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2 Feynman graphs, parenthesized words and rooted treesGiven a Feynman graph, let us draw boxes around all of its super�ially (UV-)divergent setors, for example
�4 52 31 = (((s1)(v2)v4)(p3)v5) (1)

(As usual, straight lines stand for fermions and wavy lines for bosons.) A riterionfor super�ial divergene of a region on�ned in a box is power ounting. If abox has nB bosoni and nF fermioni outgoing legs, the power ounting degreeof divergene d is (in four dimensions) de�ned by d := 4� nB � 32nF � 0. Owingto symmetries the atual degree of divergene of one graph or a sum of graphsan be lower than d, see ref. [7℄.Our example (1) is taken from a speial lass of Feynman graphs whih ontainno overlapping divergenes. This means that the boxes an always be hosennon-interseting. Any two boxes are, therefore, either disjoint from eah other,or one box is nested in the other box. It is now onvenient to rewrite suh aFeynman graph in a form where the relative position of the subdivergenes ismore apparent. Starting with the set of innermost disjoint boxes we ut themout of the graph but leave them in the next-larger box. In our example, theseare the boxes 1 and 2 whih are ut out from the graph in box 4. In box 4 weare therefore left with a graph with two holes and two separate subgraphs yingaround1. Now we pass to the next larger box (no. 5) and ut out the disjointboxes from the graph. In the example we get a vertex graph with two holes andthe two boxes 3 and 4 ying around, where box 4 itself ontains boxes 1 and 2.Now we replae the boxes by pairs of opening-losing parentheses and order theirontents suh that the mother graph stands on the right of its hildren graphs.This gives us a \parenthesized word", PW for short. The PW of our example (1)looks as follows:(((s1)(v2)v4)(p3)v5) (2)= 0�0�0��/ 1A0��/ n/ 1A�/ n// 1A0��= 1A�/ n/| 1AA slash through a propagator means amputation and a small irle symbolizesa hole. We see that our building bloks are the Feynman graphs with possibleholes at any vertex and in any propagator. In an irreduible parenthesized word1When we ut out a self-energy insertion, whih means utting a propagator into two, weattah one of these new propagators to the self-energy graph ut out. In this way we keep thenumber of holes in a graph �nite. 2



(iPW for short) the leftmost opening parenthesis mathes its rightmost losingparenthesis. A speial type of iPWs are the primitive PWs whih ontain noinner parentheses.There is a seond way of writing the same, whih turns out to be the adaptedlanguage in onnetion with nonommutative geometry. In an iPW we all therightmost graph (mother graph) the root. We onnet to this root the mothergraphs of all its hildren boxes, and to these mother graphs the mother graphs oftheir hildren boxes, and so on. In this way we get a \rooted tree" whose vertiesare labelled by Feynman graphs with holes. The rooted tree of our example (1)learly looks as follows: �����/ n// �����=�����/ �����/ n/
��/ n/| = � v5���v4 ��� p3���s1 ��� v2 (3)

The tree is onneted and simply onneted for irreduible PWs and disonnetedfor reduible PWs. The tree of a primitive PWs onsists solely of a labelled point.3 The Hopf algebraDirk Kreimer has disovered [2℄ that the PWs or rooted trees of Feynman graphsform a Hopf algebra, whose antipode axiom reprodues the forest formula ofrenormalization [8℄. Let us review these ideas in some detail. We refer e.g. toappendix 1 in [9℄ for a list of basi properties of Hopf algebras.We onsider the algebra A of polynomials over the rational numbers Q ofirreduible PWs resp. onneted rooted trees. The multipliation in A is givenby writing the trees or PWs disjoint to eah other. That multipliation is learlyassoiative and ommutative. We also adjoin a formal unit e to A.We are going to equip that algebra with the struture of a Hopf algebra. Theounit " : A! Q is an operation whih annihilates trees resp. PWs:"[qe℄ = q ; q 2 Q; "[X℄ = 0 ; A 3 X 6= e : (4)The produt being an assignment of one element to sums of pairs of other ele-ments, we expet the oprodut � : A ! A 
 A to be the splitting of a givenPW or tree into a sum of pairs of PWs / trees. Before we give the details we haveto de�ne the notion of a subword or subtree. A parenthesized subword (PSWfor short) of a PW is any of its iPW ontained in it. In our example (1), thesubwords of (((s1)(v2)v4)(p3)v5) are(s1) ; (v2) ; (p3) ; ((s1)(v2)v4) ; (((s1)(v2)v4)(p3)v5) : (5)The idea of the oprodut of a PW X is that it returns as the left fator of thetensor produt any admissible produt of PSWs Xi of X and as the right fator3



