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We summarize our recent construction of the φ4-model on four-dimensional Moyal space. This is achieved
by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear
equation for the 2-point function and the eigenvalues of that matrix. The β-function vanishes identically. For
the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed
point problem. The resulting Schwinger functions in position space are symmetric and invariant under the
full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point
function is a Stieltjes function.
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1 Introduction

Perturbatively renormalised quantum field theory is an enormous phenomenological success, a success
which lacks a mathematical understanding. The perturbation series is at best an asymptotic expansion
which cannot converge at physical coupling constants. Some physical effects such as confinement are
out of reach for perturbation theory. In two and partly three dimensions, methods of constructive physics
[GJ87,Riv91], often combined with the Euclidean approach [Sch59,OS73,OS75], were used to rigorously
establish quantum field theory models.

In four dimensions there was little success so far. It is generally believed that due to asymptotic freedom,
non-Abelian gauge theory (i.e. Yang-Mills theory) has the chance of a rigorous construction. But this is a
hard problem [JW00]. What makes it so difficult is the fact that any simpler model such as quantum elec-
trodynamics or the λφ4-model cannot be constructed in four dimensions (Landau ghost problem [LAK54]
or triviality [Aiz81, Frö82]).

One of the main difficulties is the non-linearity of the models under consideration. Fixed point methods
provide a standard approach to non-linear problems, but they are rarely used in quantum field theory. In
this contribution we review a sequence of papers [GW14a, GW13b, GW14b] in which we successfully
used symmetry and fixed point methods to exactly solve a toy model for a quantum field theory in four
dimensions.

1. Following [GW14a], we show in Sect. 2 that a Ward identity for the U(∞) group action leads to an
exact solution of the quartic matrix model

Z =
∫ D[Φ] exp(trace(JΦ−EΦ2− λ

4 Φ4))

in terms of the solution of a non-linear equation. As by-product we find that any renormalisable quartic
matrix model has vanishing β-function. All these steps are completely elementary.
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2. Self-dual φ4
4-theory on Moyal space [GW05b,GW05c] is of that type. For extreme noncommutativity

θ → ∞, and after careful discussion of thermodynamic and continuum limit, the non-linear equation
is reduced to a fixed-point problem [GW14a] which has a unique non-perturbative and non-trivial
solution for λ < 0 [GW14b]. The key step is the observation that a certain difference function satisfies
a linear singular integral equation of Carleman type [Car22, Tri57].

3. Following [GW13b], we identify in Sect. 4 a limit to Schwinger functions for a scalar field on R4.
Surprisingly for a highly noncommutative model, these Schwinger functions show full Euclidean
symmetry. Otherwise they have unusual properties such as absent momentum transfer in interaction
processes. This seems to suggest triviality, but the numerical investigation [GW14b] of the 2-point
function shows scattering remnants from a noncommutative geometrical substructure. Most surpris-
ingly, the Schwinger 2-point function seems to be reflection positive in one of its phases.

2 Exact solution of the quartic matrix model

To define a Euclidean quantum field theory for a matrix Φ ∈ L2(H) we give ourselves an action functional

S[Φ] = V tr(EΦ2 + P [Φ]) . (1)

Here, P [Φ] is a polynomial in Φ with scalar coefficients, and this alone would be a familiar action in the
theory of matrix models [DGZ95]. To be closer to field theory on a (compact) manifold M we add the
analogue of the kinetic term

∫
M dx (−Δφ)φ, that is, we require the external matrix E to be an unbounded

selfadjoint positive operator on H with compact resolvent. The volume V will play a crucial rôle. The
construction involves several regularisation and limiting procedures. One such regularisation consists in a
finite size N for the matrices, and V will be a certain function of N which together with N is sent to ∞.

Adding a source term to the action, we define the partition function as

Z[J ] =
∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) , (2)

where D[Φ] is the extension of the Lebesgue measure from finite-rank operators to L2(H) and J a test
function matrix. What we want, and what we achieve, is to construct D[Φ]

Z[0] for P [Φ] = λ
4 Φ4 in the limit

V → ∞. Such a limit cannot be expected for Z . Instead, we pass to the generating functional logZ[J ] of
connected correlation functions.

2.1 Ward identity and topological expansion

Unitary operators U belonging to an appropriate unitisation of the compact operators on H give rise to a
transformation Φ �→ Φ̃ = UΦU∗. Since the space of selfadjoint compact operators is invariant under the
adjoint action, we have

∫
D[Φ] exp(−S[Φ] + V tr(ΦJ)) =

∫
D[Φ̃] exp(−S[Φ̃] + V tr(Φ̃J)) .

Unitary invariance D[Φ̃] = D[Φ] of the Lebesgue measure implies

0 =
∫

D[Φ
{

exp(−S[Φ] + V tr(ΦJ)) − exp(−S[Φ̃] + V tr(Φ̃J))
}

.

Note that the integrand {. . . } itself does not vanish because tr(EΦ2) and tr(ΦJ) are not unitarily in-
variant; we only have tr(P [Φ]) = tr(P [Φ̃]) due to UU∗ = U∗U = id together with the trace property.
Linearisation of U about the identity operator leads to the Ward identity

0 =
∫

D[Φ]
{

EΦΦ − ΦΦE − JΦ + ΦJ
}

exp(−S[Φ] + V tr(ΦJ)) . (3)
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We can always choose an orthonormal basis of H where E is diagonal (but J is not). Since E is of
compact resolvent, E has eigenvalues Ea > 0 of finite multiplicity μa. We thus label the matrices by an
enumeration of the (necessarily discrete) eigenvalues of E and an enumeration of the basis vectors of the
finite-dimensional eigenspaces. Writing Φ in {. . . } of (3) as functional derivative Φab = ∂

V ∂Jba
, we have

proved (first obtained in [DGMR07]):

Proposition 1. The partition function Z[J ] of the matrix model defined by the external matrix E satis-
fies the |I| × |I| Ward identities

0 =
∑

n∈I

( (Ea − Ep)
V

∂2Z
∂Jan∂Jnp

+ Jpn
∂Z

∂Jan
− Jna

∂Z
∂Jnp

)
. (4)

Compactness of the resolvent of E implies that at the expense of adding a measure μ[m] = dim ker(E−
Emid), we can assume that m �→ Em is injective.

