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Abstract

Over many years we developed the construction of the φ4-model on four-
dimensional Moyal space. The solution of the related matrix model
Z[E, J ] =

∫
dΦexp(tr(JΦ−EΦ2− λ

4
Φ4)) is given in terms of the solution

of a non-linear equation for the 2-point function and the eigenvalues of E.
The resulting Schwinger functions in position space are symmetric and
invariant under the full Euclidean group. Locality is fulfilled. Numerical
checks indicate that the Schwinger 2-point function is reflection positive.
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1 Introduction

Professor Zeidler supported and influenced our common work over many years:
During the one-semester stay in 2000/2001 of one of us (HG) we enjoyed the
friendly hospitality at MPI Leipzig. On the other hand, from 2002 to 2005 (RW)
was post-doc at the MPI. During this time we achieved the perturbative renor-
malisation proof of the noncommutative φ4

4-model. Prof. Zeidler was constantly
interested in the progress of this work, financed our mutual visits in Leipzig and
Vienna and, most importantly, introduced Vincent Rivasseau to RW in December
2003. This changed life of all three of us. Vincent jumped to the subject and
pushed it enormously, together with his group. They extended the vanishing of
the beta-function to all orders in pertubation theory and led us to develop the
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nonperturbative solution after 2009. On the first version of these equations we
had an intense exchange with Prof. Zeidler in 2011. These discussions inspired
our reduction of the equations to a fixed point problem in 2012. In a contribution
to a special volume dedicated to Prof. Zeidler’s 75th birthday we were able to
prove existence of a solution. We remember the long phone conversation with
Prof. Zeidler about this fixed point problem.

In this contribution we summarise the main developments in our programme since
2002, referring to [GW05a, GW05b, GW05c, GW04, GW09, GW14a, GW13,
GW14b, GW16]. Originally intended as renormalisation of the noncommutative
φ4
4-model, our work turned into a programme to exactly solve quantum field

theory toy models:

1. In December 1999, Minwalla, van Raamsdonk and Seiberg pointed out
[MVS00] that Feynman graphs for scalar fields on noncommutative R4 show
a novel type of singularity (termed UV/IR-mixing) which prevented renor-
malisation. This came as big surprise, and for several years no solution
was found. Eventually, combining the Wilson-Polchinski programme for
noncommutative φ4-theory with the harmonic oscillator base of the Moyal
plane (which avoids the phase factors appearing in momentum space) we
solved in a series of papers [GW05a, GW05b, GW05c] the renormalisation
problem. Thereby we achieved the remarkable balance of proving renorma-
lisability of the φ4-model to all orders and reconfirming the UV/IR-duality
of [MVS00]. The main steps are given in section 2.

2. Soon after the renormalisation proof we showed that the running coupling
constant has bounded flow to one-loop order. See [GW04], reviewed in sec-
tion 3. This result led to a close collaboration with Vincent Rivasseau and
his group. He emphasised that it should be possible to construct this model
non-perturbatively! They established the foundation by proving that at, a
special self-duality point, the β-function vanishes to all orders [DGMR07].
We understood that their method goes beyond the β-function and used it to
derive a closed non-perturbative equation for the 2-point function [GW09]
(which we intensely discussed with Prof. Zeidler).

3. In [GW14a] we gave a rigorous derivation of these equations. As reviewed
in section 4, Ward identities for the U(∞) group action lead to an exact
solution of the quartic matrix model in terms of the solution of a non-linear
equation. As by-product we find that any renormalisable quartic matrix
model has vanishing β-function.

4. Self-dual φ4
4-theory on Moyal space [GW05b, GW05c] is of that type. We

give a summary of the proof in section 4.3. The non-perturbative solution
leads, for extreme noncommutativity θ → ∞, and after careful discussion of
thermodynamic and continuum limit, to a non-linear fixed point equation
[GW14a], for which a non-perturbative and non-trivial solution exists for
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λ < 0 [GW16]. The key step is the observation that a certain difference
function satisfies a linear singular integral equation of Carleman type.

5. Following [GW13], we identify in section 5 a limit to Schwinger functions
for a scalar field on R4. Surprisingly for a highly noncommutative model,
these Schwinger functions show full Euclidean symmetry. Otherwise they
have unusual properties such as absent momentum transfer in interaction
processes. This seems to suggest triviality, but the numerical investigation
[GW14b] of the 2-point function shows scattering remnants from a non-
commutative geometrical substructure. Most surprisingly, the Schwinger
2-point function seems to be reflection positive in one of its phases.

2 Renormalisation of noncommutative φ4-theory to all or-

ders

The renormalised φ4-model corresponds to the classical action

S =

∫

d4x
(1

2
∂µφ ⋆ ∂µφ+

Ω2

2
(x̃µφ) ⋆ (x̃

µφ) +
µ2

2
φ ⋆ φ+

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) ,

(1)

with x̃µ := 2(θ−1)µν x
ν and the star product is defined by [GV88, GGISV03]:

(a ⋆ b)(x) =

∫
dDy dDk

(2π)D
a(x+1

2
Θ·k)b(x+y) eiky . (2)

The appearance of the harmonic oscillator term Ω2

2
(x̃µφ) ⋆ (x̃µφ) in the action

(1) is a result of the renormalisation proof, as sketched below. It also permits a
transformation

S
[
φ;µ0, λ,Ω

]
7→ Ω2S

[
φ;

µ0

Ω
,
λ

Ω2
,
1

Ω

]
. (3)

under Langmann-Szabo duality [LS02].
Relativistic quantum field theories on noncommutative Minkowski space are much
more difficult [BDFP02]. Here the UV/IR-mixing problem occurs in different
types of graphs [Bah10].

2.1 The φ4-action in the matrix base

We assume for simplicity that θ12 = −θ21 = θ34 = −θ43 are the only non-vanishing
components. A key step is expansion of the fields in the harmonic oscillator base
[GV88] which in two dimensions reads

fmn(z) = 2(−1)m
√

m!
n!

(√
2
θ
z
)n−m

Ln−m
m

(
2|z|2
θ

)

e−
|z|
θ (4)
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with z ∈ C ≡ R2. Collecting them to fmn(x1, . . . , x4) = fm1n1(x1+ix2)fm2n2(x3+

ix4) where m = m1

m2 , these functions satisfy (fmn ⋆ fkl)(x) = δnkfml(x) and
∫

R4 dx fmn(x) = (2πθ)2δmn. Working out the action of Laplace operator and
multiplication by x on fmn and expanding φ(x) =

∑

m,nΦmnfmn(x), the action
(1) takes the form

S[φ] ≡ S[Φ] = (2πθ)2
∑

m,n,k,l∈N2

(1

2
Φmn∆mn;kΦk +

λ

4
ΦmnΦnkΦklΦlm

)

, (5)

∆m1

m2
n1

n2 ;
k1

k2
l1

l2
=
(
µ2+2+2Ω2

θ
(m1+n1+m2+n2+2)

)
δn1k1δm1l1δn2k2δm2l2

− 2−2Ω2

θ

(√
k1l1 δn1+1,k1δm1+1,l1+

√
m1n1 δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

− 2−2Ω2

θ

(√
k2l2 δn2+1,k2δm2+1,l2+

√
m2n2 δn2−1,k2δm2−1,l2

)
δn1k1δm1l1 .

