

Construction of a quantum field theory in four dimensions

Harald Grosse

Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria E-mail: harald.grosse@univie.ac.at

Raimar Wulkenhaar*

Mathematisches Institut der WWU, Einsteinstr. 62, D-48149 Münster, Germany E-mail: raimar@math.uni-muenster.de

We summarise our recent construction of the $\lambda \phi_4^4$ -model on four-dimensional Moyal space. In the limit of infinite noncommutativity, this model is exactly solvable in terms of the solution of a non-linear integral equation. Surprisingly, this limit describes Schwinger functions of a Euclidean quantum field theory on standard \mathbb{R}^4 which satisfy the easy Osterwalder-Schrader axioms boundedness, invariance and symmetry. The decisive reflection positivity axiom is, for the 2-point function, equivalent to the question whether the solution of the integral equation is a Stieltjes function. A numerical investigation confirms this for coupling constants $\lambda_c < \lambda \leq 0$ with $\lambda_c \approx -0.39$.

Frontiers of Fundamental Physics 14 - FFP14, 15-18 July 2014 Aix Marseille University (AMU) Saint-Charles Campus, Marseille

*Speaker.

1. Introduction

The construction of a 4D quantum field theory [1] is a major open problem of mathematical physics. In this note we review a sequence of papers [2, 3, 4] in which we successfully used symmetry and fixed point methods to exactly solve a toy model for a 4D QFT.

We follow the Euclidean approach, starting from a partition function with source term $\mathscr{Z}[J]$. This involves the action functional of the model, but regularised in *finite volume* V and with *finite energy cut-off* Λ . Mostly, these regularisations destroy the symmetries of the model and have to be restored in the end. Our toy model is characterised by a huge symmetry group even in presence of regularisation. The resulting constraints lead to a complete solution of the model.

We start from the usual $\lambda \phi_4^4$ -model with action $\int_{\mathbb{R}^4} dx (\frac{1}{2}\phi(-\Delta + \mu^2)\phi + \frac{\lambda}{4}\phi^4)(x)$. Finite volume is achieved through a harmonic oscillator potential. The energy cut-off Λ , or a minimal length scale $\frac{1}{\Lambda}$, typically makes the model *non-local*. A convenient choice is to replace the pointwise product by the Moyal product $(f \star g)(x) = \int_{\mathbb{R}^4 \times \mathbb{R}^4} \frac{dkdy}{(2\pi)^4} f(x + \frac{1}{2}\Theta k) g(x+y) e^{iky}$, where Θ is a skew-symmetric 4×4-matrix. Schwartz class functions with Moyal product can be mapped to infinite matrices with rapidly decaying entries, and the energy cutoff Λ consists in a finite size \mathcal{N} of these matrices. The regulated action thus reads

$$S[\phi] = \frac{1}{64\pi^2} \int d^4x \left(\frac{Z}{2} \phi \star \left(-\Delta + \Omega^2 \| 2\Theta^{-1}x \|^2 + \mu_{bare}^2 \right) \phi + \frac{\lambda_{bare}Z^2}{4} \phi \star \phi \star \phi \star \phi \right)(x) , \qquad (1.1)$$

where $Z, \lambda_{bare}, \mu_{bare}$ are functions of renormalised values λ, μ and of the regulators $\Omega, \Theta, \mathcal{N}$ encoded in the oscillator potential and the \star -product. Several limits can be discussed:

- $\Omega, \Theta, \frac{1}{\mathscr{N}} \to 0$: This is the pertubatively renormalisable, but trivial, $\lambda \phi_4^4$ -model.
- $\Theta \neq 0$ fixed; $\Omega = 0$: This is often called "noncommutative $\lambda \phi_4^4$ -theory", which is not renormalisable due to the UV/IR-mixing problem.
- $\Theta, \Omega_{ren} \neq 0$ fixed: A perturbatively renormalisable model [5] with ultraviolet fixed point $\Omega = 1$ at which the β -function vanishes [6].
- $\Omega = 1$ fixed; $\Theta, \mathcal{N} \to \infty$: The limit studied here, giving rise to an exactly solvable model.