In a perturbative expansion, Feynman graphs in matrix models are ribbon graphs. Viewed as simplicial
complexes, they encode the topology (B, g) of a genus-g Riemann surface with B boundary components.
The kth boundary face is characterised by Nk ≥ 1 external double lines to which we attach the source
matrices J . Since E is diagonal, the matrix index is conserved along each strand of the ribbon graph.
Therefore, the right index of Jab coincides with the left index of another Jbc, or of the same Jbb. Accord-
ingly, the kth boundary component carries a cycle JNk

p1...pNk
:=
∏Nk

j=1 Jpjpj+1 of Nk external sources, with
Nk + 1 ≡ 1. This implies the following expansion of logZ[J ] according to the cycle structure:

log
Z[J ]
Z[0]

=
∞∑

B=1

∞∑

1≤N1≤···≤NB

∑

pβ
1 ,...,pβ

Nβ
∈I

V 2−B

SN1...NB

G|p1
1...p1

N1
|...|pB

1 ...pB
NB

|
B∏

β=1

( J
Nβ

pβ
1 ...pβ

Nβ

Nβ

)
. (5)

The symmetry factor SN1...NB is obtained as follows: If νi of the B numbers Nβ in a given tuple (N1, . . . ,

NB) are equal to i, then SN1...NB =
∏NB

i=1 νi!.
Theorem 2.
∑

n∈I

∂2Z[J ]
∂Jan∂Jnp

= δap

{
V 2
∑

(K)

JP1 · · · JPK

S(K)

(∑

n∈I

G|an|P1|...|PK |
V |K|+1

+
G|a|a|P1|...|PK |

V |K|+2

+
∑

r≥1

∑

q1,...,qr∈I

G|q1aq1...qr |P1|...|PK |Jr
q1...qr

V |K|+1

)

+ V 4
∑

(K),(K′)

JP1 · · ·JPK JQ1 · · ·JQK′

S(K)S(K′)

G|a|P1|...|PK |
V |K|+1

G|a|Q1|...|QK′ |
V |K′|+1

}
Z[J ]

+
V

Ep − Ea

∑

n∈I

(
Jpn

∂Z[J ]
∂Jan

−Jna
∂Z[J ]
∂Jnp

)
. (6)

Proof. We identify four sources of a singular contribution∼ δap. The other types of derivatives, collected

into
(∑

n∈I
∂2Z[J]

∂Jan∂Jnp

)
reg

, persist for a 	= p.

2.2 Schwinger-Dyson equations

We can write the action as S = V
2

∑
a,b(Ea + Eb)ΦabΦba + V Sint[Φ], where Ea are the eigenvalues of

E. Functional integration yields, up to an irrelevant constant,

Z[J ] = e−V Sint[
∂

V ∂J ]e
V
2 〈J,J〉E , 〈J, J〉E :=

∑

m,n∈I

JmnJnm

Em + En
. (7)
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Instead of a perturbative expansion of e−V Sint[
∂

V ∂J ], we apply those J-derivatives to (7) which give rise
to a correlation function G... on the lhs. On the rhs of (7), these external derivatives combine with internal
derivatives from Sint[ ∂

V ∂J ] to certain identities for G.... These Schwinger-Dyson equations are often of
little use because they express an N -point function in terms of (N+2)-point functions.

In the field-theoretical matrix models under consideration, the Ward identity (6) lets this tower of

Schwinger-Dyson equation collapse. Computing G|ab| = 1
V Z[0]

∂2Z[J]
∂Jba∂Jab

∣
∣
∣
J=0

we find with (6) the fol-

lowing result [GW14a]:

Proposition 3. The 2-point function of a quartic matrix model with action S = V tr(EΦ2 + λ
4 Φ4)

satisfies for injective m �→ Em the Schwinger-Dyson equation

G|ab| =
1

Ea + Eb
− λ

Ea + Eb

1
V

∑

p∈I

(
G|ab|G|ap| −

G|pb| − G|ab|
Ep − Ea

)
}

(8a)

− λ

V 2(Ea + Eb)

(
G|a|a|G|ab| +

1
V

∑

n∈I

G|an|ab|

+G|aaab| + G|baba| −
G|b|b| − G|a|b|

Eb − Ea

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8b)

− λ

V 4(Ea + Eb)
G|a|a|ab| .

}

(8c)

It can be checked [GW14a] that in a genus expansion G... =
∑∞

g=0 V −2gG(g)
... (which is probably

not convergent but Borel summable), precisely the line (8a) preserves the genus, the lines (8b) increase
g �→ g + 1 and the line (8c) increases g �→ g + 2. In particular, in a scaling limit V → ∞ with 1

V

∑
p∈I

finite, the exact Schwinger-Dyson equation for G|ab| coincides with its restriction (8a) to the planar sector

g = 0, a closed non-linear equation for G
(0)
|ab| alone:

G
(0)
|ab| =

1
Ea + Eb

− λ

Ea + Eb

1
V

∑

p∈I

(
G

(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| − G

(0)
|ab|

Ep − Ea

)
. (9)

We have derived in 2007/08 this self-consistency equation for the Moyal model by the graphical method
proposed by [DGMR07]. In this form, (9) is meaningless because

∑
p∈I diverges. In 2009 we solved the

renormalisation problem, namely the renormalisation of infinitely many Feynman graphs at once [GW09].
This renormalisation increases the non-linearity. In [GW09] we have solved (9) perturbatively to O(λ3).
After several years of setbacks with the non-perturbative solution, a breakthrough came in 2012: The
equation (9) can be turned into an equation which is linear in the difference G

(0)
|ab| − G

(0)
|a0| to the boundary

and non-linear only in G
(0)
|a0|!