(6)

The quantum field theory is constructed as a perturbative expansion about the
free theory, which is solved by the propagator Gmn;kl, the inverse of ∆mn;kl. After
diagonalisation of ∆mn;kl (which leads to orthogonal Meixner polynomials) and
the use of identities for hypergeometric functions one arrives at

Gm1

m2
n1

n2 ;
k1

k2
l1

l2
=

θ

2(1+Ω)2
δm1+k1,n1+l1δm2+k2,n2+l2

×
m1+l1

2∑

v1=
|m1−l1|

2

m2+l2

2∑

v2=
|m2−l2|

2

B
(
1+µ2θ

8Ω
+1

2
(m1+k1+m2+k2)−v1−v2, 1+2v1+2v2

)

× 2F1

(
1+2v1+2v2 , µ2θ

8Ω
− 1

2
(m1+k1+m2+k2)+v1+v2

2+µ2θ

8Ω
+1

2
(m1+k1+m2+k2)+v1+v2

∣
∣
∣
∣

(1−Ω)2

(1+Ω)2

)(1−Ω

1+Ω

)2v1+2v2

×
2∏

i=1

√
(

ni

vi+ni−ki

2

)(
ki

vi+ki−ni

2

)(
mi

vi+mi−li

2

)(
li

vi+ li−mi

2

)

. (7)

It is important that the sums in (7) are finite.

2.2 Renormalisation group approach to dynamical matrix models

The (Euclidean) quantum field theory is defined by the partition function

Z[J ] =

∫

D[φ] exp
(

− S[Φ]− (2πθ)2
∑

m,n

ΦmnJnm

)

. (8)

The idea inspired by Polchinski’s renormalisation proof of commutative φ4-theory
is to change the weights of the matrix indices in the kinetic part of S[Φ] as
a smooth function of an energy scale Λ and to compensate this by a careful
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adaptation of the effective action L[Φ,Λ] such that Z[J ] becomes independent
of the scale Λ. If the modification of the weights of a matrix index m ∈ N is
described by a function K

(
m
θΛ2

)
, then the required Λ-dependence of the effective

action is given by the matrix Polchinski equation

Λ
∂L[Φ,Λ]

∂Λ
=
∑

mn,kl

1

2

(
2πθQnm;lk(Λ)

)(∂L[Φ,Λ]

∂Φmn

∂L[Φ,Λ]

∂Φkl

− 1

(2πθ)2
∂2L[Φ,Λ]

∂Φmn ∂Φkl

)

,

(9)

where

2πθQnm;lk(Λ) := Λ
∂

∂Λ

(
∏

i∈m1,m2,...,l1,l2

K
( i

θΛ2

)

Gnm;lk(Λ)

)

. (10)

In this section we look for a perturbative solution of the matrix Polchinski equa-
tion (9). In terms of the expansion coefficients

L[Φ,Λ] =
∞∑

V=1

λV

2V+2∑

N=2

(2πθ)
N
2
−2

N !

∑

mi,ni∈N2

A(V )
m1n1;...;mNnN

[Λ]Φm1n1 · · ·φmNnN
(11)

of the effective action, the matrix Polchinski equation (9) is represented by ribbon
graphs (we suppress n 7→ n in ribbon graphs):

Λ
∂

∂Λ
_^]\XYZ[ oo

//

�� ??

__��

..
.

.

.

.

.

.

..

.

.

.

.

.

. .
.

n1

m1

n2
m2

mN

nN

=
1

2

∑

m,n,k,l

N−1∑

N1=1

_^]\XYZ[ _^]\XYZ[oo
//

�� __ �� ??

aa!!??��

:::::::: : : ::::::::
m1

n1

nN1

mN1

mN1+1

nN1+1

nNmN

k

l

n

m
− 1

4πθ

∑

m,n,k,l

_^]\XYZ[��

RR

�� __ �� ??

aa!!??��

:::::::: : :::::::::
m1

n1

ni−1

mi−1

mi

ni

nN
mN

n m

k l

(12)

An internal double line
oo

//
n

lm

k

symbolises the propagator Qmn;kl(Λ). In this way,

very complicated ribbon graphs can be produced which cannot be drawn any
more in a plane. A ribbon graph represents a simplicial complex for a Riemann
surface and thus defines the topology of the Riemann surface on which it can be
drawn. The Riemann surface is characterised by its genus g computable via the
Euler characteristic of the graph, g = 1 − 1

2
(L − I + V ), and the number B of

holes. Here, L is the number of single-line loops if we close the external lines
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of the graph, I is the number of double-line propagators and V the number of
vertices. The number B of holes coincides with the number of single-line cycles
which carry external legs. Accordingly, we also label the expansion coefficients
in (11) by the topology, A

(V,B,g)
m1n1;...;mNnN .

We have proven in [GW05a] a power-counting estimation for these coefficients
which relates the Λ-scaling of a ribbon graph to the topology of the graph and
to two asymptotic scaling dimensions of the differentiated cut-off propagator
Qmn;kl(Λ). As a result, if these scaling dimensions coincide with the classical
momentum space dimensions, then all non-planar graphs are suppressed by the
renormalisation flow. This is a necessary requirement for the renormalisability of
a model. On the other hand, as the expansion coefficients A

(V )
m1n1;...;mNnN [Λ] carry

an infinite number of matrix indices, the general power-counting estimation pro-
ven in [GW05a] leaves, a priory, an infinite number of divergent planar graphs.
These planar graphs require a separate analysis.

2.3 Power-counting behaviour of the noncommutative φ4-model

The key is the integration procedure of the Polchinski equation (12), which in-
volves the entire magic of renormalisation. We consider the example of the planar
one-particle irreducible four-point function with two vertices, A

(2,1,0)1PI
m1n1;...;m4n4. The

Polchinski equation (12) provides the Λ-derivative of that function:

Λ
∂

∂Λ
A

(2,1,0)1PI
mn;nk;kl;lm[Λ] =

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p



 (Λ) + permutations .

(13)

Performing the Λ-integration of (13) from some initial scale Λ0 (sent to ∞ at the

end) down to Λ, we obtain A
(2,1,0)1PI
mn;nk;kl;lm[Λ] ∼ log Λ0

Λ
, which diverges for Λ0 → ∞.

