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We discuss a special Euclidean φ4

4
-quantum field theory over quantized space–time as an

example of a renormalizable field theory. Using a Ward identity, it was possible to prove
the vanishing of the beta function for the coupling constant to all orders in perturbation
theory. We extend this work and obtain from the Schwinger–Dyson equation a nonlinear
integral equation for the renormalized two-point function alone. The nontrivial renor-
malized four-point function fulfills a linear integral equation with the inhomogeneity
determined by the two-point function. These integral equations might be the starting
point of a nonperturbative construction of a Euclidean quantum field theory on a non-

commutative space. We expect to learn about renormalization from this almost solvable
model.
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1. Personal Remarks

My (H. G.) interactions with Julius Wess went through various periods: Being

younger, I met Prof. Wess first at conferences in the early seventies and several

times during my stay at CERN and admired the famous Austrian physicist. Next

I was invited several times to Karlsruhe by Julius and learnt him knowing better.

∗Based on a talk presented at a meeting devoted to the scientific and human legacy of Julius
Wess, in Serbia, August 2011.
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But the third period was the most enjoyable one: After he moved to Munich,

he invited me quite often to visit him. His interests turned to field theories defined

over noncommutative space–time, and therefore we met quite often.

He told several times to me: His group formulates models and I should try to

select the better behaving ones, those being renormalizable. During the last years

of Julius life, we came much closer. I was the first visiting him in the hospital

after he got the serious heart attack. His first question to me was: “Harald, what

is measured at LHC.” In addition, he took a sheet of paper and discussed with me

deformed gravity. All this I remember very lively. While walking around at various

conferences, we came quite close.

We all lost a great humanitarian man and a great physicist. I lost an elder

friend.

2. Introduction

Our present fundamental physics rests on two pillars: Quantum Field Theory and

General Relativity. One of the main questions in this area of physics concerns the

question of matching these two concepts.

In addition we hope to improve quantum field theory models by adding gravity

effects. Constructive methods led years ago to many beautiful ideas and results, but

the main goal to construct a mathematical consistent model of a four-dimensional

local quantum field theory has not been reached. Renormalized perturbation expan-

sions allow one to get quantum corrections order by order in a coupling constant.

The convergence of this expansion, for example as a Borel summable series, can be

questioned.

In recent years, a modification of the space–time structure led to new models,

which are nonlocal in a particular sense. But these models, in general suffer from

an additional disease, which is called the Infrared–Ultraviolet mixing.1 Additional

infrared singularities show up. A possible way to cure this problem has been found

by us in previous work.2 It led to special models, which needed four (instead of

three) relevant/marginal operators in the defining Lagrangian. We have been able

to show that the resulting model is renormalizable up to all orders in perturbation

theory. In addition a new fixed point appeared at a special value of the additional

coupling constant. This way, we were able to tame the Landau ghost problem.

Since the old problems of additional singularities due to partial summing up the

perturbation expansion do not show up, we believe that the perturbation expansion

will be Borel summable. That this new fixed point exists in perturbation theory to

all orders has been shown in work by Rivasseau and collaborators.3

The main open question concerns the nonperturbative construction of a non-

trivial noncommutative quantum field theory, with which we are dealing mainly

here.

Classical field theories for fundamental interactions (electroweak, strong, gravi-

tational) are of geometrical origin. We may remind, that the 4 Fermi interaction is
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nonrenormalizable, it needs a cutoff around 300 GeV, otherwise unitarity is violated!

This is nicely resolved by adding new particles, the W+, Z0, W−, and the confirma-

tion of their existence was a great step towards consistence of quantum field theory

models. On the other hand the quantum field theory for Standard Model (electro-

weak + strong) is renormalizable, while gravity is not! In the sense of renormaliza-

tion theory one might argue, that space–time should not be a smooth manifold at

tiny distances, gravity would be scaled away. Or stated otherwise, the weakness of

gravity determines the Planck scale, and geometry at these tiny distances should

be something different.

