, which induces the usual kinetic terms in the commutative

limit. Again, this allows a natural nonperturbative quantization in terms of matrix integrals.

Numerical studies for gauge theories have also been published including the 4-dimensional

case [3], which again show a very intriguing picture of nontrivial phases and spontaneous sym-

metry breaking. These studies also strongly suggest the nonperturbative stability and renormal-

izability of NC gauge theory, adding to the need of further theoretical work.

3 Renormalization of φ4-theory on the 4D Moyal plane

We briefly sketch the methods used by ourselves [16] in the proof of renormalizability for

scalar field theory defined on the 4-dimensional quantum planeR
4
θ, with commutation relations

[xµ, xν ] = iθµν . The IR/UV mixing was taken into account through a modification of the free

Lagrangian, by adding an oscillator term which modifies the spectrum of the free Hamiltonian:

S =

∫

d4x
(1

2
∂µφ ⋆ ∂µφ +

Ω2

2
(x̃µφ) ⋆ (x̃µφ) +

µ2

2
φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) . (1)

Here,x̃µ = 2(θ−1)µνx
ν and⋆ is the Moyal star product

(a ⋆ b)(x) :=

∫

d4y
d4k

(2π)4
a(x+1

2
θ·k)b(x+y) eiky , θµν = −θνµ ∈ R . (2)

The harmonic oscillator term in (1) was found as a result of the renormalization proof. The

model is covariant under the Langmann-Szabo duality relating short distance and long dis-

tance behavior. AtΩ = 1 the model becomes self-dual, and connected to integrable models.
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This leads to the hope that a constructive procedure around this particular case allows the con-

struction of a nontrivial interactingφ4 model, which would be an extremely interesting and

remarkable achievement.

The renormalization proof proceeds by using a matrix base, which leads to a dynamical

matrix model of the type:

S[φ] = (2πθ)2
∑

m,n,k,l∈N2

(1

2
φmn∆mn;klφkl +

λ

4!
φmnφnkφklφlm

)

, (3)

where

∆m1

m2
n1

n2 ; k1

k2
l1

l2

=
(

µ2+2+2Ω2

θ
(m1+n1+m2+n2+2)

)

δn1k1δm1l1δn2k2δm2l2

− 2−2Ω2

θ

(
√

k1l1 δn1+1,k1δm1+1,l1 +
√

m1n1 δn1−1,k1δm1−1,l1
)

δn2k2δm2l2

− 2−2Ω2

θ

(
√

k2l2 δn2+1,k2δm2+1,l2 +
√

m2n2 δn2−1,k2δm2−1,l2
)

δn1k1δm1l1 . (4)

The interaction part becomes a trace of product of matrices,and no oscillations occur in this

basis. The propagator obtained from the free part is quite complicated, in 4 dimensions it is:

Gm1

m2
n1

n2 ; k1

k2
l1

l2

=
θ

2(1+Ω)2

m
1
+l

1

2
∑

v1=
|m1−l1|

2

m
2
+l

2

2
∑

v2=
|m2−l2|

2

B
(

1+µ2θ
8Ω

+1
2
(m1+k1+m2+k2)−v1−v2, 1+2v1+2v2

)

× 2F1

(

1+2v1+2v2 , µ2θ
8Ω

−1
2
(m1+k1+m2+k2)+v1+v2

2+µ2θ
8Ω

+1
2
(m1+k1+m2+k2)+v1+v2

∣

∣

∣

∣

(1−Ω)2

(1+Ω)2

)

(1−Ω

1+Ω

)2v1+2v2

×
2
∏

i=1

δmi+ki,ni+li

√

(

ni

vi+ni−ki

2

)(

ki

vi+ki−ni

2

)(

mi

vi+mi−li

2

)(

li

vi+ li−mi

2

)

. (5)
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These propagators (in 2 and 4 dimensions) show asymmetric decay properties:
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(6)

They decay exponentially on particular directions (inl-direction in the picture), but have power

law decay in others (inα-direction in the picture). These decay properties are crucial for the

perturbative renormalizability of the models.

Our proof in [15, 16] then followed the ideas of Polchinski [22]. The quantum field theory

corresponding to the action (3) is defined — as usual — by the partition function

Z[J ] =

∫

(

∏

m,n

dφmn

)

exp

(

−S[φ] −
∑

m,n

φmnJnm

)

. (7)

The strategy due to Wilson [31] consists in integrating in the first step only those field modes

φmn which have a matrix index bigger than some scaleθΛ2. The result is an effective action

for the remaining field modes which depends onΛ. One can now adopt a smooth transition

between integrated and not integrated field modes so that theΛ-dependence of the effective

action is given by a certain differential equation, the Polchinski equation.

Now, renormalization amounts to prove that the Polchinski equation admits a regular solu-

tion for the effective action which depends on only a finite number of initial data. This require-

ment is hard to satisfy because the space of effective actions is infinite dimensional and as such

develops an infinite dimensional space of singularities when starting from generic initial data.