Calculation gives the Schwinger-Dyson equation for higher N in the form:

G|ab1...bN−1|

= − λ

Ea + Eb1

(
1
V

∑

p∈I

(
G|ap|G|ab1...bN−1| −

G|pb1...bN−1| − G|ab1...bN−1|
Ep − Ea

)

−
N−2

2∑

l=1

G|b1...b2l|
G|b2l+1...bN−1a| − G|b2l+1...bN−1b2l|

Eb2l
− Ea

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(10a)
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− λ

V 2(Ea + Eb1)

(
G|a|a|G|ab1...bN−1| +

N−1∑

k=1

G|b1...bkabk...bN−1a|

+G|aaab1...bN−1| +
1
V

∑

n∈I

G|an|ab1...bN−1|

−
N−1∑

k=1

G|b1...bk|bk+1...bN−1bk| − G|b1...bk|bk+1...bN−1a|
Ebk

− Ea

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10b)

− λ

V 4(Ea + Eb1)
G|a|a|ab1...bN−1| .

}

(10c)

Again, the first lines (10a) preserve the genus, whereas g �→ g + 1 in (10b) and g �→ g + 2 in (10c). The
planar sector G

(0)
|ab1...bN−1|, exact for V → ∞ with 1

V

∑
p∈I finite, is a linear inhomogeneous equation

with inductively known parameters.
It turns out that a real theory with Φ = Φ∗ admits a short-cut which directly gives the higher N -point

functions without any index summation. Since the equations for G... are real and Jab = Jba, the reality
Z = Z implies (in addition to invariance under cyclic permutations) invariance under orientation reversal

G|p1
0p1

1...p1
N1−1|...|pB

0 pB
1 ...pB

NB−1| = G|p1
0p1

N1−1...p1
1|...|pB

0 pB
NB−1...pB

1 | . (11)

Whereas empty for G|ab|, in (Ea+Eb1)Gab1b2...bN−1 − (Ea+EbN−1)GabN−1...b2b1 the identities (11) lead
to many cancellations which result in a universal algebraic recursion formula:

Proposition 4.

G|b0b1...bN−1| = (−λ)

N−2
2∑

l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| − G|b2lb1...b2l−1|G|b0b2l+1...bN−1|
(Eb0 − Eb2l

)(Eb1 − EbN−1)

+
(−λ)
V 2

N−1∑

k=1

G|b0b1...bk−1|bkbk+1...bN−1| − G|bkb1...bk−1|b0bk+1...bN−1|
(Eb0 − Ebk

)(Eb1 − EbN−1)
. (12)

The last line of (12) increases the genus and is absent in G
(0)
|b0b1...bN−1|.

We make the following key observation: An affine transformation E �→ ZE + C together with a
corresponding rescaling λ �→ Z2λ leaves the algebraic equations invariant:

Theorem 5. Given a real quartic matrix model with S = V tr(EΦ2 + λ
4 Φ4) and m �→ Em injective,

which determines the set G|p1
1...p1

N1
|...|pB

1 ...pB
NB

| of (N1+ . . . +NB)-point functions. Assume that the basic

functions with all Ni ≤ 2 are turned finite by Ea �→ Z(Ea + μ2

2 − μ2
bare

2 ) and λ �→ Z2λ. Then all functions
with one Ni ≥ 3

1. are finite without further need of a renormalisation of λ, i.e. all renormalisable quartic matrix models
have vanishing β-function,

2. are given by universal algebraic recursion formulae in terms of renormalised basic functions with
Ni ≤ 2. �

The theorem tells us that vanishing of the β-function for the self-dual Φ4
4-model on Moyal space (proved

in [DGMR07] to all orders in perturbation theory) is generic to all quartic matrix models, and the result
even holds non-perturbatively!

The universal recursion formula (12) computes the planar N -point function G|b0...bN−1| at B = 1
as a sum of fractions with products of 2-point functions in the numerator and products of differences of
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eigenvalues of E in the denominator. This structure admits an interesting graphical interpretation. We draw
the indices b0, . . . bN−1 in cyclic order on the circle S1 and represent a factor Gbibj as a chord connecting
bi with bj and a factor 1

Ebi
−Ebj

as an arrow from bi to bj

The chords forming the non-crossing chord diagrams are counted by the Catalan number
C N

2
= N !

( N
2 +1)! N

2 !
. The arrows form two disjoint trees, one connecting the even vertices and one connecting

the odd vertices. By rational fraction expansion it is possible to achieve that each tree intersects the chord
only in the vertices. The assignment of trees to a given chord diagram is, in general, not unique. A canonical
choice is not known to us.

3 Φ4
4-theory on Moyal space as a fixed point problem

3.1 Preliminaries

A large class of examples of noncommutative geometries comes from deformations of the algebra of func-
tions on manifolds. Schwartz functions on Euclidean space R

4 admit an R
4-group action by translation.