A promising approach concerns noncommutative geometry, which allows us to

unify the Standard Model with gravity as a classical field theory.

In addition we hope that adding “Gravity” effects, or quantizing Space–Time,

will improve field theory: This led to our program of merging general relativity

ideas with quantum physics through noncommutative geometry.

Space–time structure

That one should limit localization in space–time follows from a very simple old argu-

ment due to Wheeler. Early ideas of modifying space–time were phrased already by

Riemann, Schrödinger and Heisenberg, but Snyder in 1947 was the first to formulate

a deformed space–time geometry. Such ideas became popular after 1986, when Alain

Connes published his work on Noncommutative Geometry. One of us (H. G.) started

in 1992 (in work with J. Madore) to use noncommutative manifolds (algebras) as a

cutoff for quantized field theory models. A treatment of free fields and uncertainty

relations on deformed Minkowski space–time was given by Doplicher, Fredenhagen

and Roberts. Filk in 1995 was the first to elaborate on Feynman rules for models

defined over deformed space–time, and finally they became popular due to the work

by Schomerus, who observed, that such models may result from string theory after

taking the zero slope limit.

Here we treat only the simplest deformed space–time: Starting from the algebra

of smooth functions overD-dimensional Euclidean space, we define the ⋆-product as

(a ⋆ b)(x) =

∫

dDy dDka

(

x+
1

2
Θ · k

)

b(x+ y) eiky ,

where Θ=−ΘT∈MD(R).

Next question results: Can we make sense of renormalization in Noncommutative

Geometric Models?

In local quantum field models we know, that the sign of the beta function

determines the behavior of the RG flow. If the sign is positive, it indicates the

appearance if the so-called Landau ghost, or phrased differently, triviality of this

model results. A positive sign of β indicates asymptotic freedom. As for D = 4

dimensions we have to rely first on renormalized perturbation theory and follow

the renormalization group flow.
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A simple model

As a first step we intend to construct simple quantum field theory models on simple

noncommutative geometries, e.g. the Moyal space. Of course, this way we obtain

models with nonlocal interaction. The näıve application of this procedure to the

φ4-action (φ-real, Euclidean space) leads on Moyal plane to the action:

S =

∫

d4x

(

1

2
∂µφ ⋆ ∂µφ+

m2

2
φ ⋆ φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) . (1)

The Feynman rules can be obtained easily. Since we obtain only cyclic invariance

at the Vertex, Graphs are best drawn as Ribbon Graphs on Riemann surfaces

with a certain genus and a certain number of boundary components. We obtain

planar regular contribution and nonplanar graphs. The planar graphs still reveal

UV divergences, the nonplanar ones are finite for generic momenta. On the other

hand for exceptional momenta (if sums of incoming or outgoing momenta vanish)

the contributions develop an IR singularity, which spoils Renormalizability! In our

previous work2 we realized that the UV/IR-mixing problem can be solved by adding

a fourth relevant/marginal operator to the Lagrangian.

Theorem 2.1. The quantum field theory defined by the action

S =

∫

d4x

(

1

2
φ ⋆ (−∆+Ω2x̃2 + µ2)φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) (2)

(with x̃ = 2Θ−1 · x, φ — real, Euclidean metric) is perturbatively renormalizable to

all orders in λ.

The additional oscillator potential Ω2x̃2 implements mixing between large and

small distance scales and results from the renormalization proof. M. Buric and

M. Wohlgenannt found an interesting interpretation of this additional term: It

results as the coupling of the scalar field to the scalar curvature within the trunca-

tion procedure.

