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1. Introduction

Our present fundamental physics rests on two pillars: Quantum Field Theory and General Relativ-
ity. One of the main question in this area of physics concernsthe matching of these two concepts.
In addition we hope to improve quantum field theory models by adding "gravity" effects. Con-
structive methods led years ago to many beautiful ideas and results, but the main goal to construct
a mathematical consistent model of a four dimensional localquantum field theory has not been
reached. Renormalized pertubation expansions allow to getquantum corrections order by order in
a coupling constant. The convergence of this expansion, forexample as a Borel summable series,
can be questioned.
In recent years, a modification of the space-time structure led to new models, which are nonlocal in
a particular sense. But these models, in general suffer under an additional disease, which is called
the Infrared Ultraviolet mixing [1]. Additional infrared singularities show up. A possible way to
cure this problem has been found by us in previous work [2]. Itled to special models, which needed
4 (instead of 3) relevant/marginal operators in the definingLagrangian. We have been able to show
that the resulting model is renormalizable up to all orders in pertubation theory. In addition a new
fixed point appeared at a special value of the additional coupling constant. This way, we were able
to tame the Landau ghost problem. Since the old problems of additional singularities due to partial
summing up the pertubation expansion do not show up, we believe that the pertubation expansion
will be Borel summable. That this new fixed point exists in pertubation theory to all orders has
been shown in work by Rivasseau and collaborators.
The main open question concerns the nonpertubative construction of a nontrivial noncommutative
quantum field theory. Steps in that direction will be discussed here.
Classical field theories for fundamental interactions (electroweak, strong, gravitational) are of geo-
metrical origin. We may remind, that the Fermi interaction is non renormalisable, it needs a cutoff
around 300 GeV, otherwise unitarity is violated! This is nicely resolved by adding new particles,
theW+,Z0,W−, and the confirmation of their existence was a great step towards consistency of
quantum field theory models. On the other hand the Standard Model (electroweak+strong) of parti-
cle physics is renormalisable, while gravity is not! In the sense of renormalisation theory one might
argue, that space-time should not be a smooth manifold at tiny distances, gravity would be scaled
away. Or stated otherwise, the weakness of gravity determines the Planck scale, and geometry at
these tiny distances should be something different.
A promising approach concerns noncommutative geometry, which allows to unify the standard
model with gravity as a classical field theory.
Requirements: From Wightman axioms to Euclidean Schwingerfunctions:
The principles of local quantum fields are easy to state, but it was, up to now, impossible to con-
struct nontrivial models in four space-time dimensions. The required properties can be split into
quantum mechanical ones and relativity properties.
Quantum Mechanical Properties:
States are supposed to be represented by vectors of a separable Hilbert spaceH.
The field operator is an operator valued distribution, smearing it with smooth test functions leads
to Φ( f ) acting on a dense domainD, Φ( f ) =

∫

d4xΦ(x) f ∗(x).
The ground or vacuum stateΩ is unique (up to a phase) and cyclic.
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Space-time translations are symmetries: This implies thatthe common spectrum of the energy-
momentum operatorσ(Pµ) lies in the closed forward light cone.
The ground stateΩ ∈ H is invariant undereiaµ Pµ

.
Relativistic properties:
There is an unitary representation of the Poincaré groupU(a,Λ) on H and fields transform covari-
antly. One of the main postulate concernsmiscroscopic Causalityor Locality. If the supports
of the smearing functionf andg are space-like separated, then the fields operators commute(for
Bosons) or anticommute (for Fermions).[φ( f ),φ(g)]±Ψ = 0 for supp f⊂ (suppg)′

Typically one defines the expectation value of the product ofsmeared field operators called Wight-
man functions:
WN( f1⊗ ...⊗ fN) := 〈Ω|φ( f1) · · ·φ( fN)|Ω〉

It is not difficult to rephrase the requirements for the Wightman functions, but we shall not do it
here. For many purposes it is easier to go over to Euclidean Schwinger functions obtained by using
analyticity of Wightman functions (in the so called extended permuted tube).
The formal definition of Schwinger functions reads:
SN(z1, ...,zN) =