Renormalisation can be understood as the change of the boundary condition for
the integration. Thus, integrating (13) from a renormalisation scale ΛR up to Λ,

we have A
(2,1,0)1PI
mn;nk;kl;lm[Λ] ∼ log Λ

ΛR
, and there would be no problem for Λ0 → ∞.

However, since there is an infinite number of matrix indices and there is no
symmetry which could relate the amplitudes, that integration procedure entails
an infinite number of initial conditions A

(2,1,0)1PI
mn;nk;kl;lm[ΛR]. To have a renormalisable

model, we can only afford a finite number of integrations from ΛR up to Λ. Thus,
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the correct choice is

A
(2,1,0)1PI
mn;nk;kl;lm[Λ]

= −
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

n n

l l
0 0

0 0

p p



[Λ′]

+
�� ?? �� __

??��__��
m

m
k

k

n n

l l 



∫ Λ

ΛR

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??
0

0

0

0

0 0

0 0

p p



[Λ′] + A
(2,1,0)1PI
00;00;00;00[ΛR]



 .

(14)

The second graph in the first line on the rhs and the graph in brackets in the
last line are identical, because only the indices on the propagators determine the
value of the graph. Moreover, the vertex in the last line in front of the bracket
equals 1. Thus, differentiating (14) with respect to Λ we obtain indeed (13). As
a further check one can consider (14) for m = n = k = l = 0

0
. Finally, the

independence of A
(2,1,0)1PI
mn;nk;kl;lm[Λ0] on the indices m,n, k, l is built-in. This property

is, for Λ0 → ∞, dynamically generated by the model.
There is a similar Λ0-ΛR-mixed integration procedure for the planar 1PI two-point
functions A

(V,1,0)1PI
m1

m2
n1

n2 ;
n1

n2
m1

m2

, A
(V,1,0)1PI
m1+1

m2
n1+1

n2 ;n
1

n2
m1

m2

, A
(V,1,0)1PI
m1

m2+1
n1

n2+1
;n

1

n2
m1

m2

and all other A
(V,1,0)1PI
mn;nk;kl;lm.

These involve in total four different sub-integrations from ΛR up to Λ. We refer
to [GW05b] for details. All other graphs are integrated from Λ0 down to Λ, e.g.

A(2,2,0)1PI
m1n1;...;m4n4

[Λ] = −
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2







oo
//

�� OO

//
oo

OO��

oo
//

��
OO

m4

n4

m1
n1

n2

m2

m3
n3

p






[Λ′] . (15)

Theorem 1 The previous integration procedure yields

∣
∣A(V,B,g)

m1n1;...;mNnN
[Λ]
∣
∣ (16)

≤
(√

θΛ
)(4−N)+4(1−B−2g)

P 4V−N
[max(|m1|, |n1|, . . . |nN |)

θΛ2

]

P 2V−N
2

[

log
Λ

ΛR

]

,

where P q[X ] stands for a polynomial of degree q in X and |m1

m2 | = m1 +m2.

Idea of the proof. For the choice K(x) = 1 for 0 ≤ x ≤ 1 and K(x) = 0 for x ≥ 2
of the cut-off function in (10) one has

|Qmn;kl(Λ)| <
C0

ΩθΛ2
δm+k,n+l . (17)
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Thus, the propagator and the volume of a loop summation have the same power-
counting dimensions as a commutative φ4-model in momentum space, giving the
total power-counting degree 4−N for an N -point function.
This is (more or less) correct for planar graphs. The scaling behavior of non-
planar graphs is considerably improved by the quasi-locality of the propagator:

6

XXXXXz
���1

θ−1∆ 10

0

10+α

0
; l+α

0

l

0

α

lΩ = 0.1 µ = 0

(18)

As a consequence, for given index m of the propagator Qmn;kl(Λ) =
oo

//
n

lm

k

, the

contribution to a graph is strongly suppressed unless the other index l on the
trajectory through m is close to m. Thus, the sum over l for given m converges
and does not alter (apart from a factor Ω−1) the power-counting behaviour of
(17):

∑

l∈N2

(

max
n,k

|Qmn;kl(Λ)|
)

<
C1

θΩ2Λ2
. (19)

In a non-planar graph like the one in (15), the index n3 – fixed as an external
index – localises the summation index p ≈ n3. Thus, we save one volume factor
θ2Λ4 compared with a true loop summation as in (14). In general, each hole in
the Riemann surface saves one volume factor, and each handle even saves two.
A more careful analysis of (7) shows that also planar graphs get suppressed

with
∣
∣Qm1

m2
n1

n2 ;
k1

k2
l1

l2
(Λ)
∣
∣ < C2

ΩθΛ2

∏2
i=1

(max(mi,li)+1
θΛ2

) |mi−li|
2 , for mi ≤ ni, if the index

along a trajectory jumps. This leaves the functions A
(V,1,0)1PI
mn;nk;kl;lm, A

(V,1,0)1PI
m1

m2
n1

n2 ;
n1

n2
m1

m2

,

A
(V,1,0)1PI
m1+1
m2

n1+1
n2 ;n

1

n2
m1

m2

and A
(V,1,0)1PI
m1

m2+1
n1

n2+1
;n

1

n2
m1

m2

as the only relevant or marginal ones. In

these functions one has to use a discrete version of the Taylor expansion such as

∣
∣
∣Qm1

m2
n1

n2 ;
n1

n2
m1

m2
(Λ)−Q 0

0
n1

n2 ;
n1

n2
0
0

(Λ)
∣
∣
∣ <

C3

ΩθΛ2

(max(m1, m2)

θΛ2

)

, (20)

which can be traced back to the Meixner polynomials. The discrete Taylor sub-
tractions are used in the integration from Λ0 down to Λ in prescriptions like
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(14):

−
∫ Λ0

Λ

dΛ′

Λ′

∑

p∈N2





�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n

p p −
�� ?? �� __

??��__��

�� ��__ ??

m

m
k

k

l l

n n
0 0

0 0

p p



[Λ′]

=

∫ Λ0

Λ

dΛ′

Λ′

∫ Λ0

Λ′

dΛ′′

Λ′′

∑

p∈N2

(

(Qnp;pn −Q0p;p0)(Λ
′)Qlp;pl(Λ

′′)

+Q0p;p0(Λ
′)(Qlp;pl −Q0p;p0)(Λ

′′)
)

∼ C(|n|+|l|)
θΩ2Λ2

. (21)

This explains the polynomial in fractions like |m|
θΛ2 in (16). �

As the estimation (16) is achieved by a finite number of initial conditions at ΛR

(see (14)), the noncommutative φ4-model with oscillator term is renormalisable
to all orders in perturbation theory. These initial conditions correspond to nor-
malisation experiments for the mass, the field amplitude, the coupling constant
and the oscillator frequency in the bare action related to (1).

