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Abstract

We summarise our recent construction of the λφ4
4-model on four-

dimensional Moyal space. In the limit of infinite noncommutativity,
this model is exactly solvable in terms of the solution of a non-linear
integral equation. Surprisingly, this limit describes Schwinger functions
of a Euclidean quantum field theory on standard R4 which satisfy the
easy Osterwalder-Schrader axioms boundedness, invariance and sym-
metry. We prove that the decisive reflection positivity axiom is, for the
2-point function, equivalent to the question whether or not the solution
of the integral equation is a Stieltjes function. A numerical investigation
leaves no doubt that this is true for coupling constants λc < λ ≤ 0 with
λc ≈ −0.39.

1 Introduction

1.1 Rigorous quantum field theories

Perturbatively renormalised quantum field theory is an enormous phenomeno-
logical success, a success which lacks a mathematical understanding. The per-
turbation series is at best an asymptotic expansion which cannot converge at
physical coupling constants. Some physical effects such as confinement are out
of reach for perturbation theory. In two, and partly three dimensions, meth-
ods of constructive physics [GJ87, Riv91], often combined with the Euclidean
approach [Sch59, OS73, OS75], were used to rigorously establish existence and
certain properties of quantum field theory models.

In four dimensions there has been little success so far. It is generally believed
that due to asymptotic freedom [GW73, Pol73], non-Abelian gauge theory (i.e.
Yang-Mills theory) has the chance of a rigorous construction. But this is a hard
problem [JW00]. What makes it so difficult is the fact that any simpler model

1harald.grosse@univie.ac.at
2raimar@math.uni-muenster.de

1



such as quantum electrodynamics or the λφ4-model cannot be constructed in four
dimensions (Landau ghost problem [LAK54] or triviality [Aiz81, Frö82]).

One of the main difficulties is the non-linearity of the models under consider-
ation. Fixed point methods provide a standard approach to non-linear problems,
but they are rarely used in quantum field theory. In this contribution we review
a sequence of papers [GW14a, GW13b, GW14b, GW14c] in which we success-
fully used symmetry and fixed point methods to exactly solve a toy model for a
quantum field theory in four dimensions.

1.2 Regularisation and renormalisation

We follow the Euclidean approach, starting from a partition function with source
term Z[J ], which itself involves the action functional of the model. It is absolutely
crucial that, as in any rigorous construction, this action functional cannot be
taken as the näıve action of the underlying classical field theory. Instead, we
have to regularise the action in a twofold manner:

1. We have to place the model into finite volume V . As known from statistical
physics, the logarithm of the partition function is, in leading approximation,
proportional to V . Conversely, Z[J ] ∝ CV , which shows the necessity of
the finite volume (infrared) regularisation.

2. The laws of quantum physics imply that confining a system to a small
length scale δx = 1

Λ
leads to large momentum fluctuations δp ∝ 1

δx
. In

order to have, at least temporarily, a finite energy density we must discard
all information which is sharper localised than an ultraviolet cutoff 1

Λ
.

It is perfectly possible that Nature itself provides a finite global volume V <∞
and a fundamental minimal length scale 1

Λ
> 0. But there are two important (and

related) reasons to take the limits V → ∞ and 1
Λ
→ 0: symmetry and simpli-

city. Restricting the Euclidean space RD e.g. to a finite lattice of volume V and
spacing a = 1

Λ
, the Euclidean group RD o O(D), a continuous Lie group, is re-

stricted to a finite crystallographic subgroup. By Noether’s theorem, symmetries
imply conservation laws, i.e. first integrals of motion, so that a model with more
symmetry is simpler to describe. This is already visible in simple spin systems.
Although defined on a discrete lattice, one typically has to go to a critical point of
divergent correlation length, which simulates the continuum, to compute physical
quantities.

But how to deal with the limits V → ∞ and 1
Λ
→ 0 which are forbidden by

the above remarks?

1. For V → ∞ it suffices to study the free energy density 1
V

log(Z[J ]) and
functions derived from that. Their limits V → ∞ exist and, as discussed
before, are simpler to characterise than in finite volume.

2. The limit 1
Λ
→ 0 is achieved by the renormalisation philosophy. There is a

family of maps R(Λ′,Λ), forming the renormalisation group [WK74], with
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the following property: the physics computed from

• a partition function resulting from action S(Λ) taken at cut-off Λ,

• and from another partition function resulting from action S ′(Λ′) =
R(Λ′,Λ)S(Λ) taken at cut-off Λ′,

coincides. This ‘physics’ can again be interpreted as an effective action
Sphys(Λphys) at some scale Λphys (which in models with mass can be put to
zero). We thus have Sphys(Λphys) = R(Λphys,Λ)S(Λ) = R(Λphys,Λ

′)S(Λ′)
and consequently the semigroup law R(Λphys,Λ

′)R(Λ′,Λ) = R(Λphys,Λ).

As noted above, given S(Λ), the effective action Sphys(Λphys) diverges for
Λ → ∞. In the class of renormalisable theories, these divergences result
from a finite-dimensional subspace Σ(Λ) of actions, termed relevant or mar-
ginal interactions. Identifying a corresponding subspace SΣ

phys(Λphys) such

that RΣ(Λphys,Λ) := R(Λphys,Λ)
∣∣
Σ

: Σ(Λ) → SΣ
phys(Λphys) is injective, one

can re-normalise the model as follows: Take any point C ∈ SΣ
phys(Λphys) and

consider

SCphys(Λphys) := R(Λphys,Λ) ◦R−1
Σ (Λphys,Λ)(C) . (1)

If properly done, the limit limΛ→∞ S
C
phys(Λphys) exists. But note that the

inversion RΣ(Λphys,Λ) 7→ R−1
Σ (Λphys,Λ) is a difficult problem. Except for a

few superrenormalisable models in low dimensions, this can only be handled
in perturbation theory.

Of course it remains to prove that these sophisticated limits V →∞ and 1
Λ
→ 0

restore the original symmetry.
In summary, it is important that one regularises, but there is freedom how

to do it. As symmetry is so important, one will use the freedom to preserve
the symmetry as much as possible. It is at this point where our approach sets
in. We had the luck to identify a regularisation which in a certain sense has
more symmetry than the original problem. This symmetry turned out to be
so strong that it completely solves our Euclidean quantum field theory model
in four dimensions [GW14a]. The limits V → ∞ and 1

Λ
→ 0 exist, and to

our great surprise they restore the Euclidean symmetry group [GW13b], i.e. the
Osterwalder-Schrader [OS75] axiom (OS1). In addition the other easy axioms
(OS3) permutation symmetry (for trivial reasons) and (OS0) factorial growth
(after some work) are realised. We thus turned towards the most decisive axiom,
(OS2) reflection positivity, and so far everything looks promising [GW14c]. We
give more details in the final sections of this contribution.

1.3 The Moyal space as symmetry-enhancing regulator

For concreteness, let us look at the λφ4
4-model defined by the action functional

S[φ] =

∫
R4

dx
{1

2
φ(x) · (−∆ + µ2)(φ(x)) +

λ

4

(
φ(x)

)4
}
, (2)

3



where ∆ = δµν∂µ∂ν is the (negatively definite) 4D Laplacian. As described
in sec. 1.2, in order to give rise to a meaningful partition function, we have
to put it into finite volume V < ∞ and restrict its energy density via Λ <
∞. Finite volume is actually a compactification of the underlying geometry. A
more sophisticated method than putting the model into a box is to add in (2) a
harmonic oscillator potential −∆ 7→ H := −∆ +ω2‖x‖2. The result is the same,
the resolvent (H + i)−1 is a compact operator (with discrete spectrum), and the

D-dimensional spectral volume is proportional to ω−
D
2 .

A well-known restriction of the energy density consists in introducing a lat-
tice of spacing a = 1

Λ
. This is the heart of the lattice gauge theory approach

[Wil74] to quantum chromodynamics. As action one takes, for example, Wilson’s
plaquette action, which is non-local but converges for a → 0 to the local Yang-
Mills action. This key example tells us that non-local actions are a decisive part
of regularisation.

