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Abstract

Using core model theory, we give a proof of Woodin’s theorem that the con-
sistency of AD implies the consistency of infinitely many Woodin cardinals.
The proof uses a mouse set theorem which is shown by running Woodin’s
core model induction.

Introduction

By now it is well–known not only among set theorists that Woodin has proven
AD, the full axiom of determinacy, to be equiconsistent with infinitely many
Woodin cardinals (cf. for example Theorem 32.16 of [2]). In fact, if V has infinitely
many Woodin cardinals, then AD holds in L(R∗) where R

∗ are the reals from
a symmetric collapse of the Woodin cardinals to ω (cf. for example [7] Theorem
3.1; the papers [7] and [8] provide a complete proof of this fact). On the other
hand, if L(R) satisfies AD then L(R) has a definable inner model with infinitely
many Woodin cardinals.

Unfortunately, no proof of that latter direction, giving the optimal lower
bound for the strength of AD, has so far found its way into the literature (al-
though cf. [14]). We here give such a proof. Our main theorem may be stated as
follows, and may be seen as a slight strengthening of Woodin’s “derived model
theorem” (at least of the one for L(R∗)).

Theorem 0.1 Suppose that V = L(R) |= AD. There is then a generic extension
of V in which there is a fine structural inner model L[E] with infinitely many
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Woodin cardinals (cofinal in ωV
1 ) and in which R (the reals of V ) is the set reals

of a symmetric collapse over L[E] of the supremum of the Woodin cardinals of
L[E] to ω.

Whereas Woodin uses HOD to get the lower bound for AD, we here use core
model theory, more precisely the theory developed in [13]. We shall get the
Woodin cardinals from a failure of iterability of background certified core models
(“Kc’s”) built inside certain inner models with choice. As in (one of) Woodin’s
proof(s), we shall stack together models with Woodin cardinals thus obtained. In
order to show the the Woodin cardinals will not be collapsed in the final model
we shall need a “mouse set theorem.” This will be proven by using Woodin’s core
model induction, which in turn has many applications also at other places. (The
present paper, however, seems to be the first one containing a complete sketch of
that induction.)

The paper is organized as follows. Section 1 gives descriptive set theoretic
preliminaries. Section 2 contains a proof of 0.1, using the “mouse set theorem”.
In Section 3 we prepare ourselves for running the core model induction, which is
run in Section 4 in order to actually prove the “mouse set theorem”.

Virtually all of the results in Sections 3 and 4 of this paper are due to Woodin
(albeit Section 4 gives the second author’s reconstruction of Woodin’s induction).
The proof of 0.1, however, contained in Section 2 is due to the second author.
We remark that the aspect of 0.1, saying that L(R) is a symmetric extension of
a fine structural inner model, is what goes beyond Woodin’s original theorem.

The history of this paper is as follows. In a long series of private lectures in
1997 during the 1st author’s stay at Berkeley, the 2nd author explained the core
model induction to the 1st author. The 1st author wrote a first and poor draft of
this paper in Vienna in 1999 and placed it on his web page, all of a sudden having
lost interest in improving it. Then the TeX file got lost. In 2006, Martina Pfeifer
in Münster typed a new version, and interest in making it better resurrected.
There is no intent to publish it.

1 Preliminaries

Recall that y ∈ R ∩ L iff y is Σ1
2 in a countable ordinal; more generally, y is a

real of the least inner model containing 2n Woodin cardinals iff y is Σ1
2n+2 in a

countable ordinal.

Definition 1.1 Let Γ be a pointclass, and let x be a real. Then

CΓ(x) = {y ∈ R : ∃ξ < ω1 y is Γ(x, z) for all z coding ξ}.
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More precisely, y ∈ CΓ(x) iff there is a countable ordinal ξ and some A ∈ Γ such
that for all z coding ξ we have that y = y iff (y, x, z) ∈ A (iff ∀y′[(y′, x, z) ∈ A⇒

y = y′]; i.e., practically, if Γ is closed under ∃R then y is
⌣

Γ in a countable ordinal,

too, and thus ∆ in a countable ordinal, where ∆ = Γ ∩
⌣

Γ).
Let A ⊂ R, say (in general, think of A as ⊂ R

i for some i < ω). Then A is
called (α–)Souslin if A is the projection of a tree T on ω×α (written A = p[T ]).
A is said to have a scale if there is a sequence (ϕn : n < ω) of norms on A, i.e.,
ϕn : A→ OR for all n < ω, such that whenever (xk : k < ω) is a sequence of reals
in A converging to x such that for each n < ω, ϕn(xk) is eventually constant as
k → ∞, say with eventual value αn, then x ∈ A and ϕn(x) ≤ αn for each n < ω.
The proof of Lemma 1.8 below exploits a variant of the following “tree from a
scale construction.” If (ϕn : n < ω) is a scale on A, then we may set

(s, (αn : n < lh(s))) ∈ T iff ∃x ⊃ s ∀n < lh(s)ϕn(x) = αn.

Then T witnesses that A is Souslin, i.e., A = p[T ], and if x ∈ A, then Tx has an
honest leftmost branch fx (i.e., ∀g ∈ [Tx]∀n < ωfx(n) ≤ g(n); cf. [2] 30.2). fx is
defined just by fx(n) = ϕn(x) for n < ω.

Let Γ be a pointclass. A is then said to have a Γ–scale if for every x ∈ A, the
relation (in y, n)

y ∈ A ∧ fy(n) ≤ fx(n)

is in ∆(x), uniformly in x.1 Finally a pointclass Γ is said to have the scale
property if every A ∈ Γ admits a Γ–scale.

Under AD, many pointclasses do have the scale property (cf. for example
[10]). We call a pointclass good if it is ω–parameterized, closed under recursive
substitution, number quantification, and ∃R, and has the scale property. Kechris
[3] has shown that (under AD) if Γ is good then CΓ(x) is the largest countable
Γ(x) set of reals, and that CΓ(x) has a ∆(x)–good wellorder, which we’ll denote
by <Γ,x. We then let ΘΓ,x denote the order type of <Γ,x; we’ll have that there is
an A ∈ Γ(x) such that y ∈ CΓ(x) iff ∃ξ < ΘΓ,x s.t. y is unique with (y, z) ∈ A for
all z coding ξ.

If Γ has the scale property, and if Γ is also closed under ∀R (or alternatively
Γ = ∃RΓ̄, where Γ̄-uniformization holds), then Γ-uniformization holds. Examples
are provided by the pointclasses from Definition 1.13.

1I.e., there is ≤1∈ Γ and ≤2∈
⌣

Γ such that for every x ∈ A, ∀y ∀n ((y ∈ A∧fy(n) ≤ fx(n)) ↔
(x, y, n) ∈≤1) and ∀y ∀n ((y ∈ A ∧ fy(n) ≤ fx(n)) ↔ (x, y, n) ∈≤2)
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Sublemma 1.2 (AD) Let Γ be good, and let T be a tree such that p[T ] is a
universal Γ set. Let N be admissible, let x ∈ R and suppose that x, T ∈ N . Then
CΓ(x) ⊂ N , and CΓ(x) is ΣN

1 ({T, x}).

Proof Sketch: There is some n0 ∈ ω with: for all ξ < ΘΓ,x ∩N , the ξth real in
<Γ,x is the unique y such that for all z coding ξ, (y, z, n0) ∈ p[T ]. Thus

n ∈ y ⇔ ||− Col(ω,ξ)∃z[z codes ξ ∧ ∃y((y, z, n0) ∈ p[T ] ∧ n ∈ y)],

and hence y ∈ N . But then ΘΓ,x < N∩OR (as o.w. there’d be a partial surjection
R ∩N → N ∩OR which is ΣN

1 ({T, x})), and the result follows. �

We’d like to extend x 7→ CΓ(x) to countable transitive sets.
The countable transitive set a coded by the real x is the unique a such that

φ : (a,∈) ∼= (ω,R) where nRm iff (n,m) ∈ x (if it exists). If b ∈ a then we write
bx for the real φ′′b, and say that bx codes b relative to x.

Definition 1.3 Let Γ be a pointclass, and let a be a countable transitive set.
Then CΓ(a) denotes the set of all b ⊂ a such that bx ∈ CΓ(x) for all x ∈ R coding
a.

Sublemma 1.4 Let a be any countable set, and let D be a countable family of
open dense subsets of Col(ω, a). Then the set of all G ∈ ωa being D–generic is
comeager.

Proof: Let D = {Di : i < ω}. We may view Di as a dense set in (the space)
ωa (by confusing it with {g ∈ ωa : g ↾ n ∈ Di for all sufficiently large n}. Let
Ci = ωa\Di. Clearly, Ci is closed, i.e. Ci = Ci, and so Di = ωa\Ci. Thus every
Ci is nowhere dense. But G is D–generic iff G ∈

⋂
i<ω Di. �

Sublemma 1.5 Let C ⊂ ωω be comeager. Let p0, p1 ∈ <ωω be such that lh(p0) =
lh(p1). Then there is α ∈ ωω such that {p⌢

0 α, p
⌢
1 α} ⊂ C.

Proof: Let Di, i < ω be dense open sets such that
⋂

i<ω Di ⊂ C. By a simple
induction, we may pick q0, q

′
0, q1, q

′
1, . . . ∈

<ωω such that for all n < ω

{q⌢
0 q

⌢
0 q

′⌢
0 . . .⌢q⌢

n α : α ∈ ωω} ⊂ Dn and
{p⌢

1 q
⌢
0 q

′⌢
0 . . .⌢q⌢

n q
′⌢
n α : a ∈ ωω} ⊂ Dn.

But then, if we put α = q⌢
0 q

′⌢
0 . . . , we get that {p⌢

0 α, p
⌢
1 α} ⊂

⋂
i<ω Di ⊂ C. �



Introduction and Preliminaries 5

Theorem 1.6 (AD; Harrington and Kechris [1]) Let Γ be a good pointclass,
and let T be a tree witnessing Γ has the scale property. Let a be countable and
transitive; then

1. CΓ(a) = {b ⊂ a: for comeager many x coding a, bx ∈ CΓ(x)}, and

2. CΓ(a) = P(a) ∩ L(a ∪ {T, a}).

Proof Sketch: For the nontrivial inclusion in 1., fix any real y coding a. By
Sublemma 1.4, we can fix α such that for nonmeager many x coding a, bx is the
αth real in <Γ,x. Using the Γ–definability of the “nonmeager many” quantifier
applied to Γ–relations, we get that by is ∆(y) in any code for α, so by ∈ CΓ(y).

