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More structural consequences of AD

Richard Ketchersid

Abstract. Woodin and Steel showed that under AD + DCR the Suslin car-
dinals are closed below their supremum; Woodin devised an argument based
on the notion of strong ∞-Borel code which is presented here. A consequence
of the closure of the Suslin cardinals below their supremum is that the Suslin
cardinals and the reliable cardinals coincide, the proof of this fact is also in-
cluded.

Woodin’s argument yields that AD+ implies that the Suslin cardinals are
closed below Θ. It turns out that this characterizes AD+. We include a sketch
of this argument as well.
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1. Introduction

This is an expository paper based on notes from the set theory seminar at UC
Berkeley in Fall 1994 and Spring 1995, personal communications with Woodin, and
handwritten notes from a seminar on AD+ at UCLA given by John Steel. The
results here are due to many people including, but not limited to Howard Becker,
Steve Jackson, Alexander Kechris, Tony Martin, Yiannis Moschovakis, John Steel,
Robert Solovay, and Hugh Woodin. I will make attributions when known, however,
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I do not have a full account of the history and hence cannot attribute every fact, non-
attributed facts are, as far as I know, folklore, come from private communication,
or are unattributed in various hand written notes. The goal is to present some of
the theory of AD+ which, heretofore, has not been published, although see [Ike10].
References given are typically the ones most readily available to the author, and
most likely the reader as well, and almost certainly are not the original sources.

I have placed some of the more technical descriptive set theoretic material to an
appendix so as not to deter the reader less familiar with descriptive set theory. The
primary tools used are forcing, ultraproducts, and absoluteness arguments. This
paper, with the exception of §7, is intended to be self contained for those familiar
with set theory in general and the axiom of determinacy in particular. I will begin
with a few preliminaries in §2.

§3 concerns degree measures and associated ultrapowers and ultraproducts.
Here we will also discuss generic ultrapowers formed by forcing with the positive
sets associated to a filter and see that this forcing is essentially a version of Sacks
forcing.

§4 introduces the hierarchy of degree notions.
§5 discusses many structural consequences of the degree structure developed in

§4. In particular, the cases of having or not having a maximal degree are considered.
Various implications concerning AD, AD+, and ADR are considered. This section
also contains a proof due to Woodin that AD + uniformization implies that all sets
are ∞-Borel.

§6 develops the critical notion, due to Woodin, of strong infinity Borel code.
The main results concerning the closure of the Suslin cardinals below their supre-
mum, under AD + DCR, and closure below Θ, under AD+, are discussed in this
section. Subsection §6.1 contains the short proof that the reliable cardinals and the
Suslin cardinals are the same. The key to this result is the closure from §6.

§7 contains a sketch of the equivalence between AD+ and the closure of the
Suslin cardinals below Θ leaving the existence of a maximal model of AD+ which
contains all the Suslin sets, part of Woodin’s derived model theorem, as a black
box.

1.1. Acknowledgments. I want to thank Hugh Woodin for his permission
to publish these results here. I also want to thank the referee for being both quick
and thorough, and for making many good suggestions and corrections.

2. Preliminaries

Throughout we will be assuming ZF+AD+DCR. As is typical, in this area, the
term real is used to mean either an element of Baire space, ωω, or of Cantor space,
2ω; in general the spaces Xω admit simple pairing functions that the Euclidean
reals do not posses. I will use x to indicate a ≤ω-sequence from a set X , i.e.,
x = 〈xi : i < |x|〉. For a sequence, 〈xi : i < n〉 ∈ (Xω)n, I will often identify the
sequence with its corresponding element in Xω via the canonical isomorphism of
Xω with (Xω)n and I will write (x)n

i for the element in Xω so that 〈(x)n
i :i < n〉 = x

via this identification. Finally, when n is understood from context, I will write (x)i

rather than (x)n
i .

Given a set A ⊆ Xω, the game GX(A) consists of ω-rounds, where in the ith

round player I plays x2i ∈ X and then player II plays x2i+1 ∈ X . When the game
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is over, a play x ∈ Xω has been constructed. I wins if x ∈ A, otherwise II wins. I
will refer to (x)0 ∈ Xω as I’s play and (x)1 ∈ Xω as II’s play.

A strategy σ for player I (II) is a function σ : X<ω → X telling player I (II)
how to move. For f ∈ Xω and σ a strategy for I (II) write σ(f) for the play
resulting from II (I) playing f and I (II) using σ. The strategy σ is winning for
I iff σ(f) ∈ A for every valid play f by II; similarly define σ is winning for II. If
X ∈ {ω, 2}, then a strategy is easily coded by a real.

The game GX(A) is determined provided one of the players has a winning
strategy. AD is the assertion that for all A ⊆ R, G(A) is determined.

Following on the heals of joint work with Martin, Moschovakis, and Kechris
[KKMW81, §2], Woodin showed that if M ⊇ R is a transitive model of ZF and
every set of reals in M is Suslin in some larger transitive model of ZF + AD, then
the following hold in M :

• (InfBorel) All sets are ∞-Borel.
• (OrdDet) <Θ-ordinal determinacy.
• DCR.

Woodin eventually isolated the theory AD+, which is now taken to be

ZF + OrdDet + InfBorel + DCR.

AD+ is intended to axiomatize those sentences ϕ that hold in M where M is a
transitive model of ZF containing R and such that every set of reals of M is Suslin
in some possibly larger transitive model of ZF + AD with the same reals. This
downward absoluteness is discussed below (see page 33 and Lemma 2.5). One im-
mediate consequence is that AD+ all sets are Suslin =⇒ AD+. It is open whether
AD =⇒ AD+. The arguments contained here should illustrate how DCR, ∞-Borel
representations for sets of reals, and ordinal determinacy are used to investigate
the structure of models of AD+.

For facts about Descriptive Set Theory and models of AD refer to [Mos09] and
to [Jac10]. For facts and references concerning AD+ see [Woo99, CK09, Ste94].
I will define and discuss the Suslin sets and cardinals and ∞-Borel sets and codes
in the following two subsections. I have placed many of the more technical facts
involving descriptive set theory in models of AD in an appendix to be referred to
when needed. The key results in this paper use forcing, ultrapowers/products, and
absoluteness, the reader should not be deterred by the descriptive set theory that
enters in now and again.

2.1. Suslin sets and cardinals. A tree on X is a subset of X<ω closed under
restriction. For T a tree on X , [T ] is the set of all infinite branches through T .
Topologically, if X is a discrete space and Xω is given the usual product topology,
then the closed subsets of Xω are of the form [T ] for some tree T on X . In
particular the closed subsets of ωω or 2ω are of this form. For s ∈ X<ω, Ts =
{t ∈ T : s ⊆ t ∨ t ⊆ s}.

For T a tree on X × Y , and s ∈ X<ω, Ts = {(t, u) ∈ T : t ⊆ s ∨ s ⊆ t} and for
f ∈ Xω set Tf = {u : ∃n (f |n, u) ∈ T }. The set

p[T ] = {f ∈ Xω : ∃g ∈ Y ω (f, g) ∈ [T ]} = {f ∈ Xω : Tf is illfounded}

is the projection of T . Here I am identifying sequences 〈(x0, y0), . . . , (xn, yn)〉 ∈
(X × Y )≤ω with sequences s = (〈x0, . . . , xn 〉, 〈y0, . . . , yn〉) ∈ X≤ω × Y ≤ω such that
lh(s0) = lh(s1).
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A set A ⊆ Xω is Y -Suslin iff A = p[T ] for some tree on X × Y .
We will only be interested in the case where Y is wellorderable. If <Y is a

wellordering of Y and T is a tree on Y , with [Y ] 6= ∅, then bT is the leftmost branch
of T (w.r.t. <Y ) and is defined by

bT |i =<lex
Y -least s such that Ts is illfounded

From now on just take Y to be an ordinal.
If T is a tree on X × κ, then define ϕT

i (x) = bTx(i) for x ∈ p[T ]. So ϕT
i (x) :

p[T ] → κ. The sequence {ϕT
i }i is the semiscale associated to T . In general we have

Definition 2.1. A sequence of functions, {θi : A → OR}i, is a semiscale on A
iff whenever

(1) xi ∈ A for all i ∈ ω,
(2) limi xi = x, i.e., 〈xi(j) : i ∈ ω〉 is eventually constant, and
(3) ∀j∃λj∀∞i θj(xi) = λj , i.e., 〈θj(xi) : i ∈ ω〉 is eventually constant,

then x ∈ A. ⊣

In other-words, {θi}i a semiscale on A iff A = p[T {θi}i ], where

T {θi}i
df
= {(x|n, 〈θ0(x), . . . , θn−1(x)〉) : n ∈ ω ∧ x ∈ A}.

A semiscale is regular if for each i, θi : A
onto
−−→ κi. Any semiscale {θi}i generates

a regular semiscale {θi}i by collapsing the range. If {θi}i with θi : A
onto
−−→ κi is a

regular semiscale and A ⊆ R, then κi < Θ, being the rank of a prewellordering on

A. Similarly, supi κi ≤
∑

i κi < Θ, since defining (i, x) ≤ (j, y)
df

⇐⇒ i < j ∨ [i =
j ∧ θi(x) ≤ θi(y)] is a prewellordering of ω × A. As a consequence, we see that if
A = p[T ] for T a tree on ω × κ, then A = p[T ′] for T ′ a tree on ω × κ′ with κ′ < Θ.
In the future κ-Suslin will entail κ < Θ.

Define Sκ to be the collection of all κ-Suslin sets. A set is co-κ-Suslin if its
complement is κ-Suslin. Sκ is closed under continuous preimages, real existential
quantification (projection), in fact closed under ∃f ∈ κω. Under AD + DCR, Sκ is
also closed under countable union and intersection, where the coding lemma 8.4 is
used in conjunction with DCR to pick a countable sequence of Suslin representations
given a countable sequence of Suslin sets.

It might seem as though Sκ should be closed under κ-length wellordered unions;
however this would require the ability to pick a κ-sequence of κ-Suslin representa-
tions and as we shall see, this amount of choice fails under AD.

A cardinal κ is a Suslin cardinal if Sκ \S<κ 6= ∅, where S<κ=

⋃
λ<κ Sλ. Notice

κ a Suslin cardinal implies κ < Θ. DC implies that the Suslin cardinals form
an omega-club, since one needs only to pick a suitable sequence of trees. Define
κ∞ = sup{κ < Θ : κ is a Suslin cardinal} ≤ Θ and S∞ to be the set of all Suslin
sets. Thus κ∞ is a Suslin cardinal iff S∞ \ S<κ∞

6= ∅. If κ∞ < Θ, then DCR

suffices to show that the Suslin cardinals form an ω-club. Again, the coding lemma
is used to reduce DC to DCR. Under DCR it is possible for cf(κ∞) = ω, but only
if κ∞ = Θ.

Suslin subsets of R2 are uniformizable as follows. Suppose A ⊆ R2 with A =
p[T ] for T a tree on ω2 × κ, then define A∗(x, y) ⇐⇒ (bTx)0 = y, that is, the left
hand side of the leftmost branch through Tx is y. A∗ is a uniformization of A.
This shows that being Suslin entails a bit of choice. Since choice conflicts with
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determinacy, AD together with “there are a lot of Suslin sets”, should be stronger
than just AD and this is indeed the case.

Borel sets are precisely the ω-Suslin/co-ω-Suslin sets. Consider WOα = {x :
x codes a wellorder of rank α}. Each WOα is Borel; hence has a ω-Suslin represen-
tation. However, assuming AD, there is no sequence of trees Tα (on any ordinal)

witnessing WOα is Suslin. If such a sequence existed, then setting xα = bTα

0 would
give an uncountable sequence of distinct reals. This example shows that the pas-
sage from Borel representation to Suslin representations is non-trivial. One of the
main goals of this paper is to understand the passage from ∞-Borel code of a
set to a Suslin representation, if such exists. Conversely, passing from Suslin to
∞-Borel representations is relatively straightforward; an old result of Sierpiński is
that any co-κ-Suslin set is the κ+-union of <κ+-Borel sets and the passage from
Suslin representation to Borel representation is simply definable.