that what remains when we remove this left fator from X. A produt X1 � � �Xnis admissible if any two Xi; Xj ontained in it do not interset. For instane,(s1)(p3) or (s1)(v2) are admissible, but (v2)((s1)(v2)v4) is not. We symbolize theremoval of X1 � � �Xn from X by X=Qni=1Xi (replaed by 0 if X1 � � �Xn is notadmissible). A speial ase is X=X = e. Now, if the PSWs of the PW X areX1; : : : ; Xn, we let U be the set of all (ordered) subsets of f1; : : : ; ng and de�ne�[e℄ := e
 e ;�[X℄ := e
X +PU n Qi2UXi 
X=Qi2UXio : (6)For our example we �nd��(((s1)(v2)v4)(p3)v5)� = e
 (((s1)(v2)v4)(p3)v5) + (s1)
 ((v2)v4)(p3)v5)+ (v2)
 ((s1)v4)(p3)v5) + (s1)(v2)
 ((v4)(p3)v5)+ (p3)
 (((s1)(v2)v4)v5) + (s1)(p3)
 (((v2(v4)v5)+ (v2)(p3)
 (((s1(v4)v5) + (s1)(v2)(p3)
 ((v4)v5)+ ((s1)(v2)v4)
 ((p3)v5) + ((s1)(v2)v4)(p3)
 (v5)+ (((s1)(v2)v4)(p3)v5)
 e : (7)In terms of rooted trees, the oprodut has an even more natural interpre-tation. A subtree Ti of a tree T is what falls down if we ut one edge of T , orit is the onneted tree itself ut out of the plane. The notion of an admissibleprodut of PSWs �nds its ounterpart in the set of admissible (multi-) uts: theprodut T1 � � �Tn is admissible i� on the path from any bottom vertex to the rootof T we meet at most one of the n uts that have produed the Ti. The restT=(T1 � � �Tn) is what remains attahed to the root if we ut away the subtreesT1; : : : ; Tn. The analogue of (6) is�[T ℄ := e
 T +PC n Qi2U(C)Ti 
 T= Qi2U(C)Tio ; (8)where eah C is an admissible multi-ut of T whih produes the subtreesfTigi2U(C). For our example (1) , the oprodut reads in terms of trees�" � v5���v4 AA�p3���s1 AA�v2 # = e
 � v5���v4 AA�p3���s1 AA�v2 + �s1
 � v5�v4 ��� p3�v2 + �v2
 � v5�v4 ��� p3�s1+ �s1 �v2
 � v5���v4 AA� p3+ �p3
 � v5� v4���s1 AA�v2+ �s1 �p3 
 � v5� v4� v2+ �v2 �p3 
 � v5� v4� s1 + �s1 �v2 �p3 
 � v5� v4 + � v4���s1 AA�v2
 � v5� p3+ � v4���s1 AA�v2�p3
 �v5+ � v5���v4 AA�p3���s1 AA�v2 
 e : (9)4