∫

Φ(z1)...Φ(zN)dν(Φ)

dν = 1
Ze−

∫

Lint(Φ)dµ(Φ) ,
wheredµ is the Gaussian measure corresponding to free fields with twopoint correlation:
〈φ(x1)φ(x2)〉 = C(x1,x2), or its Fourier transform:C̃(p1, p2) = δ (p1 − p2)

1
p2

1+m2 , φ above is a
stochastic variable.
As for interacting fields we have to rely on(renormalized) pertubation expansions:

SN(x1 . . .xN) =
1
Z

∫

[dφ ]e−
∫

dxL (φ)
N

∏
i

φ(xi) (1.1)

We may extract the free partdµ(φ) ∝ [dφ ]e−m2
2

∫

φ2− a
2

∫

(∂µ φ)(∂ µ φ) with correlations:
∫

dµ(φ)φ(x1) . . .φ(xN) = ∑
pairings

∏
l∈γ

C(xil −x jl ) (1.2)

Up to now, all expressions are formal, in order to justify theprocedure, we may put a cut off:
C̃κ(p) =

∫ ∞
κ=1/Λ2 dαe−α(p2+m2)

To deal with interactions we may addλ4! Φ4, and expand

SN(x1 . . .xN) =∑
n

(−λ )n

n!

∫

dµ(φ)
N

∏
j

φ(x j)

(

∫

dx
φ4(x)

4!

)n

(1.3)

= ∑
graphΓN

(−λ )n

SymΓN(G)

∫

V
∏

l∈ΓN

Cκ(xl −yl)∼ ΛωD(G) (1.4)

As a result we may collect contributions to the same Feynman diagram and evaluate the degree of
divergence, which is given byωD(G) = (D−4)n+D− D−2

2 N, ω2(G) = 2−2n, ω4(G) = 4−N,
wheren denotes the order of the graph, or the number of vertices,N the number of external lines,l
the number of internal lines. Note that there are(4n+N)!! number of Feynman graphs. Use Stirling
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formula and the factor1n! from the exponential, the large order behaviorKnn! for the contributions
result, which indicates that there will be no Taylor or (Borel) convergence.
Renormalization
If one may impose a finite number of renormalization conditions (here we need 3:a,m,λ ), for
example:
G2(p2 = 0) = 1

m2
phys

, d
dp2 G2(p2 = 0) = − a2

m4
phys

, G4(p2 = 0) = λphys and no new interactions are

generated order by order in pertubation theory, we call the model to be renormalizable (this is
implied by the BPHZ Theorem for the scalarΦ4 model).
According to a different point of view, we may follow WilsonsRenormalization Group Flow ideas
and divide the covariance for free Euclidean scalar field into slices:

Φm =
m

∑
j=0

φ j , Cj =
∫ M−2( j−1)

M−2 j
dα

e−m2α−x2/4α

αD/2
(1.5)

We may integrate out degrees of freedom:

Zm−1(Φm−1) =

∫

dµm(φm)e
−Sm(φm+Φm−1) (1.6)

and obtain a relation between the actions at different scales:

Zm−1(Φm−1) = e−Sm−1(Φm−1) (1.7)

Of course, in order to evaluate these expressions we have to use some expansion.
As a matter of fact, in all these expansions a certain chain offinite subgraphs ( for example with
m bubbles) grows like≃Cmm!, and indicates that this expansion will not be Borel summable. An
easy estimate shows that the scale dependence of the coupling constant will be given by:

