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eAbstra
tWe review Kreimer's 
onstru
tion of a Hopf algebra asso
iated to theFeynman graphs of a perturbative quantum �eld theory.1 Introdu
tionThis arti
le is a 
ompanion to the 
ontribution of Dirk Kreimer [1℄ to this volume.With his dis
overy that divergent Feynman graphs 
an be regarded as elementsof a Hopf algebra whose antipode implements renormalization [2℄, Kreimer hasinitiated a dynami
 development on the frontier of quantum �eld theory andnon
ommutative geometry. In parti
ular sin
e Alain Connes and Dirk Kreimer[3℄ established a stru
tural link of this renormalization Hopf algebra to a Hopfalgebra found in the study of an index problem in non
ommutative geometry [4℄,this topi
 belongs to the most promising ones towards a uni�
ation of quantum�eld theory with gravity. Connes and Kreimer realized that a subalgebra of theHopf algebra of renormalization (of a QFT given by a single divergent Feynmangraph) is isomorphi
 to the dual of the di�eomorphism group of a manifold. The
entral quest is now the sear
h for the 
ounterpart of the entire renormalizationHopf algebra (of a realisti
 QFT) repla
ing the di�eomorphism group. There is nodoubt that the latter obje
t will deliver pre
ious information on the short distan
estru
ture of spa
etime. Renormalization is our most powerful mi
ros
ope to seethe smallest stru
tures of the world!Compared with these dreams, this arti
le is extremely modest. We reviewhow the Hopf algebra is derived from Feynman graphs. This review is intendedto be pedagogi
al, we try to omit te
hni
al details as far as possible and preferto illustrate the essential steps by typi
al examples from QED. The reader will�nd supplementary information in the original papers [2, 5, 3℄. Our strategy isto fo
us �rst on Feynman graphs without overlapping divergen
es (se
tion 2),be
ause they yield a fairly simple Hopf algebra (se
tion 3). In se
tion 4 wein
lude overlapping divergen
es and extend the Hopf algebra a

ording to ideasdeveloped in [5℄. On that level, the antipode of the Hopf algebra re
overs the
ombinatori
s of renormalization. It reprodu
es the entire renormalization if weallow for a deformation of the Hopf algebra by a renormalization map R, seese
tion 5. That map R spoils however the Hopf algebra axioms, and we hope togain a deeper understanding of this new stru
ture in the future.�and Universit�at Leipzig, raimar�
pt.univ-mrs.frysupported by the German A
ademi
 Ex
hange Servi
e (DAAD), grant no. D/97/20386.1



2 Feynman graphs, parenthesized words and rooted treesGiven a Feynman graph, let us draw boxes around all of its super�
ially (UV-)divergent se
tors, for example
�4 52 31 = (((s1)(v2)v4)(p3)v5) (1)

(As usual, straight lines stand for fermions and wavy lines for bosons.) A 
riterionfor super�
ial divergen
e of a region 
on�ned in a box is power 
ounting. If abox has nB bosoni
 and nF fermioni
 outgoing legs, the power 
ounting degreeof divergen
e d is (in four dimensions) de�ned by d := 4� nB � 32nF � 0. Owingto symmetries the a
tual degree of divergen
e of one graph or a sum of graphs
an be lower than d, see ref. [7℄.Our example (1) is taken from a spe
ial 
lass of Feynman graphs whi
h 
ontainno overlapping divergen
es. This means that the boxes 
an always be 
hosennon-interse
ting. Any two boxes are, therefore, either disjoint from ea
h other,or one box is nested in the other box. It is now 
onvenient to rewrite su
h aFeynman graph in a form where the relative position of the subdivergen
es ismore apparent. Starting with the set of innermost disjoint boxes we 
ut themout of the graph but leave them in the next-larger box. In our example, theseare the boxes 1 and 2 whi
h are 
ut out from the graph in box 4. In box 4 weare therefore left with a graph with two holes and two separate subgraphs 
yingaround1. Now we pass to the next larger box (no. 5) and 
ut out the disjointboxes from the graph. In the example we get a vertex graph with two holes andthe two boxes 3 and 4 
ying around, where box 4 itself 
ontains boxes 1 and 2.Now we repla
e the boxes by pairs of opening-
losing parentheses and order their
ontents su
h that the mother graph stands on the right of its 
hildren graphs.This gives us a \parenthesized word", PW for short. The PW of our example (1)looks as follows:(((s1)(v2)v4)(p3)v5) (2)= 0�0�0��/ 1A0��/ n/ 1A�/ n// 1A0��= 1A�/ n/| 1AA slash through a propagator means amputation and a small 
ir
le symbolizesa hole. We see that our building blo
ks are the Feynman graphs with possibleholes at any vertex and in any propagator. In an irredu
ible parenthesized word1When we 
ut out a self-energy insertion, whi
h means 
utting a propagator into two, weatta
h one of these new propagators to the self-energy graph 
ut out. In this way we keep thenumber of holes in a graph �nite. 2