We will need the following fact regarding the rank of λ-Suslin wellfounded
relations.

Theorem 2.2 (Kunen-Martin [Mos09, Jac10]). Let ≺ be a λ-Suslin wellfounded
relation, then || ≺ || < λ+. ⊣

2.2. ∞-Borel sets. In section 2.2.3 of [CK09], ∞-Borel codes are defined as
well as several equivalent notions. We need two of these here. The official definition
takes an ∞-Borel code to be a wellfounded tree, T , which describes how to build a
set of reals, AT , via well ordered unions, complements, etc., beginning with basic
open sets. Let BCκ be the collection of ∞-Borel codes where the tree is on κ. It
should be fairly clear that for α ≥ ω, BCα is closed under continuous substitution
since given π : ωω → ωω continuous we just need for each i, j ∈ ω a code for
π−1[{x : x(i) = j}].

Our official definition of ∞-Borel code is equivalent to considering the infini-
tary propositional calculus, L∞(ẋ), with basic propositions ẋi,j with intended in-
terpretation being {x ∈ ωω : x(i) = j}, so instead of writing ẋi,j I write ẋ(i) = j.
Negation and wellordered conjunction/disjunction is allowed. The standard defi-
nition of z |= S(ẋ) is used and clearly z |= S(ẋ) ⇐⇒ z ∈ AS . I will utilize this
notation and write “S(z)” in place of “z |= S(ẋ)” or “z ∈ AS” when useful. Similarly
L∞(ẋ0, . . . , ẋn−1) is used to describe subsets of Rn with L

<ω
∞ ({ẋi : i ∈ ω}) being the

union of the Ln
∞. This allows easy manipulation of variables to derive new codes

from old and I will utilize this when useful.
There is a fixed Σ1-formula, Φ, so that for T ∈ BCκ,

x ∈ AT ⇐⇒ LαT,x
[T, x] |= Φ(T, x)

where αT,x is the least α so that Lα(T, x) is a model of Kripke-Platek (KP) set
theory [Bar75].

Consequently, one variant of the coding is to take a code to be a triple (α, ϕ, S),
for S ⊆ OR and ϕ a formula of set theory, and sets

x ∈ A(α,S,ϕ) ⇐⇒ Lα[S, x] |= ϕ(S, x).

Call (α, ϕ, S) an ∞-Borel∗ code and let BC∗
κ be those codes (α, ϕ, S) with S ⊆ α ⊆

κ. The relative sizes of these two notions of code and in which inner models they
exists will be used.

Lemma 2.3. For any κ, BCκ ⊆ BC∗
κ+ while for any κ such that ωκ = κ, BC∗

κ ⊆
BCκ.
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Proof. For S ∈ BCκ let αS = supx∈R
αS,x, then

x ∈ AS ⇐⇒ LαS
[S, x] |= Φ(S, x).

Here we use the fact that Φ is Σ1. Letting ακ = supS∈P(S) αS and αS,x < κ+ for

S ⊆ κ so αS ≤ κ+ and we have

BCκ ⊆ BC∗
ακ

⊆ BC∗
κ+ .

The other direction requires quite a significant detour and will be omitted here.
The point is essentially that Jα[S] can “see” Jα[S, ẋ] (as a collection of “uninterpreted
names/descriptions for sets”), where the J-hierarchy is Jensen’s version of L (see
[Jen72].) ❑

The following two lemmas say something about how far one must look to in-
terpret a given ∞-Borel code and conversely how far one must look to find a code
for a given ∞-Borel set. It would be good to consult Lemma 8.3 for the definitions
and facts used concerning δ(A), Π(A), and ∆(A).

Lemma 2.4. For any set A, B<δ(A) ⊆ ∆(A).

Proof. If S ∈ BCκ and ≤ is are prewellorder of rank κ, then δ(A) is measurable,
hence regular, and ∆(A) is closed under <δ(A)-wellordered unions, so B<δ(A) ⊆
∆(A). ❑

Lemma 2.5. Any ∞-Borel set, A, has a code in ∆(A), with respect to any Π(A)-
norm on a complete Π(A) set.

Proof. Let S be a code for A and consider the relation ∼ on BC∞ given by
T ∼ T ′ ⇐⇒ AT = AT ′ . Let M = L[∼, S] and look at BCM

∞/ ∼. If BCM
<δ(A) = BCM

∞,

then there is a code S′ of size < δ(A) with S′ ∼ S and such a code is in ∆(A) .

If BCM
<δ(A) 6= BCM

∞ , then there is a δ(A)-antichain, 〈Sα :α < δ(A)〉. This gives a

prewellorder ≤∗ of length δ(A) with a code S∗ =
∨

α≤β Sα ×Sβ in BCδ(A) and thus

has a ∆(A) code. Clearly, ≤∗�w A, since otherwise || ≤∗ || < δ(A). Since ≤∗� A,
either A ≤w≤∗ or A ≤w�∗. Since BCα is closed under continuous substitution for
α ≥ ω. ❑

This gives the downward absoluteness of being ∞-Borel.
It is shown in [CK09], under AD + DCR, or more precisely, assuming there

is a countably complete fine ultrafilter on Pω1
(R) and DCR, that A is ∞-Borel iff

A appears in a model of the form L(S, R) for some S ⊆ OR. In fact Woodin has
shown more:

Theorem 2.6 (Woodin). Work in ZF. Suppose µ is a fine measure on Pω1
(P(γ))

and
∏

OR/µ is wellfounded. Let S ⊆ OR and A ⊆ R with A ∈ OD
L(S,P(γ))
S,T for

T ⊆ γ, then A is ∞-Borel with code in ODV
S,T,µ. ⊣

Assuming AD for each γ < Θ there is an OD, fine, σ-complete measure, µγ , on
Pω1

(P(γ)). So µ can be dropped in the definability estimate for the code in this
case.

This theorem shows that under AD+DCR +V = L(P(R)), L(B∞, R)∩P(R) =
B∞ so there is a largest model of AD + DCR + InfBorel. The point is that if
B∞ 6= P(R), then B∞ = Bλ for a λ < Θ and thus B∞ ⊆ L(P(γ)).
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3. Cone ultrafilters and ultraproducts.

Let
x ≤S y ⇐⇒ L[S, x] ⊆ L[S, y]

be the partial order of S-constructibility degrees. Let

x ≡S y ⇐⇒ x ≤S y & y ≤S x

be the corresponding equivalence relation with classes [x]S = {y : x ≡S y} and let
DS be the set of S-degrees. We will use x ≤ y to mean x is Turing reducible to y.
Notice, in particular, that x ≤∅ y is different from x ≤ y.

A set of reals, A, is S-invariant iff

x ∈ A & x ≡S y =⇒ y ∈ A

An S-invariant set can be viewed as a subset of DS . A function f : R → V is
S-invariant if

x ≡S y =⇒ f(x) = f(y)

so f can be viewed as f : DS → V . More generally, for a formula ϕ, define ϕ is
S-invariant iff

x ≡S y =⇒
(
ϕ(x) ⇐⇒ ϕ(y)

)
.

A set, A, of reals contains an S-cone iff ∃x0 ∀x ≥S x0 (x ∈ A). I will write this
as ∀∗Sx (x ∈ A). More generally, write ∀∗Sxϕ(x) for a formula ϕ and say ϕ holds on
an S-cone, if ∃x0∀x ≥S x0 ϕ(x).

The collection of sets of reals containing S-cones forms a σ-complete filter under
DCR, denoted µS and called the S-cone filter or Martin measure on S-degrees. µ
will denote the Martin measure on Turing degrees, so µ and µ∅ are distinct.

Theorem 3.1 (Martin). µS when restricted to S-invariant sets is an ultrafilter.

Proof. Let A be S-invariant. Play the game where I plays x and II plays y (bit
by bit). Player II wins if y ≥S x and y ∈ A. If I wins with strategy σ, then when
II plays y ≥S σ, x = σ(y) /∈ A since x ≤S σ ⊕ y ≡S y and A is S-invariant. This
shows that the S-cone above σ is contained in ¬A.

If σ is a II winning strategy, then for x ≥S σ, σ(x) ∈ A, but σ(x) ≡S x since
σ(x) ≥S x, so x ∈ A by the S-invariance of A. ❑

Clearly for S-invariant ϕ

∀∗xϕ(x) ⇐⇒ ∀∗Sxϕ(x)

and we will use this without mention throughout. In particular we do not have
to be careful about using the expression “S-cone” and can just use “cone” in most
cases.

We give a partial order to P(OR) as follows:

S � T ⇐⇒ ∀∗x (L[S, x] ∩ R ⊆ L[T, x])

S ≈ T ⇐⇒ ∀∗x (L[S, x] ∩ R = L[T, x] ∩ R)

I will refer to S/ ≈ as the degree notion corresponding to S.
When looking at reduced products of S-invariant functions, whether µ or µS is

used is irrelevant; what does matter is the class of functions used. For S-invariant
f : R → OR define [f ]S recursively by

[f ]S =
∏

S

f/µ = {[g]S : g is S-invariant & ∀∗x g(x) < f(x)}
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One gets the same notion if µ is replaced by µS and ∀∗ is replaced by ∀∗S .
If S � T , then πS,T (µS) = µT , where πS,T : DS → DT is given by πS,T ([x]S) =

[x]T , this is extended to the measures by defining X ∈ πS,T (µS)
df

⇐⇒ π−1
S,T [X ] ∈ µS .

If f is S-invariant and S ≺ T , then [f ]T ≤ [f ]S , but equality will not hold in general,

for example, Lemma 3.3 shows
∏

T ω
L[T,x]
1 = ωV

1 while
∏

S ω
L[T,x]
1 >

∏
S ω

L(S,x)
1 ,

since ω
L(S,x)
1 < ω

L(T,x)
1 on a S-cone of x by Theorem 4.4.

I will assume DC−, the statement that
∏

µ OR/µ is wellfounded, for the re-

mainder of the paper. It is a non-trivial fact due to Woodin that DC− follows from
AD+. It is clear that DC− sits somewhere between DCR and DC. Since all of the
other measures we use reduce to µ, DC− gives

∏
S OR/µS is wellfounded. Assum-

ing DC− could be avoided throughout a large portion of the paper. Assuming DCR

we have that L(A, R) is a model of DC and where we can get by working locally in
a model of the form L(A, R), we could get by also with just DCR.

The notation [f ]S can be extended to S-invariant functions f : R → P(OR) and
more generally to the situation where we have S-invariant map x 7→ (Mx, ⊳x) where
Mx is a transitive (set- or proper class-sized) structure which carries a natural well
ordering ⊳Mx

. Form
∏

S Mx/µ using S-invariant functions f such that f(x) ∈ Mx

on a cone of x. This will yield

M∞
S =

∏

S

Mx/µ

a transitive structure with well ordering ⊳M∞

and Łos’s Lemma will hold:

M∞
S |= ϕ([f ]S) ⇐⇒ ∀∗xMx |= ϕ(f(x)),

for all formulas ϕ. This uses DC or DCR in some appropriate model as described
above.

Let [T ]S be the object corresponding to the constant function with value T ,
and let jS : P(OR) → P(OR) be the function T 7→ [T ]S. The critical point of this
embedding is ωV

1 .
Extending slightly the notation from [CK09], for S � T , set

Hx(T ) = HOD
L[T,x]
T

and set

H∞
S (T ) =

∏

S

Hx(T )/µ.

More generally, I will use S∞ for jS(S) and T∞
S ambiguously for jS(T ) or [x 7→ T x]S

where x 7→ T x is S-invariant.
We will see below that H∞

S (T ) can be viewed as Hx∞
S (T∞

S ) = HOD
L[T∞

S ,x∞
S ]

T∞
S

for a generic real x∞
S which can be viewed as a kind of Sacks generic over V .