The oprodut is oassoiative,(�
 id) Æ�[X℄ = X = (id
�) Æ�[X℄ : (10)If we split a PW into a sum of two, it is the same to split the right or the leftfators further. The proof of (10) is non-trivial, it an be performed by indution[2, 3℄ or diretly [5℄. The oprodut is, however, not oommutative, whih meansthat in general � Æ�[X℄ 6= �[X℄ :Here, � [X 
 Y ℄ = Y 
X is the ip operator.From (4) and (6) the following relation between ounit and oprodut is ob-vious: ("
 id) Æ�[X℄ = (id
 ") Æ�[X℄ = X : (11)Indeed, if we onsider a monomial X =QiXi of iPWs resp. onneted trees, weget �[X℄ = e
X+PZ
Z 0+X
e, wherePZ
Z 0 represents all terms whihdo not ontain the unit e and whih are therefore annihilated by ". The identity(11) means that our algebra A is also a oalgebra. It is even a bialgebra as thealgebra and oalgebra operations are ompatible. Denoting the multipliation inA by m we have� Æm[X 
 Y ℄ = (m
m) Æ (id
 � 
 id) Æ (�
�)[X 
 Y ℄ ; (12)due to the fat that the subwords of a produt word XY are the subwords of Xand the subwords of Y together.The bialgebra A also has an antipode S : A ! A whih makes it to a Hopfalgebra. It is on PWs and rooted trees reursively de�ned byS[e℄ = e ;S[XY ℄ = S[Y ℄S[X℄ ; 8X; Y 2 A ;S[X℄ = �X �m Æ (S 
 id) Æ P2�[X℄ ; 8 iPW X 2 A ; (13)where P2 : A
A ! A
A is an operation annihilating all terms whih ontainthe unit e. Note that S[X℄ = �X if X is primitive. On rooted trees we an givea more natural de�nition of the antipode. In P2� we take preisely the properadmissible uts into aount, proper in the sense that the ut of the entire treeout of the plane is not inluded. Sine the reursive de�nition of S is translatedinto a reursive appliation of P2� to the leftmost fator, it is not diÆult to see[3℄ that (13) is equivalent toS[X℄ = �X �PCa n(�1)#(Ca)� Qi2U(Ca)Xi	�X=Qi2U(Ca)Xi	o : (14)Now, the sum runs over all proper multi-uts Ca onsisting of #(Ca) single uts,where eah Ca uts away the trees Xi, i 2 U(Ca) whih need no longer to be5



subtrees of X in the previous sense. It remains the tree X=Qi2U(Ca)Xi whihontains the root. The last line of (13) an equivalently be written asS[X℄ = �X �m Æ (id
 S) Æ P2�[X℄ ; (130)The easiest way to see this is to realize that both versions yield the same formula(14).It is probably a good idea to illustrate the antipode for our example, althoughit is a bit lengthy:S" � v5���v4 AA�p3���s1 AA�v2 # = � � v5���v4 AA�p3���s1 AA�v2 + �s1 � v5�v4 ��� p3�v2 + �v2 � v5�v4 ��� p3�s1 � �s1 �v2 � v5���v4 AA� p3+ �p3 � v5� v4���s1 AA�v2� �s1 �p3 � v5� v4� v2 � �v2 �p3 � v5� v4� s1 + �s1 �v2 �p3 � v5� v4 (15)+ � v4���s1 AA�v2� v5� p3 � �s1 � v4� v2 � v5� p3 � �v2 � v4� s1 � v5� p3 + �s1 �v2 �v4 � v5� p3� � v4���s1 AA�v2 �p3 �v5+ �s1 � v4� v2 �p3 �v5+ �s1 � v4� v2 �p3 �v5� �s1 �v2 �p3 �v4 �v5We an now hek the antipode axiomsm Æ (S 
 id) Æ�[e℄ = m Æ (id
 S) Æ�[e℄ = e ;m Æ (S 
 id) Æ�[X℄ = m Æ (id
 S) Æ�[X℄ = 0 8X 6= e : (16)The seond line is an immediate onsequene of (13), (130) and of the identity�[X℄ = e
X +X 
 e+ P2�[X℄.The reader may worry what all that has to do with Feynman graphs. Whatwe have only used are parenthesized words or rooted trees whose building bloksare letters of some alphabet. Indeed, it was pointed out in [6℄ that the Hopfalgebra struture is based on elementary set theoretial onsiderations. Feyn-man graphs are just an example. There is however an important observation,due to Dirk Kreimer [2℄, whih makes the appliation of these set theoreti toolstremendously important for Feynman graphs. For X being the parenthesizedword or rooted tree of a Feynman graph, the antipode S of (13) reprodues pre-isely the ombinatoris of the forest formula whih governs the renormalizationof perturbative QFTs. We will return to this ahievement in setion 5.4 Overlapping divergenesFeynman graphs may ontain overlapping divergenes whih at �rst sight do not�t into the language of parenthesized words or rooted trees. However, it turnsout that an overlapping divergene an be represented by a linear ombinationof words or trees, where additional primitive elements arise. We present here apartiular onstrution [5℄ of this linear ombination. For this purpose we enlargethe lass of PWs by inluding words with several lines { one line for eah maximal6