As shown by Rieffel [Rie93], this group action induces a noncommutative associative product on the space
of Schwartz functions, the Moyal product:

(f 	 g)(x) =
∫

R4×R4

dy dk

(2π)4
f(x+ 1

2 Θk) g(x+y) ei〈k,y〉 , Θ = −Θt ∈ M4(R) . (13)

Whether or not the Moyal space (R4, 	) is relevant for Planck scale physics is pure speculation (although
a refinement can be justified by uncertainty relations for position operators [DFR95]). In any case the
Moyal space is a nice toy model on which it is easy to formulate and to study (quantum) field theories. To
formulate a Euclidean quantum field theory on Moyal space it is, at first sight, enough to replace in the
action of a usual field theory the pointwise product of functions by the 	-product. The simplest example is
the φ�4

4 -model with action

S[φ] =
∫

R4
dx
( 1

2
φ 	 (−Δ + μ2)φ +

λ

4
φ 	 φ 	 φ 	 φ

)
(x) . (14)

The resulting Feynman rules [Fil96] lead to situations where a multiple insertion of non-planar subgraphs
gives rise to divergences of arbitrarily high degree (ultraviolet/infrared mixing [MVS00]). See [CR00] for a
thorough investigation of this problem. Relativistic quantum field theories on noncommutative Minkowski
space are much more difficult [BDFP02]. Here the UV/IR-mixing problem occurs in different types of
graphs [Bah10].

The Moyal algebra (S(R4), 	) has a matrix basis [GV88, GGISV03], in which the φ�4
4 -interaction (14)

becomes a matrix product (we write φ for a function and Φ for a matrix):

S[φ] = (2πθ)2
∑

k,l,m,n∈N2

(
1
2 Φkl(Δkl;mn + μ2δknδlm)Φmn +

λ

4
ΦklΦlmΦmnΦnk

)
. (15)

The matrix kernel Δkl;mn of the Laplacian (−Δ), viewed as map from N
4 to N

4, consists of a local
interaction plus nearest neighbour interaction.

In [GW05b] we studied the renormalisation group flow of the φ�4
4 -model in matrix representation (using

a power-counting theorem [GW05a] for matrix models with kernel Δkl;mn). We noticed that the marginal
parts of the local term and of the nearest neighbour term in Δkl;mn have different flows. To absorb these
different flows a 4th relevant/marginal operator in the action functional is necessary. This operator corre-
sponds to a harmonic oscillator potential:

S[φ] = 64π2

∫
d4x
(Z

2
φ	
(−Δ+Ω2(2Θ−1x)2 + μ2

bare

)
φ +

λZ2

4
φ	φ	φ	φ

)
(x) . (16)
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We proved in [GW05b] that the corresponding Euclidean quantum field theory is renormalisable to all
orders in perturbation theory. This result was reestablished by various methods, see [Riv07a] for a review.

Presence of the harmonic oscillator term Ω 	= 0 breaks translation invariance. Conversely, this term
achieves covariance under the Langmann-Szabo transformation [LS02] which consists in exchanging x ↔
p and φ(x) ↔ φ̂(p) followed by Fourier transform back to the original variables. Remarkably, this trans-

formation leaves
∫

dx φ	φ	φ	φ invariant, and it exchanges
∫

dx φ(−Δ)φ with
∫

dx φ|2Θ−1x|2φ. Pres-

ence of the oscillator term gives rise to an interesting spectral noncommutative geometry [GW13a] (see
also [GW12]) which is conceptually simpler than the isospectral deformation [GGISV03] of R

4. Most
importantly, the oscillator term cures the Landau ghost problem [LAK54] of usual φ4

4-theory: We have
discovered in [GW04, GW05c] that the one-loop renormalisation group flows of Ω and λ influence each
other in such a way that the running coupling constant λ(Λ) remains finite at any scale Λ. Even more, at
the self-duality point Ω = 1 the β-function of the λΦ4

4-coupling vanishes to all orders in perturbation the-
ory [DGMR07]. This result was obtained by an ingenious combination of Ward identities and Schwinger-
Dyson equations (see [DR07] for an explicit three-loop calculation). In [GW14a] we have generalised the
method of Disertori-Gurau-Magnen-Rivasseau [DGMR07] to the whole class of quartic matrix models
(reviewed in Sect. 2). Vanishing of the β-function is often connected with integrability, and together with
the absent Landau ghost problem a non-perturbatively constructed φ4

4-model on Moyal space came into
reach. The first milestone was the derivation of the self-consistency equation (9) and the understanding
of its renormalisation in [GW09]. It took us several years to fully understand this equation, and it is only
recently that we finished the solution/construction of the Moyal space φ4

4-model [GW14a]. In the sequel
we review this construction.

3.2 Renormalisation and integral representation

At the self-duality point Ω = 1, the matrix kernel ΔΩ=1
kl;mn of the Schrödinger operator H = −Δ +

‖2Θ−1x‖2 becomes purely local and turns the action (16) in matrix basis into a (field-theoretical) quartic
matrix model with action

S[Φ] = V

( ∑

m,n∈N
2
N

Em ΦmnΦnm +
Z2λ

4

∑

m,n,k,l∈N
2
N

ΦmnΦnkΦklΦlm

)

, (17)

Em = Z
( |m|√

V
+

μ2
bare

2

)
, |m| := m1 + m2 ≤ N , V =

( θ

4

)2

.

Our general results on quartic matrix models imply that the planar 2-point function G
(0)
|ab| satisfies the

self-consistency equation (9),

G
(0)
|ab| =

1
Ea + Eb

− Z2λ

Ea + Eb

1
V

∑

p∈N
2
N

(
G

(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| − G

(0)
|ab|

Ep − Ea

)
. (18)

We have introduced a cut-off N
2
N in the matrix size; the index sum diverges for N

2
N �→ N

2. As usual, the
renormalisation strategy consists in adjusting Z, μbare in such a way that the limit N

2
N �→ N

2 exists. This

will be achieved by normalisation conditions for the 1PI function Γab defined by G
(0)
|ab| =: (Hab −Γab)−1,

where Hab := Ea + Eb. We express (18) in terms of Γab,

Γab = −λZ2

V

∑

p∈N
2
N

( 1
Hap − Γap

+
1

Hpb − Γpb
− 1

(Hpb − Γpb)

Γpb − Γab

Z√
V

(|p|−|a|)
)

, (19)
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and write Γab as first-order Taylor formula with remainder Γren
ab ,

Γab = Zμ2
bare − μ2 + (Z−1)√

V
(|a| + |b|) + Γren

ab , Γren
00 = 0 , (∂Γren)00 = 0 .