2. Matrix model, Ward identity and Schwinger-Dyson equations

At $\Omega = 1$ the action (1.1) becomes self-dual under Langmann-Szabo transform and can be expressed as a quartic matrix model

$$S[\phi] = V\left(\sum_{\underline{m},\underline{n},\underline{k}\in\mathbb{N}_{\mathscr{N}}^{2}} E_{\underline{m}\underline{n}} \Phi_{\underline{n}\underline{k}} \Phi_{\underline{k}\underline{m}} + \frac{Z^{2}\lambda}{4} \sum_{\underline{k},\underline{l},\underline{m},\underline{n}\in\mathbb{N}_{\mathscr{N}}} \Phi_{\underline{k}\underline{l}} \Phi_{\underline{l}\underline{m}} \Phi_{\underline{m}\underline{n}} \Phi_{\underline{n}\underline{k}}\right),$$
(2.1)

where $E_{\underline{m}\underline{n}} = E_{|\underline{m}|} \delta_{\underline{m}\underline{n}}$, $E_{|\underline{m}|} := Z(\frac{|\underline{m}|}{\sqrt{V}} + \frac{\mu_{bare}^2}{2})$ and $V := (\frac{\theta}{4})^2$. Under $\mathbb{N}^2_{\mathscr{N}}$ we understand the set of pairs $\underline{m} = (m_1, m_2) \in \mathbb{N}^2$ with $|\underline{m}| := m_1 + m_2 \leq \mathscr{N}$. The resulting partition function $\mathscr{Z}[J] = \int \mathscr{D}[\Phi] \exp(-S[\Phi] + V \operatorname{tr}(\Phi J))$ is covariant under the unitary transformation $\Phi \mapsto U^* \Phi U$. This covariance gives rise to the following Ward identity [6]:

$$0 = \sum_{n \in \mathbb{N}^{2}_{\ell}} \left(\frac{(E_{|a|} - E_{|a|})}{V} \frac{\partial^{2} \mathscr{L}}{\partial J_{a\underline{n}} \partial J_{\underline{n}\underline{p}}} + J_{\underline{p}\underline{n}} \frac{\partial \mathscr{L}}{\partial J_{a\underline{n}}} - J_{\underline{n}\underline{a}} \frac{\partial \mathscr{L}}{\partial J_{\underline{n}\underline{p}}} \right).$$
(2.2)

Perturbatively, Feynman graphs in matrix models are *ribbon graphs* which encode a genus-*g* Riemann surface with *B* boundary components. The *k*th boundary face is characterised by $N_k \ge 1$ external double lines to which we attach the source matrices *J*. Since *E* is diagonal, the matrix index is conserved along each strand of the ribbon graph. Therefore, the right index of $J_{\underline{a}\underline{b}}$ coincides with the left index of another $J_{\underline{b}\underline{c}}$, or of the same $J_{\underline{b}\underline{b}}$. Accordingly, the *k*th boundary component carries a cycle $J_P \equiv J_{\underline{P}^1 \cdots \underline{P}N_k}^{N_k} := \prod_{j=1}^{N_k} J_{\underline{p}_j\underline{P}_{j+1}}$ of N_k external sources, with $N_k + 1 \equiv 1$. Therefore, the logarithm of the partition function has the following expansion ($S_{N_1...N_B}$ is a symmetry factor):

$$\log \frac{\mathscr{Z}[J]}{\mathscr{Z}[0]} = \sum_{B=1}^{\infty} \sum_{1 \le N_1 \le \dots \le N_B}^{\infty} \sum_{\underline{p}_1^\beta, \dots, \underline{p}_{N_\beta}^\beta \in I} \frac{V^{2-B}}{S_{N_1 \dots N_B}} G_{|\underline{p}_1^1 \dots \underline{p}_{N_1}^1| \dots |\underline{p}_1^B \dots \underline{p}_{N_B}^B|} \prod_{\beta=1}^B \left(\frac{1}{N_\beta} J_{\underline{p}_1^\beta \dots \underline{p}_{N_\beta}^\beta}^{N_\beta} \right).$$
(2.3)