A particularly convenient type of non-locality for (rapidly decaying) functions
on RD, with D even, is given by the Moyal product

(f ? g)(x) =

∫
RD×RD

dy dk

(2π)D
f(x+1

2
Θk) g(x+y) ei〈k,y〉 , Θ = −Θt ∈MD(R) . (3)

It is an associative but noncommutative product which is thoroughly investigated
[GV88]. Together with the standard RD Dirac operator it gives rise to a spectral
noncommutative geometry [GGISV03].

Some 15 years ago the Moyal space (R4, ?) became popular in quantum field
theory. The motivation first came from gravitational considerations [DFR95] and
from string theory [SW99], later from the UV/IR-mixing phenomenon [MVS00]
observed in these models. Common to these early works is the point of view
that the non-locality due to the Moyal product is a true physical effect. We also
shared this view throughout a decade. During the last years we noticed that a
degradation of the Moyal product to a temporary regularisation, to be removed in
the end, has much larger potential.

This regularisation consists in replacing in (2) the pointwise product by the

Moyal product,
(
φ(x)

)4 7→ (φ ? φ ? φ ? φ)(x). Optionally also the bilinear terms
could be replaced, but due to

∫
dx (f ? g)(x) =

∫
dx f(x) g(x) this leads to the

same result as without ?.
The explicit occurrence of a skew-symmetric matrix Θ = −Θt ∈M4(R) in the

action introduces two preferred orthogonal planes in R4. They distinguish a refer-

ence frame in which Θ has block-diagonal form Θ = diag
(( 0 −θ

θ 0

)
,
( 0 −θ
θ 0

))
.

The original SO(4) symmetry group is thus restricted to the stabiliser subgroup
SO(2)×SO(2)×Z2 (there would be no Z2 if Θ had different complex eigenvalues
±iθ1 6= ±iθ2). With these conventions, the redefinition ω =: 2Ω

θ
of the frequency

and with additional multiplicative prefactors needed for renormalisation, the ac-
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tion (2) is turned into (note that ‖Θ−1x‖2 = θ−2‖x‖2)

S[φ] =
1

64π2

∫
d4x
(Z

2
φ?
(
−∆+Ω2

bare‖2Θ−1x‖2 + µ2
bare

)
φ+

λbareZ
2

4
φ?φ?φ?φ

)
(x) .

(4)
The action (4) is not yet properly regularised because so far there is no Λ. The

most convenient regularisation is a matrix cut-off. The two-dimensional Moyal
space (R2, ?) possesses distinguished (complex-valued) functions [GV88] which
under the identification (x1, x2) ≡ z = x1 + ix2 read

fmn(z) = 2(−1)m
√
m!

n!

(√2

θ
z
)n−m

Ln−mm

(2|z|2

θ

)
e−
|z|2
θ , m, n ∈ N , (5)

where Lan(r) are the associated Laguerre polynomials. These functions satisfy
(fmn ? fkl)(z) = δnkfml(z) and

∫
dz fmn(z) = 2πθδmn. Consequently, expand-

ing φ in (4) in the fmn-bases of the two orthogonal planes, φ(x1, . . . , x4) =∑
m,n∈N2 Φmnfm1n1(x1 + ix2)fm2n2(x3 + ix4), with m = (m1,m2), we arrive at

S[φ] =
(θ

4

)2 ∑
k,l,m,n∈N2

(Z
2

Φkl(∆kl;mn + µ2
bareδknδlm)Φmn +

Z2λbare
4

ΦklΦlmΦmnΦnk

)
.

(6)

In this way (and after appropriate enumeration of N2) we turn the non-local∫
dx φ?4(x)-interaction into an ordinary matrix product (2πθ)2tr(Φ4). The kin-

etic term −∆ + ‖2Θ−1x‖2 is turned into the matrix kernel [GW05b]

∆kl;mn =
2

θ
(1+Ω2)(|m|+ |n|+ 2)δn1k1δm1l1δn2k2δm2l2

− 2

θ
(1−Ω2)

((√
k1l1 δn1+1,k1δm1+1,l1 +

√
m1n1 δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

+
(√

k2l2 δn2+1,k2δm2+1,l2 +
√
m2n2 δn2−1,k2δm2−1,l2

)
δn1k1δm1l1

)
, (7)

where |m| := m1 +m2. The regularisation now consists in restricting the matrix
sizes to N = θ

4
µ2Λ2 for a renormalised mass scale µ introduced later.

With these preparations we have proved in [GW05b] that for given θ one can
choose Z[Ω, λ, Λ

µ
], µbare

µ
[Ω, λ, Λ

µ
], Ωbare[Ω, λ,

Λ
µ

], λbare[Ω, λ,
Λ
µ

] in such a way that the

limit limΛ→∞R(0,Λ)◦R−1
Σ (0,Λ)(C) described in (1) exists as formal power series,

where C is given by restricting the effective action to (4) but with renormalised
values Z 7→ 1, µbare 7→ µ, Ωbare 7→ Ω and λbare 7→ λ. This result was reestablished
by various methods, see [Riv07] for a review.

In this way a perturbatively renormalised λφ?44 -Euclidean quantum field the-
ory on Moyal space with harmonic propagation (which is a spectral noncommut-
ative geometry [GW13a]) is obtained. To extract the ordinary λφ?44 -model one
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has to take final limits Ω→ 0 and θ → 0, but these limits do not exist. That θ → 0
is not continuous follows from the partition of the effective action (for θ 6= 0) into
topological sectors (B, g). This is clear in matrix formulation as we discuss below,
but can already be seen in position or momentum space [CR00]. The amplitude
of (B, g)-correlation functions is proportional to θ(2−2B−4g) [GW05b] so that only
the so-called planar regular sector (B≤1, g=0) has a commutative limit θ → 0
(which differs from the computation at θ = 0!). The limit Ω → 0 is prevented
by UV/IR-mixing [MVS00]. In summary, one can take |Ω|, |θ| as small as one
wants, but not exactly zero.

For some time one was happy with the λφ?44 -model at finite θ,Ω. The reason
is the observation [GW04] that in one-loop approximation one has

lim
Λ→∞

Ωbare[Ω, λ,
Λ
µ

] = 1 , lim
Λ→∞

λbare[Ω, λ,
Λ
µ

] <∞ . (8)

The second limit is in sharp contrast to the ordinary λφ4
4-model where λbare[Ω, λ,

Λ
µ

]

diverges already at finite Λ = ΛL, the Landau pole [LAK54]. There was thus con-
siderable hope that the λφ?44 -model (4) could permit a rigorous construction along
the methods described in [GJ87, Riv91], circumventing triviality [Aiz81, Frö82]).

During the last two years this hope became reality. In fact something beyond
any dream was achieved:

1. The λφ?44 -model is, at a special point in parameter space, exactly solvable
[GW14a].

2. The symmetry group SO(2)×SO(2)×Z2 of the λφ?44 -model is enlarged to
the full Euclidean group R4 o SO(4). See [GW13b].

3. There are good chances [GW14c] that all Osterwalder-Schrader axioms
[OS75] are fulfilled. There remains much work to complete the proof, but
in any case there is well-founded hope that in the end this can lead to a
Wightman quantum field theory [Wig56, SW64] in four dimensions.

A key step for these achievements was the first limit in (8). Namely, the
limit Ω = 1 is an exact renormalisation group fixed point Ωbare[Ω = 1, λ, Λ

µ
] = 1

for any value of the other parameters. It makes the λφ?44 -model self-dual under
the Langmann-Szabo transformation [LS02]. But most importantly, the running
coupling constant λbare[Ω = 1, λ, Λ

µ
] remains finite for all Λ! This was first proved

in [DR07] at three-loop order, then in [DGMR07] to all orders in perturbation
theory, and eventually in [GW14a] exactly.