λ j ≃
λ0

1−βλ0 j

If the sign ofβ is positive it indicates the appearance of the so called Landau ghost, or phrased
differently triviality of this model may result. A negativesign ofβ indicates asymptotic freedom.
The program of constructing a nontrivial interacting models was successfully done only inD= 2,3
space-time dimensions. As forD = 4 dimensions we have to rely first on renormalized pertubation
theory and follow the renormalization group flow. In addition we may add "Gravity" effects, or
quantize Space-Time: This led to our program of merginggeneral relativity ideas with quantum
physics through noncommutative geometry.
Space-Time structure
That one should limit localisation in space-time follows from a very simple old argument due to
Wheeler:
In order to localize two events, which are a distanceD apart, one has to do a scattering experiment
with particles whose energyhc/λ exceedhc/D. Multiplying these quantities timesG/c4 yields the
Schwarzschild radius of the appropriate energy lump. It is natural to require that this radius should
be smaller than the distance between the events one started with, since otherwise the scattered
particles will be captured by the black hole, which is formed. Putting both inequalities together
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gives a lower bound to the distance of localizability of events of the order of the Planck length.
D ≥ Rss= G/c4hc/λ ≥ G/c4hc/D which implies thatD ≥ lp 10−35m.
Early ideas of modifying space-time were phrased already byRiemann, Schrödinger and Heisen-
berg, but Snyder in 1947 was the first to formulate a deformed space-time geometry. Such ideas
become popular after 1986, when Alain Connes published his work on Noncommutative Geom-
etry. On of us (H. G.) started in 1992 (in work together with J.Madore) to use noncommutative
manifolds (algebras) as a natural cut off for quantized fieldtheory models. Doplicher, Fredenhagen
and Roberts used the Wheeler argument in 1994 to formulate uncertainty relations for deformed
fields and formulated deformed free fields. Filk in 1995 was the first to elaborate on Feynman rules
for models defined over deformed space-time, and finally theybecame popular due to the work of
Schomerus (1999), who observed, that such models may resultfrom string theory after taking the
zero slope limit.
Ideas: Algebra, fields, diff. calculus,...
Typically one first refers to the Gelfand - Naimark theorem, which states that the algebra of con-
tinuous functions over a manifold is isomorphic to a commutative C∗ algebra. Next one studies
deformations of such algebras, through associative nonlocal star products. Especially simple is the
Moyal space. One may start from the algebra of smooth functions overD-dimensional Euclidean
space, and define the⋆-product as

(a⋆b)(x)=
∫

dDydDka(x+ 1
2Θ·k)b(x+y)eiky whereΘ=−ΘT∈MD(R)

Fields are sections of bundles, according to the Serre Swan theorem, they can be identified as pro-
jective modules over the algebraA.

A very essential requirement concerns the differential calculus. We would like to have a dif-
ferential, which obeys the Leibniz rule and squares to zero.By duality vector fields can be defined.
Since we will be dealing in the following only with the canonical deformed space, there is no prob-
lem with having a differential calculus.
Next question results:Can we make sense of renormalisation in Noncommutative Geometric
Models?
As a first step we intend to construct simple quantum field theory models on simple noncommu-
tative geometries, e.g. the Moyal space. Of course, this waywe obtain models with non-local
interaction.
The naïve application of this procedure to theφ4-action (φ -real, Euclidean space) leads on Moyal
plane to the action:

S=
∫

d4x
(1

2
∂µφ ⋆∂ µφ +

m2

2
φ ⋆φ +

λ
4

φ ⋆φ ⋆φ ⋆φ
)

(x) (1.8)

The Feynman rules can be obtained easily. Since we obtain only cyclic invariance at the Vertex,
Graphs are best drawn as Ribbon Graphs on Riemann surfaces with a certain genus and a certain
number of boundary components. We obtain planar regular contribution and non-planar graphs.
The planar graphs still reveal UV divergences, the nonplanar ones are finite for generic momenta.
On the other hand for exceptional momenta (if sums of incoming or outgoing momenta vanish)
the contributions develop a IR singularity, which spoilsRenormalizability! In our previous work

5
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[2] we realized that the UV/IR-mixing problem can be solved by adding a fourth relevant/marginal
operator to the LagrangianTheorem: The quantum field theory defined by the action

S=

∫

d4x
(1

2
φ ⋆

(

∆+Ω2x̃2+µ2)φ +
λ
4!