For 2., note ⊃ is trivial by [1]. As to ⊂, let b ∈ CΓ(a); then for comeager
many x coding a, bx ∈ L[T, x] by 1. and [1]. We can then find x0 and x1 pairwise
generic over L[a∪ {T, a}] such that b ∈ (L(a∪ {T, a})[x0]∩L(a∪ {T, a})[x1]), so
b ∈ L(a ∪ {T, a}). �

We have the following generalization of 1.2

Lemma 1.7 (AD) Let Γ be good, and let T be a tree such that p[T ] is a universal
Γ set. Let a be countable and transitive, and suppose N is an admissible set such
that T, a ∈ N . Then CΓ(a) ⊂ N , and in fact CΓ(a) is ΣN

1 ({T, a}). Moreover, if
π : M → N is elementary and π(〈T , a〉) = (〈T, a〉), then π−1′′CΓ(a) is an initial
segment of CΓ(a) under its canonical prewellorder.

Lemma 1.8 Let A ⊂ P(R) be such that every A ∈ A admits a scale (≤n: n < ω)
s.t. each individual ≤n belongs to A, too, and such that A ∈ A ⇒ R\A ∈ A. Let
N and M be transitive models of a sufficiently large fragment of ZFC such that
N ∈ M . Let C ⊂ ωN be a comeager set of Col(ω,N)–generics over M (in
particular, N is countable) and suppose that for each A ∈ A there is a term
τA ∈M such that whenever G ∈ C then

τG
A = A ∩M [G].

Let π : M → M be elementary with {N} ∪ {τA : A ∈ A} ⊂ ran(π). Let
π(N, τA) = N, τA. THEN whenever g is Col(ω,N)–generic over M , for all
A ∈ A,

τ g
A = a ∩M [g].

Proof: To commence, fix any A ∈ A for a while, and let (ψn : n < ω) be a scale
on A such that for every n < ω, if ≤n is the prewellorder on R given by ψn then
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≤n∈ A. Let τn ∈M be such that τG
n =≤n ∩M [G] for all G ∈ C. Let φn be a term

in M such that for every G being Col(ω,N)–generic over M,φG
n is the norm on

A ∩M [G] given by τG
n . Let Un be a term for the nth level of the tree associated

to these norms, i.e., for all G being Col(ω,N)–generic over M ,

U̇G
n = {(x↾n, (φG

0 (x), . . . , φG
n−1(x))) : x ∈ A ∩M [G]}.

Now let Gh, h = 0, 1, be any Col(ω,N)–generics over M . Then for any appro-
priate ~a we have ~a ∈ U̇Gh

n iff there is some ph ∈ Gh forcing ~a ∈ U̇n. W.l.o.g.,
lh(p0) = lh(p1). Hence by 1.5 we may choose G∗

h ∈ C such that for some real
α, for every n < ω, p⌢

0 α ↾ n ∈ G∗
0 and p⌢

1 α ↾ n ∈ G∗
1. In particular, we have

M [G∗
0] = M [G∗

1], which implies τ
G∗

0
n =≤n ∩M [G∗

0] =≤n ∩M [G∗
1] = τ

G∗
1

n , and so

U̇
G∗

0
n = U̇

G∗
1

n . Hence ~a ∈ U̇G0
n iff ~a ∈ U̇

G∗
0

n iff ~a ∈ U̇
G∗

1
n iff ~a ∈ U̇G1

n .
This means that U̇G

n is independent from G and in the ground model. I.e.,
there are Un ∈M such that Un = U̇G

n for all G being Col(ω,N)–generic over M .
Let U be the tree whose nth level is Un. (Of course, possibly U /∈M .)

Claim: Whenever G is Col(ω,N)–generic over M,A ∩M [G] ⊂ p[U ] ⊂ A.

Proof: A ∩M [G] ⊂ p[U ] is obvious from the definition of U . Let (x, f) ∈ [U ].
Let G be Col(ω,N)–generic over M . Let n < ω; then the nth level of U is UG

n ,
and so we can find a real xn ∈ A with xn ↾n = x ↾n and ∀i < n(φG

i (xn) = f(i)).
So for any i, φG

i (xn) is eventually constant as n→ ω. Hence ψi(xn) is eventually
constant as n → ω. But (ψi : i < ω) is a scale on A, thus x ∈ A. This shows
p[U ] ⊂ A.

We now in particular have that

||− Col(ω,N)∀x[x ∈ τA → (x↾n, (φ0(x), . . . , φn−1(x))) ∈ Un].

The elementarity of π gives that

||− Col(ω,N)∀x[x ∈ τA → (x↾n, (π−1(φ0)(x), . . . , π
−1(φn−1)(x))) ∈ Un],

where Un = π−1(Un). Let U be the tree whose nth level is Un. It is easy to see
that p[U ] ⊂ p[U ] using π. But now if x ∈ τ g

A for a Col(ω,N)–generic g then
x ∈ p[U ] ⊂ p[U ] ⊂ A, by the above Claim. So τ g

A ⊂ A.
However, the same reasoning with R\A ∈ A and τR\A instead of A and τA

shows that τ g

R\A ⊂ R\A, and thus in fact τ g
A = A∩M [g], as τ g

R\A = (R∩M [g]) \

τ̄ g
A. �

Applying this to π = id gives at once
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Corollary 1.9 Let A, etc. be as in 1.8. Then in fact τG
A = A ∩M [G] for all

A ∈ A and for all G being Col(ω,N)–generic over M (not just for G ∈ C).

We want to point out that, in the above proof, if we even have (τn : n < ω) ∈M
(rather than just {τn : n < ω} ⊂M) then actually U ∈M .

Definition 1.10 We’ll say that τ ∈ MCol(ω,N) (weakly) captures A ⊂ R (over
M) if for all (for comeager many) G being Col(ω,N)–generic over M , τG =
A ∩M [G].

1.8 gives a condensation result for such terms.

Lemma 1.11 Let A, etc. be as in 1.8. Suppose further that a ∈ N is transitive
(and thus countable), that a ∈ ran(π), and π(a) = a. Let Γ be a good pointclass,
and assume that A contains a universal Γ set, and that CΓ(a) ⊂ M . THEN
CΓ(a) ⊂M . Moreover, if CΓ(a) ∈M then in fact

π(CΓ(a)) = CΓ(a) ∈M.

Proof: The set {(x, y) : ∀w ∈ CΓ(x)∃i ∈ ω w = (y)i} is in Γ̆, and so there are k0

and A ∈ A such that

(k0, x, y) ∈ A⇔ ∀w ∈ CΓ(x)∃i ∈ ωw = (y)i.

Let us pick σ, ρ ∈MCol(ω,N) such that

||− M
Col(ω,N)σ ∈ R codes a ∧ {(ρ)i : i < ω} = R ∩N [σ].

We’ll then have that, for every n < ω,

||− M
Col(ω,N)((k0, σ, ρ), φ0(k0, σ, ρ), . . . , φn−1(k0, σ, ρ)) ∈ Un,

where φ0, . . . , and U0, . . . are as in the proof of 1.8. Let π(σ, ρ, φi, U i) =
σ, ρ, φi, Ui. Then by the elementarity of π,

||− M̄
Col(ω,N)

((k0, σ, ρ), φ0(k0, σ, ρ), . . . , φn−1(k0, σ, ρ)) ∈ Un.

Let U be the tree whose nth level is Un. Thus if g is Col(ω,N)–generic over M
then

(k0, σ
g, ρg) ∈ p[U ] ⊂ p[U ] ⊂ A

(c.f. the Claim in the proof of 1.8). Therefore CΓ(σg) ⊂ M [g]. This means that
if b ∈ CΓ(a) then bg ∈ CΓ(σg) ⊂M [g] (where bg codes b relative to g), and hence
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b ∈ M [g]. This is true for all g which are Col(ω,N)–generic over M , and thus
CΓ(a) ⊂M . The rest is easy. �

Note that by 1.7, CΓ(a) ⊂M follows from T ∈M where G projects to a universal
Γ set. However, we’ll be able to derive CΓ(a) ⊂ M from different assumptions;
c.f. 3.9 below.

The following is an easy corollary to the preceeding proof.

Lemma 1.12 Let Γ be good, and let T and U be trees projecting to a universal
Γ set and its complement. Let a be countable and transitive, and let M be a Σ2-
admissible set such that T , U ∈M . Let π : M̄ →M be elementary with π(ā) = a
and T , U ∈ ran(π). Then CΓ(ā) ∈ M̄ , and π(CΓ(ā)) = CΓ(a).

We now want to state the mouse set theorem.

Definition 1.13 We call a pointclass Γ ⊂ P(R) a scaled Σ–pointclass if it is
one of the following.

(1) Γ = Σ1
2n+2 for some n < ω, or else

(2) [α, β] is a Σ1–gap with α > 1 and

(2a) α < β and [α, β] is strong and Γ = Σ1(Jα(R)), or

(2b) α < β and [α, β] is weak and either Γ = Σ1(Jα(R)) or Γ = Σn+2i(Jβ(R))
where i < ω is arbitrary and n < ω is least s.t. ρn(Jβ(R)) = R, or

(2c) β = α and α is inadmissible and Γ = Σ2i+1(Jα(R)) where i < ω is arbitrary
or

(2d) β = α and α is admissible and Γ = Σ1(Jα(R)).

It is well–known that the projective pointclasses Σ1
2n+2 for some n < ω have the

scale property. Moreover, the pointclasses listed under (2) above are exactly the
ones shown in [10] to have the scale property. Hence the name.

There is a natural well–order of the scaled Σ–pointclasses. We’ll say that Γ
shows up earlier than Γ′ if Γ < Γ′ according to this well–order. Also, if [α, β] is a
gap it’s clear what we mean by “Γ shows up in [α, β]”. In particular, if Γ shows
up in [α, β] and Γ′ shows up in [α′, β′] with β < α′ then Γ shows up earlier than
Γ′.
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Definition 1.14 Let O : HC → V such that ∀a ∈ HC O(a) ⊂ P(a). Then O is
called a mouse operator if ∀a ∈ HC O(a) = P(a) ∩Ma for some ω1 + 1 iterable
a–premouse Ma. We say that O is captured by mice if ∀a ∈ HC O(a) ⊂ Ma for
some ω1 + 1 iterable a–premouse.

Lemma 1.15 (AD; Woodin) Let Γ be a scaled Σ–pointclass. Then CΓ is cap-
tured by mice with an ω1 iteration strategy which is projective in Γ.

If Γ = Σ1(Jα(R)), where either α is a limit ordinal or else α− 1 is critical 2,
then CΓ is in fact a mouse operator.

We’ll prove 1.15 in Section 4.

2 The derived model theorem

Lemma 2.1 (AD; Kechris) Let S ⊂ OR. For an S–cone of reals x we have

L[S, x] |= ODS–determinacy.