At first sight, putting Ω = 1 in (4) cuts all ties to translation invariance.
The only chance to kill the oscillator potential for Ω = 1 is to let θ → ∞.
This is a highly singular limit in (3), although already mentioned in [MVS00] as
‘stringy’. We were able to make sense of this limit first for matrices [GW14a] but
later in position space [GW13b], and surprisingly it not only restores translation
invariance but also full rotation invariance.

If asked to locate the core of the whole construction, the answer would be:
symmetry. The matrix cut-off N = θ

4
µ2Λ2 of the Moyal-oscillator regularisation
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(4) still carries the action of a continuous symmetry group U(N ). This group ac-
tion simplifies the Schwinger-Dyson equations enormously. Starting from a closed
(non-linear) equation [GW09] for the 2-point function, there is a hierarchy of cor-
relation functions such that all other functions are either algebraically determined
or solve linear equations with inductively known parameters.

In the sequel we give a few details of this construction and review the main
results.

2 Exact solution of the quartic matrix model

For Ω = 1 in (7) and with cut-off N2 7→ N2
N in the matrix indices, the action (4)

takes the form

S[Φ] = V

( ∑
m,n∈N2

N

Em ΦmnΦnm +
Z2λ

4

∑
m,n,k,l∈N2

N

ΦmnΦnkΦklΦlm

)
, (9)

Em = Z
( |m|√

V
+
µ2
bare

2

)
, |m| := m1 +m2 ≤ N , V =

(θ
4

)2

.

So it gives rise to a matrix model S[Φ] = V tr(EΦ2 + P [Φ]), where P [Φ] is a
polynomial in Hilbert-Schmidt operators Φ = (Φmn)m,n∈I on Hilbert space L2(I)
with scalar coefficients, and E is an unbounded selfadjoint positive operator with
compact resolvent. Adding a source term to the action, we define the partition
function as

Z[J ] =

∫
D[Φ] exp(−S[Φ] + V tr(ΦJ)) , (10)

where D[Φ] is the extension of the Lebesgue measure from finite-rank operators
to the Hilbert-Schmidt class and J a test function matrix.

2.1 Ward identity and topological expansion

There is a subgroup of unitary operators U on Hilbert space such that the trans-
formed operator Φ̃ = UΦU∗ belongs to the same class as Φ. This implies∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) =

∫
D[Φ̃] exp(−S[Φ̃] + V tr(Φ̃J)) .

Unitary invariance D[Φ̃] = D[Φ] of the Lebesgue measure leads to

0 =

∫
D[Φ]

{
exp(−S[Φ] + V tr(ΦJ))− exp(−S[Φ̃] + V tr(Φ̃J))

}
.

Note that the integrand {. . . } itself does not vanish because tr(EΦ2) and tr(ΦJ)
are not unitarily invariant; we only have tr(P [Φ]) = tr(P [Φ̃]) due to UU∗ =
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U∗U = id together with the trace property. Linearisation of U about the identity
operator leads to the Ward identity

0 =

∫
D[Φ]

{
EΦΦ− ΦΦE − JΦ + ΦJ

}
exp(−S[Φ] + V tr(ΦJ)) . (11)

We can always choose an orthonormal basis where E is diagonal (but J is not).
Since E is of compact resolvent, E has eigenvalues Ea > 0 of finite multiplicity
µa. We thus label the matrices by an enumeration of the (necessarily discrete)
eigenvalues of E and an enumeration of the basis vectors of the finite-dimensional
eigenspaces. Writing Φ in {. . . } of (11) as functional derivative Φab = ∂

V ∂Jba
, we

have thus proved (first obtained in [DGMR07]):

Proposition 1 The partition function Z[J ] of the matrix model defined by the
external matrix E satisfies the |I| × |I| Ward identities

0 =
∑
n∈I

((Ea − Ep)
V

∂2Z
∂Jan∂Jnp

+ Jpn
∂Z
∂Jan

− Jna
∂Z
∂Jnp

)
. (12)

The compactness of the resolvent of E implies that at the expense of adding a
measure µ[m] = dim ker(E − Emid), we can assume that m 7→ Em is injective.

In a perturbative expansion, Feynman graphs in matrix models are ribbon
graphs. Viewed as simplicial complexes, they encode the topology (B, g) of a
genus-g Riemann surface with B boundary components. The kth boundary face
is characterised by Nk ≥ 1 external double lines to which we attach the source
matrices J . See e.g. [GW05a]. Since E is diagonal, the matrix index is con-
served along each strand of the ribbon graph. Therefore, the right index of Jab
coincides with the left index of another Jbc, or of the same Jbb. Accordingly, the
kth boundary component carries a cycle JNkp1...pNk

:=
∏Nk

j=1 Jpjpj+1
of Nk external

sources, with Nk+1 ≡ 1. Here is a drawing for a (B = 3, g = 0) Riemann surface
with cycles of lengths N1 = 4, N2 = 2, N3 = 2:

e
f f

e
g

h h
g

d c
c

b

b
a

a

d

(JabJbcJcdJda) (JefJfe) (JghJhg) (13)

We know from sec. 1.2 that only 1
V

logZ[J ], not Z[J ] itself, can have an
infinite volume limit. Consequently we define logZ[J ] as an expansion according

8



to the cycle structure:

log
Z[J ]

Z[0]
=

∞∑
B=1

∞∑
1≤N1≤···≤NB

∑
pβ1 ,...,p

β
Nβ
∈I

V 2−B

SN1...NB

G|p1
1...p

1
N1
|...|pB1 ...pBNB |

B∏
β=1

(JNβpβ1 ...pβNβ
Nβ

)
.

(14)

The symmetry factor SN1...NB is obtained as follows: If νi of the B numbers Nβ

in a given tuple (N1, . . . , NB) are equal to i, then SN1...NB =
∏NB

i=1 νi!.
Now comes the crucial step. We turn the Ward identity (12) into a formula

for the second derivative
∑

n∈I
∂2Z[J ]

∂Jan∂Jnp
of the partition function. This amounts

to identify the kernel of multiplication by (Ep −Ea). For injective m 7→ Em this
kernel is given by Wa[J ]δap for some function Wa[J ]. This function is identified

by inserting (14) into
∑

n∈I
∂2 exp(logZ[J ])
∂Jan∂Jnp

and carefully registering the possibilities

which give rise to a factor δap. We find [GW14a]:

Theorem 2∑
n∈I

∂2Z[J ]

∂Jan∂Jnp
= δap

{
V 2
∑
(K)

JP1 · · · JPK
S(K)

(∑
n∈I

G|an|P1|...|PK |

V |K|+1
+
G|a|a|P1|...|PK |

V |K|+2

+
∑
r≥1

∑
q1,...,qr∈I

G|q1aq1...qr|P1|...|PK |J
r
q1...qr

V |K|+1

)
+ V 4

∑
(K),(K′)

JP1· · ·JPKJQ1· · ·JQK′
S(K)S(K′)

G|a|P1|...|PK |

V |K|+1

G|a|Q1|...|QK′ |

V |K′|+1

}
Z[J ]

+
V

Ep − Ea

∑
n∈I

(
Jpn

∂Z[J ]

∂Jan
−Jna

∂Z[J ]

∂Jnp

)
. (15)

2.2 Schwinger-Dyson equations

Formula (15) is the core of our approach. It is a consequence of the unitary
group action and the cycle structure of the partition function. The importance
lies in the fact that the formula allows to kill two J-derivatives in the partition
function. As we describe below, this is the key step in breaking up the tower of
Schwinger-Dyson equations.

We can write the action as S = V
2

∑
a,b(Ea + Eb)ΦabΦba + V Sint[Φ], where

Ea are the eigenvalues of E. Functional integration yields, up to an irrelevant
constant,

Z[J ] = e−V Sint[
∂

V ∂J
]e
V
2
〈J,J〉E , 〈J, J〉E :=

∑
m,n∈I

JmnJnm
Em + En

. (16)
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Instead of a perturbative expansion of e−V Sint[
∂

V ∂J
] we apply those J-derivatives

to (16) which give rise to a correlation function G... on the lhs. On the rhs of
(16), these external derivatives combine with internal derivatives from Sint[

∂
V ∂J

]
to certain identities for G.... These Schwinger-Dyson equations are often of little
use because they express an N -point function in terms of (N+2)-point functions.
But thanks to (15) we can express the (N+2)-point function on the rhs in terms
of N ′-point functions with N ′ ≤ N .