φ ⋆φ ⋆φ ⋆φ
)

(x) (1.9)

is perturbatively renormalisable to all orders in λ .
The additional oscillator potentialΩ2x̃2 implements mixing between large and small distance scales
and results from the renormalisation proof. Maja Buric and Michael Wohlgenannt [3] found an in-
teresting interpretation of this additional term: It results as the coupling of the scalar field to the
scalar curvature within the truncation procedure (see alsothe contribution of Maja Buric to these
Proceedings).
Here,⋆ refers to the Moyal product parametrised by the antisymmetric 4× 4-matrix Θ, and x̃ =

2Θ−1x. The model is covariant under the Langmann-Szabo duality transformation [4] and becomes
self-dual atΩ = 1. Certain variants have also been treated, see [5] for a review. Evaluation of the
β -functions for the coupling constantsΩ,λ in first order of perturbation theory leads to a coupled
dynamical system which indicates a fixed-point atΩ = 1, while λ remains bounded [6, 7]. The
vanishing of theβ -function atΩ = 1 was next proven in [8] at three-loop order and finally in [9] to
all orders of perturbation theory. It implies that there is no infinite renormalisation ofλ , and a non-
perturbative construction seems possible [10]. The Landaughost problem is solved. The vanishing
of the β -function to all orders has been obtained using a Ward identity [9]. We extend this work
and derive an integral equation for the two-point function alone by using the Ward identity and
Schwinger-Dyson equations. Usually, Schwinger-Dyson equations couple the two-point function
to the four-point function. In our model, we show that the Ward identity allows to express the four-
point function in terms of the two-point function, resulting in an equation for the two-point function
alone. This is achieved in the first step for the bare two-point function. We are able to perform the
mass and wavefunction renormalisation directly in the integral equation, giving aself-consistent
non-linear equation for the renormalised two-point function alone. Highern-point functions fulfil
a linear (inhomogeneous) Schwinger-Dyson equation, with the inhomogeneity given bym-point
functions withm< n. This means that solving our equation for the two-point function leads to a
full non-perturbative construction of this interacting quantum field theory in four dimensions. So
far we treated our equation perturbatively up to third orderin λ . The solution shows an interesting
number-theoretic structure.
We hope that a detailed analysis of our model will help for a non-perturbative treatment of more re-
alistic Euclidean quantum field theories. We expect that we can learn much about non-perturbative
renormalization of Euclidean quantum field theories in fourdimensions from this almost solvable
model.

2. Matrix Model

It is convenient to write the action (1.9) in the matrix base of the Moyal space, see [2, 11]. It sim-
plifies enormously at the self-duality pointΩ = 1. We write down the resulting action functionals
for thebarequantities, which involves the bare massµbare and the wave function renormalisation

6



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
1

Renormalisation of the Grosse-Wulkenhaar model Harald Grosse

φ 7→ Z
1
2 φ . For simplicity we fix the length scale toθ = 4. This gives

S= ∑
m,n∈N2

Λ

1
2

φmnHmnφnm+V(φ) , (2.1)

Hmn= Z
(

µ2
bare+ |m|+ |n|

)

, V(φ) =
Z2λ

4 ∑
m,n,k,l∈N2

Λ

φmnφnkφklφlm , (2.2)

It is already used that this model has no renormalisation of the coupling constant [9]. All summation
indicesm,n, . . . belong toN2, with |m| := m1+m2. The symbolN2

Λ refers to a cut-off in the matrix
size. The scalar field is real,φmn= φnm.

3. Ward Identity

The key step in the proof [9] that theβ -function vanishes is the discovery of a Ward iden-
tity induced by inner automorphismsφ 7→UφU†. Inserting into the connected graphs the special
insertion vertex

V ins
ab := ∑

n
(Han−Hnb)φbnφna (3.1)

is the same as the difference of graphs with external indicesbanda, respectively,Z(|a|−|b|)Gins
[ab]... =

Gb...−Ga...:

We write Feynman graphs in the self-dualφ4
4 -model as ribbon graphs on a genus-g Riemann

surface withB external faces. Adding for each external face an external vertex to get a closed
surface, the matrix index is constant at every face. Inserting the special vertexV ins

ab leads, however,
to an index jump froma to b in an external face which meets an external vertex. The corresponding
external sources at the jumped face are thusJna andJbm for some other indicesm,n. According to
the Ward identity, this is the same as the difference betweenthe graphs with face indexb anda,
respectively:

Z(|a|− |b|) _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

		 UU
a

b

a

b

= _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

b

b

− _^]\XYZ[
������

������

�� ??

CC
CC

CC
C

CC
CC

CC
C

aa!!