Equation (19) for Γab

[
Γren

ab , μ2
bare, Z

]
together with Γren

00 = 0 and (∂Γren)00 constitute three equations
to determine the three functions Γren

ab , μ2
bare, Z . Eliminating μ2

bare, Z thus gives rise to a closed equation
for the renormalised function Γren

ab alone. For this elimination it is important to note that the equations for
Γren

ab , μ2
bare, Z depend on a, b only via the norms |a|, |b| which parametrise the spectrum of E. Therefore,

Γab is actually a function only of |a|, |b|, and consequently the index sum reduces to
∑

p∈N
2
N

f(|p|) =
∑N

|p|=0(|p|+1)f(|p|).
We study a particular scaling limit in which matrix size N and volume V are simultaneously sent to

∞ such that the ratio N√
V μ4

= Λ2(1+Y) is kept fixed. Note that V =
(

θ
4

)2 → ∞ is a limit of extreme

noncommutativity! The new parameter (1+Y) corresponds to a finite wavefunction renormalisation, iden-
tified later to decouple our equations. The parameter Λ2 represents an ultraviolet cut-off which is sent to

Λ → ∞ in the very end (continuum limit). In the scaling limit, functions of
|p|√
V

=: μ2(1 + Y)p converge

to functions of ‘continuous matrix indices’ p ∈ [0, Λ2]. In the same way, Γren
ab converges to a function

μ2Γab with a, b ∈ [0, Λ2], and the discrete sum converges to a Riemann integral

1
V

N∑

|p|=0

(|p| + 1)f
( |p|√

V

) −→ μ4(1 + Y)2
∫ Λ2

0

p dp f
(
μ2(1 + Y)p

)
.

This limit makes the restriction to the planar sector (9) of (8) exact.
After elimination of μ2

bare, but before elimination of Z , our equation for Γab becomes

(Z − 1)(1 + Y)(a + b) + Γab

= −λ(1+Y)2
∫ Λ2

0

p dp
( Z2

(a + p)(1+Y) + 1 − Γap
− Z2

p(1+Y) + 1 − Γ0p

)

− λ(1+Y)2
∫ Λ2

0

p dp
( Z

(b + p)(1+Y) + 1 − Γpb
− Z

p(1+Y) + 1 − Γp0

− Z

(b + p)(1+Y) + 1 − Γpb

Γpb − Γab

(1 + Y)(p − a)

+
Z

p(1 + Y) + 1 − Γp0

Γp0

p(1 + Y)

)
. (20)

Applying d
db

∣
∣
a=b=0

we get Z in terms of Γab (and its derivative). Inserted back one gets a highly non-
linear integro-differential equation. Fortunately we can reduce the non-linearity by subtracting from (20)
the same equation taken at b = 0. This subtraction eliminates the second line of (20) containing Z2. In
terms of Gab :=

(
(a + b)(1+Y) + 1 − Γab

)−1
, this difference equation reads

Z−1

(1 + Y)

( 1
Gab

− 1
Ga0

)
= b − λ

∫ Λ2

0

p dp

Gpb

Gab
− Gp0

Ga0

p − a
. (21)

Differentiation d
db

∣
∣
a=b=0

of (21) yields Z in terms of Gab and its derivative. The resulting derivative G′

can be avoided by adjusting

Y := −λ lim
b→0

∫ Λ2

0

dp
Gpb − Gp0

b
.
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This choice leads to
Z−1

(1+Y)
= 1−λ

∫ Λ2

0

dp Gp0, which is a perturbatively divergent integral for Λ → ∞.

Inserting Z−1 and Y back into (21) we end up in a linear integral equation for the difference function
Dab := a

b (Gab − Ga0) to the boundary:

( b

a
+

1
aGa0

)
Dab + Ga0 = λ

∫ Λ2

0

dp
(Dpb − Dab

Gp0
Ga0

p − a

)
. (22)

The non-linearity restricts to the boundary function Ga0 where the second index is put to zero. Assum-
ing a �→ Gab Hölder-continuous, we can pass to Cauchy principal values. In terms of the finite Hilbert
transform

HΛ
a [f(•)] :=

1
π

lim
ε→0

(∫ a−ε

0

+
∫ Λ2

a+ε

) f(q) dq

q − a
, (23)

the integral equation (22) becomes

( b

a
+

1 + λπaHΛ
a

[
G•0

]

aGa0

)
Dab − λπHΛ

a

[
D•b

]
= −Ga0 . (24)

3.3 The Carleman solution

Equation (24) is a well-known singular integral equation of Carleman type [Car22, Tri57]:

Theorem 6 ( [Tri57], transformed from [−1, 1] to [0, Λ2]). The singular linear integral equation

h(a)y(a) − λπHΛ
a [y] = f(a) , a ∈ ]0, Λ2[ ,

is for h(a) continuous on ]0, Λ2[, Hölder-continuous near 0, Λ2, and f ∈ Lp for some p > 1 (determined
by ϑ(0) and ϑ(Λ2)) solved by

y(a) =
sin(ϑ(a))e−HΛ

a [π−ϑ]

λπa

(
a f(a)eH

Λ
a [π−ϑ] cos(ϑ(a))

+ HΛ
a

[
eH

Λ
• [π−ϑ] • f(•) sin(ϑ(•))

]
+ C

)
(25a)

∗=
sin(ϑ(a))eH

Λ
a [ϑ]

λπ

(
f(a)e−HΛ

a [ϑ] cos(ϑ(a))

+ HΛ
a

[
e−HΛ

• [ϑ]f(•) sin(ϑ(•))
]

+
C′

Λ2 − a

)
, (25b)

where ϑ(a) = arctan
[0, π]

( λπ

h(a)

)
, sin(ϑ(a)) = |λπ|√

(h(a))2+(λπ)2
≥ 0 and C, C′ are arbitrary constants.