(iPW for short) the leftmost opening parenthesis mat
hes its rightmost 
losingparenthesis. A spe
ial type of iPWs are the primitive PWs whi
h 
ontain noinner parentheses.There is a se
ond way of writing the same, whi
h turns out to be the adaptedlanguage in 
onne
tion with non
ommutative geometry. In an iPW we 
all therightmost graph (mother graph) the root. We 
onne
t to this root the mothergraphs of all its 
hildren boxes, and to these mother graphs the mother graphs oftheir 
hildren boxes, and so on. In this way we get a \rooted tree" whose verti
esare labelled by Feynman graphs with holes. The rooted tree of our example (1)
learly looks as follows: �����/ n// �����=�����/ �����/ n/
��/ n/| = � v5���v4 ��� p3���s1 ��� v2 (3)

The tree is 
onne
ted and simply 
onne
ted for irredu
ible PWs and dis
onne
tedfor redu
ible PWs. The tree of a primitive PWs 
onsists solely of a labelled point.3 The Hopf algebraDirk Kreimer has dis
overed [2℄ that the PWs or rooted trees of Feynman graphsform a Hopf algebra, whose antipode axiom reprodu
es the forest formula ofrenormalization [8℄. Let us review these ideas in some detail. We refer e.g. toappendix 1 in [9℄ for a list of basi
 properties of Hopf algebras.We 
onsider the algebra A of polynomials over the rational numbers Q ofirredu
ible PWs resp. 
onne
ted rooted trees. The multipli
ation in A is givenby writing the trees or PWs disjoint to ea
h other. That multipli
ation is 
learlyasso
iative and 
ommutative. We also adjoin a formal unit e to A.We are going to equip that algebra with the stru
ture of a Hopf algebra. The
ounit " : A! Q is an operation whi
h annihilates trees resp. PWs:"[qe℄ = q ; q 2 Q; "[X℄ = 0 ; A 3 X 6= e : (4)The produ
t being an assignment of one element to sums of pairs of other ele-ments, we expe
t the 
oprodu
t � : A ! A 
 A to be the splitting of a givenPW or tree into a sum of pairs of PWs / trees. Before we give the details we haveto de�ne the notion of a subword or subtree. A parenthesized subword (PSWfor short) of a PW is any of its iPW 
ontained in it. In our example (1), thesubwords of (((s1)(v2)v4)(p3)v5) are(s1) ; (v2) ; (p3) ; ((s1)(v2)v4) ; (((s1)(v2)v4)(p3)v5) : (5)The idea of the 
oprodu
t of a PW X is that it returns as the left fa
tor of thetensor produ
t any admissible produ
t of PSWs Xi of X and as the right fa
tor3