Let us look at this mechanism for the 2-point function G|ab| for a 6= b. Ac-
cording to (14), G|ab| is obtained by deriving (16) with respect to Jba and Jab:

G|ab| =
1

V Z[0]

∂2Z[J ]

∂Jba∂Jab

∣∣∣
J=0

(disconnected part of Z does
not contribute for a 6= b)

=
1

V Z[0]

{ ∂

∂Jba
e−V Sint

[
∂

V ∂J

]
∂

∂Jab
e
V
2
〈J,J〉E

}
J=0

=
1

(Ea + Eb)Z[0]

{ ∂

∂Jba
e−V Sint

[
∂

V ∂J

]
Jbae

V
2
〈J,J〉E

}
J=0

=
1

Ea + Eb
+

1

(Ea + Eb)Z[0]

{(
Φab

∂(−V Sint)
∂Φab

)[ ∂

V ∂J

]}
Z[J ]

∣∣∣
J=0

. (17)

Now observe that ∂(−V Sint)
∂Φab

contains, for any P [Φ], the derivative
∑

n
∂2

∂Jan∂Jnp

which we know from (15). In case of the quartic matrix model P [Φ] = λ
4
Φ4 we

have ∂(−V Sint)
∂Φab

= −λV
∑

n,p∈I ΦbpΦpnΦna, hence(
Φab

∂(−V Sint)
∂Φab

)[ ∂

V ∂J

]
= − λ

V 3

∑
p,n∈I

∂2

∂Jpb∂Jba

∂2

∂Jan∂Jnp
,

and the Schwinger-Dyson equation (17) for G|ab| becomes with (15)

G|ab| =
1

Ea + Eb
− λ

V 3(Ea + Eb)Z[0]

∑
p∈I

∂2

∂Jpb∂Jba

∑
n∈I

∂2Z
∂Jan∂Jnp

∣∣∣
J=0

=
1

Ea + Eb
− λ

V (Ea + Eb)Z[0]

∂2

∂Jab∂Jba

{
(∑
n∈I

G|an|
V

+
∑
n,q,r∈I

G|an|qr|
V 2

JqrJrq
2

+
∑
n,q,r∈I

G|an|q|r|
V 3

Jqq
1

Jrr
1

+
G|a|a|
V 2

+
∑
q,r∈I

G|a|a|qr|
V 3

JqrJrq
2

+
∑
q,r∈I

G|a|a|q|r|
V 4

Jqq
1

Jrr
1

+
∑
q,r∈I

G|qaqr|
V

JqrJrq + V 2G|a|q|
V 2

Jqq
1

G|a|r|
V 2

Jrr
1

)
Z[J ]

}∣∣∣∣
J=0

− λ

V 2(Ea + Eb)Z[0]

∑
p∈I

(
∂2Z[J ]
∂Jab∂Jba

+ δpb
∂2Z[J ]
∂Jaa∂Jbb

− ∂2Z[J ]
∂Jpb∂Jbp

)
Ep − Ea

∣∣∣∣∣
J=0

. (18)
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Taking ∂2Z[J ]
∂Jpb∂Jbp

= (V G|pb| + δpbG|p|b|)Z[0] + O(J) and ∂Jrr
∂Jab

= 0 for a 6= b into

account, we have proved:

Proposition 3 The 2-point function of a quartic matrix model with action S =
V tr(EΦ2 + λ

4
Φ4) satisfies for injective m 7→ Em the Schwinger-Dyson equation

G|ab| =
1

Ea + Eb
− λ

Ea + Eb

1

V

∑
p∈I

(
G|ab|G|ap| −

G|pb| −G|ab|
Ep − Ea

) }
(19a)

− λ

V 2(Ea + Eb)

(
G|a|a|G|ab| +

1

V

∑
n∈I

G|an|ab|

+G|aaab| +G|baba| −
G|b|b| −G|a|b|
Eb − Ea

)
 (19b)

− λ

V 4(Ea + Eb)
G|a|a|ab| .

}
(19c)

It can be checked [GW14a] that in a genus expansion G... =
∑∞

g=0 V
−2gG(g)

...

(which is probably not convergent but Borel summable), precisely the line (19a)
preserves the genus, the lines (19b) increase g 7→ g+1 and the line (19c) increases
g 7→ g + 2.

We will not rely on a genus expansion. Instead we consider a scaling limit
V →∞ such that the densitised index summation 1

V

∑
p∈I remains finite. Then

the exact Schwinger-Dyson equation for G|ab| coincides with its restriction (19a)

to the planar sector g = 0, a closed non-linear equation for G
(0)
|ab| alone.

By similar calculation we derive the Schwinger-Dyson equation for higher
N -point functions. This expresses the N -point function G|ab1...bN−1| in terms of

its summation
λ

Ea + Eb1

1

V

∑
p∈I

(
G|ap|G|ab1...bN−1| −

G|pb1...bN−1| −G|ab1...bN−1|

Ep − Ea

)
and

several other functions [GW14a]. It turns out that a real theory with Φ = Φ∗

admits a short-cut which directly gives the higher N -point functions without any
index summation. Since the equations for G... are real and Jab = Jba, the reality
Z = Z implies (in addition to invariance under cyclic permutations) invariance
under orientation reversal

G|p1
1p

1
2...p

1
N1
|...|pB1 pB2 ...pBNB |

= G|p1
1p

1
N1
...p1

2|...|pB1 pBNB ...p
B
2 | . (20)

Whereas empty for G|ab|, in (Ea+Eb1)Gab1b2...bN−1
− (Ea+EbN−1

)GabN−1...b2b1 the
identities (20) lead to many cancellations which result in a universal algebraic
recursion formula [GW14a]:

Proposition 4 Given a quartic matrix model S[Φ] = V tr(EΦ2 + λ
4
Φ4) with E

of compact resolvent. Then in a scaling limit V → ∞ with 1
V

∑
i∈I finite, the

(B = 1)-sector of logZ is given by

G|ab| =
1

Ea + Eb
− λ

Ea + Eb

1

V

∑
p∈I

(
G|ab|G|ap| −

G|pb| −G|ab|
Ep − Ea

)
, (21)

11



G|b0b1...bN−1| = (−λ)

N−2
2∑
l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| −G|b2lb1...b2l−1|G|b0b2l+1...bN−1|

(Eb0 − Eb2l)(Eb1 − EbN−1
)

.

(22)

The self-consistency equation (21) was first obtained in [GW09] for the Moyal
model by the graphical method proposed by [DGMR07]. There we also solved
the renormalisation problem resulting from the divergent summation

∑
p∈I . The

non-linearity of (21) was a considerable challenge which we successfully addressed
in [GW14a, GW14c].

The other topological sectors B ≥ 2 made of (N1+ . . .+NB)-point functions
G|b11...b1N1

|...|b11...bBNB |
are similar in the following sense [GW14a]: The basic functions

with all Ni ≤ 2 satisfy an equation with index summation as (21), but in contrast
to the 2-point function these equations are linear. The other functions with one
Ni ≥ 3 are purely algebraic.

We make the following key observation: An affine transformation E 7→ ZE+C
together with a corresponding rescaling λ 7→ Z2λ leaves the algebraic equations
invariant:

Theorem 5 Given a real quartic matrix model with S = V tr(EΦ2 + λ
4
Φ4) and

m 7→ Em injective, which determines the set G|p1
1...p

1
N1
|...|pB1 ...pBNB |

of (N1+ . . .+NB)-

point functions. Assume that the basic functions with all Ni ≤ 2 are turned finite

by Ea 7→ Z(Ea + µ2

2
− µ2

bare

2
) and λ 7→ Z2λ. Then all functions with one Ni ≥ 3

1. are finite without further need of a renormalisation of λ, i.e. all renormal-
isable quartic matrix models have vanishing β-function,

2. are given by universal algebraic recursion formulae in terms of renormalised
basic functions with Ni ≤ 2.