Here, ⋆ refers to the Moyal product parametrized by the antisymmetric 4 × 4-

matrix Θ, and x̃ = 2Θ−1x. The model is covariant under the Langmann–Szabo

duality transformation4 and becomes self-dual at Ω = 1. Certain variants have also

been treated, see Ref. 5 for a review. Evaluation of the β-functions for the coupling

constants Ω, λ in first order of perturbation theory leads to a coupled dynamical

system which indicates a fixed-point at Ω = 1, while λ remains bounded.6,7 The

vanishing of the β-function at Ω = 1 was next proven in Ref. 8 at three-loop

order and finally in Ref. 3 to all orders of perturbation theory. It implies that

there is no infinite renormalization of λ, and a nonperturbative construction seems

possible.9 The Landau ghost problem is solved. The vanishing of the β-function to

all orders has been obtained using a Ward identity.3 We extend this work and derive

an integral equation for the two-point function alone by using the Ward identity

and Schwinger–Dyson equations. Usually, Schwinger–Dyson equations couple the

two-point function to the four-point function. In our model, we show that the

1250067-4



May 3, 2012 13:19 WSPC/Guidelines-IJMPA S0217751X12500674

Renormalization of a Noncommutative Field Theory

Ward identity allows us to express the four-point function in terms of the two-point

function, resulting in an equation for the two-point function alone. This is achieved

in the first step for the bare two-point function. We are able to perform the mass

and wave function renormalization directly in the integral equation, giving a self-

consistent nonlinear equation for the renormalized two-point function alone. Higher

n-point functions fulfill a linear (inhomogeneous) Schwinger–Dyson equation, with

the inhomogeneity given by m-point functions with m < n. This means that solving

our equation for the two-point function leads to a full nonperturbative construction

of this interacting quantum field theory in four dimensions. So far we treated our

equation perturbatively up to third order in λ. The solution shows an interesting

number-theoretic structure. We hope that a detailed analysis of our model will

help for a nonperturbative treatment of more realistic Euclidean quantum field

theories. We expect that we can learn much about nonperturbative renormalization

of Euclidean quantum field theories in four dimensions from this almost solvable

model.

3. Matrix Model

It is convenient to write the action (2) in the matrix base of the Moyal space, see

Refs. 2, 5 and 10. It simplifies enormously at the self-duality point Ω = 1. We write

down the resulting action functionals for the bare quantities, which involves the

bare mass µbare and the wave function renormalization φ 7→ Z
1

2φ. For simplicity

we fix the length scale to θ = 4. This gives

S[φ] =
∑

m,n∈N2

Λ

1

2
φmnHmnφnm + V [φ] , (3)

Hmn = Z(µ2
bare + |m|+ |n|) , V [φ] =

Z2λ

4

∑

m,n,k,l∈N2

Λ

φmnφnkφklφlm , (4)

It is already used that this model has no renormalization of the coupling constant.3

All summation indices m,n, . . . belong to N
2, with |m| := m1 + m2. The symbol

N
2
Λ refers to a cutoff in the matrix size. The scalar field is real, φmn = φnm.

4. Ward Identity

The key step in the proof3 that the β-function vanishes is the discovery of a Ward

identity induced by inner automorphisms φ 7→ UφU †. Performing this transforma-

tion in the partition function Z[J ] =
∫

D[φ] exp(−S[φ] + tr(φJ)) and expressing φ

as functional derivative with respect to the source one obtains a system of Ward

identities

0 =
∑

n∈N2

Λ

(

(Hpn −Han)
∂2Z

∂Jan∂Jnp
+ Jna

∂Z

∂Jnp
− Jpn

∂Z

∂Jan

)

. (5)
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We write Feynman graphs in the self-dual φ4
4-model as ribbon graphs on a genus-g