The cycle expansion (2.3) provides for external matrices *E* of compact resolvent the kernel of multiplication by $E_{|\underline{a}|} - E_{|p|}$ in (2.2):

Theorem 1 ([2])

$$\begin{split} &\sum_{\underline{n}\in\mathbb{N}_{\mathcal{N}}^{2}}\frac{\partial^{2}\mathscr{Z}[J]}{\partial J_{\underline{a}\underline{n}}\partial J_{\underline{n}\underline{p}}} \\ &= \delta_{\underline{a}\underline{p}} \Big\{ V^{2}\sum_{(K)} \frac{J_{P_{1}}\cdots J_{P_{K}}}{S_{(K)}} \Big(\sum_{\underline{n}\in\mathbb{N}_{\mathcal{N}}^{2}} \frac{G_{|\underline{a}\underline{n}|P_{1}|\dots|P_{K}|}}{V^{|K|+1}} + \frac{G_{|\underline{a}|\underline{a}|P_{1}|\dots|P_{K}|}}{V^{|K|+2}} + \sum_{r\geq1} \sum_{\underline{q}_{1},\dots,\underline{q}_{r}\in\mathcal{N}_{\mathcal{N}}^{2}} \frac{G_{|\underline{q}_{1}\underline{a}\underline{q}_{1}\dots\underline{q}_{r}|P_{1}|\dots|P_{K}|}J_{\underline{q}_{1}\dots\underline{q}_{r}}^{r}}{V^{|K|+1}} \Big) \\ &+ V^{4}\sum_{(K),(K')} \frac{J_{P_{1}}\cdots J_{P_{K}}J_{\underline{Q}_{1}}\cdots J_{\underline{Q}_{K'}}}{S_{(K)}S_{(K')}} \frac{G_{|\underline{a}|P_{1}|\dots|P_{K}|}}{V^{|K|+1}} \frac{G_{|\underline{a}|\underline{Q}_{1}|\dots|Q_{K'}|}}{V^{|K'|+1}} \Big\} \mathscr{Z}[J] \\ &+ \frac{V}{E_{|\underline{p}|} - E_{|\underline{a}|}} \sum_{\underline{n}\in\mathbb{N}_{\mathcal{N}}^{2}} \left(J_{\underline{p}\underline{n}}\frac{\partial\mathscr{Z}[J]}{\partial J_{\underline{a}\underline{n}}} - J_{\underline{n}\underline{a}}\frac{\partial\mathscr{Z}[J]}{\partial J_{\underline{n}\underline{p}}} \Big) \,. \end{split}$$

$$(2.4)$$

Formula (2.4) is the core of our approach. It is a consequence of the unitary group action and the cycle structure of the partition function. The possibility to kill two *J*-derivatives via (2.4) lets the usually infinite hierarchy of Schwinger-Dyson equations collapse [2]:

Proposition 2. In a scaling limit $V \to \infty$ with $\frac{1}{V} \sum_{\underline{n} \in \mathbb{N}^2_{\mathcal{N}}}$ finite, the (B = 1)-sector of $\log \mathscr{Z}$ reads

$$G_{|\underline{a}\underline{b}|} = \frac{1}{E_{|\underline{a}|} + E_{|\underline{b}|}} - \frac{\lambda}{E_{|\underline{a}|} + E_{|\underline{b}|}} \frac{1}{V} \sum_{\underline{p} \in \mathbb{N}^2_{\mathscr{N}}} \left(G_{|\underline{a}\underline{b}|} G_{|\underline{a}\underline{p}|} - \frac{G_{|\underline{p}\underline{b}|} - G_{|\underline{a}\underline{b}|}}{E_{|\underline{p}|} - E_{|\underline{a}|}} \right),$$
(2.5)