In particular, ω
L[S,x]
1 is measurable in HOD

L[S,x]
S .

Proof. Let us first assume that there is no S–cone of reals x such that in L[S, x]
all ODS–sets of reals are determined. Define x 7→ Ax by letting Ax be the least

OD
L[S,x]
S –set of reals which is not determined. I.e., if GAx is the usual game (in

which I, II alternate playing integers) with payoff Ax, then GAx is not determined
in L[S, x]. Notice that Ax only depends on the S–constructibility degree of x.
Also, by hypothesis, Ax is defined for an S–cone C of x.

Let G be the game in which I, II alternate playing integers so that I produces
the reals x, a, II produces the reals y, b, and I wins iff a ⊕ b ∈ Ax⊕y. Let us
suppose that I has a winning strategy, τ , in G. Let τ ∈ L[S, z], where z is in C.
Let τ∗ be a strategy for I in GAz so that if II produces the real b, and if τ calls
for I to produce the reals a, x in a play of G in which II plays b, z ⊕ b, then τ∗

calls for I to produce the real a. Then for every b ∈ L[S, z], if a = τ∗(b), in fact
if a, x = τ(b, z ⊕ b), then

a⊕ b ∈ Ax⊕(z⊕b) = Az.

So τ∗ is a winning strategy for I in the game GAz played in L[S, z]. Contradiction!
We may argue similarily if II has a winning strategy in G.

2I.e., infinitely many of Σn(Jα−1(R)) are scaled Σ-pointclasses
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Now let L[S, x] |= ODS–determinacy. Working inside L[S, x], we may then

define a filter µ on ω
L[S,x]
1 as follows.

For reals x, let |x| = sup{||y|| : y ≡T x ∧ y ∈ WO}. Let S = {|x| : x ∈ R}.
Let π : ω1 → S be the order isomorphism. Now if A ⊂ ω1, then we put A ∈ µ iff

{x : |x| ∈ π′′A}

contains an S–cone of reals. It is easy to verify that µ ∩ HODS witnesses that
ω1 is measurable in HODS. �

Fix T = T 2
1 , a tree obtained from the scale property of Σ2

1. So for any real x, the
model L[T, x] is Σ2

1–correct. Moreover, with δ = δ
2
1 we have

Lδ[T, x] = V HODx

δ |= ωV
1 is measurable,

so that ωV
1 is measurable in L[T, x], which can be seen to imply that

HOD
L[T,x]

T, ~Q
|= ωV

1 is measurable

for ~Q ∈ L[T, x], as L[T, x] is a size < ω1 forcing extension of HOD
L[T,x]

T, ~Q
. We may

thus try to isolate K of height ωV
1 inside various HOD

L[T,x]

T, ~Q
s. We write Ω = ωV

1 .

Lemma 2.2 Let P ∈ HC be transitive, and suppose that

Wx = (Kc(P ))HOD
L[T,x]
T,P ,

constructed with height Ω, exists for a cone of x. Then there is a cone of x such

that Wx cannot be Ω + 1 iterable above P inside HOD
L[T,x]
T,P .

Proof: Suppose otherwise. By 2.1, there is then a T ⊕ P–cone C so that for all
x ∈ C we have L[T, x] = L[T, P, x],

ω
L[T,x]
1 is measurable in HOD

L[T,x]
T,P ,

and we may isolate

Kx = (K(P ))HOD
L[T,x]
T,P .

Let us fix an x ∈ C, and let us write K for Kx. By “cheapo” covering and the
fact that L[T, x] is a size < Ω forcing extension of its HODT,P , we may pick some
λ < Ω s.t.

λ+K = λ+L[T,x].
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Let g ∈ V be a Col(ω, λ)–generic over L[T, x], and let y ∈ V be a real coding
(g, x). Thus

ω
L[T,y]
1 = λ+L[T,x] = λ+K .

As we also have y ∈ C,

ω
L[T,y]
1 is measurable in HOD

L[T,y]
T,P .

We hence get a contradiction if we can show:

Claim. K ∈ HOD
L[T,y]
T,P .

Proof: K is still fully iterable inside L[T, y] by [13] Thm. 2.18. This means that
K is the core model above P of L[T, y] in the sense of [13] 2.17; i.e., from the
point of view of L[T, y], it is the common transitive collapse of Def(W ′, S) for
any W ′, S s.t. W ′ is Ω + 1 iterable and Ω is S–thick. But this characterization

clearly establishes K ∈ HOD
L[T,y]
T,P . � (Claim)

� 2.2

Using [13] Cor. 2.11 and Thm. 2.8 then immediately give:

Corollary 2.3 In the situation of 2.2, there is a T ⊕ P–cone of x such that for
each x from that cone, there is Q� P together with δ ∈ Q\P such that

Q ∈ HOD
L[T,x]
T,P

HOD
L[T,x]
T,P |= Q is excellent, and

Q |= δ is Woodin.

For our purposes, in 2.3 and in the following, we may let “Q is excellent” mean
that Q is excellent in the sense of [13] and Q has a largest cardinal, denoted by
δ = δ(Q), such that Q |= δ is Woodin.

Lemma 2.4 Let Q be excellent in HOD
L[T,x]
T,P , and suppose that

ODQ ∩ P(δ(Q)) ⊂ Q.

Then

(Kc(Q))HOD
L[T,y]
T,Q exists

for a cone of y.
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[N.b.: “Kc(Q) exists” is supposed to imply Q ∩OR = δ(Q)+Kc(Q), c.f. [13] §1.]

Proof: Deny. Then let C be a cone such that for all y ∈ C,

(Kc(Q))HOD
L[T,y]
T,Q does not exist.

Consider y ∈ C. As Kc(Q) does not exist in HOD
L[T,y]
T,Q , there is a least Nξ from

the Kc(Q)–construction (inside HOD
L[T,y]
T,Q ) with ρω(Nξ) ≤ δ = δ(Q). But then

if A ∈ (Σω(Nξ) ∩ P(δ))\Q, we have that A ∈ OD
L[T,y]
T,Q ∩ P(δ).

We may thus define f : C → P(δ) by letting f([y]T ) be the <
HOD

L[T,y]
T,Q

–least

X ∈ (OD
L[T,y]
T,Q ∩ P(δ))\ODQ. We have f ∈ ODQ (notice T ∈ OD), and f

is constant on a cone. Setting A = the f([y]T ) for a cone of y’s, we then get
A ∈ ODQ. Contradiction! � (2.4)

Definition 2.5 Let M be a premouse with largest cardinal α ∈ M . Then M is
called full if for all N � J M

α s.t. JM
α is a cutpoint in N and N is Ω + 1 iterable

above α we have that J N
α+N �M .

We shall need the following key consequence of the mouse set theorem 1.15.

Lemma 2.6 Let M be full with largest cardinal α. Then ODM ∩ P(α) ⊂M .

Lemma 2.7 Let P ∈ HC be such that for a cone C, if x ∈ C, then P ∈ L[T, x]

and Kc(P )HOD
L[T,x]
T,P exists. Let C′ ⊂ C be given by 2.2. Pick x ∈ C′, and let

Q = Qx � P be as in 2.3. Then Q is full.

Proof: Suppose not. Write δ = δ(Q). Let N � JQ
δ be s.t. JQ

δ is a cutpoint in
N , N is Ω+1 iterable, and (Σω(N)∩P(δ))\Q 6= ∅. By Σ2

1–correctness of L[T, x],

there is one such N in L[T, x], and the least one such is in fact in HOD
L[T,x]
T,P

(recall that Q ∈ HOD
L[T,x]
T,P ).

Let Σ be N ’s (unique) Ω–iteration strategy. By uniqueness, we have that

Σ ↾HOD
L[T,x]
T,P ∈ HOD

L[T,x]
T,P , so that N is iterable inside HOD

L[T,x]
T,P . But this

gives a contradiction with the universality of Kc(Q) inside HOD
L[T,x]
T,P . � (2.7)

We have therefore established the following.

Corollary 2.8 Let P ∈ HC be such that

Kc(P )HOD
L[T,x]
T,P
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exists for a cone of x. There is then a full Q⊲P such that Q’s largest cardinal is
Woodin in Q and

Kc(Q)HOD
L[T,y]
T,Q

exists for a cone of y.

Definition 2.9 Let k < ω. We set

([x0]T , . . . , [xk−1]T ) ∈ Ak

if there exists a sequence
(Qi : i ∈ {−1} ∪ k)

and some xk such that Q−1 = ∅, x0 is a base for the cone from 2.1 (with S = T ),
and for all integers j < k, Qj is the <

HOD
L[T,xj ]

T,Qj−1

–least Q such that Q⊲Qj−1, Q’s

largest cardinal is Woodin in Q, and

Kc(Q)
HOD

L[T,x]
T,Qj−1

exists for all x in the cone above xj+1.

Notice that if ([x0], . . . , [xk−1]T ) ∈ Ak, then there is a unique “Q-sequence”
(Qi : i < k) witnessing this.

We let µT denote Martin’s measure on the T–degrees.

Definition 2.10 (p, U) ∈ P iff U is a subtree of
⋃

k Ak with stem p and for all
q ∈ U with q ⊃ p we have that

{r ∈ DT : q⌢r ∈ U} ∈ µT .

(p′, U ′) ≤P (p, U) iff p′ ⊃ p, and U ′ ⊂ U .

As any element of Ak comes with its unique “Q-sequence” (Q0, . . . , Qk−1) of Q’s,
forcing with P will produce an infinite sequence ~Q = (Q0, Q1, . . . ) of Q’s, to which
we’ll refer as the “Q–sequence” corresponding to the generic filter.

Lemma 2.11 Let G be P–generic over V , and let ~Q be the corresponding Q–
sequence. Then P(δ(Qk)) ∩ L[ ~Q] ⊂ Qk for all k < ω.

This immediately gives:

Corollary 2.12 If G and ~Q are as in 2.11 then

L[ ~Q] |= there are ω many Woodin cardinals.
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Proof of 2.11. Let k < ω. By 2.6, 2.7, and the definition of P, in order to show
that P(δ(Qk)) ∩ L[ ~Q] ⊂ Qk it is enough to verify that P(δ(Qk)) ∩ L[ ~Q] ⊂ ODQj

for some j ≥ k.
Let δ = δ(Qk), and let X ∈ P(δ) ∩ L[ ~Q]. Let Ẋ be a name for X; we may in

fact assume Ẋ is OD. [X is ordinal definable from ~Q, which in turn is definable
from the generic filter G. We therefore have a name for X which is ordinal
definable from a name for G, i.e, a name for X which is just ordinal definable.]
Well, by the Prikry lemma there is some (p, U) ∈ G deciding all α̌ ∈ Ẋ for α < δ.