that what remains when we remove this left fa
tor from X. A produ
t X1 � � �Xnis admissible if any two Xi; Xj 
ontained in it do not interse
t. For instan
e,(s1)(p3) or (s1)(v2) are admissible, but (v2)((s1)(v2)v4) is not. We symbolize theremoval of X1 � � �Xn from X by X=Qni=1Xi (repla
ed by 0 if X1 � � �Xn is notadmissible). A spe
ial 
ase is X=X = e. Now, if the PSWs of the PW X areX1; : : : ; Xn, we let U be the set of all (ordered) subsets of f1; : : : ; ng and de�ne�[e℄ := e
 e ;�[X℄ := e
X +PU n Qi2UXi 
X=Qi2UXio : (6)For our example we �nd��(((s1)(v2)v4)(p3)v5)� = e
 (((s1)(v2)v4)(p3)v5) + (s1)
 ((v2)v4)(p3)v5)+ (v2)
 ((s1)v4)(p3)v5) + (s1)(v2)
 ((v4)(p3)v5)+ (p3)
 (((s1)(v2)v4)v5) + (s1)(p3)
 (((v2(v4)v5)+ (v2)(p3)
 (((s1(v4)v5) + (s1)(v2)(p3)
 ((v4)v5)+ ((s1)(v2)v4)
 ((p3)v5) + ((s1)(v2)v4)(p3)
 (v5)+ (((s1)(v2)v4)(p3)v5)
 e : (7)In terms of rooted trees, the 
oprodu
t has an even more natural interpre-tation. A subtree Ti of a tree T is what falls down if we 
ut one edge of T , orit is the 
onne
ted tree itself 
ut out of the plane. The notion of an admissibleprodu
t of PSWs �nds its 
ounterpart in the set of admissible (multi-) 
uts: theprodu
t T1 � � �Tn is admissible i� on the path from any bottom vertex to the rootof T we meet at most one of the n 
uts that have produ
ed the Ti. The restT=(T1 � � �Tn) is what remains atta
hed to the root if we 
ut away the subtreesT1; : : : ; Tn. The analogue of (6) is�[T ℄ := e
 T +PC n Qi2U(C)Ti 
 T= Qi2U(C)Tio ; (8)where ea
h C is an admissible multi-
ut of T whi
h produ
es the subtreesfTigi2U(C). For our example (1) , the 
oprodu
t reads in terms of trees�" � v5���v4 AA�p3���s1 AA�v2 # = e
 � v5���v4 AA�p3���s1 AA�v2 + �s1
 � v5�v4 ��� p3�v2 + �v2
 � v5�v4 ��� p3�s1+ �s1 �v2
 � v5���v4 AA� p3+ �p3
 � v5� v4���s1 AA�v2+ �s1 �p3 
 � v5� v4� v2+ �v2 �p3 
 � v5� v4� s1 + �s1 �v2 �p3 
 � v5� v4 + � v4���s1 AA�v2
 � v5� p3+ � v4���s1 AA�v2�p3
 �v5+ � v5���v4 AA�p3���s1 AA�v2 
 e : (9)4



The 
oprodu
t is 
oasso
iative,(�
 id) Æ�[X℄ = X = (id
�) Æ�[X℄ : (10)If we split a PW into a sum of two, it is the same to split the right or the leftfa
tors further. The proof of (10) is non-trivial, it 
an be performed by indu
tion[2, 3℄ or dire
tly [5℄. The 
oprodu
t is, however, not 
o
ommutative, whi
h meansthat in general � Æ�[X℄ 6= �[X℄ :Here, � [X 
 Y ℄ = Y 
X is the 
ip operator.From (4) and (6) the following relation between 
ounit and 
oprodu
t is ob-vious: ("
 id) Æ�[X℄ = (id
 ") Æ�[X℄ = X : (11)Indeed, if we 
onsider a monomial X =QiXi of iPWs resp. 
onne
ted trees, weget �[X℄ = e
X+PZ
Z 0+X
e, wherePZ
Z 0 represents all terms whi
hdo not 
ontain the unit e and whi
h are therefore annihilated by ". The identity(11) means that our algebra A is also a 
oalgebra. It is even a bialgebra as thealgebra and 
oalgebra operations are 
ompatible. Denoting the multipli
ation inA by m we have� Æm[X 
 Y ℄ = (m
m) Æ (id
 � 
 id) Æ (�
�)[X 
 Y ℄ ; (12)due to the fa
t that the subwords of a produ
t word XY are the subwords of Xand the subwords of Y together.The bialgebra A also has an antipode S : A ! A whi
h makes it to a Hopfalgebra. It is on PWs and rooted trees re
ursively de�ned byS[e℄ = e ;S[XY ℄ = S[Y ℄S[X℄ ; 8X; Y 2 A ;S[X℄ = �X �m Æ (S 
 id) Æ P2�[X℄ ; 8 iPW X 2 A ; (13)where P2 : A
A ! A
A is an operation annihilating all terms whi
h 
ontainthe unit e. Note that S[X℄ = �X if X is primitive. On rooted trees we 
an givea more natural de�nition of the antipode. In P2� we take pre
isely the properadmissible 
uts into a