$$G_{|\underline{b}_{0}\underline{b}_{1}...\underline{b}_{N-1}|} = (-\lambda) \sum_{l=1}^{\frac{N-2}{2}} \frac{G_{|\underline{b}_{0}\underline{b}_{1}...\underline{b}_{2l-1}|}G_{|\underline{b}_{2l}\underline{b}_{2l+1}...\underline{b}_{N-1}|} - G_{|\underline{b}_{2l}\underline{b}_{1}...\underline{b}_{2l-1}|}G_{|\underline{b}_{0}\underline{b}_{2l+1}...\underline{b}_{N-1}|}}{(E_{|\underline{b}_{0}|} - E_{|\underline{b}_{2l}|})(E_{|\underline{b}_{1}|} - E_{|\underline{b}_{N-1}|})} .$$
(2.6)

Equation (2.5) was first obtained in [7] by the graphical method proposed by [6]. The non-linearity of (2.5) was successfully addressed in [2, 4]. The purely algebraic formula (2.6) for $N \ge 4$ relies, apart from (2.4), on the reality $\Phi = \Phi^*$ of the matrix model. Absence of index summations in (2.6)

means that the β -function of the QFT defined by (1.1) vanishes identically, as proved perturbatively in [6]. The Schwinger-Dyson equations for functions $G_{|\underline{p}_1^1...\underline{p}_{N_1}^1|...|\underline{p}_1^B...\underline{p}_{N_B}^B|}$ with B > 1 are similar in the following sense: The basic functions with all $N_i \leq 2$ satisfy a complicated, but linear, equation. All higher functions with at least one $N_i \geq 3$ are purely algebraic.

3. Renormalisation and integral representation

The scaling limit $V \to \infty$ with $\frac{1}{V} \sum_{\underline{n} \in \mathbb{N}^2_{\mathscr{N}}}$ finite turns discrete matrix indices into continuous variables and sums into integrals. These integrals diverge and therefore require an energy cutoff $a, b, \dots \in [0, \Lambda^2]$. Normalisation conditions on the lowest Taylor terms of the two-point function $G_{|\underline{ab}|} \mapsto G_{ab}$ express the bare quantities Z, μ_{bare} in terms of renormalised values \mathscr{Y}, μ and of the cutoff Λ^2 . Eliminating Z, μ_{bare} by their normalisation equations leads to a highly non-linear equation for the renormalised two-point function. The non-linearity cancels for the difference $G_{ab} - G_{a0}$ if the finite wavefunction renormalisation is $1 + \mathscr{Y} = -\frac{dG_{0b}}{db}|_{b=0}$. These steps turn (2.5) into a linear singular integral equation of Carleman type. The solution theory of such equations gives:

Theorem 3 ([4]) The matrix 2-point function G_{ab} of the $\lambda \phi_4^{\star 4}$ -model is in infinite volume limit and for coupling constants $\lambda < 0$ given in terms of the boundary 2-point function G_{0a} by

$$G_{ab} = \frac{\sin(\tau_b(a))}{|\lambda|\pi a} \exp\left(\operatorname{sign}(\lambda)(\mathscr{H}_0^{\Lambda}[\tau_0(\bullet)] - \mathscr{H}_a^{\Lambda}[\tau_b(\bullet)])\right),$$
(3.1)

where $\tau_b(a) := \arctan_{[0,\pi]} \left(\frac{|\lambda|\pi a}{b + \frac{1+\lambda\pi a \mathscr{H}_a^{\Lambda}[G_{0\bullet}]}{G_{0a}}} \right)$ and $\mathscr{H}_a^{\Lambda}[f(\bullet)] := \frac{1}{\pi} \lim_{\varepsilon \to 0} \left(\int_0^{a-\varepsilon} + \int_{a+\varepsilon}^{\Lambda^2} \right) \frac{f(q)dq}{q-a} de-$

notes the finite Hilbert transform. The boundary function satisfies the fixed point equation

$$G_{0b} = \frac{1}{1+b} \exp\left(-\lambda \int_0^b dt \int_0^{\Lambda^2} \frac{dp}{(\lambda \pi p)^2 + \left(t + \frac{1+\lambda \pi p \mathscr{H}_p^{\Lambda}[G_{0\bullet}]}{G_{0p}}\right)^2}\right).$$
 (3.2)