. ........

a

a

(3.2)

Z(|a|− |b|)Gins
[ab]... = Gb...−Ga... . (3.3)

The dots in (3.3) stand for the remaining face indices. We have usedHan−Hnb = Z(|a|− |b|).
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4. Schwinger-Dyson equation

The Schwinger-Dyson equation for the one-particle irreducible two-point functionΓab reads

Γab = _^]\XYZ[WVUTPQRS//
oo oo

//
a

b

a

b
(4.1)

=

GFED@ABC
//
oo

OO��b a

a

b

+

GFED@ABC
//
oo

�� OO
ba

a

b p

+ ONMLHIJKGFED@ABC//
oo oo

//
a

b

a

bp

.

The sum of the last two graphs can be reexpressed in terms of the two-point function with insertion
vertex,

Γab = Z2λ ∑
p

(

Gap+G−1
ab Gins

[ap]b

)

= Z2λ ∑
p

(

Gap−G−1
ab

Gbp−Gba

Z(|p|− |a|)

)

(4.2)

= Z2λ ∑
p

( 1
Hap−Γap

+
1

Hbp−Γbp
−

1
Hbp−Γbp

(Γbp−Γab)

Z(|p|−|a|)

)

.

This is a closed equation for the two-point function alone. It involves the divergent quantitiesΓbp

andZ,µbare.

5. Renormalization

Introducing the renormalised planar two-point functionΓren
ab by Taylor expansionΓab=Zµ2

bare−

µ2+(Z−1)(|a|+|b|)+Γren
ab , with Γren

00 = 0 and(∂Γren)00 = 0, we obtain a coupled system of equa-
tions for Γren

ab , Z andµbare. It leads to a closed equation for the renormalised functionΓren
ab alone,

which is further analysed in the integral representation.
We replace the indices ina,b, . . .N by continuous variables inR+. Equation (4.2) depends

only on the length|a| = a1+a2 of indices. The Taylor expansion respects this feature, so that we
replace∑p∈N2

Λ
by

∫ Λ
0 |p|dp. After a convenient change of variables|a| =: µ2 α

1−α , |p| =: µ2 ρ
1−ρ

and

Γren
ab =: µ2 1−αβ

(1−α)(1−β )

(

1−
1

Gαβ

)

, (5.1)

and using an identity resulting from the symmetryG0α = Gα0, we arrive at [12]:

Theorem 1. The renormalised planar connected two-point function Gαβ of the self-dual noncom-
mutativeφ4

4 -theory satisfies the integral equation

Gαβ = 1+λ
(

1−α
1−αβ

(

Mβ −Lβ −βY
)

+
1−β

1−αβ
(

Mα −Lα −αY
)

(5.2)

+
1−β

1−αβ

(Gαβ

G0α
−1

)

(

Mα −Lα +αNα0
)

−
α(1−β )
1−αβ

(

Lβ +Nαβ −Nα0
)

+
(1−α)(1−β )

1−αβ
(Gαβ −1)Y

)

,

8
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whereα ,β ∈ [0,1),

Lα :=
∫ 1

0
dρ

Gαρ −G0ρ

1−ρ
, Mα :=

∫ 1

0
dρ

α Gαρ

1−αρ
, Nαβ :=

∫ 1

0
dρ

Gρβ −Gαβ

ρ −α
,

andY = limα→0
Mα−Lα

α .

6. Perturbation expansion

These integral equations are the starting point for a perturbative solution. In this way, the
renormalised correlation functions are directly obtained, without Feynman graph computation and
further renormalisation steps. We obtain

Gαβ = 1+λ
{

A(Iβ −β )+B(Iα −α)
}

(6.1)

+λ 2
{

AB
(

(I α
•
−α)+ (I β

•
−β )+ (Iα −α)(Iβ −β )+αβ (ζ (2)+1)

)

+A
(

β I β
•
−β Iβ

)

−αAB
(

(Iβ )
2−2β Iβ + Iβ

)

+B
(

α I α
•
−α Iα

)

−βBA
(

(Iα)
2−2α Iα + Iα

)

}

+O(λ 3) ,

whereA := 1−α
1−αβ , B := 1−β

1−αβ and the following iterated integrals appear:

Iα :=
∫ 1

0
dx

α
1−αx

=− ln(1−α) , (6.2)

I α
•

:=
∫ 1

0
dx

α Ix
1−αx

= Li2(α)+
1
2

(

ln(1−α)
)2

.