Claim. α ∈ X iff ∃q ∈ Adom(p)∃W (q gives (Q0, . . . , Qdom(p)−1) and (q,W ) ||−α̌ ∈

Ẋ).

Proof: “⇒”: trivial.
“⇐”: Notice (p, U ∩W ) and (q, U ∩W ) are both conditions, and we may find
P–generics G′ and G′′ both giving the same Q–sequence and s.t. (p, U ∩W ) ∈ G′

and (q, U ∩W ) ∈ G′′. But then

ẊG′

= ẊG′′

,

as this interpretation only depends on the Q–sequence, and hence

(p, U) ||− ǎ ∈ Ẋ ⇔ (q,W ) ||− ǎ ∈ Ẋ.

� (Claim)

But this shows X ∈ ODQdom(p)−1
, and thus the lemma. � (2.10)

Lemma 2.13 There is Q as in 2.3 s.t. moreover, setting W = (Kc(Q))HOD
L[T,P ]
T,P

the real x is P
W
δ(Q)–generic over W .

Corollary 2.14 If in 2.9 we replace “2.3” by “2.13” then still

L[ ~Q] |= there are ω many Woodins,

but also there is G∗ being Col(ω,Ω)–generic over L[ ~Q] s.t.

R
V =

⋃

i

R
L[ ~Q][G∗↾ δ(Qi)],

i.e., V = L(R) is a derived model of L[ ~Q].
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Proof of 2.13. Set W = (Kc(P ))HOD
L[T,P ]
T,x .

Case 1. W |= there is a Woodin > P ∩OR.

Let δ be such a Woodin. Then δ ∈ Q\P , and x is P
W
δ(Q)–generic over W , which

easily follows from the fact that we require extenders with critical point κ to have
certificates when being put onto the Kc–sequence.

Case 2. W |= there is no Woodin > P ∩OR.

In this case we have to go a bit deeper into [13].

Inside HOD
L[T,P ]
T,x , let Σ be the following strategy for the good player in the

iteration game on Kc(P )HOD
L[T,P ]
T,x above P ; if T has limit length then pick a

cofinal branch coming with a weakly iterable Q–structure, i.e., pick b s.t. there is
M(T ) �Q�MT

b bith all collapses of countable substructures of Q being ω1 + 1
iterable above δ(T ). Standard arguments show that in fact there is nothing to
pick, i.e., there is always only at most one such branch.

By 2.2, however, Σ cannot be an iteration strategy for Kc(P )HOD
L[T,P ]
T,x above

P (inside HOD
L[T,P ]
T,x ). A few more standard arguments then show that there is

an iteration tree T ∈ HOD
L[T,P ]
T,x on W,T being above P , s.t. T was formed by

following Σ,T has limit length, and there is no weakly iterable Q–structure for
M(T ). This of course implies that

Kc(M(T )) |= δ(T ) is Woodin,

as initial segments of Kc(L(T )) are ω1 + 1 iterable.
Set M = M(T ). Working inside L[T, x], we now define a simple iteration

tree U on M as follows. (A) At successor steps, hit the least extender (> the
largest Woodin below, if there is one) s.t. there is a real which doesn’t satisfy
the associated axiom. (B) At limit stages we pick the (unique!) cofinal branch
coming with a weakly iterable Q–structure.

Notice that U ∈ HOD
L[T,P ]
T,x . Let’s work inside HOD

L[T,P ]
T,x .

Case 2a. MU
α exists, but there is no extender as in (A).

Let δ′ = MU
α ∩OR. In this case, to prove 2.13 it clearly suffices to verify the

Claim. Kc(MU
α) exists and |= δ′ is Woodin.
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Proof: Let Θ be large enough, and pick an elementary π : N → VΘ with N
countable and transitive and all sets of current interest are in ran(π).

In V (which is HOD
L[T,P ]
T,x for the moment!) there is a maximal branch b

thru T together with a realization map σ : Ck(Nξ), with Ck(Nξ) being from the

Kc(P )–construction. Let Q�MT
b be the Q–structure for M(T ↾sup(b)) provided

by MT
b .

By the usual argument of comparing Q with the Q–structure provided by
MT

sup(b) is sup(b) < lh(T ) we in fact get that b is cofinal thru T .

We may now view U as a tree acting on Q (instead of just on M(T ), so that
we get a map

π̃Q→ Q̃

extending the iteration map

πU
0α : M(T ) → MU

α ,

together with a realization σ′ : Q̃→ Ck(Nξ) with σ ↾Q = σ′ ◦ π̃.
Now let Nη be the least model from the Kc(MU

α)–construction with the prop-
erty that ρω(Nη) < δ′ or δ′ is not definably Woodin over Nη. Then, as usual
Q̃ = π−1(Nη), so that Q̃ ∈ N . But then

Q ≃ hQ̃(ran(πU0α) ∪ {p}), some p,

and π̃ is the inverse of the transitive collapse. Hence both Q and π̃ are elements
of N .

We have shown that π̃ : Q → Q̃ exists in N . Moreover Q is weakly iterable
in N (as Nη is weakly iterable in V ). This implies Q is weakly iterable in N . By
elementarity, then, π(Q) is weakly iterable in V , so that M(T ) admits a weakly
iterable Q–structure.

We have reached a contradiction! � (Claim)

Case 2b. V (which is still HOD
L[T,P ]
T,x here) doesn’t see a Q–structure for the

common part model.

We then have

W ′ = Kc(M(T )) |= δ(T ) is a Woodin cardinal.

But then by the construction of U , the extenders of W ′ witnessing Woodinness
of δ(T ) in W ′ all satisfy the desired axiom. �
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3 Coarse Γ Woodin mice

In the next section we’ll aim to prove 1.15 by using Woodin’s core model induc-
tion. The rest of the current section will prepare ourselves for the task.

We first show that it is enough to get “Γ–Woodin premice”.

Definition 3.1 Let a be countable and transitive; then a is Γ–amenable if when-
ever x ∈ a and b ∈ CΓ(a), then b ∩ x ∈ a.

Γ–amenability is sometimes called Γ–completeness or Γ–fullness.

Definition 3.2 Let N be countable and transitive; then N is a coarse Γ–Woodin
premouse if

1. N |= ZFC

2. N is Γ–amenable, and

3. letting δ = OR ∩ N , for any f : δ → δ such that f ∈ CΓ(N), there is a
κ < δ such that f ′′κ ⊆ κ and an E such that N |= E is an extender with
critical point κ and ViE(f)(κ) ⊆ Ult(V,E).

Let T be the tree of a Γ scale on a universal Γ set, where Γ is good, and assume
AD. Let N be countable transitive and δ = OR ∩N . It is easy to see then that

N is a coarse Γ–Woodin premouse iff N = V
L(N∪{T,N})
δ and L(N ∪ {T,N}) |= δ

is Woodin.
Our above condensation results easily yields the following lemma.

Lemma 3.3 Let Γ0 and Γ1 be good pointclasses such that Γ0 ⊆ ∆1. Let N be
a coarse Γ1–Woodin premouse; then for some η < OR ∩ N , V N

η is a coarse
Γ0–Woodin premouse.

Proof: Let T1 be the tree of a Γ1 scale on a universal Γ1 set, and let T,U ∈
L(N ∪ {T1, N}) be trees projecting to the universal Γ0 set and its complement.
Let δ = OR ∩N , and let M be a Σ2 admissible set of the form Lα(N ∪ {T1,N})
such that T,U ∈ M . As δ is strongly inaccessible in L(N ∪ {T1,N}) we can,
working in the universe, form a hull of M whose intersection with VM

δ (= N) is
of the form VM

η for some η < δ. Letting M be the collapse of this hull, we have

CΓ0(V
N
η ) ⊆M by 1.12. On the other hand, δ is Woodin in M , so η is Woodin in

M . Therefore V N
η is a coarse Γ0–Woodin premouse. �

In what follows, we shall actually need coarse Γ-Woodin premice which are iter-
able:
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Lemma 3.4 Let Γi, i < 5, be good pointclasses such that Γi ⊂ ∆i+1 for all i < 4.
Let y be a real, and P be a coarse Γ4-Woodin premouse with y ∈ P . Then there
is a coarse Γ0-Woodin premouse M such that y ∈M , and M has an ω1-iteration
strategy Σ in Γ2 such that every Σ-iterate of M is again a coarse Γ0-Woodin
premouse.

Proof: Let η < P ∩ OR be least such that V P
η is a Γ0-Woodin premouse. By

3.3, there is no ξ ≤ η such that V P
ξ is a Γ1-Woodin premouse. There is thus

a function f : ξ → ξ in CΓ1(V
P
ξ ) witnessing non-Woodinness of ξ. Let T , U be

trees for the universal Γ1 set and its complement which are constructible from
T4 (the tree for a universal Γ4 set). Let N be a Σ2 admissible set of the form
Lα(V P

η ∪{T,U}), and let π : N̄ → N be elementary, with π, N̄ in P and countable
there, and π(η̄, T̄ , Ū) = η, T, U .

Claim. In P , N̄ is ω1-iterable (w.r.t. trees living on V N̄
η̄ ) via the strategy of

choosing the unique cofinal π-realizable branch.

Proof: Work in P . By [5], there is always a maximal such branch. We therefore
just have to see that if T is on N̄ has cofinal π-realizable branches, then b = c.

Well, let δ = δ(T ), and M = V
MT

b

δ = V
MT

c

δ . Let σ, τ be the realizing maps
for b, c respectively. Since T , U ∈ ran(σ), 1.12 gives that CΓ1(M) ∈ MT

b and
σ(CΓ1(M)) = CΓ1(V

N
ξ ), where ξ = σ(δ) ≤ η. By the choice of η, this gives that

there is an f ∈ CΓ1(M) witnessing non-Woodinness for M . Since CΓ1(M) ∈ MT
c

by the same argument, f ∈ MT
b ∩MT

c . But then [5] yields that b = c. �

This proof easily yields the following.

Claim. In P , if b is a cofinal π-realizable branch thru a countable T on V N̄
η̄ ,

then setting M = V
MT

b

δ(T ) , b is the unique cofinal branch d thru T such that

CΓ1(M) ⊂ MT
d .

It easily follows from the claims that P satisfies that N̄ has an ω1-iteration
strategy which is in Γ2. But P is Γ4-correct, so this is indeed true. �

We now borrow from the next section:

Lemma 3.5 Let [α, β] be a gap, and suppose that for all scaled Σ–pointclasses
Γ which show up earlier than Σ1(Jα(R)) we have that CΓ is caputured by mice
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with an ω1 iteration strategy which is projective in Γ. Then for all scaled Σ–
pointclasses Γ which show up in [α, β] there is a coarse Γ–Woodin mouse with an
ω1–iteration strategy which is projective in Γ.