For positive coupling constants $\lambda > 0$ the angle function $\tau_b(a)$ ranges from 0 to π and therefore gives rise to a winding number which manifests in an ambiguity in the formulae for G_{ab} and G_{0b} . A perturbative solution of (3.2) reproduces the Feynman graph expansion. However, for any $\lambda > 0$ one leaves the radius of convergence of the arctan series so that the perturbative expansion does not converge. A better strategy is to solve (3.2) by iteration (and exactly in $\lambda < 0$). This iteration converges numerically, and according to Figure 1 we find evidence for a second-order phase transition at critical coupling constant $\lambda_c \approx -0.39$.

4. Schwinger functions and reflection positivity

By reverting the matrix representation we convert the matrix correlation functions $G_{|...|}$ to Schwinger functions in position space. Under conditions identified by Osterwalder-Schrader [8], the Fourier-Laplace transform of Schwinger functions gives rise to Wightman functions of a relativistic quantum field theory [1]. These conditions are [OS0] growth conditions, [OS1] Euclidean invariance, [OS2] reflection positivity, and [OS3] permutation symmetry. An additional axiom [OS4] clustering would give a unique vacuum state.

Figure 1: $1 + \mathscr{Y} := -\frac{dG_{0b}}{db}\Big|_{b=0}$ as function of λ , based on G_{0b} for $\Lambda^2 = 10^7$ with 2000 sample points.

Since the initial action (1.1) badly violates [OS1], it was completely clear to us that our model has no chance to satisfy the Osterwalder-Schrader axioms. To our enormous surprise, the infinite volume limit $\Theta \rightarrow \infty$ restored full Euclidean invariance:

Theorem 4 ([4]) *The connected N-point Schwinger functions of the* $\lambda \phi_4^4$ *-model on extreme Moyal space* $\theta \to \infty$ *are given by*

$$S_{c}(\mu x_{1},...,\mu x_{N}) = \frac{1}{64\pi^{2}} \sum_{\substack{N_{1}+...+N_{B}=N\\N_{\beta} \text{ even}}} \sum_{\sigma \in \mathscr{S}_{N}} \left(\prod_{\beta=1}^{B} \frac{4^{N_{\beta}}}{N_{\beta}} \int_{\mathbb{R}^{4}} \frac{dp_{\beta}}{4\pi^{2}\mu^{4}} e^{i\left\langle \frac{p_{\beta}}{\mu}, \sum_{i=1}^{N_{\beta}}(-1)^{i-1}\mu x_{\sigma(N_{1}+...+N_{\beta-1}+i)}\right\rangle} \right) \\ \times G_{\underbrace{\frac{\|p_{1}\|^{2}}{2\mu^{2}(1+\mathscr{Y})}, \cdots, \frac{\|p_{1}\|^{2}}{2\mu^{2}(1+\mathscr{Y})}}_{N_{1}}} \left| \dots \left| \underbrace{\frac{\|p_{B}\|^{2}}{2\mu^{2}(1+\mathscr{Y})}, \cdots, \frac{\|p_{B}\|^{2}}{2\mu^{2}(1+\mathscr{Y})}}_{N_{B}} \right|.$$
(4.1)

Permutation symmetry [OS3] is trivially realised, and growth estimates [OS0] can be deduced from the integral equation (3.2). Clustering [OS4] is violated.