forest. We extend the Hopf algebra operations to this larger lass and show thatthey give rise to a linear ombination of one-line PWs and new primitive elements.Let us onsider the following graph borrowed from QED:�There is no possibility to draw non-interseting boxes around all super�iallydivergent setors. We an however try to draw non-interseting boxes arounda maximal number of super�ial divergenes, whih will be possible in severalways. In our example we have two possibilities:
�1 2 = ((v1)p2) or �1 2 = ((v2)p1) : (17)We have resolved the overlapping divergene into (here two) maximal forests.A forest of a Feynman graph is a set of one-partile-irreduible (the graph re-mains onneted after utting an arbitrary line) divergent subgraphs whih donot overlap. A maximal forest for a given Feynman graph is a forest whih is notontained in any other forest of that graph.Our idea is now to bundle the parenthesized words of the n maximal forestsof a given graph to an n-line PW. We write the single PWs of eah maximalforest as di�erent rows and onnet by a tree of lines the losing parentheses ofidential boxes ourring in di�erent rows. The PW of our example is((v1)p2)((v2)p1) ; (18)beause the outermost parentheses of both rows represent the same large box in(17). Other examples are
	1 23 (((v3) v13)p2)(((v3) v23)p1) (19)

31 2 ( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) (20)All we have to hange now is the notion of the parenthesized subword (PSW)and of its removal. A PSW Xi of X is everything between a set of onnetedlosing parentheses and its mathing opening parentheses. Disonneted rows ofX whih are aidentally between onneted rows are not part of the PSW Xunder onsideration, and idential rows are ondensed to one opy. Thus, apartfrom the total PW, the proper PSWs in the examples are7



(18) : (v1) ; (v2)(19) : (v3) ; ((v3)v13) ; ((v3)v23) ; (21)(20) : (v1) ; (v2) ; ((v1)v13) ; ((v2)v23) :The removal of a produt QiXi of PSWs of X from X is de�ned as follows: IfQiXi = X we de�ne X=X = e. Otherwise we label the rows of X. We give tothe Xi-rows the labels of the X-rows they are ontained in. We delete from Xand all Xi all but those rows whose labels our in eah of the hosen PSWs Xi.Let the results be X 0 and X 0i. If there remains no row at all or if X 0i \X 0j 6= ; forsome pair fX 0i; X 0jg then we put X=QiXi = 0. Otherwise X=QXi is given byremoving all X 0i from X 0.With these modi�ations, the formulae (4), (6) and (13) de�ne ounit, o-produt and antipode of a Hopf algebra, and the properties (10), (11) and (16)remain unhanged, see [5℄. The antipode reprodues now the ombinatoris ofthe forest formula for any Feynman graph.There is a way to return to the one-line PWs or rooted trees. It suÆes to de-�ne a \primitivator"P whih maps overlapping divergenes to primitive elements.Let X be an iPW with proper PSWs Xi 6= X, i = 1; : : : ; n, and U � f1; : : : ; ng.Let us write the exterior parentheses of iPWs expliitly, i.e. (X) instead of Xand (Xi) instead of Xi and (P[X=Qi2U Xi℄) instead of P[X=Qi2U Xi℄. Withthis onvention we de�neP[(X)℄ := (X)�PU � Qi2U(Xi) P�X= Qi2U Xi�� : (22)We have proved in [5℄ that P[(X)℄ is primitive in the following sense:�[P[(X)℄℄ = e
 P[(X)℄ + P[(X)℄
 e : (23)If (X) is primitive it ontains no PSWs. Hene we have U = ; and P[(X)℄ = (X).For (X) and (Y ) being primitive we ompute P[((Y )X)℄ = ((Y )X)�((Y )X) = 0.By indution it is easy to show that P[Y ℄ = 0 for any non-primitive one-line iPWY . On the other hand, P[(X)℄ 6= 0 if (X) is an overlapping divergene, and we anreplae X by the linear ombination P[(X)℄ +PU �Qi2U(Xi) P�X=Qi2U Xi��.If (X) ontains no overlapping subdivergenes, allXi are one-line PWs. Sine theP[(X)℄ form additional primitive (i.e. one-line) elements of the Hopf algebra, wehave written the multi-line overlapping divergene (X) as a linear ombinationof one-line PWs. In other words, our Hopf algebra of arbitrary Feynman graphsis isomorphi to a Hopf algebra of one-line PWs, and this is preisely Kreimer'soriginal Hopf algebra [2℄. The primitive elements of Kreimer's Hopf algebraare the graphially primitive elements and from eah overlapping divergene aomputational-primitive element. We have given an expliit onstrution of thelatter. The same an be ahieved, for instane, by Shwinger-Dyson tehniques[2℄ or set theoreti onsiderations [6℄. 8