Proof of 1.15 from 3.5. Notice first that if for all scaled Σ–pointclasses Γ which
show up earlier that Σ1(Jα(R)), CΓ is captured by mice with an ω1 iteration
strategy which is projective in Γ, and if α is a limit ordinal or else if α − 1 is
critical, then CΣ1(Jα(R)) is easily seen to be a mouse operator. This already gives
the second part of 1.15.

We may assume from now on that either α is inadmissible and Γ = Σ2n+1(Jα(R))
for some n, or else α is admissible and Γ = Σn+2i(Jβ(R)) for some i, where n is
least with ρn(Jβ(R)) = R.

Let us turn towards the first part of 1.15. It suffices to prove the first part
of 1.15 for reals. We first prove it “on a cone”. An operator O : R 7→ P(R) is
called “fine structural” if it is a mouse operator on a cone, that is, if for a cone of
x,O(x) = R ∩Mx for some ω1 + 1 iterable x–premouse Mx. [This terminology
might be a bit awkward.]

Claim. x 7→ CΓ(x) is fine structural. Moreover, for a cone of x,O(x) = R ∩Mx

for some ω1 + 1 iterable x–premouse Mx with an ω1–iteration strategy which is
projective in Γ.

Proof: By a theorem of Rudominer and Steel, it is enough to find a fine structural
inner model operator which is above x 7→ CΓ(x) in ≤m (here, ≤m denotes the
prewellorder of inner model operators; cf. [9]). By the comparability of inner
model operators, this follows if we show that for any real y, there is an x ≥T y,
an ω1–iterable x–mouse R, and a real z ∈ R such that z /∈ CΓ(x). So fix a real
y.

Let Γ0 be a good pointclass such that Γ ⊂ ∆0, and Γ0 shows up in [α, β]. Let
M be a coarse Γ0–Woodin premouse which has an ω1–iteration strategy projective
in Γ0 (in fact, projective in Γ) and is such that y ∈ M ; the existence of M is
guaranteed by the proof of 3.5. Let Ω = OR∩M , and 〈Nη|η ≤ Ω〉 be the levels of

the L[ ~E, y] construction of [6] done inside M . (So y is thrown in at the bottom,
and we use full background extenders.) Since M is fully iterable, all Nη are fully
iterable, and the construction never breaks down. (Cf. [6].) As Ω is Woodin in
L(M ∪ {M}), Ω is Woodin in Q, where Q is the premouse of height OR whose
Ωth level J Q

Ω is NΩ. Since Q has an ω1–iteration strategy in close to Γ0, Ω is
tame. It follows that for all sufficiently large η < Ω, η is not Woodin in Q.

There is a club B ⊆ Ω in L(M ∪ T0,M) such that for all η ∈ B, VM
η is
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Γ–Woodin and Nη = JQ
η . (Here T0 is the tree of a Γ0 scale on a universal Γ0 set.

We actually use here the proof of 3.3, and not just its statement.) Fix η ∈ B such
that η is not Woodin in Q. Now JQ

η is the output of the L[ ~E, y]–construction

done up to η in L(V M
η ∪ {T}), where T is the tree of a scale for Γ, and η is

Woodin in this universe. It follows from [6] that if f : η 7→ η is in CΓ(V M
η ) and

amenable to JQ
η , then JQ

η is Woodin with respect to f . Since η is not Woodin in

Q, we can fix a subset b of η which is in Q but not in CΓ(V M
η ). Let P = JQ

ξ+1,

where b ∈ (JQ
ξ+1\J

Q
ξ ).

Now let g : ω → JQ
η be Q–generic for Col(ω, JQ

η ) and such that, setting
x = xg, we have bx /∈ CΓ(x); there are in fact comeager many such g. Clearly,
y ≤T x and bx ∈ P[x]. It remains only to show that P[x] can be re–arranged
as an x–mouse R. We define R by adding E to the R–sequence with index α
just in case η < α, α indexes an extender F on the P–sequence, and E is the
canonical extension of F to JR

α = JP
α [x] determined by the fact that that this

structure is a small forcing extension of JP
α . One can prove by induction on β,

using the quantifier–by–quantifier definability of the forcing relation over JP
η+β ,

that JR
β has the same projecta and standard parameters as JP

η+β , and hence is
ω–sound. We leave the details to the reader. �

We now want to show that if z ∈ CΓ then there is a (fine structural lightface)
premouse Q such that z ∈ Q and Q has an ω1–iteration strategy which is projec-
tive in Γ. This will suffice, as we may as well choose Q = Qz so that it projects
to ω and is ω–sound. Letting η = OR ∩ Q, we then have Q is definable as the
unique ω1–iterable, ω–sound premouse of height η projecting to ω. If we then
let M be the premouse whose proper initial segments are precisely the Q’s, we’ll
have that CΓ ⊂ M. The proof will straightforwardly relativize to any real.

So fix z ∈ CΓ. Let B ∈ Γ and ξ < ω1 be such that z is unique with (z, z∗) ∈ B
for any z∗ coding ξ. We’ll have that for all reals x, (CΓ(x);B ∩ CΓ(x)) is a Σ1–
elementary substructure of (R;B). [Here we use that Γ has the scale property, so
that each relation in Γ can be uniformized by a function whose graph is in Γ, and
hence each non-empty Γ(z)-set has a member u such that {u} is in Γ(z).] Let
Γ = Σn(Jγ(R)) (where γ ∈ {α, β} and ρn(Jγ(R)) = R). We then may and shall
in fact assume that B codes the nth reduct, call it Mn, of Jβ(R). Notice that we
can express in a Π2 fashion that R = the reals of the transitive collapse of (R;B).
Thus (CΓ(x), B ∩ CΓ(x)) ≺Σ1 (R, B) will give an embedding π : M →Σ1 M

n,
which lifts to

π : Jβ(CΓ(x)) →Σn Jβ(R)
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for some β ≤ β. Then our given z is definable over Jβ(CΓ(x)) from a countable
ordinal. We’ll use this fact below.

By the above Claim, the operator x 7→ CΓ(x) is fine structural; in fact, we
may fix y so that whenever x ≥T y there is an ω1–iterable x–mouse Nx whose ω1

iteration strategy is projective in Γ and whose reals are those in CΓ(x).
Let Γ0 be a good pointclass such that Γ ⊂ ∆0 and Γ0 shows up in [α, β], and

let M be a coarse Γ0 Woodin mouse having an ω1–iteration strategy projective in
Γ0 and such that y ∈M . Let 〈Nη|η ≤ Ω〉 be the models of the L[ ~E] construction
(as in [6], and done over the real ∅) of M . Just as in the proof of the above Claim,
we can fix an η < Ω projecting to η is not in CΓ(VM

η ). Let us choose Q to be the
first level P of NΩ such that P projects to η and P /∈ CΓ(Nη ∪ {y,Nη}). Notice
that Q |= “η is Woodin”.

Let P be the every–real–generic poset of Q (up to η). Here we only use
extenders from the JQ

η –sequence which are total and strong out to their lengths

to define the identities. Since the JQ
η –sequence has background extenders from

V M
η (which haven’t been collapsed in the construction) for these extenders on the

JQ
η sequence, every real in M is P–generic over Q. In particular, y is so generic.

By our choice of Q there are comeager many y : ω → JQ
η ∪ {y} such that

Q is not coded by any real in CΓ(xf ). We can therefore fix such an f which is
Col(ω, JQ

η ∪ {y}) generic over Q[y]. Let x = xf . Clearly, y ≤T x. Also x is

Q–generic over a poset of size η in Q, and x codes JQ
η , so by the level–by–level

definability of forcing we can find an x–premouse R whose universe is Q[x]. The
iterability of Q guarantees that of R. Since Q projects to η, R projects to ω.
By our choice of x, the real canonically coding R, its first order theory with
parameter x is not in CΓ(x). On the other hand, every proper initial segment of
Q projecting to η is in CΓ(JQ

η ∪ {y}), and therefore every proper initial segment
of R with Nx we see easily that R ∩R = CΓ(x).

We now show that z is ordinal definable over R. This will suffice to finish the
proof, since R is a homogeneous forcing extension of Q (being an extension via
a poset of size η which collapses η to ω), so that we have z ∈ Q as desired.

Now recall that z is definable over Jβ(CΓ(x)) from a countable ordinal. W.l.o.g.,

β ∈ R; this is because the extender sequence of R is nonempty (since Π1
2 ⊂ Γ).

Since CΓ(x) is ordinal definable over R, as its set of reals, we have that z is
ordinal definable over R, as desired. �

Definition 3.6 Let M be a (countable) premouse, and let δ ∈M be s.t. M |= δ
is Woodin.

Let A ⊂ R
n, some n < ω, and τ ∈ mCol(ω,δ). Then τ captures A over M if

the following holds true. There is an ω1 iteration strategy Σ for M s.t.: if M∗
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is a (countable) simple Σ–iterate of M with iteration map πMM∗ and g ∈ V is
Col(ω, πMM∗(δ))–generic over M∗ then

(πMM∗(τ))g = A ∩M∗[g].

Moreover, let Γ be a pointclass. Then Γ is captured over M if for any A ∈ Γ
there is τ ∈MCol(ω,δ) capturing A over M .

Lemma 3.7 Let M be a countable premouse, and let δ < η ∈ M be s.t. M |=
both δ and η are Woodin cardinals. Let B ⊂ R × R. Suppose that τ ∈ MCol(ω,η)

captures B over M . Then there is σ ∈MCol(ω,δ) capturing ∃RB over M .

Proof: Let Σ be an ω1 iteration strategy for M witnessing τ captures B over
M . Given ρ, a name for a real in MCol(ω,δ) s.t. for all simple Σ–iterates M∗ of
M with iteration map πMM∗ and for all g ∈ V being Col(ω, πMM∗(δ))–generic
over M∗ we have that πMM∗(ρ)g ∈ (M∗[g])Col(ω,πMM∗ (η)) is a name for the real
ρg and πMM∗(ν)g ∈ (M∗[g])Col(ω,πMM∗ (η)) is a name capturing B over M∗[g].

Now let us define σ ∈ MCol(ω,δ) as follows. We put (p, ρ) ∈ σ iff p ∈
Col(ω, δ), ρ is a name for a real in MCol(ω,δ) ∩HM

δ+, and

p ||− “∃q ∈ Col(ω̌, η̌)q ||− ∃y(ρ, y) ∈ τ ′′.