ount, proper in the sense that the 
ut of the entire treeout of the plane is not in
luded. Sin
e the re
ursive de�nition of S is translatedinto a re
ursive appli
ation of P2� to the leftmost fa
tor, it is not diÆ
ult to see[3℄ that (13) is equivalent toS[X℄ = �X �PCa n(�1)#(Ca)� Qi2U(Ca)Xi	�X=Qi2U(Ca)Xi	o : (14)Now, the sum runs over all proper multi-
uts Ca 
onsisting of #(Ca) single 
uts,where ea
h Ca 
uts away the trees Xi, i 2 U(Ca) whi
h need no longer to be5



subtrees of X in the previous sense. It remains the tree X=Qi2U(Ca)Xi whi
h
ontains the root. The last line of (13) 
an equivalently be written asS[X℄ = �X �m Æ (id
 S) Æ P2�[X℄ ; (130)The easiest way to see this is to realize that both versions yield the same formula(14).It is probably a good idea to illustrate the antipode for our example, althoughit is a bit lengthy:S" � v5���v4 AA�p3���s1 AA�v2 # = � � v5���v4 AA�p3���s1 AA�v2 + �s1 � v5�v4 ��� p3�v2 + �v2 � v5�v4 ��� p3�s1 � �s1 �v2 � v5���v4 AA� p3+ �p3 � v5� v4���s1 AA�v2� �s1 �p3 � v5� v4� v2 � �v2 �p3 � v5� v4� s1 + �s1 �v2 �p3 � v5� v4 (15)+ � v4���s1 AA�v2� v5� p3 � �s1 � v4� v2 � v5� p3 � �v2 � v4� s1 � v5� p3 + �s1 �v2 �v4 � v5� p3� � v4���s1 AA�v2 �p3 �v5+ �s1 � v4� v2 �p3 �v5+ �s1 � v4� v2 �p3 �v5� �s1 �v2 �p3 �v4 �v5We 
an now 
he
k the antipode axiomsm Æ (S 
 id) Æ�[e℄ = m Æ (id
 S) Æ�[e℄ = e ;m Æ (S 
 id) Æ�[X℄ = m Æ (id
 S) Æ�[X℄ = 0 8X 6= e : (16)The se
ond line is an immediate 
onsequen
e of (13), (130) and of the identity�[X℄ = e
X +X 
 e+ P2�[X℄.The reader may worry what all that has to do with Feynman graphs. Whatwe have only used are parenthesized words or rooted trees whose building blo
ksare letters of some alphabet. Indeed, it was pointed out in [6℄ that the Hopfalgebra stru
ture is based on elementary set theoreti
al 
onsiderations. Feyn-man graphs are just an example. There is however an important observation,due to Dirk Kreimer [2℄, whi
h makes the appli
ation of these set theoreti
 toolstremendously important for Feynman graphs. For X being the parenthesizedword or rooted tree of a Feynman graph, the antipode S of (13) reprodu
es pre-
isely the 
ombinatori
s of the forest formula whi
h governs the renormalizationof perturbative QFTs. We will return to this a
hievement in se
tion 5.4 Overlapping divergen
esFeynman graphs may 
ontain overlapping divergen
es whi
h at �rst sight do not�t into the language of parenthesized words or rooted trees. However, it turnsout that an overlapping divergen
e 
an be represented by a linear 
ombinationof words or trees, where additional primitive elements arise. We present here aparti
ular 
onstru
tion [5℄ of this linear 
ombination. For this purpose we enlargethe 
lass of PWs by in
luding words with several lines { one line for ea
h maximal6



forest. We extend the Hopf algebra operations to this larger 
lass and show thatthey give rise to a linear 
ombination of one-line PWs and new primitive elements.Let us 
onsider the following graph borrowed from QED:�There is no possibility to draw non-interse
ting boxes around all super�
iallydivergent se
tors. We 
an however try to draw non-interse
ting boxes arounda maximal number of super�
ial divergen
es, whi
h will be possible in severalways. In our example we have two possibilities:
�1 2 = ((v1)p2) or �1 2 = ((v2)p1) : (17)We have resolved the overlapping divergen
e into (here two) maximal forests.A forest of a Feynman graph is a set of one-parti
le-irredu
ible (the graph re-mains 
onne
ted after 
utting an arbitrary line) divergent subgraphs whi
h donot overlap. A maximal forest for a given Feynman graph is a forest whi
h is not
ontained in any other forest of that graph.Our idea is now to bundle the parenthesized words of the n maximal forestsof a given graph to an n-line PW. We write the single PWs of ea
h maximalforest as di�erent rows and 
onne
t by a tree of lines the 
losing parentheses ofidenti
al boxes o

urring in di�erent rows. The PW of our example is((v1)p2)((v2)p1) ; (18)be
ause the outermost parentheses of both rows represent the same large box in(17). Other examples are
	1 23 (((v3) v13)p2)(((v3) v23)p1) (19)

