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Construction of a Noncommutative Quantum Field Theory

Harald Grosse and Raimar Wulkenhaar

ABSTRACT. We review our recent successful attempt to construct the planar sector of a
nonlocal scalar field model in four dimensional Euclidean deformed space-time, which
needs 4 (instead of 3) relevant/marginal operators in the defining Lagrangian. As we have
shown earlier, this model is renormalizable up to all orders in pertubation theory. In ad-
dition a new fixed point appears, at which the beta function for the coupling constant
vanishes. This way, we were able to tame the Landau ghost.

We next discuss Ward identities and Schwinger-Dyson equations and derive integral
equations for the renormalized N-point functions. They are the starting point of a nonper-
turbative construction of the model.

Dear Fritz! I (H.G.) almost cannot believe, that you become 60! I still remember the
time, when you came from Graz to Vienna in the early 80’s. I enjoyed our long standing
interactions, our discussions on spectral concentration, how we handled the non-relativistic
limit of the Dirac equation and especially our treatment of index problems and their con-
nection to scattering theory. The last subject became of particular interests through the
developments connected to noncommutative geometry and we enjoyed a recent Workshop
at ESI on that subject together.

Here I review another outcome of using ideas from noncommutative geometry. I
hope you will enjoy reading that a four dimensional quantum field theory model can be
constructed on such a deformed space.

I wish you many new results for your interesting work and many happy years to come
and hope for your visits to Vienna.

1. Introduction

Our present fundamental physics rests on two pillars: Quantum Field Theory and General
Relativity. One of the main question in this area of physics concerns the matching of these
two concepts.

In addition we hope to improve quantum field theory models by adding ”gravity” ef-
fects. Constructive methods led years ago to many beautiful ideas and results, but the main
goal to construct a mathematical consistent model of a four dimensional local quantum
field theory has not been reached.

The requirements of local quantum field theory are easy to state and consists of quan-
tum mechanical and relativity properties. States are supposed to be represented by vectors
of a separable Hilbert space. Field operators are operator valued distribution, which should
be smeared with smooth test functions in four coordinates and leads to Φ(f) acting on a
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dense domain of the Hilbert space,

Φ(f) =

∫
d4xΦ(x)f∗(x).(1)

The ground or vacuum state is unique (up to a phase) and cyclic. Space-time translations
should be symmetries: This implies that the common spectrum of the energy-momentum
operator σ(Pμ) lies in the closed forward light cone. The ground state is translation in-
variant. As for the relativistic properties one likes fields to transform covariantly under a
unitary representation of the Poincaré group. One of the most essential postulate concerns
miscroscopic Causality or locality. If the supports of the smearing functions f and g are
space-like separated, then the field operators commute (for Bosons) or anticommute (for
Fermions).

Typically one defines the expectation value of the product of smeared field operators
called Wightman functions:

WN (f1 ⊗ ...⊗ fN ) := 〈Ω|φ(f1) · · ·φ(fN )|Ω〉(2)

It is not difficult to rephrase the requirements for the Wightman functions. For many pur-
poses it is easier to go over to Euclidean Schwinger functions obtained by using analyticity
of Wightman functions in the coordinate difference variables, implied by the support prop-
erties of the Wightman distributions. One has to go over to the so called extended permuted
tube.

The formal definition of Schwinger functions reads:

SN (z1, ..., zN ) =

∫
Φ(z1)...Φ(zN )dν(Φ), dν =

1

Z
e−

∫
Lint(Φ)dμ(Φ),(3)

where dμ is the Gaussian measure corresponding to free fields with two point correlation:
〈φ(x1)φ(x2)〉 = C(x1, x2), or its Fourier transform: C̃(p1, p2) = δ(p1 − p2)

1
p2
1+m2 , φ

above is a stochastic variable.
As for interacting fields we have to rely on (renormalized) pertubation expansions.

We have to put first cut-offs and to expand the interacting part:

SN (x1 . . . xN ) =
∑
n

(−λ)n

n!

∫
dμ(φ)

N∏
j

φ(xj)

(∫
dx

φ4(x)

4!