3 Vanishing of the β-function

Knowing the relevant/marginal couplings, we can compute Feynman graphs with
sharp matrix cut-off N . The most important question concerns the β-function
appearing in the renormalisation group equation which describes the cut-off de-
pendence of the expansion coefficients Γm1n1;...;mNnN

of the effective action when
imposing normalisation conditions for the relevant and marginal couplings. We
have [GW04]

lim
N→∞

(

N ∂

∂N +Nγ + µ2
0βµ0

∂

∂µ2
0

+ βλ

∂

∂λ
+ βΩ

∂

∂Ω

)

Γm1n1;...;mNnN
[µ0, λ,Ω,N ] = 0 ,

(22)

where

βλ = N ∂

∂N
(

λ[µR, λR,ΩR,N ]
)

, βΩ = N ∂

∂N
(

Ω[µR, λR,ΩR,N ]
)

,

βµ0 =
N
µ2
0

∂

∂N
(

µ2
0[µR, λR,ΩR,N ]

)

, γ = N ∂

∂N
(

lnZ[µR, λR,ΩR,N ]
)

. (23)

Here, Z is the wavefunction renormalisation. To one-loop order we find [GW04]

βλ =
λ2
R

48π2

(1−Ω2
R)

(1+Ω2
R)

3
, βΩ =

λRΩR

96π2

(1−Ω2
R)

(1+Ω2
R)

3
, (24)

βµ0 = −
λR

(

4N ln(2) +
(8+θµ2

R)Ω2
R

(1+Ω2
R)2

)

48π2θµ2
R(1+Ω2

R)
, γ =

λR

96π2

Ω2
R

(1+Ω2
R)

3
. (25)
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From (23) and (24) one finds that λ
Ω2 remains constant under the renormalisation

flow. The integration of the resulting differential equation shows that, starting
from given small values for ΩR, λR at NR, the frequency grows in a small region
around ln N

NR
= 48π2

λR
to Ω ≈ 1. The coupling constant approaches λ∞ = λR

Ω2
R
,

which can be made small for sufficiently small λR. This leaves the chance of a
non-perturbative construction [Riv91] of this model.
The key observation for all subsequent work is the following: The one-loop re-
normalisation flow has a non-trivial UV fixed point given by the self-dual model
Ω = 1 in (3) where βΩ = 0 to all orders. Working exactly at Ω = 1 leads according
to (5) to the formulation as a matrix model

S[Φ] = (2πθ)2
(1

2

∑

m,n

HmnΦmnΦnm +
λZ2

4

∑

m,n,k,l∈N2

ΦmnΦnkΦklΦlm

)

, (26)

where Hmn = Z 4
θ
(|m|+ |n|)+(µ2

bare+2) and |m| := m1+m2. Up to an inessential
factor 1

64π2 and a shift µ2
bare + 2 7→ µ2

bare, this action can also be written as

S[Φ] = V tr
(

EΦ2 +
λZ2

4
Φ4
)

(27)

where E = (Emδmn) with Em = Z
|m|√
V
+ 1

2
µ2
bare and V = ( θ

4
)2. This form, closely

related to models studied in [LSZ04], will be the starting point of a general
treatment of such models in section 4. Starting from (26), Disertori and Rivasseau
were able to prove that the β-function vanishes to three-loop order [DR07]. This
result led to the conjecture of β = 0 to all orders, which was eventually proved in
[DGMR07] be a combination of Ward identities and Schwinger-Dyson equation.
We understood immediately that the method suggested in [DGMR07] has the
potential to provide an exact solution of the model. Indeed we proved in [GW09]
that the 2-point function satisfies (in a certain limit) a closed non-linear inte-
gral equation, which is essentially equation (37) below, but expressed in other
variables. In [GW09] we also gave a perturbative approximation of the solution.
In the following years we tried to extract non-perturbative information out of
(34). We were joined by Prof. Zeidler in 2011 who tried to use techniques from
non-linear functional analysis. Although a breakthrough was not achieved in this
way, the exchange with Prof. Zeidler stimulated a different strategy via singular
integral equations, which will be described in the next section.

4 Exact solution of the quartic matrix model

Adding a source term to the action (27), we define the partition function as

Z[J ] =

∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) , (28)

10



where D[Φ] is the extension of the Lebesgue measure from finite-rank operators

to L2(H) and J a test function matrix. For λ = 0 in (27), D[Φ]
Z[0]

would be the
Gaußian measure of covariance determined by E. In presence of interaction
λ 6= 0 a rigorous construction of the measure cannot be expected. Instead we will
derive, for finite matrix size N , equations between connected correlation functions
formally defined by

〈ϕa1b1 . . . ϕaN bN 〉c =
∂N logZ[J ]

∂Jb1a1 . . . ∂JbNaN

∣
∣
∣
J=0

. (29)

Then we prove that, after renormalisation, these equations have a well-defined
limit N , V → ∞ which is exact in λ. We are then able to reduce this problem to
a fixed point problem where analytic an numerical techniques are applied.

4.1 Ward identity

The first steps apply for actions of the form (27) with arbitrary positive E and
even general polynomial interaction λ

4
Φ4 7→ P [Φ].

Unitary operators U give rise to a transformation Φ 7→ Φ̃ = UΦU∗. Since the
space of selfadjoint compact operators is invariant under the adjoint action, we
have

∫

D[Φ] exp(−S[Φ] + V tr(ΦJ)) =

∫

D[Φ̃] exp(−S[Φ̃] + V tr(Φ̃J)) .

Unitary invariance D[Φ̃] = D[Φ] of the Lebesgue measure implies

0 =

∫

D[Φ
{

exp(−S[Φ] + V tr(ΦJ))− exp(−S[Φ̃] + V tr(Φ̃J))
}

.