The possibility of C, C′ 	= 0 is due to the fact that the finite Hilbert transform has a kernel, in contrast
to the infinite Hilbert transform with integration over R. The two formulae (25a) and (25b) are formally
equivalent, but the solutions belong to different function classes and normalisation conditions may (and
will) make a choice.

In principle, (25) provides the solution Gab of (24), where the angle function

ϑb(a) := arctan
[0, π]

(
λπa

b +
1+λπaHΛ

a [G•0]

Ga0

)

(26)
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plays a key rôle. This solution involves multiple Hilbert transforms which are difficult to control. A better
strategy starts from the observation that the angle (26) satisfies, for b = 0, again a Carleman type singular
integral equation

λπ cotϑ0(a)Ga0 − λπHΛ
a [G•0] = 1

a

with solution

Ga0 =
e−HΛ

a [π−ϑ0] sin(ϑ0(a))
λπa

(
eH

Λ
a [π−ϑ0] cos(ϑ0(a))

+ HΛ
a

[
eH

Λ
• [π−ϑ0] sin(ϑ0(•))

]
+ C

)
(27a)

∗=
eH

Λ
a [ϑ0] sin(ϑ0(a))

λπ

( e−HΛ
a [ϑ0] cos(ϑ0(a))

a

+ HΛ
a

[ e−HΛ
• [ϑ0] sin(ϑ0(•))

•
]

+
C′

Λ2 − a

)
. (27b)

Tricomi’s identities [Tri57, §4.4(28+18)], which can be arranged as

e±HΛ
a [ϑb] cos(ϑb(a)) ∓HΛ

a

[
e±HΛ

• [ϑb] sin(ϑb(•))
]

= 1 ,

and rational fraction expansion HΛ
a

[ f(•)
•
]

= 1
a

(HΛ
a

[
f(•)]−HΛ

0

[
f(•)]) simplify (27) to

Ga0 =
e−HΛ

a [π−ϑ0] sin(ϑ0(a))
λπa

(
C − 1

)
(28a)

∗=
eH

Λ
a [ϑ0] sin(ϑ0(a))

λπa

(
e−HΛ

0 [ϑ0] cos(ϑ0(0)) +
C′a

Λ2 − a

)
. (28b)

Both lines are formally equivalent, but we have to guarantee the normalisation lima→0 Ga0 = 1. From (26)

one concludes limp→0 ϑ0(p) =

{
0 for λ ≥ 0
π for λ < 0

}

. Consequently,

e−HΛ
0 [ϑ0] = exp

( − 1
π

∫ Λ2

0
dp
p ϑ0(p)

) λ<0−→ 0, which means that (28b) reduces for λ < 0 to (28a), with

C′ �→ C − 1. Similarly, lima→0 e−HΛ
a [π−ϑ0] λ>0= 0, so that (28a) is only consistent with λ < 0. The

normalisation lima→0 Ga0 = 1 leads with lima→0
sin ϑ0(a)
|λ|πa = 1 to 1−C = e−HΛ

0 [π−ϑ0] in (28a), whereas
(28b) stays as it is for λ > 0. These results can be summarised as follows:

Lemma 7. The angle function τb(a) := arctan
[0, π]

(
|λ|πa

b + 1+λπaHΛ
a [G•0]

Ga0

)

is for b = 0 reverted to

Ga0 =
sin(τ0(a))
|λ|πa

esign(λ)(HΛ
0 [τ0(•)]−HΛ

a [τ0(•)])
{

1 for λ < 0 ,
(
1+ Ca

Λ2−a

)
for λ > 0 ,

(29)

where C is an arbitrary constant.

Recall that Ga0 forms the inhomogeneity in the Carleman equation (24). We insert (29) into the Carle-
man solution (25) for (24) and obtain with the addition theorem

|λ|πa sin
(
τd(a) − τb(a)

)
= (b − d) sin τb(a) sin τd(a) after essentially the same steps as in the proof

of (29):
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Theorem 8 ( [GW14b]). The full matrix 2-point function Gab of self-dual φ4
4-theory on Moyal space is

in the limit θ → ∞ given in terms of the boundary 2-point function Ga0 by the equation

Gab =
sin(τb(a))
|λ|πa

esign(λ)(HΛ
0 [τ0(•)]−HΛ

a [τb(•)])
{

1 for λ < 0 ,
(
1+ Ca+bF (b)

Λ2−a

)
for λ > 0 ,

(30)

where C is a undetermined constant and b F (b) an undetermined function of b vanishing at b = 0.

Some remarks:

• We have proved this theorem in 2012 for λ > 0 under the assumption C′ = 0 in (25b), but knew that
non-trivial solutions of the homogeneous Carleman equation parametrised by C′ 	= 0 are possible.
That no such term arises for λ < 0 (if angles are redefined ϑ �→ τ ) is a recent result [GW14b].

• We expect C, F to be Λ-dependent so that
(
1+ Ca+bF (b)

Λ2−a

) Λ→∞−→ 1+C̃a + bF̃ (b).

• An important observation is Gab ≥ 0, at least for λ < 0. This is a truly non-perturbative result;
individual Feynman graphs show no positivity at all!

• As in [GW09], the equation for Gab can be solved perturbatively. Matching at λ = 0 requires C, F to

be flat functions of λ (all derivatives vanish at zero). Because of HΛ
a [G•0]

a→Λ2−→ −∞, the naı̈ve arctan
series is dangerous for λ > 0. Unless there are cancellations, we expect zero radius of convergence!