Set δx
S = ω

L[S,x]
2 and δ∞S =

∏
S δx

S/µ. Recall from [CK09] that on a cone of x,
GCH holds below ωV

1 in L[S, x], ωV
1 is inaccessible in L[S, x], and δx

S is inaccessible
(in fact Woodin [KW10]) in Hx(S). Let GCH∗ denote “GCH holds below the
least inaccessible” (ω2, “least measurable”, etc. would work just as well as “least
inaccessible” here.) We will primarily use

GCH∗ =⇒ 2ω = ℵ1 and 2ω1 = ℵ2.

We will show below that δ∞S depends on S, see Theorem 5.16 and Corol-

lary 6.4. In contrast, we have
∏

S ω
L[S,x]
1 = ωV

1 . First we need the following:
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Lemma 3.2. Suppose f : R → OR is S-invariant, then either f is monotonically
increasing on a cone, i.e., for a cone of x, y > x → f(y) > f(x), or else, f is
constant on a cone.

Proof. If monotonically increasing fails on a cone, then on a cone of x there is
y ≥ x, with f(y) ≤ f(x). Since there is not an infinite descending sequence of
ordinals we get a cone on which f is constant. ❑

Lemma 3.3. For all S,
∏

S ω
L[S,x]
1 /µ = ωV

1 .

Proof. Let f ∈
∏

S ω
L[S,x]
1 . If f is constantly α on a cone, then [f ]S = α, so

suppose f is monotonic increasing (see Lemma 3.2). Consider the game where I

plays x and II plays y, z. II wins iff y ≥S x and z ∈ WOL[S,y] codes f(y), where
WO is just the collection of reals that code ordinals below ω1.

Suppose I follows a strategy σ and II plays y, z with y above σ and such that

y is in the cone on which f is monotonic, and z ∈ WOL[S,y] coding f(y). This is
clearly a win for II, so no strategy is winning for I.

Let σ be a II winning strategy and set Y = {(σ(x))1 : x ∈ R}. This is a Σ
˜

1
1

subset of WO and hence Y ⊆ WOα for some α < ω1. Let x ≥S σ, then (σ(x))0 ≡S x
and f(x) = f((σ(x))0) = ||(σ(x))1||. This shows that on a cone of x, f(x) < α, but
then f must be constant on a cone. ❑

Viewing µS as a filter on P(R) rather than an ultrafilter on S-invariant sets we
have A ⊆ R is S-positive provided ∀∗x [x]S ∩ A 6= ∅. Equivalently, A is S-positive
if [A]S contains a cone. Let PS be the notion of forcing with conditions being S-
positive sets and with A ≤PS

B iff A ⊆ B. PS-generics are V -ultrafilters on P(R)V .
The next lemma shows that the map jG : V → ult(V, G) agrees with jS on P(OR).
Recall ult(V, G) is formed in V [G] using functions f : R → V in V . Without choice
in V , jG need not be elementary and we will be more interested in ultraproducts
of canonically well-ordered structures like L[T, x] where T ⊆ OR.

Lemma 3.4. For G ⊆ PS generic, the map k([f ]S) = [f ]G is an isomorphism of∏
S OR/µ with

∏
R

OR/G.

Proof. It is clear that k([f ]S) = [f ]G is an embedding. We want to see that k is

onto. Let f : A → OR for A S-positive. Let B ≤PS
A and define f̂ : [B]S → OR

by f̂([x]S) = inf f [[x]S ∩ B].
Define C = {x ∈ B : f(x) = inf f [[x]S ∩ B]}, then C is an S-positive subset of

B and C 
PS
k([f̂ ]S) = [f ]G. Since B ≤S A is arbitrary, A 
 [f ]G ∈ rng(k). ❑

If G is PS-generic, then define

x∞
S (G) =

⋃
{s : [s] ∈ G}

where [s] = {x ∈ R : x ⊃ s}. When G is understood, I will simply write x∞
S . We

have, by Łos’s Lemma, that
∏

R

〈L[T, x], Hx(T ), T, x〉/G = 〈L[T∞
S , x∞

S ], H∞
S (T ), T∞

S , x∞
S 〉

and

L[T∞
S , x∞

S ] |= H∞
S (T ) = HOD

L[T∞
S ,x∞

S ]
T∞

S



10 RICHARD KETCHERSID

In particular, H∞
S (T ) = Hx∞

S (T∞
S ).

We will use the fact that PS can be recast as a version of Sacks forcing. Call
a tree a on ω S-pointed perfect iff a is perfect and, identifying a with a real in a
natural way, a ≤S x for every branch x ∈ [a]. A proof of the following appears in
[Kec88].

Theorem 3.5 (Martin). For A ⊆ R, A is S-positive iff there is an S-pointed
perfect tree a such that [a] ⊆ A.

Proof. Players I and II play x and y respectively. Player II wins if x ≤S y and
y ∈ A. If σ is a winning strategy for II, then σ[R] contains a perfect subset and a
tree, a, witnessing this can be found in L[S, σ]. (In fact a is very simply definable
from σ, but one still needs to go to L[S, y] to compute a from y ∈ [a].) One way to
see this as follows. In L[S, σ] define s 7→ ts, ns where ts =

(
xs ⊕ σ

)
|ns for some xs

subject to the constraints that

(1) lh(s) = lh(s′) → ns = ns′

(2) s ⊥ s′ → σ(ts) ⊥ σ(t′s)

Let a be the tree {σ(ts) : s ∈ 2<ω}. For y ∈ [a] there is b ∈ 2ω and xb|i so that
limi xb|i ⊕ σ = xb ⊕ σ and y = σ(xb ⊕ σ). Since σ is winning for II, xb ⊕ σ ≤S y so
in particular σ ≤S y for y ∈ [a] and so a ≤S y since a ≤S σ.

If player I wins with σ, then if y ≥S σ we have y ≥S σ(y) so y /∈ A. This shows
¬A contains a cone. ❑

So forcing with PS is equivalent to the version of Sacks forcing where S-pointed
perfect trees are used, call this SS . If G is a generic ultrafilter of S-positive sets,
then x∞

S (G) as defined previously is the corresponding Sacks generic.
The next theorem will be used later and is our main application of the fact that

PS is essentially S-pointed perfect Sacks forcing, the point being that literally S is
not necessarily in L(S∞, R). By passing to the S-pointed Sacks forcing, however,
we can see that if x∞

S is SS generic, then x∞
S is SS∞ generic over L(S∞, R).

Theorem 3.6. Let x∞
S be PS-generic, then δ∞S ≤ Θ and x∞

S is SS∞ -generic over
L(S∞, R).

Proof. First notice that S∞ ≈ S since for any y, x ∈ R:

y ∈ L[S∞, x] ⇐⇒ ∀∗z
(
y ∈ L[S, x]

)
↔ y ∈ L[S, x]

So, while L(S∞, R) might not see S, it does see the corresponding S∞-pointed
perfect forcing and this is equivalent to S-pointed perfect forcing. So x∞

S is SS∞ -
generic over L(S∞, R).

In L(S∞, R)[x∞
S ] there is no map from RV onto ΘV since if τ̇ were a name for

such a map, look at Bα = {(a, x) : a 
 τ̇(x) = α}. The sequence Bα determines a

prewellordering, ≤
df
=

⋃
α≤β<ΘV Bα × Bβ , in V , of length ΘV , which cannot exist.

If Θ < δ∞S = ω
L[S∞,x∞

S ]
2 , then |Θ|L[S∞,x∞

S ] = ω
L[S∞,x∞

S ]
1 = ωV

1 by Lemma 3.3.
But, then L(S∞, R)[x∞

S ] |= |Θ| = ωV
1 contradicting the previous paragraph, since

L(S∞, R) has a map from RV onto ωV
1 . ❑

4. Compatibility of constructibility degrees.

In this section we reproduce Woodin’s proof that for any two sets of ordinals S
and T either L[S, x] sees a large initial segment of L[T, x] or else L[T, x] sees a large
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initial segment of L[S, x] in H(ω1)
L[T,x]. For this Woodin utilized a generalized

notion of Prikry forcing.
Work in ZF and let U be an ultrafilter on a set X . A condition in PU is a pair

p = (p0, p1) where p0 ∈ X<ω and p1 : X<ω → U with order defined by p ≤PU
q iff

(1) p0 ⊇ q0,
(2) for all i ∈ dom(p0) \ dom(q0), p0(i) ∈ q1(p0 ↾ i), and
(3) p1(t) ⊆ q1(t) for all t ∈ X<ω.

We may, and do, work with conditions with the property that for all subsequences
s of t, p1(t) ⊆ p1(s). (Here I mean subsequences, not initial segments.) Only finite
additivity is required. This is almost a tree forcing with p1 determining U -large
splitting above a trunk p0, however, for the Mathias Condition below we require p1

to be defined on X<ω and not just a subtree. Using finite additivity of the measure
it is clear that any two conditions p, p′ with p0 = p′0 are compatible.

A generic, G, determines an element, g, of Xω with g =
⋃
{p0 : p ∈ G}. Con-

versely, G = {p : p0 ⊆ g and ∀i > |p0| g(i) ∈ p1(g ↾ i)}. We shall refer to g as the
generic sequence from X .

Two key properties of Prikry forcing extend to this setting, these are the Prikry
Property and the Mathias Property. We follow Woodin and use a rank function in
the proofs. In the case of the Prikry Property, the rank function turns out to only
take the value 0 or ∞.

Theorem 4.1 (Prikry Property). Given any condition p and sentence ϕ of the
forcing language, there is a condition p′ ≤PU

p such that p0 = p′0 and p′ decides ϕ.

Proof. It suffices to show that there is some f so that (∅, f) decides ϕ, for then
we can take p′1(t) = f(t) ∩ p1(t).

Define a rank function ρϕ : X<ω → OR ∪ {∞}

ρϕ(t) = 0 ⇐⇒ there is p such that p0 = t and p 
 ϕ

ρϕ(t) = α ⇐⇒ {x : ρϕ(tx) < α} ∈ U and ρϕ(t) ≮ α

ρϕ(t) = ∞ ⇐⇒ ρϕ(t) 6= α for any α

Define

fϕ(s) =





{x : ρϕ(sx) = 0} if ρϕ(s) = 0

{x : ρϕ(sx) < ρϕ(s)} if 0 < ρϕ(s) < ∞

{x : ρϕ(sx) = ∞} if ρϕ(s) = ∞

So (∅, fϕ) ∈ PU and we will see (∅, fϕ) decides ϕ.
If ρϕ(∅) < ∞, then take q ≤PU

(∅, fϕ) with q deciding ϕ. For i ∈ dom(q0),
q0(i) ∈ fϕ(q0 ↾ i), so ρϕ(q0) 6= ∞, so ρϕ(q0|i) ≥ ρϕ(q0|i+1) and equality only occurs
if both values are 0. We can extend q0 to q′0 so that ρϕ(q′0) = 0 and set q′ = (q′0, q1)
so q′ ≤PU

q and q′ 
 ϕ. This means that q 
 ϕ.
If ρϕ(∅) = ∞, then take q ≤PU

(∅, fϕ) which decides ϕ. In this case it must be
that q 
 ¬ϕ since ρϕ(q0) = ∞. In this case (∅, fϕ) 
 ¬ϕ. ❑

Clearly the proof shows that for all t

ρϕ(t) = 0 ⇐⇒ {x : ρϕ(tx) = 0} ∈ U

ρϕ(t) = ∞ ⇐⇒ {x : ρϕ(tx) = ∞} ∈ U

So for all t, either ρϕ(t) = 0 or ρϕ(t) = ∞.
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Notice we have shown that to each ϕ there is a canonical fϕ so that letting
pϕ,t = (t, fϕ), ρϕ(t) < ∞ → pϕ,t 
 ϕ and ρϕ(t) = ∞ → pϕ,t 
 ¬ϕ. The map
t 7→ fϕ requires no choice.

Say that g ∈ Xω has the Mathias Condition if for any (∅, f) ∈ PU , there is i
such that ∀j ≥ i, g(j) ∈ f(g ↾ i).