We claim that Σ also witnesses σ captures ∃RB over M .
Let M∗ be a countable simple Σ–iterate of M with iteration map πMM∗ ,

and let g ∈ V be Col(ω, πMM∗(δ))–generic over M∗. As usual Σ induces an ω1

strategy for iterating M∗[g] above δ, which we’ll also denote by Σ.
First let x ∈ ∃RB ∩M∗[g]. We aim to show x ∈ πMM∗(σ)g.
Pick y0 s.t. (x, y0) ∈ B. By Woodin’s genericity theorem there is a count-

able iterate M of M∗[g] with iteration map πM∗[g]M̃ s.t., setting η̃ = πM∗[g]M̃ ◦

πMM∗(η), y0 is P
M̃
η –generic over M̃ . Moreover P

M̃
η̃ has the η̃–c.c., so that in

fact M̃ [y] is a η̃–c.c. extension of a Σ–iterate M ′ of M . Thus g, y0 can be ab-
sorbed by some G ∈ V being Col(ω, η̃)–generic over M ′, and we may also write
M̃ = M ′[G] = M ′[g][G] where G is Col(ω, η̃)–generic over M ′[g].

By how τ was chosen, we have that M̃ |= (x, y0) ∈ πM∗[g]M̃(πMM∗(τ)g)G,

i.e., M̃ |= ∃y(x, y) ∈ πM∗[g]M̃(πMM∗(τ)g)G. So M ′[g] |= ∃y q ||− ∃y(x̌, y) ∈

πM̃ [g]M̃(πMM∗(τ )g), which implies M [g] |= ∃q q ||− ∃y(x̌, y) ∈ πMM∗(ν)g. This

now gives x ∈ πMM∗(σ)g.
For the other direction, let x ∈ πMM∗(σ)g. We want to see that x ∈ ∃RB.
By the definition of σ and the elementarity of πMM∗ we may pick ρ ∈

(M∗)Col(ω,πMM∗ (δ)) and p ∈ g s.t. ρg = x and p ||− “∃q ∈ Col(ω̌, πMM∗(η̌))q ||−
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∃y(ρ, y) ∈ πMM∗(τ)′′. Hence M∗[g] |= ∃q ∈ Col(ω, πMM∗(η))q ||− ∃y(x̌, y) ∈
πMM∗(τ)g.

But then if G is Col(ω, πMM∗(δ))–generic over M∗[g] we have, by the choice

of τ , M∗[g][G] |= ∃y(x, y) ∈ (πMM∗(τ)g)G ⊂ B. Thus x ∈ ∃RB. � (3.6)

Corollary 3.8 Let [α, β] be a gap, and let n < ω. Suppose that either α < β,
[α, β] is weak, and n is least s.t. ρn(Jβ(R)) = R or else α = β is inadmissible and
n = 1. Let M be a countable premouse, and let δ0 < δ1 < . . . < δ2i ∈ M be s.t.
∀j ≤ 2iM |= δj is Woodin.

Suppose that there is a universal Σn(Jβ(R))–set being captured over M . Then
a universal Σn+2i(Jβ(R))–set is captured over M , too.

Proof: This easily follows from 3.7. �

The following Lemma of course also relativizes.

Lemma 3.9 Let M be a premouse with ρω(M) > ω, and let a ∈ R be s.t. a ∈ CΓ.
Suppose that Γ is captured over M . Then in fact a ∈M .

Proof: By assumption, there are A ∈ Γ ∩ R
2 and a countable ordinal α s.t. for

any real code y for α we have that α is the unique x with A(x, y). Let M ′ be
the result of hitting the least total–on–M extender (and its images) α+ 1 many
times, and let πMM ′ be the iteration map.

Claim. n ∈ a⇔ ||−M ′

Col(ω,πMM′ (δ))
∃x, y(x codes α̌ ∧ (x, y) ∈ τ ∧ ň ∈ x).

Proof of Claim. “⇒” Let M∗ be a (countable) simple Σ–iterate of M ′ with
iteration map πMM ′ s.t. a is P

M∗

πM′M∗◦πMM′ (δ)
–generic over M∗. By the πM ′M∗ ◦

πMM ′(δ)–c.c. of P
M∗

πM′M∗◦πMM′ (δ)
we may pick g ∈ V beingCol(ω, πM ′M∗◦πMM ′(δ))–

generic over M∗ s.t. a ∈M∗[g].
Let y ∈ M∗[g] be a real code for α. We have that τ g = A ∩ M∗[g], so

(a, y) ∈ τ g, and so

||−M∗

Col(ω,πM′M∗◦πMM′(δ)) ∃x, y(y codes α̌ ∧ (x, y) ∈ τ ∧ ň ∈ x).

But then by elementarity

||−M∗

Col(ω,πMM′ (δ)) ∃x, y(y codes α̌ ∧ (x, y) ∈ τ ∧ ň ∈ x).

“⇐”: Let h ∈ V be Col(ω, πMM ′(δ))–generic over M ′. If (x, y) ∈ M ′[h] are s.t.
y codes α and (x, y) ∈ τh then of course x = a, so that n ∈ x implies n ∈ a.

� (Claim)
� (3.8)
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4 The core model induction

This section is entirely devoted to a

Proof of 1.15. The proof is by induction on gaps [α, β], and by working ourselves
thru the gap. So let us fix a gap [α, β], and let’s assume 1.15 to be already
established for all previous gaps [α, β] for β < α. We know by now that it suffices
to prove 3.5 for the scaled Σ–pointclasses which show up in [α, β].

There is bad news, namely that the proof has to be split into three main
cases, the third of which consists of six subcases. We commence with listing the
cases together with brief discussions. On the other hand, the good news is that
there is a single common pattern according to which all of the individual cases
will be settled.

Case1. (“Projective case”) α = β = 1.

Here we should show, by induction on n < ω, that the mouse operators M#
n

are all total on R (cf. [11] on the definition of the M#
n ’s). This case may be

viewed as a degenerate case of what is going on in the “weak gap case” argument
below. Moreover, it is a straightforward generalization of the proof of [12] Thm.
7.7 (which essentially gives the result for n = 1).

We shall hence leave that case as an exercise. (As the careful reader might

notice, PD is enough for the result that all M#
n ’s are all total on R.3)

Case 2. (“Weak gap case”) α < β, i.e., [α, β] is a proper gap.

Set Γ = Σ1(Jα(R)). By [10] 2.6 and 2.9, α is admissible, which implies that

CΓ

⋃

α<α begins a gap

CΣ1(Jα(R)).

This immediately gives 1.15 for [α, β], unless it is a weak gap. Let us assume this
to be the case.

Generalizing the argument from Case 1 we shall prove, by induction on n < ω,
that certain mouse operators “M̃#

n ” (this won’t be our notation) are total on R.

What distinguishes M̃#
n from M#

n is that it is “hybrid” in so far as beyond an

3In particular, PD proves the consistency of ZFC ∪ { “there are n Woodin cardinals” : n <

ω}, but of course not of ZFC ∪ { “there are infinitely many Woodin cardinals” } (not even AD

gives the latter).
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extender sequence it also contains terms capturing a universal set at that level
where we have to establish 1.15 next. By 3.8 and 3.9 the M̃#

n ’s will “almost”
witness 1.15 — if it were not the case that they are hybrid. However, the desired
conclusion will then follow from 3.5.

Let us be a bit more specific already at this point. Let n < ω be least s.t.
ρn(Jβ(R)) = R, and set Γ∗ = Σn(Jβ(R)). Notice that Γ∗ is the next pointclass
for which we aim to verify CΓ∗ is a mouse operator.

Definition 4.1 A = {Ai : i < ω} is called a (Case 2–) self–justifying system
(sjs) if

(a) A0 is a universal Γ–set,

(b) ∪iA2i+1 is a universal Γ∗–set,

(c) for any i < ω, Ai has a scale whose individual norms are all ∈ A,

(d) ∀i∃jAj = ¬Ai, and

(e) A ⊂ Jβ(R).

By [10], there is a sjs. Let us pick one, A. We shall verify (cf. 4.5 below) that
certain premice which are closed under CΓ (i.e., closed under what we have so far!)
contain terms capturing the individual elements of A. We shall then build new,
hybrid, premice, by “throwing in” (codes for) sequences of such terms. Hence,
such hybrid premice will contain terms capturing a universal Γ∗–set.

By arguing similar as in the proof of [12] 7.7 (in fact, by building “hybrid
Kc’s” inside such hybrid premice) we shall eventually be able to construct —
using 3.8 and 3.9 — coarse Σn+i(Jβ(R))–Woodin premice. Finally, 3.5 will give
what we are shooting for.

Let’s now see how this strategy will be adapted to the remaining cases.

Case 3. (“Improper gap case”) α = β > 1.

Here, we shall set Γ∗ = Σ1(Jα(R)). Notice that, except for the case that α is
admissible (and in which, as above with the strong gap, we get 1.15 for [α,α] for
free), again Γ∗ is the next pointclass for which we aim to verify CΓ∗ is a mouse
operator.

However, there won’t be a pointclass Γ around, so that we will have to redefine
what it means to be a sjs.

Case 3.1. α is a successor, α = γ + 1, say.
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Definition 4.2 A = {Ai : i < ω} is called a (Case 3.1–) self–justifying system
(sjs) if

(a) for all i < ω there is a universal Σi(Jγ(R))–set in A,

(b) ∪iA2i+1 is a universal Γ∗–set,

(c) for any i < ω, Ai has a scale whose individual norms are all ∈ A,

(d) ∀i∃jAj = ¬Ai, and

(e) A ⊂ Jα(R).

Notice that any set A ∈ Σ1(Jα(R)) can be written as
⋃

k Ak with the Ak’s being
in Jα(R). [Let Ak = {x : Sωγ+k(R) |= ∃tφ(t, x)} where φ ∈ Σ0 and x ∈ A ↔
Jα(R) |= ∃tφ(t, x).]

Case 3.1.1. The previous gap [γ, γ] is a weak (proper) gap.

Here, by [10], every set in Jα(R) has a scale in Jα(R). In particular, a sjs trivially
exists.

Case 3.1.2. The previous gap [γ, γ] is a strong (proper) gap.

By [10], every set in Jα(R) has a scale in Σ1(Jα(R)) all of whose individual norms
are in Jα(R). In particular, still a sjs exists.

Case 3.1.3. The previous gap [γ, γ] is an improper one, i.e. γ = γ.

Case 3.1.3.1. γ is inadmissible.

Here, by [10], every set in Jα(R) has a scale in Jα(R). So again, as in Case 3.1 a
sjs trivially exists.

Case 3.1.3.2. γ is admissible.

This case resembles 3.1.2. By [10], every set in Jα(R) has a scale in Σ1(Jα(R))
all of whose individual norms are in Jα(R). So again a sjs exists.

Case 3.2. α is a limit ordinal.
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Case 3.2.1. cf(α) = ω.