• From (30) we deduce the finite wavefunction renormalisation

Y := −1 − dGab

db

∣
∣
∣
a=b=0

=
∫ Λ2

0

dp

(λπp)2 +
( 1+λπpHΛ

p [G•0]

Gp0

)2 −
{

0 for λ < 0 ,

F (0) for λ > 0 .
(31)

• The partition function Z is undefined for λ < 0. But the Schwinger-Dyson equations for Gab and for
higher functions, and with them logZ , extend to λ < 0. These extensions are unique but probably not
analytic in a neighbourhood of λ = 0.

It remains to identify the boundary function Ga0. The Carleman equation (24) for Gab was obtained
from the difference (20)−(20)b=0. Consequently, (20)b=0 gives the second relation between Gab and Ga0

from which both are determined. But the resulting equation turns out to be of little use: The integrals are
individually divergent for Λ→∞ so that we have to rely on cancellations on which we have no control.

We compensate this lack by a symmetry argument. Given the boundary function Ga0, the Carleman
theory computes the full 2-point function Gab via (30). In particular, we get G0b as function of Ga0. But
the 2-point function is symmetric, Gab = Gba, and the special case b = 0 leads to the following self-
consistency equation:

Proposition 9. The limit θ → ∞ of φ4
4-theory on Moyal space is determined by the solution of the fixed

point equation G = TG,

Gb0 =

{
1 for λ<0

1+bF (b) for λ>0

}

1+b
exp

(

−λ

∫ b

0

dt

∫ Λ2

0

dp

(λπp)2 +
(
t+ 1+λπpHΛ

p [G•0]

Gp0

)2

)

. (32)

At this point we can eventually send Λ → ∞. Any solution of (32) is automatically smooth and (for
λ > 0 but F = 0) monotonously decreasing. Any solution of the true equation (20) (without the difference
to b = 0) also solves the master equation (32), but not necessarily conversely. In case of a unique solution
of (32), it is enough to check one candidate.
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Existence of a solution of (32) is established (for λ > 0 but F (b) = 0) by the Schauder fixed point
theorem. This solution provides Gab via (30) and all higher correlation functions via the universal algebraic
recursion formulae (12), etc, or via the linear equations for the basic (N1+ . . . +NB)-point functions. The
recursion formula (12) becomes after transition to continuous matrix indices

Gb0...bN−1 =
(−λ)

(1 + Y)2

N−2
2∑

l=1

Gb0b1...b2l−1Gb2lb2l+1...bN−1 − Gb2lb1...b2l−1Gb0b2l+1...bN−1

(b0 − b2l)(b1 − bN−1)
. (33)

It involves the finite wavefunction renormalisation 1 + Y = − dGab

db

∣
∣
a=b=0

given by (31). Of particular
interest is the effective coupling constant λeff = −G0000. This limit of coinciding indices is not so easy;
therefore we directly solve the integral equation for Ga000 before using the reality condition. We find
[GW14a]

λeff = λ

{

1 +
λ

(1+Y)

∫ ∞

0

dp

( 1 − Gp0

(1 + Y)p
− Gp0

)
Gp0

(
λπpGp0

)2 +
(
1 + λπpH∞

p [G•0]
)2

}

. (34)

3.4 Computer simulations [GW14b]

A numerical investigation of (32), for F (b) ≡ 0, reveals interesting properties of the φ4
4-theory on Moyal

space. We approximate Ga0 as piecewise linear function on [0, Λ2] sampled according to a geometric
progression and view (32) as iteration Gn+1

a0 = (TGn)a0 for some initial function G0. In this way we
find numerically that T satisfies, for any λ ∈ R, the assumptions of the Banach fixed point theorem for
Lipschitz functions on [0, Λ2], i.e. T is contractive and (Gn) converges to a fixed point which approximates
Ga0. Whereas (Gn) converges for any sign of λ (without discontinuity at λ = 0), the necessary consistency
condition Gab = Gba for (30) turns out to be maximally violated for λ > 0 if C = 0 = F (b) is assumed,
and satisfied (within numerical error bounds) for λ ≤ 0. Taking C, F (b) 	= 0 for λ > 0 into account is not
feasible at the moment so that our numerical results are reliable only for λ ≤ 0.

We find clear evidence for a second-order phase transition: Y ′ is discontinuous at λc = −0.396, and we
have in reasonable approximation a critical behaviour

1 + Y =

{
A(λ − λc)α for λ ≥ λc ,

0 for λ < λc ,
(35)

for some A, α > 0. Of course, there cannot be a discontinuity in Y ′ for finite Λ, but we have numerical
evidence for a critical behaviour in the limit Λ2 → ∞.

4 Schwinger functions and reflection positivity

Under conditions identified by Osterwalder-Schrader [OS73, OS75], Schwinger functions [Sch59] of a
Eulidean quantum field theory permit an analytical continuation to Wightman functions [Wig56, SW64]
of a true relativistic quantum field theory. In simplified terms, the reconstruction theorem of Osterwalder-
Schrader says:

Theorem 10 ( [OS73,OS75]). If the Schwinger functions S(x1, . . . , xN ) satisfy growth conditions, Eu-
clidean covariance, reflection positivity1 and permutation symmetry, then the S(ξ1, . . . ξN−1)

∣
∣
ξ0

i >0
, with

1 For each assignment N �→ fN ∈ SN of test functions,
∑

M,N

∫
dx dy S(x1, . . . , xN , y1, . . . , yM )fN (xr

1, . . . , xr
N )fM (y1, . . . , yM ) ≥ 0 ,

where (x0, x1, . . . xd−1)r := (−x0, x1, . . . xd−1)
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ξi = xi−xi+1, are Laplace-Fourier transforms of Wightman functions in a relativistic quantum field the-
ory. If in addition the S(x1, . . . , xN ) satisfy clustering then the Wightman functions satisfy clustering,
too.