Theorem 4.2 (The Mathias Property). Assuming some choice, any g ∈ Xω with
the Mathias condition is generic.

Proof. The proof is as in the Prikry property. Define a rank function ρD(t) for
D an open dense set. The base case is

ρD(t) = 0 ⇐⇒ ∃p ∈ D
(
p0 = t

)

ρD(t) = α ⇐⇒ {x : ρD(tx) < ρD(t)} ∈ U and ρD(t) ≮ α

ρD(t) = ∞ ⇐⇒ ρD(t) is undefined

Define fD analogous with fϕ above, except when s ∈ D∗, where

s ∈ D∗ df
⇐⇒ ρD(s) = 0 ∧ ∀i ∈ dom(s) ρD(s|i) > 0

Here we need enough choice to choose one member of Pu for each member of D∗.

fD(s) =





ft(s) if t ⊆ s ∧ t ∈ D∗

{x : ρD(sx) < ρϕ(s)} if 0 < ρD(s) < ∞

{x : ρD(sx) = ∞} if ρD(s) = ∞

First we show that ρD(t) 6= ∞ for all t. If ρD(t) = ∞ let pD,t = (t, fD). Let
q ≤PU

pD,t with q ∈ D. Then ρD(q0) = 0; however, the fact that q ≤PU
pD,t implies

ρD(q0) = ∞. This contradiction shows ρD(t) 6= ∞ to begin with.

The amount of choice here is ACD∗

PU
and |PU | =

∣∣∣
(
2X

)X<ω
∣∣∣ = 2X<ω

so ACX<ω

2X<ω

suffices. For X = ω, which is the case we use, ACω
R

is what is requires. This is
weaker than DCR.

Fix i so that for all k ≥ i, g(k) ∈ pD,1(g ↾ k). By definition of fD we have that
ρD(g ↾ k + 1) < ρD(g ↾ k) if ρD(g ↾ k) 6= 0. Thus ρD(g ↾ k) = 0 for some k ≥ i. We
have for all l ≥ k, g(l) ∈ fg↾k(g ↾ l) and thus (g ↾ k, fg↾k) ∈ D so Gg ∩ D 6= ∅. ❑

From the Mathias property it follows that if g is PU -generic and g′ is any
infinite subsequence of g, then g′ is also PU -generic. This is why we restricted PU

to conditions satisfying p1(s) ⊆ p1(t) for t a subsequence of s.
These facts are all that we shall require concerning generalized Prikry forcing.
For the next theorem we need the following lemma due to Hausdorff.

Lemma 4.3. There is a recursive Lipschitz continuous π : 2ω → [ω]ω so that if
x1, . . . , xn are distinct elements of 2ω, then π(x1), . . . , π(xn) are mutually indepen-
dent.

Proof. a0, . . . , an−1 ∈ [ω]ω are mutually independent if
⋂

i<n a
s(i)
i is infinite for

all s ∈ 2n where a1
i = ai and a0

i = ω \ ai. One way to accomplish this is to define
πn : 2n → [mn]<ω so that these functions cohere reasonably, i.e., πn+1(t) ∩ mn =
πn(t|n) and ∣∣∣∣∣

⋂

s∈2n

πn(s)t(s)

∣∣∣∣∣ ≥ n
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where t ∈ 22n

, πn(s)1 = πn(s), and πn(s)0 = mn \ πn(s). Suppose πn is defined,

then we take mn+1 = mn+22n+2

and enumerate all σ : 2n+1 → 2 by i ∈ [mn, mn+1).
For σi we put i ∈ πn+1(t) iff σi(t) = 1. ❑

Define the filter Fπ as follows:

a ∈ Fπ ⇐⇒ {y : a ⊇∗ π(y) ∨ a ⊇∗ ω \ π(y)} is infinite

where a ⊇∗ b iff |b \ a| < ω. Let a1, . . . , an ∈ Fπ and let y1, . . . , yn be so that
ai ⊃∗ πni(yi) where ni ∈ 2 and π1(yi) = π(yi) while π0(yi) = ω \ π(yi). Now⋂

ai ⊇∗
⋂

πni(yi) and
⋂

πni(yi) is infinite. So Fπ generates a filter on P(ω) all of
whose elements are infinite. The following characterizes being Fπ-positive:

a is Fπ-positive ⇐⇒ {y : a ⊆∗ π(y) ∨ a ⊆∗ ω \ π(y)} is finite.

So being Fπ-positive is Π1
1 in a fixed parameter y1, . . . , yn and thus is absolute.

The following theorem is the main theorem of this section. The theorem states
that either (on a cone) L[S, x] and L[T, x] agree for quite a while, or else, one
of the models is “much” larger than the other (on a cone). Let κS

x be the least

inaccessible of L[S, x] (or ω
L[S,x]
2 , or least Mahlo of L[S, x], or any other uniformly,

in x, definable “large” cardinal.)

Theorem 4.4. Let S and T be sets of ordinals. Then one of the following hold
on a Turing cone:

(1) κ = κS
x = κT

x and H(κ+)L[S,x] = H(κ+)L[T,x] or
(2) L[S, x] ∩ P(κS

x ) ∈ H(ω1)
L[T,x], or else,

(3) L[T, x] ∩ P(κT
x ) ∈ H(ω1)

L[S,x], or

Proof. First suppose {x : L[S, x] ∩ R ⊆ L[T, x]} contains a cone. Let x0 be the
base of such a cone and x ≥ x0. Let g be L[T, x] generic for collapsing κS

x to
ω. Since every a ⊆ κS

x can be coded by a real, ag, using g, we essentially have,
L[S, x] ∩ P(κS

x ) ⊆ L[S, x, g] ∩ R ⊆ L[T, x, g]. Since g is any L[T, x]-generic (in V )
we have L[S, x] ∩ P(κS

x ) ⊆ L[T, x]. Notice that this also shows κS
x ≤ κT

x .
If it is the case that {x : L[S, x] ∩ R = L[T, x] ∩ R} contains a cone, then the

same argument shows that on a cone, κ = κS
x = κT

x and H(κ+)L[T,x] = H(κ+)L[S,x].
If it is not the case that {x : L[S, x] ∩ R = L[T, x] ∩ R} contains a cone, then

either on a cone {x : L[S, x] ∩ R * L[T, x]} or on a cone {x : L[T, x] ∩ R * L[S, x]}.
Suppose the former.

Fix x0 so that for x ≥ x0, L[S, x]∩R * L[T, x]. Fix π as in the previous lemma.

Let U be an ultrafilter in L[T, x] extending the filter F
L[T,x]
π . For a ∈ U are positive

and since this is absolute a is positive in V . So if z /∈ L[S, x], π(z)∩ a and a∩ π(z)
are both infinite for all a ∈ U .

Build g, PL[T,x]
U generic over L[T, x] such that g ∩ π(z) and g ∩ ω \ π(z) are

both infinite. For any b ∈ 2ω we can shrink g to gb so that b(i) = 1 ⇐⇒ gb(i) ∈
π(z). In this way we get b ∈ L[S, x, gb]. Of course b can be chosen so as to code
L[T, x0] ∩ P(κT

x ) and thus L[T, x] ∩ P(κT
x ) ∈ L[S, x, gb] and countable there.

Consider L[T, x, gb]. In this model gb is PU -generic so κ = κT
x = κT

x,gb
and

H(κ+)L[T,x][gb] = H(κ+)L[T,x,gb] so H(κ+)L[T,x,gb] ∈ H(ω1)
L[S,x,gb]. We have

shown that either (2) or (3) hold for some y ≥ x, for all x ≥ x0 (y = x ⊕ gb

above). This implies that either (2) or (3) holds on a cone. ❑
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Corollary 4.5. (ZF + AD) For all S, T ⊆ OR

S � T → on a cone of x, L[S, x] ∩ P(κS
x ) ⊆ L[T, x]

S ≺ T → on a cone of x, L[S, x] ∩ P(κS
x ) ∈ H(ω1)

L[T,x]

From here on κx
S = δx

S = ω
L[S,x]
2 , so I will dispense with κx

S in favor of δx
S .

5. Constructibility degrees and the structure of AD models

5.1. Uniformization and the non-existence of a maximal degree no-

tion. Uniformization (UNIF) is the assertion that for all R ⊆ R × R, there is R∗

so that
∃y R(x, y) ⇐⇒ ∃!y R∗(x, y).

UNIF(Γ, Γ′) is the same assertion, except R is taken from the pointclass Γ and R∗

can be found in the pointclass Γ′.
The relation R is uniformizable on a cone means that there is R∗ so that for a

cone of x,
∃y R(x, y) ⇐⇒ ∃!y R∗(x, y).

Write UNIF∗(Γ, Γ′) if for all relations R in Γ, there is a relation in Γ′ that uni-
formizes R on a cone. The following shows that there is essentially no difference
between uniformization and uniformization on a cone.

Lemma 5.1. For Γ and Γ′ pointclasses

UNIF(Γ, Γ′) ⇐⇒ UNIF∗(Γ, Γ′)

Proof. Let R ∈ Γ and let R∗ ∈ Γ′ uniformize R on a cone. Set

S(u ⊕ x, y) ⇐⇒ R(x, y)

So S ∈ Γ. Let S∗ ∈ Γ′ uniformize S on the cone above a. Then R∗(x, y) ⇐⇒
S∗(a ⊕ x, y) uniformizes R. ❑

Because of this fact I will not distinguish between uniformization and uni-
formization on a cone.

The method of proof in Theorem 4.4 can be extended to yield uniformization
on ∞-Borel relations whose codes are not maximal. The general idea is as follows,
suppose S ≺ T and S is an ∞-Borel code of a relation. We will show that on a
cone of x

∃y AS(x, y) ⇐⇒ ∃y ∈ L[T, x](AS(x, y))

This gives a canonical uniformization of AS using the natural well ordering of
L[T, x]. For this we need to review the construction of the ∞-Borel code ∃RS for
∃RAS described in [CK09] and reviewed below. It turns out that for the argument
S ≺ T does not suffice, we must replace S with S∞

∗ described below.
For each z consider the “Vopenka-like” algebra

Qz(S)
df
= BCHz(S)

∞ / ∼z
S

where for T, T ′ ∈ BCHz(S)
∞ ,

T ∼z
S T ′ ⇐⇒ (AT )L[S,z] = (AT ′)L[S,z].

It is shown in [CK09] that, for a cone of z,

Qz(S) = BC
Hz(S)
δz

S
/ ∼z

S .
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Because of this last fact, on a cone of z, Qz(S) can be viewed as a complete Boolean
algebra on δz

S in Hz(S).
Every Qz(S)-generic, G, generates a real xG with xG(i) = j ⇐⇒ ci,j/ ∼z

S∈ G,
where ci,j is the code for the basic open set Aci,j

= {x : x(i) = j}. It can be
shown that G = {T/ ∼z

S : xG ∈ AT }, so Hz(S)[xG] = Hz(S)[G]. Moreover as
with the usual Vopenka algebra, every real, x, in L[S, z], generates a Qz(S)-generic

Gx = {T/ ∼z
S∈ Qz(S) : x ∈ A

L[S,z]
T }. That Gx is generic follows from the fact that

A ⊆ Qz(S) is predense ⇐⇒
⋃

p∈A

AL[S,z]
p = RL[S,z].

To put this in context, recall Vopenka’s algebra (see, e.g., [Jec03]) Qz(S)∗

takes ODL[S,z] subsets of R as conditions (actually a Hz(S) copy is used.) Every
Qz(S)∗-generic G∗ gives rise to a real xG∗ just as above and every real, x, in L[S, z]

gives rise to a generic G∗
x and Hz(S)[G∗

x] = Hz(S, x) = HOD
L[S,z]
S,x .