31 2 ( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) (20)All we have to 
hange now is the notion of the parenthesized subword (PSW)and of its removal. A PSW Xi of X is everything between a set of 
onne
ted
losing parentheses and its mat
hing opening parentheses. Dis
onne
ted rows ofX whi
h are a

identally between 
onne
ted rows are not part of the PSW Xunder 
onsideration, and identi
al rows are 
ondensed to one 
opy. Thus, apartfrom the total PW, the proper PSWs in the examples are7



(18) : (v1) ; (v2)(19) : (v3) ; ((v3)v13) ; ((v3)v23) ; (21)(20) : (v1) ; (v2) ; ((v1)v13) ; ((v2)v23) :The removal of a produ
t QiXi of PSWs of X from X is de�ned as follows: IfQiXi = X we de�ne X=X = e. Otherwise we label the rows of X. We give tothe Xi-rows the labels of the X-rows they are 
ontained in. We delete from Xand all Xi all but those rows whose labels o

ur in ea
h of the 
hosen PSWs Xi.Let the results be X 0 and X 0i. If there remains no row at all or if X 0i \X 0j 6= ; forsome pair fX 0i; X 0jg then we put X=QiXi = 0. Otherwise X=QXi is given byremoving all X 0i from X 0.With these modi�
ations, the formulae (4), (6) and (13) de�ne 
ounit, 
o-produ
t and antipode of a Hopf algebra, and the properties (10), (11) and (16)remain un
hanged, see [5℄. The antipode reprodu
es now the 
ombinatori
s ofthe forest formula for any Feynman graph.There is a way to return to the one-line PWs or rooted trees. It suÆ
es to de-�ne a \primitivator"P whi
h maps overlapping divergen
es to primitive elements.Let X be an iPW with proper PSWs Xi 6= X, i = 1; : : : ; n, and U � f1; : : : ; ng.Let us write the exterior parentheses of iPWs expli
itly, i.e. (X) instead of Xand (Xi) instead of Xi and (P[X=Qi2U Xi℄) instead of P[X=Qi2U Xi℄. Withthis 
onvention we de�neP[(X)℄ := (X)�PU � Qi2U(Xi) P�X= Qi2U Xi�� : (22)We have proved in [5℄ that P[(X)℄ is primitive in the following sense:�[P[(X)℄℄ = e
 P[(X)℄ + P[(X)℄
 e : (23)If (X) is primitive it 
ontains no PSWs. Hen
e we have U = ; and P[(X)℄ = (X).For (X) and (Y ) being primitive we 
ompute P[((Y )X)℄ = ((Y )X)�((Y )X) = 0.By indu
tion it is easy to show that P[Y ℄ = 0 for any non-primitive one-line iPWY . On the other hand, P[(X)℄ 6= 0 if (X) is an overlapping divergen
e, and we 
anrepla
e X by the linear 
ombination P[(X)℄ +PU �Qi2U(Xi) P�X=Qi2U Xi��.If (X) 
ontains no overlapping subdivergen
es, allXi are one-line PWs. Sin
e theP[(X)℄ form additional primitive (i.e. one-line) elements of the Hopf algebra, wehave written the multi-line overlapping divergen
e (X) as a linear 
ombinationof one-line PWs. In other words, our Hopf algebra of arbitrary Feynman graphsis isomorphi
 to a Hopf algebra of one-line PWs, and this is pre
isely Kreimer'soriginal Hopf algebra [2℄. The primitive elements of Kreimer's Hopf algebraare the graphi
ally primitive elements and from ea
h overlapping divergen
e a
omputational-primitive element. We have given an expli
it 
onstru
tion of thelatter. The same 
an be a
hieved, for instan
e, by S
hwinger-Dyson te
hniques[2℄ or set theoreti
 