Riemann surface with B external faces. Adding for each external face an external

vertex to get a closed surface, the matrix index is constant at every face. This

means that the right index b of a source Jab coincides with the left index of another

source Jbc, or of the same source Jbb. Accordingly, there is a decomposition of

the generating functional W [J ] = lnZ[J ] of connected functions into products

of J-cycles Jp1p2
Jp1p2

· · ·Jpn−1pn
Jpnp1

=: JPn , where Pn = p1 . . . pn stands for a

collection of n indices. The decomposition according to the longest cycle reads

W [J ] = W [0] +

∞
∑

N=1

∞
∑

n1,...,nN=0
nN≥1





N
∏

j=1

1

nj !jnj





×
∑

P
j
ij
∈Ij

G|P 1
1
|...|P 1

n1
|...|P 1

N
|...|PN

nN
|

N
∏

j=1

nj
∏

ij=1

J
P

j
ij

. (6)

One can then prove the following refinement of the Ward identity (5):

Theorem 4.1. The partition function Z[J ] for the action (3) satisfies

∑

n∈I

∂2Z[J ]

∂Jan∂Jnp
= δap(W

1
a [J ] +W 2

a [J ])Z

+
1

Z(|p| − |a|)

∑

n∈I

(

Jpn
∂Z[J ]

∂Jan
−Jna

∂Z[J ]

∂Jnp

)

, (7)

W 2
a [J ] :=

∞
∑

N=1

∞
∑

n1,...,nN=0
nN≥1





N
∏

j=1

1

nj !jnj





∑

P
j
ij
∈Ij





N
∏

j=1

nj
∏

ij=1

J
P

j
ij





×

(

G|a|a|P 1
1
|...|PN

nN
| +
∑

n∈I

G|P 1
1
|...|P 1

n1
|an|P 2

1
|...|PN

nN
| +

N
∑

k=3

×
∑

n,q1,...,qk−3∈I

G|P 1
1
|...|Pk−1

nk−1
|nanq1...qk−3|Pk

1
|...|PN

nN
|Jnq1Jq1q2 . . . Jqk−3n

)

,

W 1
a [J ] :=

∞
∑

N,M=1

∞
∑

n1,...,nN ,m1,...,mM=0
nN ,mM≥1





N
∏

j=1

1

nj !jnj





(

m
∏

k=1

1

mk!kmk

)

∑

P
j
ij
∈Ij

∑

Qk
lk

∈Ik

×





N
∏

j=1

nj
∏

ij=1

J
P

j
ij





(

N
∏

k=1

mk
∏

lk=1

JQk
lk

)

G|a|P 1
1
|...|PN

nN
|G|a|Q1

1
|...|QM

mM
|

}

.
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Since (Hpn −Han) = Z(|p| − |a|) is independent of n, multiplication of (7) by

Z(|p|−|a|) gives the previous identity (5). The functions W 1
a and W 2

a are identified

by careful discussion of the derivations of W [J ] as given in (6) with respect to Jan
and Jnp.

5. Schwinger Dyson Equation

Schwinger–Dyson equations arise from functional integration of the two-point func-

tion in the partition function to

Z[J ] = e−V [ ∂
∂J

]e
1

2
〈J,J〉H , 〈J, J〉H :=

∑

m,n∈N2

Λ

JmnJnm

Hmn

. (8)

The functional derivatives φpq = ∂
∂Jqp

applied to Z in order to produce the con-

nected functions G in the expansion (6) combine with V [ ∂
∂J

] to certain identities

called Schwinger–Dyson equations. It turns out that for each function G the Ward

identity of Theorem 4.1 can be used at an intermediate step to generate new rela-

tions. As a result, we obtain for the regular (B = 1) two-point function G|ab|, the

irregular (B = 2) two-point function G|a|b| and the regular (B = 1) four-point func-

tion G|abcd| the identities (here B denotes the number of boundary components of

the Riemann surface on which the graphs are drawn)

G|ab| =
1

Hab

+
(−Z2λ)

Hab

{(

G|ab|

(

G|a|a| +
∑

n∈N2

Λ

G|an|

)

+G|a|a|ab| +
∑

n∈I

G|an|ab| +G|aaab| +G|baba|

)

+
∑

p∈N2

Λ

G|ab| −G|pb|

Z(|p| − |a|)
+

G|a|b| −G|b|b|

Z(|b| − |a|)