The two algebras are related as follows: Qz(S) is the complete subalgebra of
Qz(S)∗ generated by the basic open sets [s] for s ∈ ω<ω. For x ∈ L[S, x],

Hz(S)[Gx] = Hz(S)[x] = HOD
L[S,z]
S [x] ⊆ HOD

L[S,z]
S,x = Hz(S, x) = Hz(S)[G∗

x]

Below I use M |κ to mean V M
κ , so L[S, x]|κ does not mean Lκ[S, x]. The fol-

lowing facts are discussed thoroughly in [CK09]:

• For all x, x is Qz(S)-generic over Hz(S) for all z ≥S x.
• On a cone of z:

– δz
S = ω

L[S,z]
2 is inaccessible in Hz(S).

– Qz(S) ⊆ Hz(S)|δz
S and hence, essentially, Qz(S) ⊆ δz

S .
– Qz(S) is δz

S-cc in Hz(S).

So if Dz(S) is the collection of maximal antichains of Qz(S) in Hz(S), then

D
z(S) ⊆ Hz(S)|δz

S

and so the structure, 〈Qz(S), Dz(S)〉, is definable in 〈Hz(S)|δz
S ,∼z

S 〉. Let Sz be
the least ∞-Borel code in Hz(S) so that S ∼z

S Sz. Set

Nz(S) = 〈Hz(S)|δz
S ,∼z

S, Sz 〉

and

Sz
∗ =

∧

A∈Dz(S)

∧

T,T ′∈A

¬(T ∧ T ′) ∧ Sz ∧
∧

A∈Dz(S)

∨
A

The code Sz
∗ is a member of BC

Hz(S)
δz

S
, here we are using the fact that Hz(S) has

a canonical function e : δz
S

onto
−−→ Dz(S) ∪BC

Hz(S)
δz

S
which depends on L[S, z] and S,

but not on z. So z 7→ Sz
∗ is S-invariant. Take S∞

∗ to be the corresponding object
in the ultra power. A similar comment applies to Nz(S) and we define N∞(S).
Notice that for x (in any wellfounded model) there is a Σ1-formula, Φ, so that

Lα(Nz(S),x)[N
z(S), x] |= Φ(x, Nz(S)) ⇐⇒ x ∈ ASz

∗

and thus for any x (in V ), x is generic over L[N∞(S)] and

AS(x) ⇐⇒ Lα(N∞(S),x) |= Φ(x, N∞(S))

⇐⇒ Lδ∞
S

+ |= Φ(x, N∞(S)).
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So (δ∞S
+, N∞(S), Φ) is an ∞-Borel∗ code which is essentially the same as S∞

∗ ; as
is made explicit in the next paragraph.

Clearly, Sz
∗ ∈ Hz(Nz(S)) and so S∞

∗ ∈ H∞(N∞(S)). The converse is also
true, but this requires a bit of work. For now it suffices to notice that for any x,
on a cone of z, x ∈ L[Sz

∗ , z] ⇐⇒ x ∈ L[Nz(S), z]. This amounts to showing

x ∈ L[Sz
∗ , z] ⇐⇒ x ∈ HOD

L[S,z]
S

The left-to-right direction is clear. Conversely, if x ∈ HOD
L[S,z]
S , then x “is” a code

for itself in Qz(S) and thus all we need is that Qz(S) ⊆ L[Sz
∗ , z] on a cone. I leave

this as an exercise. So we have

• N∞(S) ≈ S∞
∗ , in fact, L[N∞(S)] = L[S∞

∗ ].
• In V , AS = AS∞

∗
= A(δ∞

S
+,N∞(S),Φ).

It would be nice to see that T ≈ S =⇒ T∞
∗ ≈ S∞

∗ , however, I do not see how
to show this. It is possible to prove something slightly weaker.

Lemma 5.2. If S ∈ Hz(T ) and T ∈ Hz(S) on a cone of z, so that Hz(S) = Hz(T )
on a cone of z, then S∞

∗ ≈ T∞
∗ .

Proof. Notice that the hypothesis readily implies L[T, x] = L[S, x] on a cone
so this is a strengthening of S ≈ T . To prove S∞

∗ ≈ T∞
∗ it suffices to show that for

a cone of z

x ∈ L[Sz
∗ , z] ⇐⇒ x ∈ L[T z

∗ , z]

We will actually see that for a cone of z, L[Sz
∗ , z] = L[T z

∗ , z]. As explained above we
may show that on a cone of z, L[Nz(S), z] = L[Nz(T ), z]. Since Hz(S) = Hz(T ),
this is trivial. ❑

The following lemma appears in [CK09]

Lemma 5.3. The ∞-Borel code Sz
∗ satisfies

x ∈ ASz
∗
⇐⇒ x is Qz(S)-generic over Hz(S) and Hz(S)[x] |= x ∈ AS .

Correspondingly,

x ∈ AS∞
∗

⇐⇒ x is Q∞(S)-generic over H∞(S) and H∞(S)[x] |= x ∈ AS∞ .

In both x can come from any transitive model containing S∞
∗ and H∞(S) or Sz

∗

and Hz(S) respectively. ⊣

Lemma 5.4. For all reals, x, in V :

• x is Q∞(S)-generic over L[S∞
∗ ]. This by Łos’ Lemma together with the

fact that Nz(S) is a rank initial segment of L[Nz(S)].
• AS = AS∞

∗

• S∞
∗ ⊆ δ∞S

• S � S∞
∗ .

Proof. The first three facts are immediate. For the last fact show S∞ � S∞
∗ and

use S ≈ S∞ (see the first line in the proof of Theorem 3.6.) We want to see that
on a cone of z, L[S∞, z] ∩ R ⊆ L[S∞

∗ , z]. In fact, for all z, for a cone of x ≥ z,
L[S, z] ∩ R ⊆ L[Sx

∗ , z], since L[Sx
∗ , z] = L[Hx(S)|δx

S ][z] and L[Hx(S)|δx
S ][z]|δx

S =
Hx(S)[z]|δx

S . Of course Hx(S)[z] ⊇ L[S, z] and Hx(S)[z]|δx
S ⊇ R ∩ Hx(S)[z]. ❑
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Arguments reminiscent of those here appear in [KMS83, §13]. In particular,
it is shown that if T is a tree on a complete Π1

2n+1 set, so that T as a degree notion
is essentially C2n+2, then T∞

∗ is essentially Q2n+3 as a degree notion, so in these
cases T ≺ T∞

∗ .
By collapsing δz

S to be countable we can produce Hz(S)-generic subsets of
Qz(S). It is shown in [CK09, Lemma 4.6] that:

∃y AS(t, y) ⇐⇒ ∀∗z L[Sz
∗ ][t]Col(ω,δz

S) |= ∃y ASz
∗
(t, y)

⇐⇒ L[S∞
∗ ][t]Col(ω,δ∞

S ) |= ∃y AS∞
∗

(x, y)

If g is Col(ω, δ∞S )-generic over L[S∞
∗ , t], then “∃y AS∞

∗
(x, y)” is Σ1

1(x, code for S∞
∗ )

and so absolute to L[S∞, t][g]|ω
L[S∞,t][g]
1 . Since

ω
L[S∞,t][g]
1 =

(
δ∞S

+)L[S∞,t]
<

(
δ∞S

+)V
,

the supremum of these ordinals is ≤ δ∞S
+ and so

∃y AS(t, y) ⇐⇒ Lδ∞
S

+ [S∞
∗ , t]Col(ω,δ∞

S ) |= ∃y AS∞
∗

(x, y).

From Lemma 2.3 this gives an ∞-Borel code ∃RS ∈ BCδ∞
S

+ ∈ L[S∞
∗ ] such that

∃y AS(x, y) ⇐⇒ A∃RS(x).

This shows that ∃RS � S∞
∗ and that if κ is a limit cardinal such that for all

S ⊆ λ < κ, δ∞S < κ, then B<κ is closed under real quantification.
Finally we can prove the promised uniformization result which is in essence just

a variant of the construction of the code ∃RS.

Theorem 5.5. Assume S ≺ T , then

AS(x, y) ⇐⇒ ∃y ∈ H∞(S, T )[x]AS(x, y)

⇐⇒ ∃y ∈ L[N∞(S, T )][x]AS(x, y)

This produces an ∞-Borel uniformization of AS , with code in BCδ∞
S,T

+ .

Proof. Clearly

∀∗z ∃y ∈ L[S, z]AS(x, y)

Recall every real in L[S, z] is Qz(S)-generic over Hz(S). Let g ⊆ Col(ω, δz
S) be

Hz(S)[x]-generic. I claim that in Hz(S)[x][g] there is y so that AS(x, y). If not,
then this is forced by some p ∈ Col(ω, δz

S). We can in V build a Hz(S)[x] generic
through p which would allow us to build a Hz(S)-generic, y, for Qz(S) such that
AS(x, y). So we have

∀∗zHz(S)[x]Col(ω,δz
S) |= ∃y AS(x, y).

Since Hz(T, S)[x] can find Hz(S)[x] generics for Col(ω, δz
S) on a cone, we have that

if ∃y AS(x, y), then

∀∗zHz(S, T )[x] |= ∃y AS(x, y),

hence,

H∞(S, T )[x] |= ∃y AS∞(x, y).

This produces an S-invariant uniformization of AS using the canonical wellorder
of H∞(S, T ). The argument where Hz(S, T )[x] is replaced by L[Nz(S, T ), x] is the
same. ❑
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If the relation AS starts out with countable slices, then we get a slightly better
uniformization result.

Lemma 5.6. Suppose S is an ∞-Borel code for a many-countable relation, then for
all x, for a cone of z, (AS)x ⊆ Hz(S)[x]. Consequently, for all x, (AS)x ⊆ H∞(S)[x].

Proof. For any x, fix z0 so that for any z ≥ z0, (AS)x ∈ H(ω1)
L[S,z]. We can find a

g ⊆ Col(ω, δz
S) generic g over Hz(S)[x] and name u̇ so that (AS)x = {(u̇[g])i :i ∈ ω}.

Assume there is i so that 

Hz(S)[x]
Col(ω,δz

S
) AS(x, (u̇)i)∧ (u̇)i /∈ V . Then we could use (u̇)i

to build a perfect set of y so that AS(x, y). So for all z ≥ z0, (AS)x ⊆ Hz(S)[x].
We can replace Hz(S) and H∞(S) by Nz(S) and N∞(S) respectively and thus

get (AS)x ⊆ L[N∞(S), x] = L[S∞
∗ , x]. ❑

It essentially follows from this that S ≺ T iff H∞(S, T ) (or L[N∞(S, T )]) can
“uniformize” y /∈ L[S∞

∗ , x] in a sense made precise below. Set

DS(x, y)
df

⇐⇒ y /∈ L[S, x].

Theorem 5.7. If T is an ∞-Borel code for a uniformization of DS, then S ≺ T∞
∗ .

If S ≺ T , then, (S, T )∞∗ gives a code for a uniformization of DS .

Proof. For the first claim, just apply the preceding lemma to get that on a cone
of z

(DS)x ⊆ L[T∞
∗ , x]

So L[T∞
∗ , x] ∩ R 6⊂ L[S∞

∗ , x] on a cone of x, i.e., T∞
∗ � S∞

∗ , and hence S∞
∗ ≺ T∞

∗ .
For the converse, note that there is code S′ for DS so that S′ ∈ L[S] so

S′ � S ≺ T and Theorem 5.5 gives N∞(S′, T ) ≈ (S′, T )∞∗ yields a code for a
uniformization of S′. ❑

While it need not be the case that S ≈ S∞
∗ (recall S ≈ S∞), it is true that if

S is a non-maximal degree, then S∞
∗ is also non-maximal. This gives the following

corollary:

Corollary 5.8. The following are equivalent

(1) S is a non-maximal degree.
(2) DS is uniformized by an ∞-Borel set.
(3) δ∞S < ΘL(B∞,R). (See Theorem 5.13 and Theorem 5.16) ⊣

5.2. The extent of Suslin sets under the non-existence of a maximal

degree. Following Becker [Bec85], a strongly closed pointclass, Λ (recall δΛ =
wΛ), of countable Wadge cofinality has the Kunen-Martin property iff

(δΛ)+ = δ1
1(Λ)

or equivalently if
w(A)+ = δ1

1(A)

for A =
⊕

i∈ω Ai where 〈Ai : i ∈ ω〉 is Wadge cofinal in Λ.