)n

(4)

=
∑

graph ΓN

(−λ)n

SymΓN
(G)

∫
V

∏
l∈ΓN

Cκ(xl − yl) ∼ ΛωD(G)(5)

As a result we may collect contributions to the same Feynman diagram and evaluate the
degree of divergence, which is given by ωD(G) = (D−4)n+D−D−2

2 N , ω2(G) = 2−2n,
ω4(G) = 4 − N , where n denotes the order of the graph, or the number of vertices, N
the number of external lines, l the number of internal lines. Note that there are (4n+N)!!
number of Feynman graphs. Use Stirling formula and the factor 1

n! from the exponential,
the large order behavior Knn! for the contributions result, which indicates that a naı̈ve
convergence is questionable.
Renormalization If one imposes a finite number of renormalization conditions (here we
need 3 conditions to fix a,m and λ), for example:

G2(p
2 = 0) =

1

m2
phys

,
d

dp2
G2(p

2 = 0) = − a2

m4
phys

, G4(p
2 = 0) = λphys(6)
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and no new interactions are generated order by order in pertubation theory, we call the
model to be renormalizable (this is implied by the BPHZ Theorem for the scalar Φ4 model).

The program of constructing a nontrivial interacting models was successfully done
only in D = 2, 3 space-time dimensions. As for D = 4 dimensions we have to rely on
renormalized pertubation theory and follow the renormalization group flow. But in addition
we may add ”Gravity” effects, or quantize Space-Time: This led to our program of merging
general relativity ideas with quantum physics through noncommutative geometry.
Space-Time structure That one should limit localisation in space-time follows from a
very simple old argument due to Wheeler and others:

In order to localize two events, which are a distance D apart, one has to do a scattering
experiment with particles whose energy hc/λ exceed hc/D. Multiplying these quantities
times G/c4 yields the Schwarzschild radius of the appropriate energy lump. It is natural to
require that this radius should be smaller than the distance between the events one started
with, since otherwise the scattered particles will be captured by the black hole, which is
formed. Putting both inequalities together gives a lower bound to the distance of localiz-
ability of events of the order of the Planck length.

D ≥ Rss = G/c4hc/λ ≥ G/c4hc/D(7)

which implies that D ≥ lp = Planck length. Early ideas of modifying space-time were
phrased already by Schrödinger and Heisenberg, but Snyder in 1947 was the first to formu-
late a deformed space-time geometry. Such ideas became popular after 1986, when Alain
Connes published his work on Noncommutative Geometry. On of us (H. G.) started in
1992 (in work together with J. Madore) to use noncommutative manifolds (algebras) as
a natural cut off for quantized field theory models. Doplicher, Fredenhagen and Roberts
used the Wheeler argument in 1994 to formulate uncertainty relations for deformed fields
and formulated deformed free fields. Filk in 1995 was the first to elaborate on Feynman
rules for models defined over deformed space-time, and finally they became popular due
to the work of Schomerus (1999), who observed, that such models may result from string
theory after taking the zero slope limit.
Ideas: Algebra, fields, diff. calculus,...

Typically one first refers to the Gelfand - Naimark theorem, which states that the
algebra of continuous functions over a manifold is isomorphic to a commutative C∗ alge-
bra. Next one studies deformations of such algebras, through associative nonlocal star
products. Especially simple is the Moyal space. One may start from the algebra of
smooth functions over D-dimensional Euclidean space, and define the �-product as (a �

b)(x)=

∫
dDydDka(x+ 1

2Θ·k)b(x+y) eiky where Θ=−ΘT∈MD(R)

Fields are sections of bundles, according to the Serre Swan theorem, they can be iden-
tified as projective modules over the algebra A. A very essential requirement concerns the
differential calculus, which we would like to keep. Next question results:

Can we make sense of renormalisation in Noncommutative Geometric Models?
As a first step we intend to construct simple quantum field theory models on simple non-
commutative geometries, e.g. the Moyal space. Of course, this way we obtain models with
non-local interactions.

The naı̈ve application of this procedure to the φ4-action (φ-real, Euclidean space) leads
on Moyal plane to the action:

S =

∫
d4x

(1

2
∂μφ � ∂μφ+

m2

2
φ � φ+

λ

4
φ � φ � φ � φ

)
(x)(8)
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The Feynman rules can be obtained easily. Since we obtain only cyclic invariance at the
Vertex, Graphs are best drawn as Ribbon Graphs on Riemann surfaces with a certain genus
and a certain number of boundary components. We obtain planar regular contribution and
non-planar graphs. The planar graphs still reveal UV divergences, the nonplanar ones
are finite for generic momenta. On the other hand for exceptional momenta (if sums of
incoming or outgoing momenta vanish) the contributions develop an IR singularity, which
spoils Renormalizability! In our previous work [1] we realized that the UV/IR-mixing
problem can be solved by adding a fourth relevant/marginal operator to the Lagrangian
Theorem: The quantum field theory defined by the action