Only a restricted sector of the underlying matrix model contributes to position space: All strands of the same boundary component carry the same matrix index. The most interesting sector is $N_{\beta} = 2$ in every boundary component, $G_{\frac{\|P_1\|^2}{2\mu^2(1+\mathscr{Y})}\frac{\|P_1\|^2}{2\mu^2(1+\mathscr{Y})}\frac{\|P_B\|^2}{2\mu^2(1+\mathscr{Y})}\frac{\|P_B\|^2}{2\mu^2(1+\mathscr{Y})}}$. The corresponding matrix functions $G_{a_1a_1|\dots|a_Ba_B}$ satisfy more complicated (but linear!) integral equations. This $(2+\dots+2)$ -sector describes the propagation and interaction of *B* (Euclidean) particles without any momentum exchange. This is familiar from two-dimensional integrable models, but a sign of triviality in 4D. Typical triviality proofs rely on clustering or analyticity in Mandelstam representation. The validity of these assumptions in the present case needs verification.

Reflection positivity of $S_c(\mu x_1, \mu x_2)$ is equivalent [3] to the condition that G_{aa} is a Stieltjes function, i.e. representable as $G_{aa} = \int_0^\infty \frac{d\rho(m^2)}{a+m^2}$ for a positive measure ρ . This representation, which can be checked by purely real conditions, defines a holomorphic continuation of G_{aa} to the cut plane $\mathbb{C} \setminus [-\infty, 0]$ together with Minkowskian positivity $\text{Im}(G_{aa}) \ge 0$ for Im(a) < 0. A discrete approximation as in Figure 1 cannot be holomorphic, but the Stieltjes property should fail in higher order for finer resolution. This is precisely what we observe (left of Figure 2). The improvement

Figure 2: Left: Failure of logarithmically complete monotonicity $(-1)^n (\log G_{0b})^{(n)} \ge 0$ for various resolutions *L* as function of λ . Right: The sequence ρ_k of discrete approximations to the measure function $\rho(m^2)$ of G_{aa} .

slows down at precisely the same value $\lambda_c \approx -0.39$ as for the completely different problem of Figure 1. On the right of Figure 2 we show the first elements of a sequence ρ_k which would converge to the measure ρ if G_{aa} is Stieltjes. Again we confirm positivity. Details are given in [4].

All this is clear evidence, albeit no proof, of reflection positivity of the Schwinger 2-point function $S_c(\mu x_1, \mu x_2)$ precisely in the phase $\lambda_c < \lambda \leq 0$.

Acknowledgements

R.W. would like to thank Thierry Masson for invitation to FFP14 and hospitality during the stay in Marseille.

References

- [1] R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, Benjamin, New York (1964).
- [2] H. Grosse and R. Wulkenhaar, "Self-dual noncommutative φ⁴-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory," Commun. Math. Phys. **329** (2014) 1069–1130 [arXiv:1205.0465 [math-ph]].
- [3] H. Grosse and R. Wulkenhaar, "Solvable limits of a 4D noncommutative QFT," arXiv:1306.2816 [math-ph].
- [4] H. Grosse and R. Wulkenhaar, "Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity," arXiv:1406.7755 [hep-th].
- [5] H. Grosse and R. Wulkenhaar, "Renormalisation of ϕ^4 -theory on noncommutative \mathbb{R}^4 in the matrix base," Commun. Math. Phys. **256** (2005) 305–374 [hep-th/0401128].
- [6] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, "Vanishing of beta function of non commutative ϕ_4^4 theory to all orders," Phys. Lett. B **649** (2007) 95–102 [hep-th/0612251].
- [7] H. Grosse and R. Wulkenhaar, "Progress in solving a noncommutative quantum field theory in four dimensions," arXiv:0909.1389 [hep-th].
- [8] K. Osterwalder and R. Schrader, "Axioms for Euclidean Green's functions II," Commun. Math. Phys. 42 (1975) 281–305.