We conjecture thatGαβ is at any order a polynomial with rational coefficients inα ,β ,A,B and
iterated integrals labelled by rooted trees.

7. Four-point Schwinger-Dyson equation

The knowledge of the two-point function allows a successiveconstruction of the whole theory.
As an example we treat the planar connected four-point function Gabcd.

Following thea-face in direction of an arrow, there is a distinguished vertex at which the first
ab-line starts. For this vertex there are two possibilities for the matrix index of the diagonally
opposite corner to thea-face: eitherc or a summation vertexp:

_^]\XYZ[//
oo oo

//

�� OO

OO��
b c

da

a

b

d

c
=

GFED@ABC

GFED@ABC
GFED@ABC//

oo

oo
//

�� OO

OO��b c

da

a

b b c

a

d

c

+ ONMLHIJK GFED@ABC
GFED@ABC

GFED@ABC
GFED@ABC//

oo oo
//

oo
//

oo
//

����
����

33
33

33
33

b

c

d

a

a

b

a

b

d

cp

.

(7.1)
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We write the first contribution as a product of the vertexZ2λ , the left connected two-point function,
the downward two-point function and an insertion, which is reexpressed by means of the Ward-
identity. After amputation of the external two-point functions we obtain the Schwinger-Dyson
equation for therenormalised1PI four-point functionGabcd= GabGbcGcdGdaΓren

abcd as follows:

Γren
abcd= Zλ

1
|a|− |c|

( 1
Gad

−
1

Gcd

)

+Zλ ∑
p

1
|a|− |p|

Gpb

(Gdp

Gad
Γren

pbcd−Γren
abcd

)

. (7.2)

In terms of the 1PI function we have

Z−1Γren
abcd= λ

(

1−
Γren

ad −Γren
cd

|a|− |c|

)

+λ ∑
p

|a|+ |d|+µ2−Γren
ad

|p|+ |b|+µ2−Γren
pb

Γren
pbcd−Γren

abcd

|p|− |a|
|p|+ |d|+µ2−Γren

pd

+λΓren
abcd∑

p

1−
Γren

ad −Γren
pd

|a|− |p|
(|p|+ |b|+µ2−Γren

pb )(|p|+ |d|+µ2−Γren
pd )

. (7.3)

Passing to the integral representation and the variablesα andβ , we find forΓαβγδ := Γren
abcd an inte-

gral equation, which manipulated appropriately allows again to take the limitξ → 1 after insertion
of the expression for the wave function renormalisation constant.

Theorem 2. The renormalised planar 1PI four-point functionΓαβγδ of self-dual noncommutative
φ4

4 -theory (with continuous indicesα ,β ,γ ,δ ∈ [0,1)) satisfies the integral equation

Γαβγδ = λ ·

(

1−
(1−α)(1− γδ )(Gαδ −Gγδ )

Gγδ (1−δ )(α − γ)

+

∫ 1

0
ρ dρ

(1−β )(1−αδ )GβρGδρ

(1−βρ)(1−δρ)
Γρβγδ −Γαβγδ

ρ −α

)

Gαδ +λ
(

(Mβ −Lβ −Y )Gαδ +

∫ 1

0
dρ

Gαδ Gβρ(1−β )
(1−δρ)(1−βρ)

+

∫ 1

0
ρ dρ

(1−β )(1−αδ )Gβρ

(1−βρ)(1−δρ)
(Gρδ −Gαδ )

(ρ −α)

)

.

(7.4)

In lowest order we find

Γαβγδ = λ −λ 2
((1− γ)(Iα −α)− (1−α)(Iγ − γ)

α − γ

+
(1−δ )(Iβ −β )− (1−β )(Iδ −δ )

β −δ

)

+O(λ 3) . (7.5)

Note thatΓαβγδ is cyclic in the four indices, and thatΓ0000= λ +O(λ 3).

These integral equations might be the starting point of a nonperturbative construction of a Euclidean
quantum field theory on a noncommutative space.
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