The theorem tells us that vanishing of the β-function for the self-dual Φ4
4-model on

Moyal space (proved in [DGMR07] to all orders in perturbation theory) is generic
to all quartic matrix models, and the result even holds non-perturbatively!

3 Renormalisation and integral representation

We return to the Moyal-space regularisation (9) of the λφ4
4-model. We have

proved in sec. 2.2 that the unrenormalised 2-point function G|ab| satisfies the self-

consistency equation (21) for Em = Z
(
|m|√
V

+
µ2
bare

2

)
and λ 7→ Z2λ. Because of the

vanishing β-function (Theorem 5), there is no need to introduce a bare coupling
λbare. The matrix indices have ranges a, · · · ∈ I := N2

N , i.e. pairs of natural
numbers with certain cut-off. The index sum diverges for N2

N 7→ N2. As usual,
the renormalisation strategy consists in adjusting Z, µbare in such a way that the
limit N2

N 7→ N2 exists. This will be achieved by normalisation conditions for the

12



1PI function Γab defined by G|ab| =: (Hab − Γab)
−1, where Hab := Ea + Eb. We

express (21) in terms of Γab,

Γab = −λZ
2

V

∑
p∈N2

N

( 1

Hap − Γap
+

1

Hpb − Γpb
− 1

(Hpb − Γpb)

Γpb − Γab
Z√
V

(|p|−|a|)

)
, (23)

and write Γab as first-order Taylor formula with remainder Γrenab ,

Γab = Zµ2
bare − µ2 + (Z−1)√

V
(|a|+ |b|) + Γrenab , Γren00 = 0 , (∂Γren)00 = 0 .

Equation (23) for Γab
[
Γrenab , µ

2
bare, Z

]
together with Γren00 = 0 and (∂Γren)00 con-

stitute three equations to determine the three functions Γrenab , µ
2
bare, Z. Elimin-

ating µ2
bare, Z thus gives rise to a closed equation for the renormalised function

Γrenab alone. For this elimination it is important to note that the equations for
Γrenab , µ

2
bare, Z depend on a, b only via the norms |a|, |b| which parametrise the spec-

trum of E. Therefore, Γab is actually a function only of |a|, |b|, and consequently

the index sum reduces to
∑

p∈N2
N
f(|p|) =

∑N
|p|=0(|p|+1)f(|p|).

The equations (21) and hence (23) result from (19) in a scaling limit V →∞
and 1

V

∑N
|p|=0(|p|+1)f(|p|) finite for all f(|p|). The most natural way to achieve

this is to keep the ratio N√
V µ4

= Λ2(1+Y) fixed. Note that V =
(
θ
4

)2 → ∞ is a

limit of extreme noncommutativity! The new parameter (1+Y) corresponds to
a finite wavefunction renormalisation, identified later to decouple our equations.
The parameter Λ2 represents an ultraviolet cut-off which is sent to Λ→∞ in the

very end (continuum limit). In the scaling limit, functions of
|p|
√
V

=: µ2(1 + Y)p

converge to functions of ‘continuous matrix indices’ p ∈ [0,Λ2]. In the same
way, Γrenab converges to a function µ2Γab with a, b ∈ [0,Λ2], and the discrete sum
converges to a Riemann integral

1

V

N∑
|p|=0

(|p|+ 1)f
( |p|
√
V

)
−→ µ4(1 + Y)2

∫ Λ2

0

p dp f
(
µ2(1 + Y)p

)
.

Eliminating µbare and Z as described above we thus obtain a highly non-
linear equation for Γab. We found it convenient to express this equation in terms

of Gab :=
(
(a + b)(1+Y) + 1 − Γab

)−1
. Its non-linearity was for many years a

tremendous obstacle. Then a breakthrough resulted from a simple observation:
The difference of this equation for Gab to the equation for Ga0, for appropriate
choice of Y , is linear in the function a 7→ Dab := a

b
(Gab−Ga0). After elemination

of µbare, before elimination of Z, this difference equation reads

Z−1

(1 + Y)

( 1

Gab

− 1

Ga0

)
= b− λ

∫ Λ2

0

p dp

Gpb
Gab
− Gp0

Ga0

p− a
. (24)
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Differentiation d
db

∣∣
a=b=0

of (24) yields Z−1 in terms of Gab and its derivative. The

resulting derivativeG′ can be avoided by adjusting Y := −λ lim
b→0

∫ Λ2

0

dp
Gpb −Gp0

b
.

This choice leads to
Z−1

(1+Y)
= 1 − λ

∫ Λ2

0

dp Gp0, which is a perturbatively di-

vergent integral for Λ → ∞. Inserting Z−1 and Y back into (24) we end up in
a linear integral equation for the difference function Dab := a

b
(Gab −Ga0) to the

boundary. The non-linearity restricts to the boundary function Ga0 where the
second index is put to zero. Assuming a 7→ Gab Hölder-continuous, we can pass
to Cauchy principal values. In terms of the finite Hilbert transform

HΛ
a [f(•)] :=

1

π
lim
ε→0

(∫ a−ε

0

+

∫ Λ2

a+ε

)f(q) dq

q − a
, (25)

the integral equation becomes( b
a

+
1 + λπaHΛ

a

[
G•0
]

aGa0

)
Dab − λπHΛ

a

[
D•b
]

= −Ga0 . (26)

Equation (26) is a well-known singular integral equation of Carleman type
[Car22, Tri57]:

Theorem 6 ([Tri57], transformed from [−1, 1] to [0,Λ2]) The singular lin-
ear integral equation

h(a)y(a)− λπHΛ
a [y] = f(a) , a ∈ ]0,Λ2[ ,

is for h(a) continuous on ]0,Λ2[, Hölder-continuous near 0,Λ2, and f ∈ Lp for
some p > 1 (determined by ϑ(0) and ϑ(Λ2)) solved by

y(a) =
sin(ϑ(a))e−H

Λ
a [π−ϑ]

λπa

(
a f(a)eH

Λ
a [π−ϑ] cos(ϑ(a))

+HΛ
a

[
eH

Λ
• [π−ϑ] • f(•) sin(ϑ(•))

]
+ C

)
(27a)

∗
=

sin(ϑ(a))eH
Λ
a [ϑ]

λπ

(
f(a)e−H

Λ
a [ϑ] cos(ϑ(a))

+HΛ
a

[
e−H

Λ
• [ϑ]f(•) sin(ϑ(•))

]
+

C ′

Λ2 − a

)
, (27b)

where ϑ(a) = arctan
[0, π]

( λπ

h(a)

)
, sin(ϑ(a)) = |λπ|√

(h(a))2+(λπ)2
≥ 0 and C,C ′ are arbit-

rary constants.

The possibility of C,C ′ 6= 0 is due to the fact that the finite Hilbert transform
has a kernel, in contrast to the infinite Hilbert transform with integration over
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R. The two formulae (27a) and (27b) are formally equivalent, but the solutions
belong to different function classes and normalisation conditions may (and will)
make a choice.

A lengthy discussion [GW14c] shows that such a constant C,C ′ arises for
λ > 0 but not for λ < 0. The key step in this analysis is to regard the defining
equation for ϑ as a Carleman type singular integral equation for Ga0. This allows
to express Ga0 in terms of ϑ, and various identities in [Tri57] and trigonometric
addition theorems give the result:

Theorem 7 ([GW14c]) The matrix 2-point function Gab of the λφ?44 -model is
in infinite volume limit given in terms of the boundary 2-point function G0a by
the equation

Gab =
sin(τb(a))

|λ|πa
esign(λ)(HΛ

0 [τ0(•)]−HΛ
a [τb(•)])

{
1 for λ < 0 ,(

1+Ca+bF (b)
Λ2−a

)
for λ > 0 ,

(28)

τb(a) := arctan
[0, π]

(
|λ|πa

b+ 1+λπaHΛ
a [G0•]

G0a

)
, (29)

where C is a undetermined constant and b F (b) an undetermined function of b
vanishing at b = 0.