The Polchinski equation can be iteratively solved in perturbation theory where it can be
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graphically written as

Λ
∂
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m1
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nN
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k l

(8)

The graphs are graded by the number of vertices and the numberof external legs. Then, to the

Λ-variation of a graph on the lhs there only contribute graphswith a smaller number of vertices

and a bigger number of legs. A general graph is thus obtained by iteratively adding a propagator

to smaller building blocks, starting with the initialφ4-vertex, and integrating overΛ. Here, these

propagators are differentiated cut-off propagatorsQmn;kl(Λ) which vanish (for an appropriate

choice of the cut-off function) unless the maximal index is in the interval[θΛ2, 2θΛ2]. As the

field carry two matrix indices and the propagator four of them, the graphs are ribbon graphs

familiar from matrix models.

We have then proven that the cut-off propagatorQ(Λ) is bounded byC
θΛ2 . This was achieved

numerically in [16] and later confirmed analytically in [24]. A nonvanishing frequency param-

eterΩ is required for such a decay behavior. As the volume of each two-component index

m ∈ N
2 is bounded byC ′θ2Λ4 in graphs of the above type, the power counting degree of diver-

gence is (at first sight)ω = 4S − 2I, whereI is the number of propagators andS the number

of summation indices.

It is now important to take into account that if three indicesof a propagatorQmn;kl(Λ) are

given, the fourth one is determined bym + k = n + l, see (5). Then, for simple planar graphs

one finds thatω = 4 − N whereN is the number of external legs. But this conclusion is too

early, there is a difficulty in presence of completely inner vertices, which require additional
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index summations. The graph
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(9)

entails four independent summation indicesp1, p2, p3 and q, whereas for the powercounting

degree2 = 4−N = 4S − 5 · 2 we should only haveS = 3 of them. It turns out that due to the

quasi-locality of the propagator (the exponential decay inl-direction in (6)), the sum overq for

fixedm can be estimated without the need of the volume factor.

Remarkably, the quasi-locality of the propagator not only ensures the correct powercounting

degree for planar graphs, it also renders all nonplanar graphs superficially convergent. For

instance, in the nonplanar graphs
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//
oo
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oo
//
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OO
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q
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∣

∣

∣

∣

∣

∣
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oo
// OO

oo

OO��

oo
//

��
OO

m2

n2 r′ r

m1

n1

q

q′

∣

∣

∣

∣

∣

∣

∣

∣

∣ q′ = m2 + r − q

r′ = n2 + r − m1

(10)

the summation overq andq, r, respectively, is of the same type as overq in (9) so that the graphs

in (10) can be estimated without any volume factor.

After all, we have obtained the powercounting degree of divergence

ω = 4 − N − 4(2g + B − 1) (11)

for a general ribbon graph, whereg is the genus of the Riemann surface on which the graph is

drawn andB the number of holes in the Riemann surface. Both are directlydetermined by the

graph. It should be stressed, however, that although the number (11) follows from counting the

required volume factors, its proof in our scheme is not so obvious: The procedure consists in

adding a new cut-off propagator to a given graph, and in doingso the topology(B, g) has many

possibilities to arise from the topologies of the smaller parts for which we have estimates by
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induction. The proof that in every situation of adding a new propagator one obtains (11) goes

alone over 20 pages in [15]. Moreover, the boundary conditions for the integration have to be

correctly chosen to confirm (11), see below.

The powercounting behavior (11) is good news because it implies that (in contrast to the sit-

uation without the oscillator potential) all nonplanar graphs are superficially convergent. How-

ever, this does not mean that all problems are solved: The remaining planar two- and four-leg

graphs which are divergent carry matrix indices, and (11) suggests that these are divergent in-

dependent of the matrix indices. An infinite number of adjusted initial data would be necessary

in order to remove these divergences.

Fortunately, a more careful analysis shows that the powercounting behavior is improved by

the index jump along the trajectories of the graph. For example, the index jump for the graph

(9) is defined asJ = ‖k − n‖1 + ‖q − l‖1 + ‖m − q‖1. Then, the amplitude is suppressed by

a factor of order

(

max(m, n . . . )

θΛ2

)
J

2

compared with the naive estimation. Thus, only planar

four-leg graphs withJ = 0 and planar two-leg graphs withJ = 0 or J = 2 are divergent

(the total jumps is even). For these cases, we have invented adiscrete Taylor expansion about

the graphs with vanishing indices. Only the leading terms ofthe expansion, i.e. the reference

graphs with vanishing indices, are divergent whereas the difference between original graph and

reference graph is convergent. Accordingly, in our scheme only the reference graphs must be

integrated in a way that involves initial conditions. For example, if the contribution to the rhs

of the Polchinski equation (8) is given by the graph

Λ
∂

∂Λ
A

(2)planar,1PI
mn;nk;kl;lm[Λ] =

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p



 (Λ) , (12)
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theΛ-integration is performed as follows:

A
(2)planar,1PI
mn;nk;kl;lm[Λ]

= −
∫ ∞

Λ

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l
0 0

0 0

p p



[Λ′]

+
�� ?? �� __

??��__��
m

m
k

k

n n

l l 



∫ Λ

ΛR

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??
0

0

0

0

0 0

0 0

p p



[Λ′] + A
(2,1,0)1PI
00;00;00;00[ΛR]



 .