}

, (9)

G|a|b| =
(−Z2λ)

Haa

{(

G|a|b|

(

G|a|a| +
∑

n∈N2

Λ

G|an|

)

+G|a|a|a|b|

+
∑

n∈N2

Λ

G|a|b|an| +G|b|aaa| +G|a|bab| + 2G|a|a|G|a|b|

)

+
∑

p∈N2

Λ

G|a|b| −G|p|b|

Z(|p| − |a|)
+

G|ab| −G|bb|

Z(|b| − |a|)

}

, (10)

G|abcd| =
(−Z2λ)

Hab

{(

G|abcd|

(

G|a|a| +
∑

n∈N2

Λ

G|an|

)

+G|a|a|abcd|

+
∑

n∈N2

Λ

G|an|abcd| +G|aaabcd| +G|babcda| +G|cacdab| +G|dadabc|

)
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+
∑

p∈N2

Λ

G|abcd| −G|pbcd|

Z(|p| − |a|)
+

G|b|cda| −G|b|cdb|

Z(|b| − |a|)
+

G|bc|da| −G|bc|dc|

Z(|c| − |a|)

+
G|a|bcd| −G|d|bcd|

Z(|d| − |a|)
+Gbc

G|da| −G|dc|

Z(|c| − |a|)

}

. (11)

These connected functions involve all topologies. Decomposing them according to

the genus,G|P 1
1
|...|PN

nN
| =

∑∞
g=0 G

g

|P 1
1
|...|PN

nN
|
, we find for (9) after detailed discussion

similar to Ref. 11:

Theorem 5.1. The (unrenormalized) planar regular connected two-point function

G0
|ab| satisfies the closed equation:

G0
|ab| =

1

Z(|a|+ |b|+ µ2
bare)

−
Zλ

|a|+ |b|+ µ2
bare

G0
|ab|

∑

p∈N2

Λ

G0
|ap|

+
λ

|a|+ |b|+ µ2
bare

∑

p∈N2

Λ

G0
|pb| −G0

|ab|

|p| − |a|
. (12)

6. Renormalization

Introducing the renormalized planar two-point function Γren
ab by Taylor expansion

Γ0
|ab| = Zµ2

bare − µ2 + (Z−1)(|a|+|b|) + Γren
ab , with Γren

00 = 0 and (∂Γren)00 = 0, we

obtain from (12) a coupled system of equations for Γren
ab , Z and µbare. It leads to a

closed equation for the renormalized function Γren
ab alone, which is further analyzed

in the integral representation. We replace the indices in a, b, . . .N by continuous

variables in R+. Equation (12) depends only on the length |a| = a1 + a2 of indices.

The Taylor expansion respects this feature, so that we replace
∑

p∈N2

Λ

by
∫ Λ

0
|p| dp.

After a convenient change of variables |a| =: µ2 α
1−α

, |p| =: µ2 ρ
1−ρ

and

Γren
ab =: µ2 1− αβ

(1− α)(1 − β)

(

1−
1

Gαβ

)

, (13)

and using an identity resulting from the symmetry G0α = Gα0, we arrive at:12

Theorem 6.1. The renormalized planar connected two-point function Gαβ of the

self-dual noncommutative φ4
4-theory satisfies, and is determined by, the integral

equation

Gαβ = 1− λ

(

1− α

1− αβ
(Mβ − Lβ − βY) +

1− β

1− αβ
(Mα − Lα − αY)

+
1− β

1− αβ

(

Gαβ

G0α
− 1

)

(Mα − Lα + αNα0)

−
α(1 − β)

1− αβ
(Lβ +Nαβ −Nα0) +

(1− α)(1 − β)

1− αβ
(Gαβ − 1)Y

)

, (14)
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where α, β ∈ [0, 1),

Lα :=

∫ 1

0

dρ
Gαρ −G0ρ

1− ρ
, Mα :=

∫ 1

0

dρ
αGαρ

1− αρ
, Nαβ :=

∫ 1

0

dρ
Gρβ −Gαβ

ρ− α
,

and Y = limα→0
Mα−Lα

α
.