Some remarks:

• We proved this theorem in 2012 for λ > 0 under the assumption C ′ = 0 in
(27b), but knew that non-trivial solutions of the homogeneous Carleman
equation parametrised by C ′ 6= 0 are possible. That no such term arises for
λ < 0 (if angles are redefined ϑ 7→ τ) is a recent result [GW14b, GW14c].

• Strictly speaking, we have G•0, Ga0 and not G0•, G0a on the rhs of (29),
i.e. Gab is expressed in terms of Ga0 and not the other boundary G0b. The
modification is justified by the required symmetry Gab = Gba of the 2-point
function.

• We expect C,F to be Λ-dependent so that
(
1+Ca+bF (b)

Λ2−a

) Λ→∞−→ 1+C̃a+bF̃ (b).

• An important observation is Gab ≥ 0, at least for λ < 0. This is a truly
non-perturbative result; individual Feynman graphs show no positivity at
all!

• As in [GW09], the equation for Gab can be solved perturbatively. This
reproduces exactly [GW14a] the Feynman graph calculation! Matching at
λ = 0 requires C,F to be flat functions of λ (all derivatives vanish at zero).

Because ofHΛ
a [G•0]

a→Λ2

−→ −∞, the näıve arctan series is dangerous for λ > 0.
Unless there are cancellations, we expect zero radius of convergence!
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• From (28) we deduce the finite wavefunction renormalisation

Y := −1− dGab

db

∣∣∣
a=b=0

=

∫ Λ2

0

dp

(λπp)2 +
(1+λπpHΛ

p [G•0]

Gp0

)2
−
{

0 for λ < 0 ,
F (0) for λ > 0 .

(30)

• The partition function Z is undefined for λ < 0. But the Schwinger-Dyson
equations for Gab and for higher functions, and with them logZ, extend
to λ < 0. These extensions are unique but probably not analytic in a
neighbourhood of λ = 0.

It remains to identify the boundary function, which strictly speaking is Ga0.
It is determined from the equation we had subtracted in order to get (24). The
equation involves subtle cancellations which so far we did not succeed to control.
As substitute we use a symmetry argument, already prepared in the replacement
G•0 7→ G0• in (29). Given the boundary function G0b, the Carleman theory
computes the full 2-point function Gab via (28). In particular, we get Ga0 as
function of G0b. But the 2-point function is symmetric, Gab = Gba, and the
special case a = 0 leads to the following self-consistency equation:

Proposition 8 The limit θ →∞ of λφ4
4-theory on Moyal space is determined by

the solution of the fixed point equation G = TG,

Gb0 =

{
1 for λ<0

1+bF (b) for λ>0

}
1+b

exp

(
−λ
∫ b

0

dt

∫ Λ2

0

dp

(λπp)2 +
(
t+

1+λπpHΛ
p [G•0]

Gp0

)2

)
. (31)

At this point we can eventually send Λ → ∞. Any solution of (31) is automat-
ically smooth and (for λ > 0 but F = 0) monotonously decreasing. Any solution
of the true equation (23) (without the difference to b = 0) also solves the master
equation (31), but not necessarily conversely. In case of a unique solution of (31),
it is enough to check one candidate.

Existence of a solution of (31) is established (for λ > 0 but F (b) = 0) by the
Schauder fixed point theorem [GW14a]. For λ < 0 we know that G0b = 1 is an
exact solution for Λ→∞ [GW14d].

This solution provides Gab via (28) and all higher correlation functions via
the universal algebraic recursion formulae (22), or via the linear equations for
the basic (N1+ . . .+NB)-point functions [GW14a]. The recursion formula (22)
becomes after transition to continuous matrix indices

Gb0...bN−1
=

(−λ)

(1 + Y)2

N−2
2∑
l=1

Gb0b1...b2l−1
Gb2lb2l+1...bN−1

−Gb2lb1...b2l−1
Gb0b2l+1...bN−1

(b0 − b2l)(b1 − bN−1)
.

(32)

It involves the finite wavefunction renormalisation 1 +Y = −dGab
db

∣∣
a=b=0

given by
(30).
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4 Schwinger functions and reflection positivity

4.1 Schwinger functions

In the previous section we have constructed the connected matrix correlation
functions G|q1

1...q
1
N1
|...|qB1 ...qBNB |

of the (θ→∞)-limit of λφ4
4-theory on Moyal space.

These functions arise from the topological expansion (14) of the free energy

log
Z[J ]

Z[0]
=
∞∑
B=1

∞∑
1≤N1≤···≤NB

(V µ4)2−B

SN1...NB

∑
qβi ∈N2

G|q1
1...q

1
N1
|...|qB1 ...qBNB |

B∏
β=1

1

Nβ

(Jqβ1 qβ2
µ3
· · ·
JqβNβ q

β
1

µ3

)
.

(33)

Our goal is to revert the introduction of the matrix basis (5) to obtain
Schwinger functions [Sch59] in position space,〈
φ(µx1) . . . φ(µxN)

〉
≡

∑
m1,n1,...,mN ,nN∈N2

fm1m2(µx1) · · · fmNmN (µxN)
〈
Φm1n1 . . .ΦmNnN

〉
.

Here the matrix correlation functions
〈
Φm1n1 . . .ΦmNnN

〉
are obtained by deriv-

atives of 1
volume

times (33) with respect to Jm1n1 , . . . , JmNnN , and we absorbed all
mass dimensions into µ to work with densities which admit the limit V µ4 →∞.

Definition 9 The connected Schwinger functions associated with the regularised
action (4) are

µNSc(µx1, . . . , µxN)

:= lim
V µ4→∞

∑
m1,n1,...,mN ,nN∈N2

N

fm1n1(µx1) · · · fmNnN (µxN)
µ4N∂NF [J ]

∂Jm1n1 . . .∂JmNnN

∣∣∣∣
J=0

, (34)

F [J ] :=
1

64π2V 2µ8
log

(∫
D[Φ] e

−S[Φ]+V
∑
a,b∈N2

N
ΦabJba∫

D[Φ] e−S[Φ]

)
Zµ2

bare
7→µ2

Z 7→(1+Y)

,

where S[Φ] is given by (9) and fmn by (5). By ( )Zµ2
bare

7→µ2

Z 7→(1+Y)

we symbolise the

renormalisation of sec. 3 including the matrix cut-off N =
√
V µ4(1 + Y)Λ2

coupled to the volume. A final limit Λ→∞ is understood.

The (at first sight surprising) squared volume factor 1
(V µ4)2 has its origin in

the spectral geometry of the Moyal plane with harmonic propagation [GW13a,
GW12]. Note that the J-derivatives, and hence the Schwinger functions, are
fully symmetric in µx1, . . . , µxN . Applying the J-derivatives to the topological
expansion (33) into J-cycles produces an fmn-cycle for each of the B boundary
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components:

Sc(µx1, . . ., µxN) = lim
V µ4→∞

1

64π2

∑
N1+···+NB=N

∑
qβi ∈N2

G|q1
1...q

1
N1
|...|qB1 ...qBNB |

×
∑
σ∈SN

B∏
β=1

fq1q2(µxσ(N1+...+Nβ−1+1))· · ·fqNβ q1(µxσ(N1+...+Nβ))

V µ4Nβ

.