(13)

Only one initial condition,A(2,1,0)1PI
00;00;00;00[ΛR], is required for an infinite number of planar four-leg

graphs (distinguished by the matrix indices). We need one further initial condition for the two-

leg graphs withJ = 2 and two more initial condition for the two-leg graphs withJ = 0 (for the

leading quadratic and the subleading logarithmic divergence). This is one condition more than

in a commutativeφ4-theory, and this additional condition justifies a posteriori our starting point

of adding one new term to the action (1), the oscillator termΩ.

This being established, it was straightforward to derive beta functions for the coupling con-

stant flow. To one-loop order we have found [14]

βλ =
λ2

phys

48π2

(1−Ω2
phys)

(1+Ω2
phys)

3
, βΩ =

λphysΩphys

96π2

(1−Ω2
phys)

(1+Ω2
phys)

3
, (14)

βµ = −
λphys

(

4N ln(2) +
(8+θµ2

phys)Ω
2
phys

(1+Ω2
phys)

2

)

48π2θµ2
phys(1+Ω2

phys)
, γ =

λphys

96π2

Ω2
phys

(1+Ω2
phys)

3
. (15)

Together with the differential equation for theβ-functions,

lim
N→∞

(

N ∂

∂N + Nγ + µ2βµ
∂

∂µ2
0

+ βλ
∂

∂λ
+ βΩ

∂

∂Ω

)

Γm1n1;...;mNnN
[µ, λ, Ω,N ] = 0 , (16)

(14) shows that the ratio of the coupling constantsλ
Ω2 remains bounded along the renormal-

ization group flow up to first order. Starting from given smallvalues forΩR, λR at NR, the

frequency grows in a small region aroundln N
NR

= 48π2

λR

to Ω ≈ 1. The coupling constant ap-

proachesλ∞ = λR

Ω2
R

, which can be made small for sufficiently smallλR. This leaves the chance
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of a nonperturbative construction [23] of the model.

In particular, theβ-function vanishes at the self-dual pointΩ = 1, indicating special prop-

erties of the model.

4 Matrix-model techniques

Our recent interests turned towards dynamical matrix models, which are closely connected to

integrable models. We briefly explain this method. Considere.g. the scalar field theory defined

by (3). Sinceφ is a hermitian matrix, it can be diagonalized asφ = U−1diag(φi)U whereφi are

the real eigenvalues. Hence the field theory can be reformulated in terms of the eigenvaluesφi

and the unitary matrixU . The main idea is now the following: consider the probability measure

for the (suitably rescaled) eigenvaluesφi induced the path integral by integrating outU :

Z =

∫

Dφ exp(−S(φ))) =

∫

dφi∆
2(φi)

∫

dU exp(−S(U−1(φi)U))

=

∫

dφi exp(−F̃(φ) − (2πθ)d/2
∑

i

V (φi) +
∑

i6=j

log |φi − φj|), (17)

where the analytic function

e−F̃(φ) :=

∫

dU exp(−Skin(U−1(φ)U)) (18)

is introduced, which depends only on the eigenvalues ofφ. The crucial point is that the log-

arithmic terms in the effective action above implies a repulsion of the eigenvaluesφi, which

therefore arrange themselves according to some distribution similar as in the standard matrix

models of the formS̃ =
∫

dφ exp(TrṼ (φ)). This is related to the fact that nonplanar diagrams

are suppressed. The presence of the unknown functionF̃(φ) in (17) cannot alter this conclusion

qualitatively, since it is analytic. The functioñF(φ) can be determined approximately by con-

sidering the weak coupling regime. For example, the effective action of the eigenvalue sector

for theφ4 model in the noncommutative regime1
θ
≪ Λ2 becomes essentially

S̃(φ) = f0(m) +
2N

α2
0(m)

Trφ2 + gφ4, (19)
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whereα2
0(m) depends on the degree of divergence of a basic diagram [29].

This effective action (19) can now be studied using standardresults from random matrix the-

ory. For example, this allows to study the renormalization of the effective potential using matrix

model techniques. The basic mechanism is the following: In the free case, the eigenvalue sector

follows Wigner’s semicircle law, where the size of the eigenvalue distribution depends onm via

α0(m). Turning on the couplingg alters that eigenvalue distribution. The effective or renormal-

ized mass can be found by matching that distribution with the“closest” free distribution. To

have a finite renormalized mass then requires a negative masscounterterm as usual.

This approach is particularly suitable to study the thermodynamical properties of the field

theory. For theφ4 model, the above effective action (19) implies a phase transition at strong

coupling, to a phase which was identified with the striped or matrix phase in [29]. Based on the

known universality properties of matrix models, these results on phase transitions are expected

to be realistic, and should not depend on the details of the unknown functionF̃(φ). The method

is applicable to 4 dimensions, where a critical line is foundwhich terminates at a nontrivial

point, with finite critical coupling. This can be seen as evidence for a new nontrivial fixed-point

in the 4-dimensional NCφ4 model. This is in accordance with results from the RG analysis

of [14], which also point to the existence of nontrivialφ4 model in 4 dimensions.
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