Let us evaluate the primitivators of our examples, thereby giving the deom-position into rooted trees. Using (21) we geto1;2j2;1 := P�((v1)p2)((v2)p1) � = ((v1)p2)((v2)p1) � ((v1)p2)� ((v2)p1) ;P�(((v3) v13)p2)(((v3) v23)p1) � = (((v3) v13)p2)(((v3) v23)p1)� ((v3)o13;2j23;1)� (((v3)v13)p2)� (((v3)v23)p1) ;P 24( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) 35 = ( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) � ((v1)o2;3j13;2)� ((v2)o2;3j23;1)� ((v1)(v2)p3)� (((v1)v13)p2)� (((v2)v23)p1) :The meaning of the index struture of oi;jjk;l is obvious from the �rst equation; wehave to save this type of a primitive element for later use in the seond and thirdequation. The third equation, for example, an be rewritten as the followingdeomposition of (20) into a sum of rooted trees:� = � P��� + � Ph�i� + � PhÆi��+ ����� BBB�� �� + ������ + ������5 RenormalizationWe have already mentioned that the antipode reovers the ombinatoris of theforest formula. In this setion we will make this statement expliit. In fat theantipode reprodues preisely the forest formula if we allow for a deformation ofour Hopf algebra by a renormalization map R. That map R should be onsideredas the projetion onto the divergent part of the integral enoded in the Feynmangraph. In terms of a regularization parameter �, those integrals deliver a Laurentseries, and R is any projetion of the Laurent series whih preserves the divergentpart. Renormalization shemes di�er in the way they handle the �nite part in� ! 0. A speial sheme is BPHZ renormalization where the projetion is givenby Taylor expansion of the integrals with respet to the external momenta.We now enlarge our algebraA by opies R[X℄ for eah elementX 2 A, subjetto the onvention R[e℄ = e. The Hopf algebra de�nitions are now modi�ed asfollows:�[X℄ := e
X +PU n Qi2UR[Xi℄
X=Qi2UXio ; (6R)�[R[X℄℄ = �[X℄ or (60R)�[R[X℄℄ = (id
 R) Æ�[X℄ ; (600R)9



S[X℄ = �X �m Æ (id
 S) Æ P2�[X℄ ; 8 iPW X 2 A ; (13R)S[R[X℄℄ = �R[X �m Æ (S 
 id) Æ P2�[X℄℄ ; 8 iPW X 2 A ; (130R)It turns out that a general R spoils several Hopf algebra axioms, somewhat de-pending on whether we prefer (60R) or (600R). If we hoose (60R) then ounit, oas-soiativity and right antipode axiom are given up, for the hoie (600R) we keepoassoiativity but violate the right ounit and right antipode axioms.Let us explore the left antipode axiom:0 � m Æ (S 
 id) Æ�[X℄ = m Æ (S 
 id) Æ (e
X +R[X℄
 e + P2�[X℄)= (id�R)[X +m Æ (S 
 id) Æ P2�[X℄℄=: (id�R)[ �X℄ = (id�R)hX +PU n Qi2U ��R[ �Xi℄	 �X= Qi2UXi	oi ;R[ �Xi℄ := �S[R[Xi℄℄ � R[Xi +m Æ (S 
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