If δΛ is a Suslin cardinal, then Π1
1(Λ) is scaled and SδΛ

= Σ1
1(Λ). The Kunen-

Martin theorem gives that σ1
1(Λ) = (δΛ)+, recall δ1

1(Λ) = σ1
1(Λ) in this case, so

the Kunen-Martin property holds. Becker showed in [Bec85], assuming some ad-
ditional closure for Λ, that

Λ-Uniformization + the Kunen-Martin property holds ⇐⇒ δΛ is Suslin

The following question is apparently still open and relevant for part of our analysis.
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Question. Does the Kunen-Martin property hold for all type I hierarchies?

Woodin answered this question assuming Λ ⊆ B∞.

Theorem 5.9 (Woodin). For Λ strongly closed with countable cofinality, if Λ ⊆
B∞, then the Kunen-Martin property holds, i.e., δ1

1(Λ) = (δΛ)+. ⊣

Woodin also showed that AD+uniformization =⇒ all sets are ∞-Borel, so that
the Kunen-Martin property holds for all strongly closed pointclasses of countable
cofinality. The proof, as far as I know, does not appear in print and its techniques
are similar to those being discussed here, so I am including it. His argument works
in a more general setting: Rather than AD + DC we shall assume the existence of
a fine σ-complete measure, µ, on Pω1

(R), uniformization, and that
∏

Pω1
(R) ω1/µ is

wellfounded.
The existence of a fine measure on Pω1

(R) is guaranteed by Turing-determinacy,
that is, determinacy for all Turing invariant sets. Turing determinacy is equivalent
to the cone filter on Turing degrees being an ultrafilter and this ultrafilter readily
induces a fine σ-complete measure on Pω1

(R), under DCR. The assumption that
“
∏

Pω1
(R) ω1/µ is wellfounded” is implied by DC and implies DCR, but not DC.

This is discussed in [CK09]. The existence of a fine measure on Pω1
(R) implies

that ω1 is measurable, hence choice fails, and that ωV
1 is Mahlo in any inner model

of choice. This is also discussed in [CK09], where these same hypotheses are used
to derive several results.

For P a poset let the collection of canonical names for reals, RP, be the collection
of P-names satisfying:

(1) For all n, for densely many p there is m ∈ ω with (p, (n, m)) ∈ τ .
(2) For (p, (n, m)), (q, (n, m′)) ∈ τ with p ‖

P
q =⇒ m = m′.

If τ is any P-name for a real, then τ∗ = {(p, (n, m)):p 
 τ(n) = m} ∈ RP, conversely,
whenever g ⊆ P is a “sufficiently generic” filter and τ ∈ RP, then τg ∈ R, here g
need only meet each Dτ

n = {p : ∃m (p, (n, m)) ∈ τ}.
For A ⊆ R, the term relation for A is defined as

Ȧ(P, p, τ)
df

⇐⇒(1) P a poset

(2) τ ∈ RP

(3)∀∗g ⊆ P
(
p ∈ g → τg ∈ A

)
,

where ∀∗g ⊆ P ϕ(g) means that there is a countable collection of P-dense sets, D,
in V , such that if g is a D-generic filter, then ϕ(g) holds, in V . For M a transitive

inner model, the M -term relation for A is defined by Ȧ
M df

= Ȧ ∩ M . In general,

there is no reason for Ȧ
M

to be in M (or amenable to M) and when this occurs M

is called weakly A-closed. Similarly, M is weakly A, P-closed iff ȦP ∩ M ∈ M .
If M is weakly A, P-closed and weakly ¬A, P-closed, and

(†) for all τ ∈ RP ∩ M , DA
P,τ = {p : p 
∗

P
τ ∈ A ∨ p 
∗

P
τ /∈ A} is dense in P,

then
∀∗g ⊆ P AM

P
[g] = A ∩ M [g].

Above “p 
∗
P

τ ∈ A” means there is a countable collection, D, of P-dense sets so
that for any D-generic filter, τg ∈ A, similarly for “ /∈”.

Claim. The condition (†) is guaranteed by all sets having the Baire property.
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Proof. This is essentially a standard forcing fact. There is a dense embedding

π : ω<ω onto
−−→ P0 ⊆ P with P0 a dense sub-poset of P, and a dense Gδ set E ⊆ ωω

so that π : E
onto
−−→ XP where XP is the set of P-filters. Now define fτ : E → R by

x 7→ τπ(x). For p ∈ P0, look at Eτ,p = {x ∈ E : p ∈ π(x) ∧ fτ (x) ∈ A}. If this set

is comeager in [π−1(p)], then let E be a countable collection of open dense sets in
ω<ω so that if x is E-generic, then x ∈ E and fτ (x) ∈ A. Let D = π[E], then if g is
D-generic, then τg ∈ A, and hence D witnesses p 
∗

P
τ ∈ A. If Eτ,p is not comeager,

then there is q ≤P p so that ¬Eτ,p is comeager in [π−1[q]] and one argues as above
that there is D so that if g is D-generic, then q ∈ g → τg /∈ A. ❑

If we strengthen weak A, P-closure to

Ȧ
M

P
∈ M and for all M -generic g ⊆ P (in V ), AM

P
[g] = A ∩ M [g],

then call M strongly A, P-closed. M is said to be weakly (strongly) A-closed iff M
is weakly (strongly) A, P-closed for all P ∈ M .

It is a relatively simple matter to produce weakly A-closed structures, namely,

NA
x = Lω1

[Ȧ, x] and MA
x = HOD

NA
x

Ȧ
are such, since Ȧ

NA
x = Ȧ ∩ NA

x .

To produce strongly A-closed structures is trickier since we must ensure that
the model has “enough” dense sets, this is where uniformization is used. Notice, in
the argument that follows, essentially it is proved that assuming

(1) ZF,
(2) all sets have the Baire property,
(3) the existence of a fine measure, µ, on Pω1

(R), and
(4)

∏
Pω1

(R) ω1/µ is wellfounded,

then the following are equivalent:

(1) A is ∞-Borel.
(2) There is a uniform sequence 〈Mσ : σ ∈ Pω1

(R)〉 of strongly A,¬A-closed
transitive substructures of H(ω1), such that each y ∈ σ is generic over Mσ

for a poset Pσ ∈ Mσ.

Theorem 5.10 (Woodin). Work in ZF. Suppose all subsets of R have the prop-
erty of Baire, there is a fine measure , µ, on Pω1

(R), and that
∏

Pω1
(R) ω1/µ is

wellfounded. Then UNIF implies that all sets are ∞-Borel.

Proof. Fix a set A ⊆ R with the aim being to show that A is ∞-Borel. Define
the relation BA on reals by BA(x, y) iff x codes (P, τ), where P is a countable poset
and τ is a canonical P-name for a real, and y codes D with DA

P,τ ∈ D such that for

g that is D-generic and p ∈ g ∩ DA
P,τ

τg ∈ A ⇐⇒ p 
∗
P

τ ∈ A (and so also τg /∈ A ⇐⇒ p 
∗
P

τ /∈ A),

or, equivalently, for g ⊆ P that is D-generic,

(‡τ ) τg ∈ A ⇐⇒ ∃p ∈ g ȦP(p, τ) and τg /∈ A ⇐⇒ ∃p ∈ g¬ȦP(p, τ).

Uniformization of BA can be used to select witnesses to weak closure. Let B∗
A

uniformize BA and set A∗(x, i, j)
df

⇐⇒ B∗
A(x)(i) = j.

Set

Nσ = Lω1
[Ȧ,¬Ȧ, Ȧ

∗
, σ] and Mσ = HODNσ

Ȧ,¬Ȧ,Ȧ
∗ .

These are model of ZFC since ω1 is measurable in V .
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Claim. Mσ is strongly A-closed.

Proof. Let P ∈ Mσ and let Q = Col(ω, P) and fix τ ∈ RP ∩ Mσ. Let ż be the
induced generic coding of (P, τ). Pick Eτ a countable collection of dense subsets of
Q so that for any Eτ -generic, G, for all i ∈ ω, there is j ∈ ω such that

(Ȧ
∗
)Mσ

P
[G] ⊆ A∗ ∩ Mσ[G] and (Ȧ

∗
)Mσ [G](zG, i, j)

This is essentially just the weak A∗, Q-closure of Mσ. For G that is both Mσ-generic
and Eτ -generic, B∗

A(zG) ∈ Mσ[G].
Let DG be the countable collection of P-dense sets coded by B∗

A(zG), then
DG ∈ Mσ[G]. If g ⊆ P is Mσ[G]-generic, then as DG ⊆ Mσ[G], g is DG-generic and
thus (‡τ ) holds for every canonical P-name, τ , in Mσ.

The order of the forcings can be inverted so that, in Mσ[g][G], (‡τ ) holds for
all τ ∈ RP ∩ Mσ. This is independent of G and thus (‡τ ) holds in Mσ[g] for all
τ ∈ RP ∩ Mσ. Thus for g ⊆ P which are Mσ-generic, for all τ ∈ RP ∩ Mσ,

τg ∈ A ⇐⇒ ∃p ∈ g Ȧ(P, p, τ) and τg /∈ A ⇐⇒ ∃p ∈ g ¬Ȧ(P, p, τ)

so

Ȧ
Mσ

P
[g] = A ∩ Mσ[g]

and hence Mσ is strongly A, P-closed. ❑

Now let Pσ = BMσ
∞ / ∼σ where for T, T ′ ∈ BMσ

∞ , T ∼σ T ′ df
⇐⇒ ANσ

T = ANσ

T ′ .
This is just the ∞-Borel version of the Vopenka algebra, and as with the Vopenka
algebra, for any y ∈ Nσ, Gy

σ = {T/ ∼σ : y ∈ AMσ

T } is Mσ-generic. For any y

with y ∈ Nσ, we have from the claim that, y ∈ A ⇐⇒ y ∈ Ȧ
Mσ

Pσ
[Gy]. Letting

T σ
A =

∨
{T ∈ Pσ : Ȧ

Mσ

Pσ
(T, τ)}, it follows that

y ∈ Ȧ
Mσ

Pσ
[Gy] ⇐⇒ y ∈ AT σ

A

and hence A ∩ Nσ = AT σ
A
∩ Nσ so that , locally anyway, A is ∞-Borel.

Let (M∞, P∞, T∞
A ) =

∏
σ(Mσ, Pσ, T σ

A), then for y ∈ V , y is M∞-generic for P∞

and

y ∈ A ⇐⇒ M∞[y] |= y ∈ AT∞
A

Thus T∞
A is an ∞-Borel code for A. ❑

Working in ZF + AD + uniformization, let µ be the measure induced from the
cone measure on Turing degrees, then the ultrapower taken in the proof could be
taken in L(R, A, A∗) and since uniformization implies DCR, and since DCR in V
gives DC in L(R, A, A∗), it follows that

ZF + AD + uniformization =⇒ all sets are ∞-Borel

Corollary 5.11. In the case that there is no maximal degree notion, L(B∞, R)
is the maximal model of AD + uniformization. ⊣

Corollary 5.12. The following are equivalent under ZF + DC:

(1) AD + uniformization.
(2) AD + all sets are Suslin.
(3) AD+ + all sets are Suslin.
(4) ADR.
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Proof. (2) =⇒ (3) follows from the discussion of AD+ in the preliminary section,
namely the discussion of downward absoluteness (see page 33 and Lemma 2.5).
That (2) =⇒ (4) (and hence (3) =⇒ (4)) is due independently to Martin and
Woodin (unpublished). (4) =⇒ (1) is a simple exercise, in fact each player need
only make a single real move.