S =

∫
d4x

(1

2
φ �

(
Δ+Ω2x̃2 + μ2

)
φ+

λ

4!
φ � φ � φ � φ

)
(x)(9)

is perturbatively renormalisable to all orders in λ.
The additional oscillator potential Ω2x̃2 implements mixing between large and small

distance scales and results from the renormalisation proof. Maja Buric and Michael
Wohlgenannt [2] found an interesting interpretation of this additional term: It results as
the coupling of the scalar field to the scalar curvature within the truncation procedure.

Here, � refers to the Moyal product parametrised by the antisymmetric 4 × 4-matrix
Θ, and x̃ = 2Θ−1x. The model is covariant under the Langmann-Szabo duality transfor-
mation [3] and becomes self-dual at Ω = 1. Certain variants have also been treated, see [4]
for a review. Evaluation of the β-functions for the coupling constants Ω, λ in first order of
perturbation theory leads to a coupled dynamical system which indicates a fixed-point at
Ω = 1, while λ remains bounded [5,6]. The vanishing of the β-function at Ω = 1 was next
proven in [7] at three-loop order and finally in [8] to all orders of perturbation theory. It
implies that there is no infinite renormalisation of λ, which makes the nonperturbative con-
struction simpler. The Landau ghost problem is solved. The vanishing of the β-function to
all orders has been obtained using a Ward identity [8]. We extend this work and derive an
integral equation for the planar sector of the two-point function alone by using the Ward
identity and Schwinger-Dyson equations. Usually, Schwinger-Dyson equations couple the
two-point function to the four-point function. In our model, we show that the Ward iden-
tity allows to express the four-point function in terms of the two-point function, resulting
in an equation for the two-point function alone. This is achieved in the first step for the
bare two-point function. We are able to perform the mass and wavefunction renormalisa-
tion directly in the integral equation, giving a self-consistent non-linear equation for the
renormalised two-point function alone. Higher n-point functions fulfil a linear (inhomo-
geneous) Schwinger-Dyson equation, with the inhomogeneity given by m-point functions
with m < n. This means that solving our equation for the two-point function leads to a
non-perturbative construction of the planar sector of this interacting quantum field theory
in four dimensions. Recently we reduced the question of solving this model to solving one
nonlinear integral equation in one variable [11]. Of course, the next question concerns the
nonplanar sector of this model. We know the appropriate Ward identities, an extension of
the reviewed ideas to this sector is under discussion.

In the case of the Φ4 model with negavite coupling constant, it was possible to sum up
the planar graphs, but the nonplanar graphs cannot be summed up, due to lack of stability,
see [12] and [13]. In the present model, we have a positive coupling constant and stability
is not a problem. Nevertheless the construction of the full model is still a hard task. A
new summation technique has been invented recently for such a situation [14]. It has been
applied to the two-dimensional model already [15].
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We hope that a detailed analysis of our model will help for a non-perturbative treatment
of more realistic quantum field theories. We expect that we can learn much about non-
perturbative renormalization of Euclidean quantum field theories in four dimensions from
this almost solvable model.

2. Matrix Model
It is convenient to write the action (9) in the matrix base of the Moyal space, see [1, 9].
It simplifies enormously at the self-duality point Ω = 1. We write down the resulting
action functionals for the bare quantities, which involves the bare mass μbare and the wave
function renormalisation φ �→ Z

1
2φ. For simplicity we fix the length scale to θ = 4. This

gives

S =
∑

m,n∈N2
Λ

1

2
φmnHmnφnm + V (φ),(10)

Hmn = Z
(
μ2
bare + |m|+ |n|

)
, V (φ) =

Z2λ

4

∑
m,n,k,l∈N2

Λ

φmnφnkφklφlm ,(11)

It is already used that this model has no renormalisation of the coupling constant [8]. All
summation indices m,n, . . . belong to N

2, with |m| := m1 +m2. The symbol N2
Λ refers

to a cut-off in the matrix size. The scalar field is real, φmn = φnm.