Note that the integrand {. . . } itself does not vanish because tr(EΦ2) and tr(ΦJ)
are not unitary invariant; only the interaction term tr(P [Φ]) = tr(P [Φ̃]) is inva-
riant. Linearisation of U about the identity operator leads to the Ward identity

0 =

∫

D[Φ]
{

EΦΦ− ΦΦE − JΦ + ΦJ
}

exp(−S[Φ] + V tr(ΦJ)) . (30)

We can always place ourselves in an orthonormal basis of H where E is diagonal
(but J is not). Since E is of compact resolvent, E has eigenvalues Ea > 0
of finite multiplicity µa. We thus label the matrices by an enumeration of the
(necessarily discrete) eigenvalues of E and an enumeration of the basis vectors
of the finite-dimensional eigenspaces. Writing Φ in {. . . } of (30) as functional
derivative Φab =

∂
V ∂Jba

, we have proved (first obtained in [DGMR07]):

Proposition 2 The partition function Z[J ] of the matrix model defined by the
external matrix E satisfies the |I| × |I| Ward identities

0 =
∑

n∈I

((Ea − Ep)

V

∂2Z
∂Jan∂Jnp

+ Jpn

∂Z
∂Jan

− Jna

∂Z
∂Jnp

)

. (31)

11



Without loss of generality we can assume that the map I ∋ m 7→ Em ∈ R+ is
injective. Namely, correlation functions will only depend on the set of eigenvalues
(Em) of E. Partitioning the index set I into equivalence classes [m] which have
the same Em, the index sum over a function that only depends on Em becomes
∑

m∈I f(m) =
∑

[m]∈[I] µ[m]f([m]). Therefore, at the expense of adding a measure

µ[m] = dimker(E − Emid), we can assume that m 7→ Em is injective.
Next we turn the Ward identity (31) for injective m 7→ Em into a formula for the

second derivative
∑

n∈I
∂2Z[J ]

∂Jan∂Jnp
of the partition function.

4.2 Schwinger-Dyson equations

We can write the action as S = V
2

∑

a,b(Ea+Eb)ΦabΦba + V Sint[Φ], where Ea are
the eigenvalues of E. Functional integration yields, up to an irrelevant constant,

Z[J ] = e−V Sint[
∂

V ∂J
]e

V
2
〈J,J〉E , 〈J, J〉E :=

∑

m,n∈I

JmnJnm

Em + En

. (32)

Instead of a perturbative expansion of e−V Sint[
∂

V ∂J
], we apply those J-derivatives

to (32) which give rise to a correlation function G... on the lhs. On the rhs of
(32), these external derivatives combine with internal derivatives from Sint[

∂
V ∂J

]
to certain identities for G.... These Schwinger-Dyson equations are often of little
use because they express an N -point function in terms of (N+2)-point functions.
In the field-theoretical matrix models under consideration, the Ward identity lets
this tower of Schwinger-Dyson equation collapse for a 6= b into account, we have
proved:

Proposition 3 The 2-point function of a quartic matrix model with action S =
V tr(EΦ2 + λ

4
Φ4) satisfies for injective m 7→ Em the Schwinger-Dyson equation

G|ab| =
1

Ea + Eb

− λ

Ea + Eb

1

V

∑

p∈I

(

G|ab|G|ap| −
G|pb| −G|ab|
Ep − Ea

) }

(33a)

− λ

V 2(Ea + Eb)

(

G|a|a|G|ab| +
1

V

∑

n∈I
G|an|ab|

+G|aaab| +G|baba| −
G|b|b| −G|a|b|
Eb − Ea

)







(33b)

− λ

V 4(Ea + Eb)
G|a|a|ab| .

}

(33c)

It can be checked [GW14a] that in a genus expansion G... =
∑∞

g=0 V
−2gG(g)

...

(which is probably not convergent but Borel summable), precisely the line (33a)
preserves the genus, the lines (33b) increase g 7→ g+1 and the line (33c) increases
g 7→ g+2. In particular, in a scaling limit V → ∞ with 1

V

∑

p∈I finite, the exact

12



Schwinger-Dyson equation for G|ab| coincides with its restriction (33a) to the

planar sector g = 0, a closed non-linear equation for G
(0)
|ab| alone:

G
(0)
|ab| =

1

Ea + Eb

− λ

Ea + Eb

1

V

∑

p∈I

(

G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| −G

(0)
|ab|

Ep − Ea

)

. (34)

We have derived in 2007/08 this self-consistency equation for the Moyal model by
the graphical method proposed by [DGMR07]. In this form, (34) is meaningless
because

∑

p∈I diverges. In 2009 we solved the renormalisation problem, namely
the renormalisation of infinitely many Feynman graphs at once [GW09]. This
renormalisation increases the non-linearity. In [GW09] we have solved (34) per-
turbatively to O(λ3). After several years of setbacks with the non-perturbative
solution, a breakthrough came in 2012: The equation (34) can be turned into

an equation which is linear in the difference G
(0)
|ab| − G

(0)
|a0| to the boundary and

non-linear only in G
(0)
|a0|!

It turns out that a real theory with Φ = Φ∗ admits a short-cut which directly gives
the higher N -point functions without any index summation. Since the equations
for G... are real and Jab = Jba, the reality Z = Z implies (in addition to invariance
under cyclic permutations) invariance under orientation reversal

G|p10p11...p1N1−1|...|pB0 pB1 ...pBNB−1| = G|p10p1N1−1...p
1
1|...|pB0 pBNB−1...p

B
1 | . (35)

Whereas empty for G|ab|, in (Ea+Eb1)Gab1b2...bN−1
− (Ea+EbN−1

)GabN−1...b2b1 the
identities (35) lead to many cancellations which result in a universal algebraic
recursion formula:

Proposition 4

G|b0b1...bN−1| = (−λ)

N−2
2∑

l=1

G|b0b1...b2l−1|G|b2lb2l+1...bN−1| −G|b2lb1...b2l−1|G|b0b2l+1...bN−1|
(Eb0 − Eb2l)(Eb1 − EbN−1

)

+
(−λ)

V 2

N−1∑

k=1

G|b0b1...bk−1|bkbk+1...bN−1| −G|bkb1...bk−1|b0bk+1...bN−1|
(Eb0 −Ebk)(Eb1 − EbN−1

)
. (36)

The last line of (36) increases the genus and is absent in G
(0)
|b0b1...bN−1|.

We make the following key observation: An affine transformation E 7→ ZE + C

together with a corresponding rescaling λ 7→ Z2λ leaves the algebraic equations
(36) invariant:

Theorem 5 Given a real quartic matrix model with S = V tr(EΦ2 + λ
4
Φ4) and

m 7→ Em injective, which determines the set G|p11...p1N1
|...|pB1 ...pBNB

| of (N1+ . . .+NB)-

point functions. Assume that the basic functions with all Ni ≤ 2 are turned finite

by Ea 7→ Z(Ea +
µ2

2
− µ2

bare

2
) and λ 7→ Z2λ. Then all functions with one Ni ≥ 3

13



1. are finite without further need of a renormalisation of λ, i.e. all renorma-
lisable quartic matrix models have vanishing β-function,

2. are given by universal algebraic recursion formulae in terms of renormalised
basic functions with Ni ≤ 2. �

The theorem tells us that vanishing of the β-function for the self-dual Φ4
4-model on

Moyal space (proved in [DGMR07] to all orders in perturbation theory) is generic
to all quartic matrix models, and the result even holds non-perturbatively!
The universal recursion formula (36) computes the planarN -point functionG|b0...bN−1|
at B = 1 as a sum of fractions with products of 2-point functions in the nume-
rator and products of differences of eigenvalues of E in the denominator. This
structure admits an interesting graphical interpretation. We draw the indices
b0, . . . bN−1 in cyclic order on the circle S1 and represent a factor Gbibj as a chord
connecting bi with bj and a factor 1

Ebi
−Ebj

as an arrow from bi to bj .