The summation over qβi ∈ N2 is performed by Laplace-Fourier transform of G
and use of the following summation of Laguerre polynomials arising via (5):

∞∑
q1,...,qN′=0

N ′∏
j=1

z
qj
j L

qj+1−qj
qj

(rj) =

exp

(
−
∑N ′

j,k=1 rjzk+j · · · zN ′+j
1− z1 · · · zN ′

)
1− z1 · · · zN ′

, |zi| < 1 . (35)

We refer to [GW13b, GW14b] for details. The final result is:

Theorem 10 The connected N-point Schwinger functions of the λφ4
4-model on

extreme Moyal space θ →∞ are given by

Sc(µx1, . . . , µxN)

=
1

64π2

∑
N1+...+NB=N

Nβ even

∑
σ∈SN

( B∏
β=1

4Nβ

Nβ

∫
R4

dpβ
4π2µ4

e
i
〈
pβ
µ
,
∑Nβ
i=1(−1)i−1µxσ(N1+...+Nβ−1+i)

〉)

×G ‖p1‖2
2µ2(1+Y)

, · · · , ‖p1‖2
2µ2(1+Y)︸ ︷︷ ︸

N1

∣∣...∣∣ ‖pB‖2
2µ2(1+Y)

, · · · , ‖pB‖2
2µ2(1+Y)︸ ︷︷ ︸

NB

. (36)

Some comments:

• Only a restricted sector of the underlying matrix model contributes to po-
sition space: All strands of the same boundary component carry the same
matrix index.

• Schwinger functions are symmetric and invariant under the full Euclidean
group. This comes truly surprising since θ 6= 0 breaks both translation
invariance and manifest rotation invariance. The limit θ →∞ was expected
to make this symmetry violation even worse!

• The most interesting sector is the case where every boundary compon-
ent has Nβ = 2 indices. It is described by the (2+ . . .+2)-point func-
tions G ‖p1‖2

2µ2(1+Y)

‖p1‖2
2µ2(1+Y)

∣∣...∣∣ ‖pB‖2
2µ2(1+Y)

‖pB‖2

2µ2(1+Y)

. The corresponding matrix functions

Ga1a1|...|aBaB satisfy more complicated singular (but linear!) integral equa-
tions. The solution techniques of the Carleman problem can be used in a
first step to regularise these equations to linear integral equations of Fred-
holm type. These have always a unique solution for |λ| small enough.
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• This (2+ . . .+2)-sector describes the propagation and interaction of B (at
the moment Euclidean) particles without any momentum exchange. In two
dimensions, this is familiar from quantum field theories with factorising
S-matrix [Iag78, ZZ79]. Ideally, our Schwinger functions describe a four-
dimensional analogue of this mechanism. This would be far away from a
realistic physical model, but also far outside the scope of any other four-
dimensional quantum field theory we know of.

• We are aware of the problem that the absence of momentum transfer in four
dimensions is a sign of triviality. Typical triviality proofs rely on clustering,
analyticity in Mandelstam representation or absence of bound states. All
this needs verification.

• It is already clear that clustering is maximally violated. There is always a
permutation σ in (36) for which the contribution S

(σ)
c (µx1, . . . , µxN) to the

Schwinger function has individual Euclidean invariance in the arguments
x1, . . . , µx2l and x2l+1, . . . , µxN .

• That the θ → ∞ limit is so close to an ordinary field theory expected for
θ → 0 can be seen from the following observation: The interaction term in
momentum space

λ

4

∫
(R4)4

( 4∏
i=1

dpi
(2π)4

)
δ(p1 + · · ·+ p4) exp

(
i
∑
i<j

〈pi,Θpj〉
) 4∏

i=1

φ̂(pi)

leads to the Feynman rule λ exp
(
i
∑

i<j〈pi,Θpj〉
)
, plus momentum con-

servation. For θ → ∞, this converges to zero almost everywhere by the
Riemann-Lebesgue lemma, unless pi, pj are linearly dependent. This case
of linearly dependent momenta might be protected for topological reasons,
and these are precisely the boundary components B > 1 which guarantee
full Lebesgue measure!

4.2 Osterwalder-Schrader axioms

Under conditions identified by Osterwalder-Schrader [OS73, OS75], Schwinger
functions [Sch59] of a Eulidean quantum field theory permit an analytical con-
tinuation to Wightman functions [Wig56, SW64] of a true relativistic quantum
field theory. In simplified terms, the reconstruction theorem of Osterwalder-
Schrader for a field theory on RD says:

Theorem 11 ([OS73, OS75]) Assume the Schwinger functions S(x1, . . . , xN)
satisfy

(OS0) growth conditions,

(OS1) Euclidean invariance,

19



(OS2) reflection positivity1,

(OS3) permutation symmetry.

Then the S(ξ1, . . . ξN−1)
∣∣
ξ0
i>0

, with ξi = xi−xi+1, are Laplace-Fourier transforms

of Wightman functions in a relativistic quantum field theory. If in addition the
S(x1, . . . , xN) satisfy

(OS4) clustering

then the Wightman functions satisfy clustering, too.

The Schwinger functions (36) clearly satisfy (OS1)+(OS3). Clustering (OS4)
is not realised. Bounds on Sc(µx1, . . . , µxN) for large N follow from bounds on
(32) at coinciding indices, i.e. from bounds on derivatives of the 2-point function.

In [GW14c] we have derived integral formulae for ∂n+`Gab
∂an ∂b`

. These are lengthy so
that we will not reproduce them in full generality; only the special case n = 0
should be mentioned:

∂` logGab

∂b`

∣∣∣
`≥1

= (−1)`(`−1)! sign(λ)HΛ
a

[
sin
(
`τb(•)

)(sin τb(•)
|λ|π•

)`]
+ (−1)`(`−1)! cos

(
`τb(a)

)(sin τb(a)

|λ|πa

)`
. (37)

These formulae give |∂n+`Gab
∂an ∂b`

| ≤ n!`!Cn` where Cn` involves combinatorial numbers
and bounds of Hilbert transforms. This makes it plausible, although still to prove,
that Cn` is bounded by a polynomial in n!, `!, which would suffice to establish
(OS0).

Thus the remaining problem is (OS2) reflection positivity. Representation as
Laplace transform in ξ0 requires analyticity in Re(ξ0) > 0. For the Schwinger
2-point function (36), such analyticity in ξ0 is a corollary of analyticity of the
function a 7→ Gaa in C \ ]−∞, 0]. We will show that analyticity and reflection
positivity boil down to Stieltjes functions, i.e. functions f : R+ → R which have
a representation as a Stieltjes transform (see [Wid38])

f(x) = c+

∫ ∞
0

d(ρ(t))

x+ t
, c = f(∞) ≥ 0 , (38)

where ρ is non-negative and non-decreasing. We prove:

Proposition 12 The Schwinger function Sc(µξ) =

∫
R4

dp

(2πµ)4
eipξG ‖p‖2

2µ2(1+Y)

‖p‖2
2µ2(1+Y)

identified in (36) is the analytic continuation of a Wightman 2-point function if
and only if a 7→ Gaa is Stieltjes.

1For each assignment N 7→ fN ∈ SN of test functions, one has∑
M,N

∫
dx dy S(x1, . . . , xN , y1, . . . , yM )fN (xr1, . . . , x

r
N )fM (y1, . . . , yM ) ≥ 0 ,

where (x0, x1, . . . xD−1)r := (−x0, x1, . . . xD−1)
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Proof. This is verified by explicit calculation. If a 7→ Gaa is Stieltjes, we have in
terms of ω~p(t) :=

√
~p2 + 2µ2(1 + Y)t

Sc(µξ)
∣∣
ξ0>0

= 2µ(1+Y)

∫
R3

d~p ei~p·~ξ

(2πµ)3

∫ ∞
0

dρ(t)

2ω~p(t)

∫ ∞
−∞

dp0

2πi

( eip0ξ0

p0−iω~p(t)
− eip0ξ0

p0+iω~p(t)

)
= 2µ(1+Y)

∫ ∞
0

dρ(t)

2ω~p(t)

∫
R3

d~p e−ξ
0ω~p(t)+i~p·~ξ

(2πµ)3

=

∫ ∞
0

2(1 + Y) dρ(t)

µ4

∫ ∞
0

dq0

∫
R3

d~q Ŵt(q)e
−q0ξ0+i~q·~ξ , (39)

Ŵt(q) :=
θ(q0)

(2π)3
δ
((q0)2 − ~q2 − 2µ2(1+Y)t

µ2

)
.