Only (1) =⇒ (2) needs discussion here. Given any set A, uniformization gives
that we can find a minimal strongly closed pointclass Λ containing A such that Λ-
uniformization holds. DC implies w(Λ) < Θ and by the results of Woodin, Λ ⊆ B∞

and Λ has the Kunen-Martin property. So Becker’s result gives that w(Λ) is a Suslin
cardinal. ❑

5.3. Bounds on δ∞

S
. Let f be an S-invariant function with f(x) = Mx ∈

H(ω1)
L[T,x] a transitive structure (on a cone). Say that y codes Mx iff (ω,∈y) ≃

(Mx,∈) and set

Rf (x, y)
df

⇐⇒ y ∈ R ∩ L[T, x] codes f(x).

Rf can be uniformized as follows:

R∗
f (x, y)

df
⇐⇒ y is the L[T, x]-least y, such that Rf (x, y).

Let f∗(x) = y ⇐⇒ R∗
f (x, y), f∗ need not be S-invariant. If R∗

f (x, y) let πx :

(ω,∈f∗(x)) ≃ Mx be the induced isomorphism and set nx = πx(n) ∈ Mx. For h
any S-invariant function such that on a cone, h(x) ∈ Mx, there n ∈ ω, such that
A = {x : nf(x) = h(x)} is S-positive. This n need not be unique. Together with f ,
the pair (n, A) “codes” h since for a cone of x,

h(x) = nf(z) for any z ∈ [x]S ∩ A.

A can be replaced by an S-pointed perfect tree, a, such that [a] ⊆ A, so that the
codes are reals. Let Cf be the set of all such codes, that is,

(n, a) ∈ Cf ⇐⇒ a is an S-pointed perfect tree and

for x, y ∈ [a], if x ≡S y, then nx = ny

For (n, a) ∈ Cf set h(n,a)([x]S) = nz , where z ∈ [x]S ∩ [a]. Set (n, a) ∼ (n′, a′) iff
h(n,a) = h(n′,a′) on a cone. Let [n, a]f be the equivalence class of (n, a) and set

[n, a]f ∈f [n′, a′]f
df

⇐⇒ ∀∗x (h(n,a)(x) ∈ h(n′,a)′(x))

Then (Cf/ ∼,∈f ) is isomorphic to
∏

S Mx/µ = M∞
S . By looking at the complexity

of this coding we get bounds on δ∞S .

Theorem 5.13. If S ≺ T with S, T ⊆ γ < λ with λ a measurable cardinal and
≤ is a prewellordering of length λ, then δ∞S ≤ δ(≤).

Proof. Let f(x) = Hx
S , then f(x) ∈ H(ω1)

L[T,x] and R∗
f is ∞-Borel since

R∗
f (x, y) ⇐⇒ L[S, T, x] |= “ y =<L -least z such that (ω,∈z) ≃ (Hx

S ,∈) ”

Let (ϕ, S, T ) be the corresponding code in BC∗
γ ⊆ BCκ. Since Bκ ⊆ B<δ(≤) ⊆ ∆(≤),

the relation R∗
f (x, y) is ∆(≤). Similarly, x ≤S y is ∆(≤), since x ≤S y ⇐⇒ x ∈

L[S, y] ⇐⇒ L[S, x, y] |= x ∈ L[S, y].
First compute the complexity of (n, a) ∈ Cf :

(1) a is S-pointed perfect.
(2) x, y ∈ [a] and x ≡S y → nx = ny. (S-invariance.)
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For (1): a is S-pointed perfect iff

∀s ∈ [a]∃s′, s′′ ∈ [a] (s′ ⊥ s) & ∀x (x ∈ [a] → a ≤S x)

For (2):

∀x, y
[(

x, y ∈ [a] and x ≡S y
)
→

∃u, v (R∗
f (x, u) & R∗

f (y, v) and (ω,∈x) ≃ (ω,∈y)))
]

So both (1) and (2) are Π(≤) and thus Cf ∈ Π(≤).
Similarly, ∈f is Π(≤) in the codes. Restricting to codes for ordinals, i.e.,

h(x) ∈ δx
S , produces a Π(≤) norm on Cf and thus δ∞S ≤ δ(≤). ❑

All we actually use below is the following:

Corollary 5.14. If Λ is strongly closed and there is no maximal degree in Λ,
then for all S ∈ Λ, δ∞S < δΛ. If S is not a maximal degree, then δ∞S < Θ. ⊣

Corollary 5.15. If κ is a limit of Suslin cardinals, then for all S ⊆ λ < κ,
δ∞S < κ.

Proof. The point is that S<κ = Λ is strongly closed and each A ∈ Λ has a Suslin

representation in Λ. If S ∈ Λ, then DS(x, y)
df

⇐⇒ y /∈ L[S, x] is in Λ. So DS is
Suslin by a tree in Λ and hence uniformized in Λ. Let D∗

S be the uniformization
and let S′ be a tree in Λ projecting to D∗

S . We see S ≺ S′ since for any x,
∃y (x, y) ∈ [S′] ⇐⇒ ∃y ∈ L[S′, x] (x, y) ∈ [S′]. (This is similar to 5.7.) ❑

Compare these corollaries to Theorem 5.16 which shows that if S is maximal,
then δ∞S = Θ and Corollary 6.4 which shows that if κ < κ∞ is Suslin, then
δ∞S ≥ λ where λ is the next Suslin past κ.

5.4. Maximal degree. Call a degree notion, S, strongly maximal iff

For all A ⊆ R, on a cone of xA ∩ L[S, x] ∈ L[S, x]

If S is maximal and every set of reals is ∞-Borel, then S is strongly maximal.
Conversely, if S is strongly maximal, then L(P(R)) = L(S∞, R) and so all sets are
∞-Borel.

Theorem 5.16. If S is strongly maximal, then L(P(R)) = L(S∞, R) and δ∞S =
Θ.

Proof. We have that ∀∗x (A ∩ L[S, x] ∈ L[S, x]). Set A(x) = L[S, x] ∩ A, this is
an S-invariant function. Unfortunately the well ordering of A(x) is not S-invariant.

Let hL[S,x]|δx
S : δx

S

onto
−−→ L[S, x]|δx

S be the canonical Σ1-Skolem function. GCH∗

holds on a cone so A(x) = h(α(x)) for some minimal α(x) < δx
S . The function α(x)

is not S-invariant, since the well ordering of L[S, x] depends on x. So let G be PS

generic and let α∞
S = [x 7→ α(x)]G. We want to see that

hL[S∞,x∞
S ]|δ∞

S (α∞
S ) ∩ RV = A

For y ∈ RV , we have

y ∈ hL[S∞,x∞
S ]|δI

S (α∞
S ) ⇐⇒ {x : y ∈ hL[S,x]|δ∞

S (α(x))} ∈ G

⇐⇒ {x : y ∈ A ∩ L[S, x]} ∈ G
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Since {x : y ∈ A ∩ L[S, x]} is S-invariant we have

{x : y ∈ A ∩ L[S, x]} ∈ G ⇐⇒ y ∈ A

This is what we wanted to see.
We have shown here that for all sets of reals A, for any S∞-pointed perfect

Sacks real x∞
S , A ∈ L(S∞, R)[x∞

S ] and thus A ∈ L(S∞, R) to begin with. So
L(P(R)) = L(S∞, R).

From Theorem 3.6, δ∞S = ω
L[S∞,x∞

S ]
2 ≤ Θ and GCH∗ holds in L[S∞, x∞

S ].
For each A ⊆ R (in V ) we have A = A∞ ∩ RV for some A∞ ∈ L[S∞, x∞

S ] and so

|P(R)V | ≤ |P(R)L[S∞,x∞
S ]| = ω

L[S∞,x∞
S ]

2 = δ∞S and thus Θ ≤ δ∞S . ❑

The following theorem is due to Woodin and appears in [Ste94].

Theorem 5.17 (Woodin). If V = L(S, R) and ZF+AD+DCR holds, then there
is T ⊆ Θ such that HODS,x = L[T, S, x] for all x. ⊣

As a consequence of this theorem T, S is a largest degree notion in L(S, R). This

DS,T (x, y) ⇐⇒ y /∈ HOD
L(S,R)
S,x can not be uniformized, since any uniformization,

F , must be OD
L(S,R)
S,x for some x and hence F (x) ∈ HOD

L(S,R)
S,x . This yields

Corollary 5.18. (ZF + DCR + AD) If there is no maximal degree notion, then
V 6= L(S, R) for any S ⊆ OR. ⊣

For S a maximal degree, Theorem 5.16 and variants give that δ∞S is large:

(1) Assuming S is a “strongly maximal degree notion” in the sense that A ∩
L[S, x] ∈ L[S, x] for all A ⊆ R we have δ∞S = Θ.

(2) If V = L(T, R), then every set is ∞-Borel so V = L(S∞, R) and δ∞S = Θ
by (1).

(3) In general, if there is a maximal degree notion S, then B∞ ⊆ L(S∞, R)
and, conversely, L(S∞, R) is a model of all sets are ∞-Borel. Hence
L(B∞, R) = L(S∞, R) and letting ΘB∞ = ΘL(B∞,R), we have δ∞S = ΘB∞ .

In general, if there is a largest degree notion S, then it need not be the case that
S has size κ∞, however, if κ∞ is a Suslin cardinal, then any tree, S, on ω × κ∞

witnessing this is strongly maximal. This follows from the following theorem.

Theorem 5.19 (Woodin). Suppose κ∞ is Suslin and S is a tree on ω × κ∞

witnessing this, then S is strongly maximal.

This will require some results of Martin which appear in [Jac10]. For a non-
selfdual pointclass Γ and Ā ∈ Γκ set

N(Ā) = {A : ∀σ ∈ Pω1
(R)∃α < κ (A ∩ σ = Aα ∩ σ)}

and
Env(Γ, κ) = {B : B ≤w A such that ∃Ā ∈ Γκ A ∈ N(Ā)}.

Call Γ nice if Γ has the prewellordering property and is closed under ∀R and ∨. For
nice Γ set Env(Γ) = Env(Γ, δΓ). It is shown in [Jac10] that for nice Γ

Env(∆) = Env(Γ) = Env(∃RΓ).

Let ϕ : C
onto
−−→ δΓ be a Γ-norm where C ∈ Γ \ ¬Γ. Let U be universal ∃RΓ and D

be the set of codes for subsets of δΓ; so for t ∈ D

(1) U(t, x) → x ∈ C and
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(2) U(t, x) & ϕ(x) = ϕ(x′) → U(t, x′).

For t ∈ D set π(t) = {ϕ(x) : U(t, x)}. For U a measure on δΓ set

U∗ = {t : π(t) ∈ U}

It is shown in [Jac10] that U∗ ∈ Env(Γ) for nice Γ.
For S a set of ordinals define

Env(S) = {A ⊆ R : ∀∗xA ∩ L[S, x] ∈ L[S, x]}.

Since GCH∗ holds on a cone, we have

Env(S) = {A ⊆ R : ∀∗xA ∩ L[S, x]|δx
S ∈ L[S, x]|δx

S}.

For nice Γ such that ∃RΓ is scaled, ∃RΓ = Sκ for κ = δΓ and

Env(S) = Env(Γ)

where S is the tree of a scale on a complete Γ-set.
Letting meas(κ) be the set of measures on κ and let meas∗(κ) be the set of

codes, we have:

Lemma 5.20. Suppose κ is a Suslin cardinal, Sκ = ∃RΓ where Γ is nice. Then
meas∗(κ) ⊆ L(S∞, R), for S the tree of a scale on a complete Γ set. ⊣

Martin and Woodin [MW08] have shown that if meas∗(κ) is bounded in the
Wadge degrees, then any tree on κ is weakly homogeneous and thus κ is not the
largest Suslin cardinal.

Proof of Theorem 5.19. Assume κ∞ is Suslin and let Γ = Sκ∞
, then Γ is nice

and ∃RΓ = Γ. If S is a tree on ω × κ∞ witnessing κ∞ is Suslin, then δ∞S = Θ.