The chords form the non-crossing chord diagrams counted by the Catalan number
CN

2
= N !

(N
2
+1)!N

2
!
.

4.3 Renormalisation and integral representation

We return to the noncommutative φ4-model at self-duality point Ω = 1, where
the action is given by (26). Our general results on quartic matrix models imply

that the planar 2-point function G
(0)
|ab| satisfies the self-consistency equation (34),

G
(0)
|ab| =

1

Ea + Eb

− Z2λ

Ea + Eb

1

V

∑

p∈N2
N

(

G
(0)
|ab|G

(0)
|ap| −

G
(0)
|pb| −G

(0)
|ab|

Ep − Ea

)

, (37)

where we recall Em = Z
(

|m|√
V
+

µ2
bare

2

)

. We have introduced a cut-off N2
N in the

matrix size; the index sum diverges for N2
N 7→ N

2. As usual, the renormalisation
strategy consists in adjusting Z, µbare in such a way that the limit N2

N 7→ N2

exists. This will be achieved by normalisation conditions for the 1PI function
Γab defined by G

(0)
|ab| =: (Hab − Γab)

−1, where Hab := Ea + Eb. We express (37) in
terms of Γab and write Γab as first-order Taylor formula with remainder Γren

ab ,

Γab = Zµ2
bare − µ2 + (Z−1)√

V
(|a|+ |b|) + Γren

ab , Γren
00 = 0 , (∂Γren)00 = 0 .

Equation (37) for Γab

[
Γren
ab , µ2

bare, Z
]
together with Γren

00 = 0 and (∂Γren)00 consti-
tute three equations to determine the three functions Γren

ab , µ2
bare, Z. Elimina-

ting µ2
bare, Z thus gives rise to a closed equation for the renormalised function

Γren
ab alone. For this elimination it is important to note that the equations for

Γren
ab , µ2

bare, Z depend on a, b only via the norms |a|, |b| which parametrise the spec-
trum of E. Therefore, Γab is actually a function only of |a|, |b|, and consequently

the index sum reduces to
∑

p∈N2
N
f(|p|) =∑N

|p|=0(|p|+1)f(|p|).

14



We study a particular scaling limit in which matrix size N and volume V are
simultaneously sent to ∞ such that the ratio N√

V µ4
= Λ2(1+Y) is kept fixed.

Note that V =
(
θ
4

)2 → ∞ is a limit of extreme noncommutativity! The new
parameter (1+Y) corresponds to a finite wavefunction renormalisation, identified
later to decouple our equations. The parameter Λ2 represents an ultraviolet cut-
off which is sent to Λ → ∞ in the very end (continuum limit). In the scaling

limit, functions of
|p|√
V
=: µ2(1 + Y)p converge to functions of ‘continuous matrix

indices’ p ∈ [0,Λ2]. In the same way, Γren
ab converges to a function µ2Γab with

a, b ∈ [0,Λ2], and the discrete sum converges to a Riemann integral

1

V

N∑

|p|=0

(|p|+ 1)f
( |p|√

V

)
−→ µ4(1 + Y)2

∫ Λ2

0

p dp f
(
µ2(1 + Y)p

)
.

This limit makes the restriction to the planar sector (34) of (33) exact.
Applying d

db

∣
∣
a=b=0

we get Z in terms of Γab (and its derivative). Inserted back
one gets a highly non-linear integro-differential equation. We can reduce the non-
linearity by subtracting from it the same equation taken at b = 0. In terms of

Gab :=
(
(a+ b)(1+Y) + 1− Γab

)−1
, this difference equation reads

Z−1

(1 + Y)

( 1

Gab

− 1

Ga0

)

= b− λ

∫ Λ2

0

p dp

Gpb

Gab
− Gp0

Ga0

p− a
. (38)

Differentiation d
db

∣
∣
a=b=0

of (38) yields Z in terms of Gab and its derivative. The
resulting derivative G′ can be avoided by adjusting

Y := −λ lim
b→0

∫ Λ2

0

dp
Gpb −Gp0

b
.

This choice leads to
Z−1

(1+Y)
= 1 − λ

∫ Λ2

0

dp Gp0, which is a perturbatively di-

vergent integral for Λ → ∞. Inserting Z−1 and Y back into (38) we end up in
a linear integral equation for the difference function Dab :=

a
b
(Gab − Ga0) to the

boundary:

( b

a
+

1

aGa0

)

Dab +Ga0 = λ

∫ Λ2

0

dp
(Dpb −Dab

Gp0

Ga0

p− a

)

. (39)

The non-linearity restricts to the boundary function Ga0 where the second index
is put to zero. Assuming a 7→ Gab Hölder-continuous, we can pass to Cauchy
principal values. In terms of the finite Hilbert transform

HΛ
a [f(•)] :=

1

π
lim
ǫ→0

(∫ a−ǫ

0

+

∫ Λ2

a+ǫ

)f(q) dq

q − a
, (40)
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the integral equation (39) becomes

( b

a
+

1 + λπaHΛ
a

[
G•0
]

aGa0

)

Dab − λπHΛ
a

[
D•b
]
= −Ga0 . (41)

4.4 The Carleman solution

Equation (41) is a well-known singular integral equation of Carleman type [Car22,
Tri57]:

Theorem 6 ([Tri57], transformed from [−1, 1] to [0,Λ2]) The singular linear
integral equation

h(a)y(a)− λπHΛ
a [y] = f(a) , a ∈ ]0,Λ2[ ,

is for h(a) continuous on ]0,Λ2[, Hölder-continuous near 0,Λ2, and f ∈ Lp for
some p > 1 (determined by ϑ(0) and ϑ(Λ2)) solved by

y(a) =
sin(ϑ(a))e−HΛ

a [π−ϑ]

λπa

(

a f(a)eH
Λ
a [π−ϑ] cos(ϑ(a))

+HΛ
a

[

eH
Λ
• [π−ϑ] • f(•) sin(ϑ(•))

]

+ C
)

(42a)

∗
=

sin(ϑ(a))eH
Λ
a [ϑ]

λπ

(

f(a)e−HΛ
a [ϑ] cos(ϑ(a))

+HΛ
a

[

e−HΛ
• [ϑ]f(•) sin(ϑ(•))

]

+
C ′

Λ2 − a

)

, (42b)

where ϑ(a) = arctan
[0, π]

( λπ

h(a)

)

, sin(ϑ(a)) = |λπ|√
(h(a))2+(λπ)2

≥ 0 and C,C ′ are arbi-

trary constants.