It is easy to see that here, too, any set A ∈ Σ1(Jα(R)) can be written as
⋃

kAk

with the Ak’s being in Jα(R). [Letting (αk : k < ω) being cofinal in α we may set
Ak = {x : Jαk

(R) |= ∃tφ(t, x)} where φ ∈ Σ0 and x ∈ A↔ Jα(R) |= ∃tφ(t, x).]
Once more, we have to slightly redefine the concept of a sjs.

Definition 4.3 A = {Ai : i < ω} is called a (Case 3.2.1–) self–justifying system
(sjs)

(a) ∪iA2i+1 is a universal Γ∗–set,

(b) for any i < ω, Ai has a scale whose individual norms are all ∈ A,

(c) ∀i∃jAj = ¬Ai, and

(d) A ⊂ Jα(R).

It is clear now that by [10] there is a sjs.
We now finally turn towards our last case. Let us remark at this point that

(except for the projective case) this is the only one where we won’t have to
produce hybrid premice as a tool for proving 1.15. It will be enough to work with
ordinary fine structural premice.

Case 3.2.2. cf(α) > ω.

That this case is a sort of “exception” is also highlighted by the fact that here
we can’t hope to get a sjs ⊂ Jα(R). However, we can do with ∆1(Jα(R)):

Definition 4.4 A = {Ai : i < ω} is called a (Case 3.2.2–) self–justifying system
(sjs)

(a) ∃RA0 is a universal Γ∗–set,

(b) for any i < ω, Ai has a scale whose individual norms are all ∈ A,

(c) ∀i∃jAj = ¬Ai, and

(d) A ⊂ ∆1(Jα(R)).

Let us assume that α is inadmissible, as o.w. there is nothing to prove. Pick
g : R → α cofinal, g ∈ Σ1(Jα(R)). Let (y, (z, φ)) ∈ A0 iff y, z ∈ R, φ is Σ1, and
Jg(y)(R) |= φ(z). A0 is easily seen to be ∆1(Jα(R)).
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Moreover, ∃R A0 is a universal Γ∗–set. [Let φ be Σ1. Then Jα(R) |= φ(z) iff
Jα(R) |= φ(z) for some α < α iff Jg(y)(R) |= φ(z) for some y ∈ R iff (y, (z, φ)) ∈ A0

iff (z, φ) ∈ ∃RA0.]
Now we have that Scale(∆1(Jα(R))) by Scale(Σ1(Jα(R))). These shows that,

with our choice of A0, we easily get a sjs in the last case.
This finishes the exposition of the various cases (together with their associated

sjs’s). We now turn to the Durchführung. We shall try to make it as uniform as
possible. However, of course, certain arguments depend on which case we are in.

Let us first assume until further notice that we’re not in Case 3.2.2. (This
case is an exception as we won’t have to build “hybrid” models here.) Hence a
pointclass Γ∗ is defined, and we’ll have that A is a sjs such that ∪iA2i+1 is a
universal Γ∗ –set. We aim to construct

coarse ∃R∀R . . . ∀RΓ∗ Woodin mice.

We can build fine structural models which contain terms capturing the elements
of A. However, in order to get a coarse ∃R∀R . . . ∀RΓ∗ Woodin mouse we’ll have
to build “hybrid” models which in addition to an extender sequence are also
constructed from a predicate coding sequences of terms capturing the elements
of A, so that the models will contain a term capturing the universal Γ∗–set
∪iA2i+1. We’ll then use 3.8 and 3.9.

Note that A ⊂ Jβ(R). For z ∈ R let us write d ∈ OD<β
z iff there are β < β,

~γ < β, and Φ such that d = {e ∈ Jβ(R) : Jβ(R) |= Φ(e,~γ, z)}, i.e., iff d is ordinal

definable from z over some Jβ(R) for β < β. By an easy induction, for any

A ∈ Jβ(R) we have that A ∈ OD<β
z for some z ∈ R. Moreover, if x ∈ R ∩OD<β

z

then x ∈ CΣ1(Jβ(R))(z); this is because we’ll then have that there is some ξ < ω1

such that for all sufficiently large β < β, x is the ξth real which is ordinal definable
from z over Jβ(R) (in the canonical wellorder of such reals). If x ∈ R ∩ OD<β

z

where β = β + 1, then this reasoning gives that x ∈ CΣn(J
β
(R))(x) for some large

enough n < ω. We have the following criterion for when a model contains a term
(weakly) capturing an element of Jβ(R).

For our purposes we’ll say that σ is a Col(ω, κ)–standard term for a real if

σ =
⋃

n

An × {ň}, where for all n < ω,An ⊂ Col(ω, κ).

Lemma 4.5 Let M be a countable transitive model of a sufficiently large frag-
ment of ZFC which is closed under CΓ. Let κ ∈ CardM , and let z0 be a real
which is an element of M . Then every set of reals which is in OD<β

z0 is weakly
captured by some τ ∈MCol(ω,κ) over M .
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Proof: Fix A ∈ P(R) ∩ OD<β
z0 . We let (p, σ) ∈ τ iff p ∈ Col(ω, κ), σ is a

Col(ω, κ)–standard term for a real, and for comeager many g being Col(ω, κ)–
generic over M : p ∈ g ⇒ σg ∈ A. Trivially, τ ⊂ HM

κ+.

Claim 1. τ ∈M .

Proof: Let x ∈ R be Col(ω,HM
κ+)-generic over M , i.e., (ω,Ex) ∼= (HM

κ+,∈). It is

easy to verify that τx ∈ OD<β
x,z0. But z0 ∈ OD<β

x : Let m be the preimage of z0
under the isomorphism (ω,Ex) ∼= (HM

κ+ ,∈). Then k ∈ z0 iff

∃a ⊂ ω(a represents the set of integers in (ω,Ex),

and if f : (a,Ex ↾a) ∼= (ω,∈) then f−1(k)Exm)).

Hence τx ∈ OD<β
x . Therefore, τx ∈ CΣ1(Jβ(R))(x), and thus τx ∈ CΣ1(Jα(R))(x).

This shows that τx ∈M [x], and thus τ ∈M [x].
But this is true for all x, i.e., if x, x′ are mutually Col(ω,HM

κ+)-generic over
M , then τ ∈M [x] ∩M [x′]. It follows that τ ∈M . �

Claim 2. τ weakly captures A over M .

Proof: For p ∈ Col(ω, κ) and σ a term in MCol(ω,κ) for a real let Cp,σ = {G : p ∈
G ∧ σG ∈ A} and C ′

p,σ = {G : p ∈ G ∧ σG /∈ A}. We have τ = τA = {(p, σ) : Cp,σ

is comeager} ∈M .
We claim that for all σ, {p ∈ Col(ω, κ) : Cp,σ or C ′

p,σ is comeager } is dense in
Col(ω, κ). Fix σ. Let q ∈ Col(ω, κ). Suppose that Cq,σ is not comeager. As Cq,σ

has the property of Baire, there is an open set O such that (O\Cq,σ)∪ (Cq,σ \O)
is meager. If O = ∅, then C ′

q,σ is comeager. Let us assume that O 6= ∅. Then
there is some p such that Up \ Cq,σ is meager, where Up = {g : p ∈ g}. We must
have that p ≤ q, as otherwise Up \Cq,σ = Up, which is not meager. But then Cp,σ

is comeager, as g /∈ Cp,σ iff g ∈ Up \ Cp,σ.
If Cp,σ or C ′

p,σ is comeager, then let C∗
p,σ denote the comeager one of them.

There are only countably many such p’s and σ’s so that

C =
⋂

p,σ

C∗
p,σ

is a comeager set.
Now let g ∈ C. Then σg ∈ τ g ⇒ ∃p ∈ g(p, σ) ∈ τ ⇒ ∃p ∈ gCp,σ is comeager

⇒ σg ∈ A. On the other hand, if σg /∈ τ g, then ∀p ∈ g(p, σ) /∈ τ , so ∀p ∈ gCp,σ is
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not comeager. By densitiy, ∃p ∈ gCp,σ or C ′
p,σ is comeager. Therefore, ∃p ∈ gC ′

p,σ

is comeager, and hence σg /∈ A. This shows that τ g = A ∩M [g] for all g ∈ C.
� (Claim 2)

� (4.5)

Let M , etc. be as above. Let M be an inner model of M . Then τ ∩M is just
the term which the proof of 4.5 would construct for M instead of M . On the
other hand, we can easily amalgamate a term capturing a given set from terms
capturing it over various inner models.

Now let y ∈ R. As a warm up, we can build a y–premouse of height ω1

denoted by
Lα(y),

which is the least transitive fine–structural model with

• y ∈ Lα(y),

• Lα(y) ∩OR = ω1, and

• Lα(y) is closed under CΓ̄ for all Γ which show up in [α, β] for some β < α,
i.e., for club many points γ < ω1, an initial segment Jα

ξ (y) of Lα(y) with
ξ > γ witnesses that CΓ̄(Jα

γ (y)) is captured by a mouse.

We could actually make Lα(y) independent of α and just let it be Lp(y), the

lower part closure of y. Lp(y) stratifies into initial segments J
Lp(y)
γ of height γ,

where γ ⊂ C for a club C ⊂ ω1, such that if γ, γ′ are consecutive elements of

C, then J
Lp(y)
γ′ is the collapsing mouse for J

Lp(y)
γ , i.e., J

Lp(y)
γ′ is a γ-sound ω1 + 1

iterable premouse end-extending J
Lp(y)
γ with ρω(J

Lp(y)
γ′ ) ≤ γ.

We had picked A, a sjs. Let z0 ∈ R be s.t. every A ∈ A is OD<β
z0 .4 Let

us assume that z0 ≤T y. Then from 4.5 it follows that for any A ∈ A and
κ ∈ CardLα(y) there is some τ ∈ (Lα(y))Col(ω,κ) weakly capturing A over Lα(y).

We have A = {An : n < ω}. We may then say that for all κ ∈ CardLα(y)

there is some (τn : n < ω) ⊂ Lα(y) such that for all n, τn ∈ (Lα(y))Col(ω,κ) weakly
captures An over Lα(y).

We’ll need a revised version Lα
hyb(y) of Lα(y), where (τn : n < ω) ⊂ Lα(y)

becomes (τn : n < ω) ∈ Lα
hyb(y). Our plan is to build a “hybrid y–premouse” of

height ω1, denoted by
Lα

hyb(y),

which is the least transitive model with
4Notice that the choice of A is a serious use of dependent choice. The choice of z0 uses ACω.
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• y ∈ Lα
hyb(y),

• Lα
hyb(y) ∩OR = ω1, and

• Lα
hyb(y) is closed under CΓ̄ for all Γ which show up in [α, β] for some β < α,

and

• for all κ ∈ CardLα
hyb

(y) there is (τn : n < ω) ∈ Lα
hyb(y) such that for all n,

τn ∈ (Lα
hyb(y))

Col(ω,κ) weakly captures An over Lα
hyb(y).