3. Ward Identity

The key step in the proof [8] that the β-function vanishes is the discovery of a Ward
identity induced by inner automorphisms φ �→ UφU†. Inserting into the connected graphs
the special insertion vertex

V ins
ab :=

∑
n

(Han −Hnb)φbnφna(12)

is the same as the difference of graphs with external indices b and a, respectively, Z(|a| −
|b|)Gins

[ab]... = Gb... −Ga...:
We write Feynman graphs in the self-dual φ4

4-model as ribbon graphs on a genus-g
Riemann surface with B external faces. Adding for each external face an external vertex
to get a closed surface, the matrix index is constant at every face. Inserting the special
vertex V ins

ab leads, however, to an index jump from a to b in an external face which meets
an external vertex. The corresponding external sources at the jumped face are thus Jna and
Jbm for some other indices m,n. According to the Ward identity, this is the same as the
difference between the graphs with face index b and a, respectively:

Z(|a| − |b|) �������	
������
������

�� ��

��
��

��
�

��
��

��
�

����

. ........

�� ��
a

b

a

b

= �������	
������
������

�� ��

��
��

��
�

��
��

��
�

����

. ........

b

b

− �������	
������
������

�� ��

��
��

��
�

��
��

��
�

����

. ........

a

a

(13)

Z(|a| − |b|)Gins
[ab]... = Gb... −Ga... .(14)

The dots in (14) stand for the remaining face indices. We have used Han − Hnb =
Z(|a| − |b|).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

158 HARALD GROSSE AND RAIMAR WULKENHAAR

4. Schwinger-Dyson equation

The Schwinger-Dyson equation for the one-particle irreducible two-point function Γab

reads

Γab = �������	
��
������
		 		

��
a

b

a

b

(15)

=

��������
��
		



��b a

a

b

+

��������
��
		

�� 


ba

a

b p

+ ������ !����������
		 		

��
a

b

a

bp

.

The sum of the last two graphs can be reexpressed in terms of the two-point function with
insertion vertex. Adding the left tadpole and using the Ward identity yields

Γab = Z2λ
∑
p

(
Gap +G−1

ab G
ins
[ap]b

)
= Z2λ

∑
p

(
Gap −G−1

ab

Gbp −Gba

Z(|p| − |a|)
)

(16)

= Z2λ
∑
p

( 1

Hap − Γap
+

1

Hbp − Γbp
− 1

Hbp − Γbp

(Γbp−Γab)

Z(|p|−|a|)
)
.

This is a closed equation for the two-point function alone. It involves the divergent quan-
tities Γbp and Z, μbare.

5. Renormalization

Introducing the renormalised planar two-point function Γren
ab by Taylor expansion

Γab = Zμ2
bare − μ2 + (Z−1)(|a|+|b|) + Γren

ab and imposing the renormalization con-
dition Γren

00 = 0 and (∂Γren)00 = 0, we obtain a coupled system of equations for Γren
ab , Z

and μbare. It leads to a closed equation for the renormalised function Γren
ab alone, which is

further analysed in the integral representation.
We replace the indices in a, b, . . .N by continuous variables in R+. Equation (16)

depends only on the length |a| = a1 + a2 of indices. The Taylor expansion respects this
feature, so that we replace

∑
p∈N2

Λ
by

∫ Λ

0
|p| dp. After a convenient change of variables

|a| =: μ2 α
1−α , |p| =: μ2 ρ

1−ρ and

Γren
ab =: μ2 1− αβ

(1− α)(1− β)

(
1− 1

Gαβ

)
,(17)

and using an identity resulting from the symmetry G0α = Gα0, we arrive at [10]:

THEOREM 1. The renormalised planar connected two-point function Gαβ of the self-
dual noncommutative φ4

4-theory satisfies the integral equation
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Gαβ = 1 + λ

(
1− α

1− αβ

(
Mβ − Lβ − βY

)
+

1− β

1− αβ

(
Mα − Lα − αY

)
(18)

+
1− β

1− αβ

(Gαβ

G0α
− 1

)(
Mα − Lα + αNα0

)
− α(1− β)

1− αβ

(
Lβ +Nαβ −Nα0

)
+

(1− α)(1− β)

1− αβ
(Gαβ − 1)Y

)
,

where α, β ∈ [0, 1),

Lα :=

∫ 1

0

dρ
Gαρ −G0ρ

1− ρ
, Mα :=

∫ 1

0

dρ
αGαρ

1− αρ
, Nαβ :=

∫ 1

0

dρ
Gρβ −Gαβ

ρ− α
,

and Y = limα→0
Mα−Lα

α .