The possibility of C,C ′ 6= 0 is due to the fact that the finite Hilbert transform
has a kernel, in contrast to the infinite Hilbert transform with integration over
R. The two formulae (42a) and (42b) are formally equivalent, but the solutions
belong to different function classes and normalisation conditions may (and will)
make a choice.
From (41) one introduces an angle function, which leads to a representation first
for Ga0:

Lemma 7 The angle function τb(a) := arctan
[0, π]

(

|λ|πa
b+ 1+λπaHΛ

a [G•0]
Ga0

)

is for b = 0

reverted to

Ga0 =
sin(τ0(a))

|λ|πa esign(λ)(H
Λ
0 [τ0(•)]−HΛ

a [τ0(•)])
{

1 for λ < 0 ,
(
1+ Ca

Λ2−a

)
for λ > 0 ,

(43)

where C is an arbitrary constant.
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Recall that Ga0 forms the inhomogeneity in the Carleman equation (41). We
insert (43) into the Carleman solution (42) for (41) and obtain with the addition
theorem |λ|πa sin

(
τd(a) − τb(a)

)
= (b − d) sin τb(a) sin τd(a) after essentially the

same steps as in the proof of (43):

Theorem 8 ([GW14b]) The full matrix 2-point function Gab of self-dual φ4
4-

theory on Moyal space is in the limit θ → ∞ given in terms of the boundary
2-point function Ga0 by the equation

Gab =
sin(τb(a))

|λ|πa esign(λ)(H
Λ
0 [τ0(•)]−HΛ

a [τb(•)])
{

1 for λ < 0 ,
(
1+Ca+bF (b)

Λ2−a

)
for λ > 0 ,

(44)

where C is a undetermined constant and b F (b) an undetermined function of b
vanishing at b = 0.

Some remarks:

• We have proved this theorem in [GW14a] for λ > 0 under the assumption
C ′ = 0 in (42b), but knew that non-trivial solutions of the homogeneous
Carleman equation parametrised by C ′ 6= 0 are possible. That no such term
arises for λ < 0 (if angles are redefined ϑ 7→ τ) was proved in [GW14b].

• We expect C, F to be Λ-dependent so that
(
1+Ca+bF (b)

Λ2−a

) Λ→∞−→ 1+C̃a+bF̃ (b).

• An important observation is Gab ≥ 0, at least for λ < 0. This is a truly
non-perturbative result; individual Feynman graphs show no positivity at
all!

• As in [GW09], the equation for Gab can be solved perturbatively. Matching
at λ = 0 requires C, F to be flat functions of λ (all derivatives vanish at

zero). Because ofHΛ
a [G•0]

a→Λ2

−→ −∞, the näıve arctan series is dangerous for
λ > 0. Unless there are cancellations, we expect zero radius of convergence!

• From (44) we deduce the finite wavefunction renormalisation

Y := −1 − dGab

db

∣
∣
∣
a=b=0

=

∫ Λ2

0

dp

(λπp)2 +
(1+λπpHΛ

p [G•0]

Gp0

)2
−
{

0 for λ < 0 ,

F (0) for λ > 0 .

(45)

• The partition function Z is undefined for λ < 0. But the Schwinger-Dyson
equations for Gab and for higher functions, and with them logZ, extend
to λ < 0. These extensions are unique but probably not analytic in a
neighbourhood of λ = 0.

Given the boundary function Ga0, the Carleman theory computes the full 2-point
function Gab via (44). In particular, we get G0b as function of Ga0. But the 2-
point function is symmetric, Gab = Gba, and the special case b = 0 leads to the
following self-consistency equation:
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Proposition 9 The limit θ → ∞ of φ4
4-theory on Moyal space is determined by

the solution of the fixed point equation G = TG,

Gb0 =

{
1 for λ<0

1+bF (b) for λ>0

}

1+b
exp

(

−λ

∫ b

0

dt

∫ Λ2

0

dp

(λπp)2 +
(
t+

1+λπpHΛ
p [G•0]

Gp0

)2

)

. (46)

At this point we can eventually send Λ → ∞.
In [GW14a] we proved via the Schauder fixed point theorem that (46) has a
(smooth) solution for λ > 0 (assuming F (b) = 0) bounded by 0 ≤ Gb0 ≤ 1

1+b
. For

the much more complicated case λ < 0 we proved in our contribution [GW16] to
the 75th birthday of Prof. Zeidler the following result:

Theorem 10 Let −1
6
≤ λ ≤ 0. Then (46) has a C1

0 -solution

1

(1 + b)1−|λ| ≤ G0b ≤
1

(1 + b)1−
|λ|

1−2|λ|

. (47)

In [GW14b] we solved (46) numerically by approximating G0b as a piecewise linear
function on [0,Λ2] sampled according to a geometric progression and by viewing
(46) as iteration Gi+1

0b = (TGi)0b for some initial function G0. We confirmed the
convergence of this iteration in Lipschitz norm for a large range λ ∈ R of either
sign. It turned out that the required symmetry Gab = Gba does not hold for
λ > 0, which is a clear hint that F (b) 6= 0 for λ > 0. For λ < 0 everything
is consistent within small numerical errors. From the solution of (46) we get
Gab via (44) and then all higher correlation functions via the universal algebraic
recursion formulae. For λ < 0 all these quantities of the model can be obtained
with sufficient precision.
We find clear evidence in [GW14b] for a second-order phase transition at λc ≈
−0.39, which is a common critical value in several independent problems. The
most obvious signal is a plot of the derivative 1 + Y := −dG0b

db

∣
∣
b=0

as function
of λ shown in figure 1. Globally we found that the numeric solution is close to
(but not exactly) a power law Gb0 ∝ 1

(1+b)1−η(λ)/2 , where η has opposite sign as λ.

This numercal conjecture was later made precise in proved in [GW16]. We have
indications that the exact critical coupling constant will be λc = − 1

π
.

We discuss in the next section how the sign on η relates to reflection positivity of
Schwinger functions made from G.... Reflection positivity requires η ≥ 0 which
excludes (unless F (b) 6= 0 reverses the behaviour) the stable case λ > 0 and
prefers λ ≤ 0 where the partition function is meaningless.

5 Schwinger functions and reflection positivity

5.1 Reverting the matrix basis

We are interested here in the limit to Schwinger functions in position space. For
this end we revert the matrix representation and take the infinite volume limit
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Figure 1: 1+Y := −dG0b

db

∣
∣
b=0

as function of λ, based on G0b computed for Λ2=107

with L = 2000 sample points.