Representation as Laplace transform in ξ0 requires analyticity in Re(ξ0) > 0. For the Schwinger 2-point
function such analyticity in ξ0 is a corollary of analyticity of the function a �→ Gaa in C\ ]−∞, 0]. We will
show that analyticity and reflection positivity boil down to Stieltjes functions, i.e. functions f : R+ → R

which have a representation as a Stieltjes transform (see [Wid38])

f(x) = c +
∫ ∞

0

d(ρ(t))
x + t

, c = f(∞) ≥ 0 , (36)

where ρ is non-negative and non-decreasing. We prove:

Proposition 11. The Schwinger function Sc(μξ) =
∫

R4

dp

(2πμ)4
eipξG ‖p‖2

2μ2(1+Y)
‖p‖2

2μ2(1+Y)

is the analytic

continuation of a Wightman 2-point function if and only if a �→ Gaa is Stieltjes.

Proof. This is verified by explicit calculation. If a �→ Gaa is Stieltjes, we have in terms of ω
p(t) :=√
�p2 + 2μ2(1 + Y)t after using the residue theorem

Sc(μξ)
∣
∣
ξ0>0

=
∫

R3

d�p

(2πμ)3

∫ ∞

−∞

dp0

2πμ
eip0ξ0+i
p·
ξ

∫ ∞

0

dρ(t)

t + (p0)2+
p2

2μ2(1+Y)

=
∫ ∞

0

2(1 + Y) dρ(t)
μ4

∫ ∞

0

dq0

∫

R3
d�q Ŵt(q)e−q0ξ0+i
q·
x , (37a)

Ŵt(q) :=
θ(q0)
(2π)3

δ
( (q0)2 − �q2 − 2μ2(1+Y)t

μ2

)
. (37b)

We observe that Ŵt(q) is precisely the Källén-Lehmann spectral representation [Käl52,Leh54] of a Wight-
man 2-point function. �

Remarkably, the Stieltjes property can be tested by purely real conditions:

Theorem 12 (Widder [Wid38]). A function f : R+→R is Stieltjes iff it is smooth, non-negative and
satisfies Lk,t[f(•)] ≥ 0, where

Lk,t[f(•)] :=
(−t)k−1

ck

d2k−1

dt2k−1

(
tkf(t)

)
, c1 = 1, ck>1 = k!(k−2)! .

In that case, the measure is recovered by ρ′(t) = limk→∞ Lk,t[f(•)] (weakly and almost everywhere).

Already a perturbative calculation shows that the anomalous dimension η = −2λ + O(λ2) is negative
for λ > 0, which implies that a �→ Gaa cannot be Stieltjes for λ > 0. The restriction to negative coupling
constant is reminiscent of the planar wrong-sign λφ4

4-model [tHo82, Riv83]. Recall that our matrix model
also reduces to the planar sector, but as result of the infinite volume limit and not by hand. We nonetheless
keep a non-trivial topology in form of B ≥ 1 boundary components. Moreover, we have an exact solution
for S(x1, . . . , xN ), not only an existence proof.

Whether or not a �→ Gaa is a Stieltjes function for λ < 0 is a highly interesting question. A first idea
has been obtained by computer simulations. We find clear evidence that a �→ Gaa is not a Stieltjes function
for λ < λc, where λc ≈ −0.396 locates the discontinuity of Y ′(λ). For λ ∈ [λc, 0] the results are not yet
conclusive. Since Gaa and Ga0 show a very similar behaviour, the functions Lk,t[G•0] (which are easy to
compute) give some indication about Lk,t[G••] (which we are interested in). From (32) one can prove the
following identity [GW14b]:

(log Ga0)(�)

(� − 1)!
=

(−1)�

(1+a)�
+ (−1)� sign(λ)HΛ

0

[
sin
(
�τa(•))

( sin τa(•)
|λ|π•

)�]
. (38)
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We have first results for the integrated ‘mass densities’ ρ̃k(m2) =
∫m2

0
dt Lk,t[G•0]: There is clear ev-

idence for a mass gap, limk→∞ ρ̃k(μ2) = 0 for 0 ≤ μ2 ≤ m2. For λ ↗ 0 the integrated mass density
approaches (as expected) a step function, whereas for λ ↘ λc we notice a power-law behaviour typical
for critical phenomena. In particular, for λc < λ < 0 there is no further gap in the support of ρ̃′, which
signals scattering right away from m2 (not only from the two-particle threshold on). We interpret this as
scattering of a massive particle with an infrared cloud. This scattering would be a remnant of the underlying
non-trivial matrix model before the projection to diagonal matrices.

5 Summary

We have shown that the φ4
4-model on noncommutative Moyal space, considered in the limit θ → ∞ of

extreme noncommutativity, is an exactly solvable and non-trivial matrix model. Euclidean symmetry is
violated in the beginning, but we identified a limit which projects to diagonal matrices where Euclidean
symmetry is restored. One would not expect that such a brutal projection can respect any quantum field
theory axioms. Surprisingly, the first consistency checks, positivity of the lowest Widder criteria Lk,t[G••],
are passed for the only interesting interval [λc, 0] of the coupling constant!

If these miracles continue and all Osterwalder-Schrader axioms (except for clustering) hold, we would
get a relativistic quantum field theory in four dimensions. This theory is somewhat strange as ‘particles’
keep their momenta in interaction processes. Nevertheless, the theory is not completely trivial. We find
scattering remnants from the noncommutative geometrical (i.e. matricial) substructure. Only the external
matrix indices are put ‘on-shell’, internally all degrees of freedom contribute.

We have seen that clustering is maximally violated. The interaction is insensitive to positions in different
boundary components. In particular, ‘particles’ are never asymptotically free.

Acknowledgements HG would like to cordially thank George Zoupanos for the invitation to the Corfu Workshop
and the enjoyable atmosphere.
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