Recently we related the construction of this noncommutative quantum field theory to
the problem of solving a nonlinear integral equation in one variable [11], which we review
next.

6. Nonperturbative Construction of this model

We rewrite equation (18) in terms of Dαβ := α(1−β)
β(1−α)

(
(1−β)
1−αβGαβ −Gα0

)
and obtain

after simple manipulations the integral equation

β(1− α)

α(1− β)
+

1 + λY + λπαHα

[
G•0

]
αGα0

Dαβ − λπHα

[
D•β

]
= −Gα0,(19)

which is of the Carleman type. Y is defined as

−λπH0[D•0] =
λY

1 + λY .(20)

Here we assume that Dαβ is Hölder continuous. The finite Hilbert transform is given by

Hα[f(•)] :=
1

π
lim
ε→0

( ∫ α−ε

0

+

∫ 1

α+ε

) f(ρ)

ρ− α
.

Equation (19) is a singular linear integral equation of the Carleman type. We quote its
solution [Carleman 1922, Tricomi 1957]
Theorem: The singular linear integral equation a(x)y(x)−λπHx[y] = f(x) , x ∈ [−1, 1]
is for a(x) continuous and Hölder continuous near ±1 and f ∈ Lp is solved by

y(x) =
sin(θ(x))

λπ

(
f(x) cos(θ(x)) + eHx[θ]Hx

[
e−H•[θ]f(•) sin(θ(•))

]
+

CeHx[θ]

1− x

)(21)

θ(x) = arctan
[0, π]

( λπ

a(x)

)
, sin(θ(x)) =

|λπ|√
(a(x))2 + (λπ)2

(22)

where C is an arbitrary constant. We assume first: C = 0
We apply the solution of the Carleman equation to (19) and obtain for its solution:

(1− β)

1− αβ

Gαβ

1 + λY =
sin(θβ(α))

|λ|πα eHα[θβ(•)]−H0[θ0(•)]+H1[θ0(•)−θβ(•)](23)
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λY
1 + λY =

∫ 1

0

dρ
sin2(θ0(ρ)

λπ2ρ2
,(24)

θβ(α) = arctan
[0, π]

(
λπα

β(1−α)
1−β + 1+λY+λπαHα[G•0]

Gα0

)
(25)

For the proof one uses the Carleman equation λπ cot θ0(α)Gα0 − λπHα[G•0] =
1+λY

α

and Tricomi’s identity e−Hα[θβ ] cos(θβ(α)) +Hα

[
e−H•[θβ ] sin(θβ(•)

]
= 1.

The Carleman equation computes Gαβ , as a consequence it implies that Gαβ ≥ 0! There-
fore G0β can be evaluated and this implies also a self-consistency equation for Gβ0, since
symmetry forces Gβ0 = G0β .
This leads to the Master equation, whose solution determines the theory completely:

Gβ0 =
1 + λY

1 + (1− β)λY
exp(−λ

∫ β
1−β

0
dt

∫ 1

0

dρ

(λπρ)2 +
(
t(1− ρ) +

1+λY+λπρHρ[G•0]
Gρ0

)2 )(26)

) provided it exists. Of course, together with λY , which has to be determined from equa-
tion (24). Up to now, we deduced various non-perturbative results from this system of
equations and used computer calculations for the visualization of the solution of (26).
As expected, there is a big difference between the case λ > 0 and λ < 0. For posi-
tive λ > 0 we deduce, that (1+(1−β)λY)

1+λY Gβ0 ∈ C1([0, 1[), is monotonously decreasing
and positive. Therefore the limiting value G10 exists and Gβ0 ∈ C[0, 1]. For λ < 0
(1+(1−β)λY)

1+λY Gβ0 ∈ C1([0, 1[) is monotonously increasing and positive, therefore Gβ0 is
unbounded at β = 1.
Let λ > 0, G = TG be the master equation and F be within the Hölder class of index

λ. Recall Z−1(G) = 1 + λYG − λ

∫ 1

0

dρ
Gρ0

1− ρ
. We can prove, that if F (1) 
= 0, then

(TF )(1) = 0, if Z−1(F ) ≥ δ > 0, then (TF )(1) ≥ ε > 0. If Z−1(F ) < 0, then
(TF )(1) = 0. As a consequence we deduce, that G10 = 0 and Z−1(G) ≤ 0. But this
means, that if

Gα0 = 0 ⇒ 1 + λY + λπαHα

[
G•0

]
= 0

For α = 1 this means Z−1(G) = 0.