V µ4 → ∞, where we carefully have to pass to densities. Absolute position x ∈ R4

have no meaning, only µx can be used. This means that we consider

〈
φ(µx1) . . . φ(µxN)

〉
≡

∑

m1,n1,...,mN ,nN∈N2

fm1m2
(µx1) · · ·fmNmN

(µxN)
〈
ϕm1n1

. . . ϕmNnN

〉
,

where the matrix correlation functions are formally given by (29) and the fmn by
(4) and subsequent equations. More precisely we define:

Definition 11 The connected Schwinger functions associated with the action
(26) are

µNSc(µx1, . . . , µxN)

:= lim
V µ4→∞

∑

m1,n1,...,mN ,nN∈N2

fm1n1(µx1) · · ·fmNnN
(µxN)

µ4N∂NF [J ]

∂Jm1n1 . . .∂JmNnN

∣
∣
∣
∣
J=0

, (48)

F [J ] :=
1

64π2V 2µ8
log

(∫
D[Φ] e−S[Φ]+V

∑
a,b∈N2 ΦabJba

∫
D[Φ] e−S[Φ]

)

Zµ2
bare

7→µ2

Z 7→(1+Y)

.

By ( )Zµ2
bare

7→µ2

Z 7→(1+Y)

we symbolise the renormalisation of sec. 4.3.

The main question is whether these Schwinger functions satisfy the Osterwalder-
Schrader axioms [OS73, OS75] which would allow to analytically continue the
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model to a true Wightman quantum field theory. The first step consists in an
explicit evaluation of (48). In [GW13] we proved the following result:

Theorem 12 The connected N-point Schwinger functions of the φ4
4-model on

extreme Moyal space θ → ∞ are given by

Sc(µx1, . . . , µxN)

=
1

64π2

∑

N1+...+NB=N
Nβ even

∑

σ∈SN

( B∏

β=1

4Nβ

Nβ

∫

R4

dpβ

4π2µ4
e
i
〈

pβ
µ
,
∑Nβ

i=1(−1)i−1µxσ(N1+...+Nβ−1+i)

〉)

×G ‖p1‖2
2µ2(1+Y)

, · · · , ‖p1‖2
2µ2(1+Y)

︸ ︷︷ ︸
N1

∣
∣...

∣
∣ ‖pB‖2
2µ2(1+Y)

, · · · , ‖pB‖2
2µ2(1+Y)

︸ ︷︷ ︸
NB

. (49)

Some comments:

• Only a restricted sector of the underlying matrix model contributes to po-
sition space: All strands of the same boundary component carry the same
matrix index.

• Schwinger functions are symmetric and invariant under the full Euclidean
group. This comes truly surprising since θ 6= 0 breaks both translation
invariance and manifest rotation invariance. The limit θ → ∞ was expected
to make this symmetry violation even worse!

• The most interesting sector is the case where every boundary component
has Nβ = 2 indices. It is described by the (2+ . . .+2)-point functions
G ‖p1‖

2

2µ2(1+Y)

‖p1‖
2

2µ2(1+Y)

∣
∣...

∣
∣ ‖pB‖2

2µ2(1+Y)

‖pB‖2

2µ2(1+Y)

.

• This sector describes the propagation and interaction of B particles without
any momentum exchange. This is acceptable for a 2D-model. In four
dimensions, absence of momentum transfer is a sign of triviality.

• However, typical triviality proofs rely on clustering, analyticity in Mandel-
stam representation or absence of bound states. All this needs verification.

It is already clear that clustering is maximally violated. Looking for instance at
the (2+2)-sector, we have

lim
µa→∞

S2+2
c (µx1, µx2, µ(x3 + a), µ(x4 + a))

=

∫
dp dq

4π6µ4
G ‖p‖2

2µ2(1+Y)

‖p‖2

2µ2(1+Y)

∣
∣ ‖q‖2

2µ2(1+Y)

‖q‖2

2µ2(1+Y)

ei〈p,x1−x2〉+i〈q,x3−x4〉 (50)

independent of the distance between {x1, x2} on one hand and {x3, x4} on the
other hand. Absence of clustering means that the state that we constructed is a
mixed state. States can always be decomposed into pure states.
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5.2 Reflection Positivity

Reflection positivity is the most decisive Osterwalder-Schrader axiom. It gives the
spectrum condition and positivity of the reconstructed Hilbert space of the Min-
kowski model [OS73, OS75]. This guarantees a representation as a Laplace trans-
form in the time component of the coordinate ξ0, hence analyticity in Re(ξ0) > 0.
We have shown in [GW13] that the Schwinger 2-point function S(x1, x2) given
by (49) is reflection positive iff a 7→ Gaa is a Stieltjes function ([Wid38]),

Gaa =

∫ ∞

0

d(ρ(t))

a+ t
(51)

for a positive and non-decreasing measure ρ. The proof follows from the Källén-
Lehmann representation of the two-point function.
The numerical results [GW14b] exclude reflection positivity for any λ > 0 (due to
renormalisation). Interestingly, it thus favours the wrong-sign λφ4-model studied
in [Riv83]. A rigorous proof that Gaa satisfies the Stieltjes property for λ < 0 is
still missing, although the numerical results of [GW14b] provide strong evidence
that this will be true.

6 Summary

By applying the Wilson-Polchinski ideas to the noncommutative Φ4 -theory with
harmonic oscillator term we were able to solve the renormalisation problem. We
obtained renormalisability to all orders of pertubation theory and reconfirmed the
UV/IR-duality. Next we showed that the running coupling constant has bounded
flow to one-loop order. This led to a close collaboration with Vincent Rivasseau
and his group. They proved the essential result, that at a special self-duality
point, the β-function vanishes to all orders in pertubation theory.
Ward identities are the reason behind this result. They allow to decouple the
hierarchy of Schwinger-Dyson equations, which allows to solve the model.
We have shown that the φ4

4-model on noncommutative Moyal space, considered
in the limit θ → ∞ of extreme noncommutativity, is an exactly solvable and non-
trivial matrix model. Euclidean symmetry is violated in the beginning, but we
identified a limit which projects to diagonal matrices where Euclidean symmetry
is restored. Surprisingly, the first consistency checks for OS positivity are passed
for the only interesting interval [λc, 0] of the coupling constant! This model is
somewhat strange as ‘particles’ keep their momenta in interaction processes. Ne-
vertheless, the theory is not completely trivial. We find scattering remnants from
the noncommutative geometrical (i.e. matricial) substructure. Only the external
matrix indices are put ‘on-shell’, internally all degrees of freedom contribute. We
have seen that clustering is maximally violated. The interaction is insensitive to
positions in different boundary components. In particular, ‘particles’ are never
asymptotically free.
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