onsiderations [6℄. 8



Let us evaluate the primitivators of our examples, thereby giving the de
om-position into rooted trees. Using (21) we geto1;2j2;1 := P�((v1)p2)((v2)p1) � = ((v1)p2)((v2)p1) � ((v1)p2)� ((v2)p1) ;P�(((v3) v13)p2)(((v3) v23)p1) � = (((v3) v13)p2)(((v3) v23)p1)� ((v3)o13;2j23;1)� (((v3)v13)p2)� (((v3)v23)p1) ;P 24( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) 35 = ( (v1) (v2) p3)(((v1) v13)p2)(( (v2) v23)p1) � ((v1)o2;3j13;2)� ((v2)o2;3j23;1)� ((v1)(v2)p3)� (((v1)v13)p2)� (((v2)v23)p1) :The meaning of the index stru
ture of oi;jjk;l is obvious from the �rst equation; wehave to save this type of a primitive element for later use in the se
ond and thirdequation. The third equation, for example, 
an be rewritten as the followingde
omposition of (20) into a sum of rooted trees:� = � P��� + � Ph�i�
 + � PhÆi��+ ����� BBB�� �� + ������ + ������5 RenormalizationWe have already mentioned that the antipode re
overs the 
ombinatori
s of theforest formula. In this se
tion we will make this statement expli
it. In fa
t theantipode reprodu
es pre
isely the forest formula if we allow for a deformation ofour Hopf algebra by a renormalization map R. That map R should be 
onsideredas the proje
tion onto the divergent part of the integral en
oded in the Feynmangraph. In terms of a regularization parameter �, those integrals deliver a Laurentseries, and R is any proje
tion of the Laurent series whi
h preserves the divergentpart. Renormalization s
hemes di�er in the way they handle the �nite part in� ! 0. A spe
ial s
heme is BPHZ renormalization where the proje
tion is givenby Taylor expansion of the integrals with respe
t to the external momenta.We now enlarge our algebraA by 
opies R[X℄ for ea
h elementX 2 A, subje
tto the 
onvention R[e℄ = e. The Hopf algebra de�nitions are now modi�ed asfollows:�[X℄ := e
X +PU n Qi2UR[Xi℄
X=Qi2UXio ; (6R)�[R[X℄℄ = �[X℄ or (60R)�[R[X℄℄ = (id
 R) Æ�[X℄ ; (600R)9



S[X℄ = �X �m Æ (id
 S) Æ P2�[X℄ ; 8 iPW X 2 A ; (13R)S[R[X℄℄ = �R[X �m Æ (S 
 id) Æ P2�[X℄℄ ; 8 iPW X 2 A ; (130R)It turns out that a general R spoils several Hopf algebra axioms, somewhat de-pending on whether we prefer (60R) or (600R). If we 
hoose (60R) then 
ounit, 
oas-so
iativity and right antipode axiom are given up, for the 
hoi
e (600R) we keep
oasso
iativity but violate the right 
ounit and right antipode axioms.Let us explore the left antipode axiom:0 � m Æ (S 
 id) Æ�[X℄ = m Æ (S 
 id) Æ (e
X +R[X℄
 e + P2�[X℄)= (id�R)[X +m Æ (S 
 id) Æ P2�[X℄℄=: (id�R)[ �X℄ = (id�R)hX +PU n Qi2U ��R[ �Xi℄	 �X= Qi2UXi	oi ;R[ �Xi℄ := �S[R[Xi℄℄ � R[Xi +m Æ (S 
 id) Æ P2�[Xi℄℄ :We see that we obtain a re
ursion formula for the determination of �X, and this ispre
isely Bogolyubov's re
ursion formula [10℄ of renormalization! That re
ursionformula has an expli
it solution, the forest formula of Zimmermann [8℄. In view ofthe general results of [6℄ it is not surprising that Feynman graphs 
an be regardedas elements of a Hopf algebra. It is however a deep message that the antipodeof this (R-deformed) Hopf algebra implements renormalization. And the story
ontinues with the dis
overy by Connes and Kreimer of a 
onne
tion betweenthe renormalization Hopf algebra and the di�eomorphism group of spa
etime [3℄.We 
an expe
t this subje
t to be
ome one of the most promising a
tivities intheoreti
al physi
s.A
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