7. Four-point Schwinger-Dyson equation

The knowledge of the two-point function allows a successive construction of the whole
theory. As an example we mention the planar connected four-point function Gabcd.
Following the a-face in direction of an arrow, there is a distinguished vertex at which the
first ab-line starts. For this vertex there are two possibilities for the matrix index of the
diagonally opposite corner to the a-face: either c or a summation vertex p:



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONSTRUCTION OF A NONCOMMUTATIVE QUANTUM FIELD THEORY 161

�������	��
		 		

��

�� 





��
b c

da

a

b

d

c

=

��������

��������
����������

		

		
��

�� 





��b c

da

a

b b c

a

d

c

+ ������ ! ��������
��������

��������
����������

		 		
��

		
��

		
��

����
����

��
��
��
��

b

c

d

a

a

b

a

b

d

cp

.

(27)

We write the first contribution as a product of the vertex Z2λ, the left connected two-
point function, the downward two-point function and an insertion, which is reexpressed
by means of the Ward-identity. After amputation of the external two-point functions
we obtain the Schwinger-Dyson equation for the renormalised 1PI four-point function
Gabcd = GabGbcGcdGdaΓ

ren
abcd as follows:

Γren
abcd = Zλ

1

|a| − |c|
( 1

Gad
− 1

Gcd

)
+ Zλ

∑
p

1

|a| − |p|Gpb

(Gdp

Gad
Γren
pbcd − Γren

abcd

)
.

(28)

We introduce the 1PI function and pass to the integral representation and to the variables α
and β and find for Γαβγδ := Γren

abcd an integral equation, which manipulated appropriately
allows again to take the limit ξ → 1 after insertion of the expression for the wave function
renormalisation constant.

THEOREM 2. The renormalised planar 1PI four-point function Γαβγδ of self-dual
noncommutative φ4

4-theory (with continuous indices α, β, γ, δ ∈ [0, 1)) satisfies the inte-
gral equation

Γαβγδ = λ ·

(
1− (1− α)(1− γδ)(Gαδ −Gγδ)

Gγδ(1− δ)(α− γ)

+

∫ 1

0

ρ dρ
(1− β)(1− αδ)GβρGδρ

(1− βρ)(1− δρ)

Γρβγδ − Γαβγδ

ρ− α

)

Gαδ + λ
(
(Mβ − Lβ − Y)Gαδ +

∫ 1

0

dρ
GαδGβρ(1− β)

(1− δρ)(1− βρ)

+

∫ 1

0

ρ dρ
(1− β)(1− αδ)Gβρ

(1− βρ)(1− δρ)

(Gρδ −Gαδ)

(ρ− α)

)
.

(29)

In lowest order we find

Γαβγδ = λ− λ2
( (1− γ)(Iα − α)− (1− α)(Iγ − γ)

α− γ

+
(1− δ)(Iβ − β)− (1− β)(Iδ − δ)

β − δ

)
+O(λ3) .(30)

Note that Γαβγδ is cyclic in the four indices, and that Γ0000 = λ+O(λ3).
In our recent work, we have been able to solve equation (29) in terms of the two point
function and a remarkable simple expression results:

(31) Γαβγδ =
λ

(α− γ)(β − δ)

( (1− αδ)

Gαδ

(1− γβ)

Gγβ
− (1− αβ)

Gαβ

(1− γδ)

Gγδ

)
.
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It was now possible to evaluate the effective coupling in terms of the bare coupling con-
stant. Although the scale is changes ba an infinite amount, a finite coupling constant renor-
malization results.

8. Conclusions

A remarkable result concerns the appearance of the nontrivial fixed point at Ω = 1,
proven to all orders in pertubation theory. We used Ward identities and Schwinger-Dyson
equations to deduce integral equations for the renormalized N-point functions. We reduced
the construction of this nontrivial noncommutative quantum field theory to solving one
nonlinear integral equation for a function of one variable. A survey of this construction is
given in [11].

We believe, that the first nontrivial four dimensional quantum field theory model,
where one is able to sum up the Feynman pertubation expansion, will allow to learn a
lot about renormalization.

The zero of the beta function occurs in the one-loop calculation for the degenerate
model too. There are attempts to deduce implications for cosmology from space-time
noncommutativity. But, of course, there is, up to now, no effect known, which allows a
check by experiments in the near future.
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