The step from the first to second line is the residue theorem. We observe that
Ŵt(q) is precisely the Källén-Lehmann spectral representation [Käl52, Leh54] of
a Wightman 2-point function. �

Stieltjes functions form an important subclass of the class C of completely
monotonic functions. We refer to [Ber08] for an overview about completely
monotonic functions and their relations to other important classes of functions.
The class C characterises the positive definite functions on R+, i.e. for any
x1, . . . , xn ≥ 0 the matrix aij = f(xi+xj), with f ∈ C, is positive (semi-)definite.
A function f : R+ → R is positive definite, bounded and continuous if and only

if it is the Laplace transform of a positive finite measure, f(x) =

∫ ∞
0

e−xtdµ(t).

This representation provides a unique analytic continuation of such functions to
the half space Re(z) > 0. Remarkably, such analyticity is a consequence of the
purely real conditions (−1)nf (n)(x) ≥ 0 for all n ∈ N and x > 0.

The Stieltjes integral (38) provides a unique analytic continuation of a Stieltjes
function to the cut plane C \ ]−∞, 0[. Remarkably again, this analyticity can be
tested by purely real conditions identified by Widder [Wid38]: A smooth non-
negative function f on R+ is Stieltjes iff Ln,t[f(•)] ≥ 0 for all n ∈ N and t ∈ R+,
where L0,t[f(•)] = f(t), L1,t[f(•)] = d

dt

(
tf(t)

)
and

Ln,t[f(•)] :=
(−t)n−1

n!(n− 2)!

d2n−1

dt2n−1

(
tnf(t)

)
, n ≥ 2 . (40)

If Widder’s criterion is satisfied, the sequence {Ln,t[f(•)]} converges for n→∞
in distributional sense and almost everywhere to the measure function of the

Stieltjes transform,

∫ T

0

dt ρ′(t) = lim
n→∞

∫ T

0

dt Ln,t[f(•)].

5 Computer simulations [GW14c]

A first hint about reflection positivity can be obtained from a numerical solution
of the fixed point equation (31), assuming F (b) ≡ 0 (which is the case for λ < 0).
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Figure 1: 1+Y := −dG0b

db

∣∣
b=0

as function of λ, based on G0b computed for Λ2=107

with L = 2000 sample points.

This was done in [GW14c] using MathematicaTM . The idea is to approximate
G0b as a piecewise linear function on [0,Λ2] sampled according to a geometric
progression and view (31) as iteration Gi+1

0b = (TGi)0b for some initial function
G0. We confirmed the convergence of this iteration in Lipschitz norm for any
λ ∈ R. It turned out that the required symmetry Gab = Gba does not hold for
λ > 0, which is a clear hint that F (b) 6= 0 for λ > 0. For λ < 0 everything is
consistent within small numerical errors. This allows us to compute for λ < 0 all
quantities of the model with sufficient precision.

We find clear evidence for a second-order phase transition at λc ≈ −0.39,
which is a common critical value in several independent problems. The first one
is the derivative 1 + Y := −dG0b

db

∣∣
b=0

, viewed as function of λ (fig. 1). In good

approximation we find a critical behaviour 1 + Y =

{
A(λ− λc)α for λ ≥ λc

0 for λ < λc
for some A,α > 0. Of course, there cannot be a discontinuity in (1 + Y)′(λ)
for finite Λ, but we have numerical evidence for a critical behaviour in the limit
Λ2 →∞. More precisely, for λ < λc we have G0b = 1 in a whole neighbourhood
of b = 0, i.e. the exact but unstable solution G0b = 1 for Λ → ∞ [GW14d]
becomes locally stable. The end point bλ := sup{b : G0b = 1} serves as an order
parameter: bλ = 0 in the phase λ > λc and bλ > 0 in the phase λ < λc. Because
of 1 + Y = 0 for λ < λc, all higher correlation functions (32) become singular in
that phase. Another phase transition occurs at λ = 0. It is not visible in G0b but
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Figure 2: The critical indices
nL:= min{n : (−1)n d

n(logG0b)
dbn

< 0}
where logarithmically complete
monotonicity of the discretised
function G0b fails, as function of
λ and of the number L of sample
points. The cut-off is Λ2 = 107.

in the full 2-point function Gab. As mentioned before, the symmetry Gab = Gba

is violated for λ > 0. This means that the ‘good’ phase is λc < λ ≤ 0.
Of paramount importance is the question whether or not a 7→ Gaa is a Stieltjes

function. We cannot expect a definite answer from a numerical simulation be-
cause a discrete approximation, here a piecewise linear function, cannot be ana-
lytic. This means that the criteria (−1)n d

nGaa
dan

≥ 0 of complete monotonicity
and Ln,a[G••] ≥ 0 of Stieltjes property must fail for some n. But refining the
approximation, i.e. increasing the number L of sample points, the failure should
occur at larger n, with no failure in the limit. This is precisely what we observe.

The cleanest results are obtained for the boundary function G0b. Fig. 2 shows
the failure nL of complete monotonicity of logG0b (see also [Ber08]) as function of
λ for several resolutions L. We notice that nL increases with L, but this increase
slows down for larger |λ| and stops at precisely the same value λc ≈ −0.39 that
located the discontinuity in fig. 1!

We are mainly interested in the diagonal 2-point function Gaa. Here the
results are less clean because multiple a-differentiation of (28) produces many
terms and thus amplified numerical errors. But the tendency is exactly the same:
We prove in [GW14c] that Widder’s criterion Ln,a[G••] ≥ 0 for Stieltjes functions

• is clearly violated for λ < λc ≈ −0.39; the failure is at n = 2 for all
λ < −0.42 and increases to n = 5 slightly below λc,

• fails in the phase λc < λ ≤ 0 for the discretised function Gaa, but the
order nS of failure shows qualitatively the same dependence on λ and the
discretisation L as in fig. 2,

• is manifestly violated for any λ > 0 with already L1,a[G••] < 0 for a large
enough.
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Figure 3: Widder’s operations Ln,t[G••] for the discretised function Gaa at λ =
−0.366, for resolutions L = 2000 (left) and L = 10000 (right). There is a
significant increase of the failure index nS with L.

Fig. 3 demonstrates the improvement of Ln,t[G••] for λ = −0.366 for larger res-
olution L. There is clear evidence for

• positivity of Ln,a[G••],

• convergence limn→∞ Ln,t[G••] to the derivative ρ′(t) of the Stieltjes measure,

• a mass gap ρ(t) = 0 for 0 ≤ t <
m2

0

µ2 ,

• absence of a further mass gap, i.e. scattering right away from m2
0 and not

only from the two-particle threshold on.

In summary we have clear evidence, albeit no proof, of reflection positivity of
the Schwinger 2-point function Sc(µx1, µx2) precisely in the phase λc < λ ≤ 0.

6 Summary and outlook

We have introduced a Moyal-space regularisation of the Euclidean λφ4
4-model and

showed that an unconventional limit θ →∞, which does not give back the original
λφ4

4, leads to complete integrability in four dimensions. To our great surprise, the
resulting Schwinger functions on R4 satisfy the easy Osterwalder-Schrader axioms
boundedness, invariance and symmetry. A numerical investigation discovered an
intriguing phase structure with second-order phase transition at λc ≈ −0.39
and perfectly nice behaviour in the phase λc < λ ≤ 0. In particular, we have
overwhelming evidence for reflection positivity of the Schwinger 2-point function
precisely in the good phase.

Suppose these miracles continue and all Osterwalder-Schrader axioms (ex-
cept for clustering) hold for the family (36) of Schwinger functions. Then the
Osterwalder-Schrader theorem [OS75] reconstructs Wightman functions of a re-
lativistic quantum field theory [Wig56, SW64] in four dimensions. This theory
is somewhat strange as ‘particles’ keep their momenta in interaction processes.
Such behaviour is close to triviality. In two dimensions there is the possiblity
of factorised S-matrix [Iag78, ZZ79] which is related to integrability [Kul76]. It
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would be highly interesting to investigate whether our exotic limit θ → ∞ viol-
ates the assumptions of those theorems which forbid 4D factorised S-matrices.
The possibility of a non-trivial quantum field theory in four dimensions is enough
motivation to proceed our work.
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