7. Perturbation Expansion

These integral equations are the starting point for a perturbative solution. In this

way, the renormalized correlation functions are directly obtained, without Feynman

graph computation and further renormalization steps. We obtain

Gαβ = 1 + λ{A(Iβ − β) +B(Iα − α)}

+ λ2{AB((Iα
•

− α) + (Iβ
•

− β) + (Iα − α)(Iβ − β) + αβ(ζ(2) + 1))

+A(βIβ
•

− βIβ)− αAB((Iβ)
2 − 2βIβ + Iβ)

+B(αIα
•

− αIα)− βBA((Iα)
2 − 2αIα + Iα)}+O(λ3) , (15)

where A := 1−α
1−αβ

, B := 1−β
1−αβ

and the following iterated integrals appear:

Iα :=

∫ 1

0

dx
α

1− αx
= − ln(1 − α) ,

Iα
•

:=

∫ 1

0

dx
αIx

1− αx
= Li2(α) +

1

2
(ln(1 − α))2 .

(16)

We conjecture that Gαβ is at any order a polynomial with rational coefficients in

α, β, A, B and iterated integrals labeled by rooted trees.

8. Four-Point Schwinger Dyson Equation

The knowledge of the two-point function allows a successive construction of the

whole theory. As an example we treat the connected planar regular four-point func-

tion G0
|abcd| obtained as the genus-zero part of (11). It is convenient to express

∑

p G
0
|ap| in that equation by (12). After amputation of the external two-point func-

tions we obtain the Schwinger–Dyson equation for the renormalized 1PI four-point

function definded by G0
|abcd| =: −G0

|ab|G
0
|bc|G

0
|cd|G

0
|da|Γ

ren
abcd as follows:

Γren
abcd =

Zλ

|a| − |c|

(

1

G0
|ad|

−
1

G0
|cd|

)

+ Zλ
∑

p∈N2

Λ

1

|a| − |p|
G0

|pb|

(

G0
|dp|

G0
|ad|

Γren
pbcd − Γren

abcd

)

.

(17)
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Inserting (G0
|ab|)

−1 = |a|+ |b|+µ2 −Γren
ab and eliminating Z by the previously used

equation resulting from the derivative of (12) at a = b = 0 we obtain in the integral

representation for Γαβγδ := Γren
abcd:

Theorem 8.1. The renormalized planar regular 1PI four-point function Γαβγδ of

self-dual noncommutative φ4
4-theory (with continuous indices α, β, γ, δ ∈ [0, 1))

satisfies the integral equation

Γαβγδ = λ ·

(

1−
(1−α)(1−γδ)(Gαδ−Gγδ)

Gγδ(1−δ)(α−γ)

+
∫ 1

0
ρ dρ

(1−β)(1−αδ)GβρGδρ

(1−βρ)(1−δρ)
Γρβγδ−Γαβγδ

ρ−α

)

Gαδ + λ
(

(Mβ − Lβ − Y)Gαδ +
∫ 1

0 dρ
GαδGβρ(1−β)
(1−δρ)(1−βρ)

+
∫ 1

0
ρ dρ

(1−β)(1−αδ)Gβρ

(1−βρ)(1−δρ)
(Gρδ−Gαδ)

(ρ−α)

)

. (18)

In lowest order we find

Γαβγδ = λ− λ2

(

(1 − γ)(Iα − α)− (1− α)(Iγ − γ)

α− γ

+
(1− δ)(Iβ − β)− (1− β)(Iδ − δ)

β − δ

)

+O(λ3) . (19)

Note that Γαβγδ is cyclic in the four indices, and that Γ0000 = λ+O(λ3).
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