We leave the details of the construction of Lα
hyb(y) to the reader’s discretion. We’ll

have that Lα
hyb(y) = Lω1[E

α, Tα, y] = Lω1[E,T, y] where E codes a sequence of

extenders (coming from closing under all CΓ’s, for Γ̄ showing up in [ᾱ, β̄], β̄ < α),
and T codes a sequence (τ i

n : n < ω ∧ i ∈ a), where a is a subset of ω1, of
term sequences (coming from throwing in term sequences at certain points). In
particular, we want that τ i

n ∈ (Lα
hyb(y))

Col(ω,κ) weakly captures An over Lα
hyb(y)|κ

for a certain local cardinal κ < i depending on i.
We shall need the following version of 2.1:

Lemma 4.6 For all u ∈ HC, there is a cone of y,

ω
Lα

hyb
(y)

1 is measurable in HOD
Lα

hyb
(y)

E,T,u .

The proof of 4.6 is just a straightforward variant of the proof of 2.1.

Put H = HOD
Lα

hyb
(y)

E,T,u . We want to build

Kc
hyb(u) = (Kc

hyb(u))
H ,

a “hybrid” Kc over u inside H (and of height ωV
1 ). It will be of the form

Lω1 [E
′, T ′, u] where E′ codes a sequence of background certified extenders, and T ′

codes a sequence (τ i
n : n < ω∧ i ∈ a), where a is a subset of ω1, of term sequences

(coming from throwing in term sequences at certain points). We say that τ i
n is

an “nth term” of Lω1 [E
′, T ′, u].

Definition 4.7 Let M = Jα[E,T, y] be a hybrid y–premouse. M is called
(A,Θ)–good if there is a Θ–iteration strategy Σ for M such that whenever M′ is
a Σ–iterate of M and if τ is one of the nth terms of M′ then τ weakly captures
An over (an initial segment of) M′.

We sometimes aim to say that certain models are (A,Θ)–good inside H, say.
However, this doesn’t make much sense to begin with, because H can’t see A.
However, we can redefine “(A,Θ)–goodness” as follows, which will make sense in
particular inside hybrid premice.
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Definition 4.8 Let M = Jα[E,T, y] be a hybrid y–premouse. M is called
(A,Θ)–good if there is a Θ–iteration strategy for M such that whenever M′ is a
Σ–iterate of M and if τ is one of the nth terms of M′ then

||− τ = τ̃ ∩ M̌′,

where τ̃ is the appropriate nth term from the term predicate of the universe.

This new definition “coincides with” the old one. We now have the following.

Sublemma 4.9 Inside H, countable substructures of models showing up in the
recursive construction of Kc

hyb(u) are (A, ω1 + 1)–good.

Proof Sketch: This follows from the standard proof of iterability (c.f. [12])
together with 1.8. Let π : M → Mξ, where Mξ is a model from the recursive
construction of Kc

hyb(u). We iterate M by choosing unique cofinal realizable

branches. Thus if M
′

is an iterate of M, then there is some ξ ≤ ξ and some
π′ : M

′
→ Mξ. But then any nth term of M

′
captures An over M

′
by 1.8. �

This gives:

Sublemma 4.10 Inside H, Kc
hyb(u) is (A, ωV

1 )–good “above the largest Woodin

cardinal”, i.e., there is an ωV
1 –iteration strategy Σ for iterating Kc

hyb(u) and if τ

is one of the nth terms of M′ then τ weakly captures An over M′.

We’d in fact have to develop a theory of hybrid mice of the form Jα[E,T , u] where
the terms from T strongly capture the sets in A in the above sense. This would
then allow us to prove, using 4.6 above, in a fashion à la Section 2, that

(Kc
hyb(u))

H |= there is a Woodin cardinal.

Let us now turn towards the real induction. We’ll inductively assume that HC
is closed under the operator

a 7→Mα
n,hyb(a) = M(a),

Where for all transitive A, M(a) is the least sound hybrid a–premouse Jα[E,T, a]
such that

• M(a) |= ZF−+ there are n Woodin cardinals and a measurable above,

• M(a) is closed under all CΓ̄ where Γ shows up in [α, β] for β < α, and
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• M(a) is (A, ω1)–good.

We emphasize that the above arguments give that HC is closed under a 7→
Mα

n,hyb(a) = M(a).
Given y ∈ R, we then build the hybrid y–premouse

Lα
n,hyb(y)

as the least transitive model of height ω1 which contains y and is closed under
a 7→Mα

n,hyb(a) = M(a).
Easy arguments show that Lα

n,hyb(y) is A–good. (The terms for the elements
of A are amalgamations of terms from various Mα

n,hyb(−).)
We then continue in a fashion as above. Let Lα

n,hyb(y) = Lω1 [E,T, y], and let

us write H = HOD
Lα

n,hyb
(y)

E,T,u (for some appropriate u <T y). We build

W = Kc
hyb(u) = (Kc

hyb(u))
H .

We then argue that

W |= there is a Woodin cardinal,

by combining a version of (1) above, of 4.10, and of arguments as in Section 2.
Let δ be the largest Woodin cardinal of W . Let

π : P →Σ1 M
α
n,hyb(W |δ),

where ran(π) is the Σ1 hull of ∅, formed inside Mα
n,hyb(W |δ). Notice that

• P |= ZF−+ there are n+ 1 Woodin cardinals and a measurable above.

By 1.11,

• P is closed under all CΓ where Γ appears in [α, β] for βα.

An argument actually shows that Mα
n,hyb(W |δ) is an initial segment of W . [This

uses the “universality” of W inside H, as well as the fact that Mα
n,hyb(W |δ) ∈ H

is sufficiently iterable there.] π thus exists inside W . The condensation lemma
hence gives that in fact

P �W,

i.e., P is an initial segment of W . We have shown that W has a least initial
segment, all it P ′, which is not (n+1)–small. Let us assume w.l.o.g. that P = P ′.

The argument for 4.9 now gives that
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• H |= P is ω1–iterable via the “realization strategy”.

Let us denote this strategy by Σ. It witnesses that H |= P is (A, ω1)–good. It can
be verified that, inside H, Σ is characterized as follows. Let T be a tree on P of
limit length. Then Σ(T ) = the unique cofinal branch coming with a Q–structure
which is (n+ 1)–small and (A, ω1 + 1)–good. Because H thinks that an (n+ 1)–
small hybrid premouse is (A, ω1 + 1)–good (in the sense of 4.8) then it is really
(A, ω1)–good (in the sense of 4.7). We’ll need later that an (n+ 1)–small hybrid
premouse Q ∈ H is (A, ω1)–good in V iff H thinks that Q is (A, ω1 + 1)–good.
The same applies to set–generic extensions of H.

Unfortunately, H won’t be sufficiently correct to immediately give that P is
(really) (A, ω1)–good. We’ll have to use AD once more (or rather the fact that
Martin’s measure on the Turing degrees D is a σ–complete ultrafilter) in order to
get some such P. Let us write P(y, u) for the P isolated above. Let us consider
f : D → R given by

[y] 7→ a canonical real code for P(y, u).5

For each n < ω, the set {y ∈ R : n ∈ f([y])} either contains a cone or is disjoint
from a cone. Let n ∈ P̃ iff for a cone of y, n ∈ f([y]). Then f([y]) = P̃ on a cone
of y.

Sublemma 4.11 P̃ is (really) (A, ω1)–good.

Proof Sketch: Let us consider the following strategy Σ for iterating P̃ : Suppose
that T is an iteration tree on P of limit strength. Then we let Σ(T ) = the unique
cofinal branch b thru T such that MT

b comes with a (A, ω1)–good Q–structure
(Σ(T ) is supposed to be undefined if there is no unique such b). A standard
comparison argument shows that if there is some cofinal branch b thru T such
that MT

b comes with a (A, ω1)–good Q–structure then there is a unique such b.
We claim that Σ witnesses P̃ is (A, ω1)–good.

Suppose not. There is then a putative iteration tree T with [0, λ)T = Σ(T ↾λ)
for all limit λ < lh(T ) such that EITHER T has successor length and its last
model is ill–founded or its terms don’t (weakly) capture the elements of A, OR
ELSE T has limit length and there is no cofinal branch b thru T such that MT

b

is (A, ω1)–good. Let’s restrict ourselves to discussing the 2nd alternative.
Let us pick y in the cone where f is constant and such that

T ∈ Lα
n,hyb(y),

5The fact that ρω(P(y, u)) = ω means that P(y, u) comes with a canonical real code for
itself.
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and is countable there. As before, let us write

H = HOD
Lα

hyb
(y)

E,T,u .

By Vopěnka, then, T is a countable tree on P in H[g], a generic extension of
H. Now T is such that for all limit λ < lh(T ), [0, λ)T = the unique cofinal
branch b coming with an (n+ 1)–small hybrid (A, ω1)–good (in the sense of 4.7)
Q–structure. By remarks above, hence, H[g] thinks that T is such that for all
limit λ < lh(T ), [0, λ)T = the unique cofinal branch b coming with an (n + 1)–
small hybrid (A, ω1)–good (in the sense of 4.8) Q–structure. In other words,
for all limit λ < lh(T ), [0, λ)T = Σ(y, u)(T ↾ λ), i.e., T was built according to
Σ(y, u) inside H[g]. But then Σ(y, u)(T ) is well–defined. In other words, there is
a cofinal branch b thru T coming with an (n+ 1)–small hybrid (A, ω1)–good (in
H[g], and hence in V ) Q–structure. �

We have shown that Mα
n+1,hyb(u) exists.

Let us finally discuss Case 3.2.2. The good news is that we won’t have to produce
hybrid models here. Let B ∈ Σ1(Jα(R)), and let X ⊂ R be countable. We are
assuming that cf(α) > ω. Hence the set of witnesses for elementhood in B∩X is
bounded below α, and thus B ∩X ∈ Jα(R), i.e. B ∩X ∈ OD<α

z0
for some z0 ∈ R.

Thus, going into the proof of 4.5, if A ∈ P(R) ∩∆1(Jα(R)) then we now still get
that τx ∈ OD<α

x,z0
(notation as there). Hence in this Case we get 4.5 where in its

statement “every set of reals which is in OD<α
x,z0

” can be replaced by “every set
of reals which is in ∆1(Jα(R))”.

With this observation we see that we can now run the above argument where
instead of producing hybrid models we always produce ordinary fine structural
models. �
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