This means that ΘL(S∞,R) = Θ and thus L(S∞, R) = L(P(R)). Thus S is strongly
maximal. ❑

6. Strong ∞-Borel codes

Definition 6.1. An ∞-Borel code S ⊆ κ is strong if player II wins the following
game Gstrong(S). Player I and II take turns playing ordinals below κ. In the end
f ∈ κω is played and we let Sf be the collapse of (f [ω], S ∩ f [ω]). II wins if Sf is
a Borel code, i.e., in BC<ω1

and ASf
⊆ AS as computed in V .

In a world with the axiom of choice this amounts to saying that a club of
σ ∈ [κ]ω satisfies ASσ

⊆ A. Without choice, the club must be witnessed by a
strategy.

The game described can be cast appropriately so that ordinal determinacy will
yield the determinacy of the game either assuming AD+ or that κ is below the
supremum of the Suslin cardinals. See [CK09, §2.2.4] for more on AD+, ordinal

determinacy and references. The point is that the map f 7→ Ŝf is continuous where

Ŝf is the canonical coding of Sf by a real given f as input, i.e., an enumeration of

f [ω]. The winning condition is that Ŝf be a Borel code and AŜf
⊆ AS .

Clearly if T is a tree on ω × κ, then T is a strong ∞-Borel code for p[T ] since
II need only ensure that T ∩ σ be sufficiently elementary in S, in this case, T ∩ σ
must be a tree on ω × σ. Then p[Tσ] = p[T ∩ σ] ⊆ p[T ] just by absoluteness. That
the converse holds is the content of the next theorem.

Theorem 6.2. If S ⊆ κ is a strong ∞-Borel code, then there is a tree T on κ
with p[T ] = AS , in particular, AS is κ-Suslin.
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Remark. The map S 7→ T depends on a winning strategy in the game described
above and there is no uniform way to produce those winning strategies.

Proof. Let σ : κ<ω → κ be II’s winning strategy in Gstrong(S). Then let (x, f) ∈
[T ] iff S∩f0[ω] is σ-closed and f1 witnesses x ∈ ASf0

. We need to show x ∈ AS ⇐⇒
x ∈ p[T ].

If x ∈ p[T ], then let (x, f) ∈ [T ] and let g be a play of the game with II
using σ and g[ω] = f0[ω]. Then x ∈ ASf0

⊆ AS . If x ∈ AS , then take α > κ so

that Lα[S, x, σ] is a model of some reasonable fragment of ZFC and Lα[S, x, σ] |=
“ S is an ∞-Borel code & x ∈ AS ”. Let {S, x, σ} ⊆ N ≺ Lα[S, x, σ]. Choose f0 so
that f0[ω] = N ∩ κ. Since Lᾱ[S̄, x, σ̄] |= “ S̄ is an ∞-Borel code & x ∈ AS̄ ”, we
have S̄ = Sf0[ω], Sf0[ω] is an ∞-Borel code, and x ∈ Sf0[ω], so we can choose f1

witnessing this. This f satisfies (x, f) ∈ [T ], as desired. ❑

While the passage from a strong ∞-Borel code to the corresponding Suslin
representation is not uniform, it turns out that the passage from ∞-Borel code to
corresponding strong code is uniform and this will yield the closure of the Suslin
cardinals. Recall the codes Sx

∗ and S∗ from Lemma 5.3.

Theorem 6.3. If δ∞S -determinacy holds, then S∗ is strong.

Proof. By assumption Gstrong(S∗) is determined so we need only show that I does
not win. Suppose σ is a I winning strategy. We aim to produce a play f consistent
with σ so that (S∗)f = Sx

∗ for some x. Since ASx
∗
⊆ AS = AS∗

this will yield a
contradiction.

On a cone of x, consider the closed game Gx where in round i player I plays
α2i < δx

S and II plays α2i+1 < δx
S , βi < δ∞S , and ki ∈ 2. In the end f ∈ (δx

S)ω,
g ∈ (δ∞S )ω, and x ∈ 2ω are played. For II to win, g[ω] must be σ-closed, and x
must determine a map πx : f [ω] → g[ω] which must be an embedding of Sx

∗ ∩ f [ω]
into S∗. This game is closed for II.

Let G∞ be the corresponding game played in H∞
S (σ∞

S , S∗, S
∞
∗ ). Let G be

generic over V for collapsing δ∞S to ω and have II play so that f [ω] = δ∞S , g[ω] =

jS [δ∞S ], and x codes jS : δ∞S
onto
−−→
1-1

jS [δ∞S ]. This play is winning against any play by

I. By absoluteness for winning a closed game, II wins G∞ in H∞
S (σ∞

S , S∗, S
∞
∗ ). So

by Łos’ lemma, II wins Gx on a cone of x with canonical strategy τx.
Now fix x in the cone where II wins and have II play τx against an enumeration

of δx
S and let π : δx

S → δ∞S be II’s isomorphism and g ∈ (δ∞S )ω be II’s enumeration
of π[δx

S ]. Since g[ω] is σ-closed, σ(g)[ω] = g[ω] and so Sx
∗ ≃π S∗. So g is a play by

II that defeats σ. ❑

Corollary 6.4. If κ < κ∞ is Suslin as witnessed by a tree S on ω × κ, then
λ ≤ δ∞S where λ is the next Suslin cardinal after κ.

Proof. Since κ < κ∞, δ∞S < κ∞ by Theorem 5.13 and the corollaries following
it. Set x ∈ A ⇐⇒ x /∈ p[S], and note that A is not κ-Suslin. Fix ϕ so that

A = A(ϕ,S) and let Ŝ be the corresponding ∞-Borel code. Then Ŝ∗ is a strong
∞-Borel code of size δ∞S so A is δ∞S -Suslin and so δ∞S ≥ λ. ❑

Theorem 6.5. Suppose that κ is a limit of Suslin cardinals and that κ-ordinal
determinacy holds, then κ is Suslin.
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The hypotheses are satisfied if either κ < κ∞ or κ < Θ and AD+ holds. The
Suslin cardinals do form an ω-club, so if cf(κ) = ω, there is nothing to do, hence
assume cf(κ) > ω. The following lemma is reminiscent of 2.5.

Lemma 6.6. Let λ be a cardinal and suppose B<λ ( B∞. Then B<λ has a
λ-length antichain.

Proof. First suppose λ is regular. Let ∼ be the relation on BC∞ given by T ∼

T ′ df
⇐⇒ AT = AT ′ . Let γ be least such that Bγ \B<λ 6= ∅ and let S ∈ BCγ \BC<λ

code such a set. Work now in L[S,∼]. For readability let Q<λ = BC
L[S,∼]
<λ / ∼

and let Q = BC
L[S,∼]
λ / ∼. The point is that Q is a countably generated complete

Boolean algebra in L[S,∼] and hence for any cardinal λ of L[S,∼], the “λth level”

of Q, essentially Q<λ, is either already complete or has a cfL[S,∼](λ)-sized antichain
unbounded in Q<λ.

In L[S,∼], λ is regular and there is a least γ′ ≤ γ so that L[S,∼] |= Qγ′ \

Q<λ 6= ∅. Choose S′ ∈ BC
L[S,∼]
γ′ witnessing this. Then S′/ ∼=

∨
α<γ′ Sα/ ∼ with

Sα ∈ BC
L[S,∼]
<λ . Now inside L[S,∼] take S′

α ∈ BC
L[S,∼]
<λ so that S′

α/ ∼=
∨

α′<α Sα.
We can thin out this sequence to a strictly increasing sequence in Q<λ, 〈S′

αξ
:ξ < ρ〉,

where ρ ≥ cf(λ). This gives an antichain of length cfL[S,∼](λ) of codes in BC
L[S,∼]
<λ .

Since λ is regular in L[S,∼] this does it.
The preceding paragraph actually showed that for any λ, if Q<λ 6= Q, then a

sequence 〈Sα ∈ BCλα
: α < ρ〉, where ρ = cfL[S,∼](λ), can be found in L[S,∼] such

that Sα/ ∼ and Sα′/ ∼ are incompatible for α < α′ < ρ.
Suppose now that λ is singular in L[S,∼] with supα<ρ λα = λ λα < λα′ for

α < α′ < ρ where ρ = cfL[S,∼](λ). We may assume the Sα from the preceding
paragraph are of the form Sα =

∨
γ<λα

Sα,γ with 〈Sα,γ : γ < λα〉 an antichain in
Qλα

. This gives us an antichain in Q<λ of length λ. ❑

Corollary 6.7. If κ < κ∞ is a limit of Suslin cardinals, then there is a κ-length
antichain in B<κ.

Proof. The only point is that B<κ 6= B∞. ❑

Lemma 6.8. If Sα ∈ BC<κ is a strong code for all α < κ, then S =
∨

Sα is strong.

Proof. All we need to do is see that player I cannot win Gstrong(S). Suppose I
did win with σ. Since cf(κ) > ω take α closed under σ so that Sα ∈ BCα. Now
have II play a winning strategy σα in Gstrong(Sα) against σ. Let f ∈ αω be the
resulting play. A(Sα)f

⊆ ASα
⊆ AS . So this is a win for II. This contradiction

shows that II must win Gstrong(S). ❑

Now we can easily prove the theorem:

Proof of Theorem 6.5. Let κ be a limit of Suslin cardinals and assume κ-
ordinal determinacy holds and cf(κ) > ω. Let 〈Sα : α < κ〉 be an antichain by
Lemma 6.6. For each α let Sα,∗ be the associated strong code. Sα,∗ ∈ BC<κ by
Corollary 5.15. By Lemma 6.8, T =

∨
β<κ

(∨
α<β(Sα,∗ × Sβ,∗)

)
is strong and

hence AT is κ-Suslin. AT is a prewellordering of length κ and hence is not λ-Suslin
for any λ < κ, by the Kunen-Martin theorem. So AT witnesses that κ is a Suslin
cardinal. ❑
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6.1. Equivalence of Suslin cardinals and reliable cardinals. Recall Def-

inition 2.1 and the discussion around it. For a tree T on ω × κ set T ′ df
= T {ϕT

i }i ,
that is, T ′ ⊆ T is the tree induced by the semiscale associated to T , i.e.,

T ′ = {(x|i, bT
x |i) : x ∈ p[T ] and i ∈ ω}

A tree T , on ω × κ, is a tree of a scale if T = T ′. A cardinal κ is called reliable if
there is a tree on ω×κ such that T is the tree of a semiscale and |T | = κ. Call a tree
T , as in the definition of reliability, a witness to the reliability of κ. If κ is reliable,
then it is possible to find a reliability witness such that ∀α < κ∃x ∈ p[T ] bT

x (0) = α,

i.e., ϕT
0 : p[T ]

onto
−−→ κ, call such a reliability witness a good witness to the reliability

of κ.
A Suslin cardinal is reliable; just take T on ω×κ witnessing that κ is Suslin, then

T ′ is a reliability witness. The closure of the Suslin cardinals below their supremum,
Theorem 6.5 yields that every reliable cardinal is Suslin, thus providing a direct
“structural” way of recognizing the Suslin cardinals.

Theorem 6.9. Every reliable cardinal is Suslin.

Proof. Suppose there is a reliable cardinal, κ < κ∞, that is not a Suslin cardinal.
By the closure of the Suslin cardinals below κ∞, κ is not a limit of Suslin/reliable
cardinals and hence there is a largest Suslin cardinal λ < κ and Sλ = Sκ.

If γ is the next Suslin cardinal after λ, then λ < κ < γ, so γ 6= λ+ and
thus [Jac10, Lemma 3.7] gives that cf(γ) = ω and [Jac10, Theorem 3.28] yields
that λ is regular and Scale(Sλ). In particular Sλ has the prewellordering property
and hence is closed under arbitrary wellordered unions. This in turn means that
there can be no λ+-sequence of mutually disjoint sequence of sets in Sλ, since if

〈Aα :α < λ+〉 were such a sequence, x ≺ y
df

⇐⇒ (x, y) ∈
⋃

β<ξ<λ+ Aβ ×Aξ would be

a Sλ wellfounded relation of rank λ+ and this violates the Kunen-Martin theorem
2.2.

Let T be a good reliability witness for κ. Then Aα = {x ∈ p[T ] : ϕT
0 (x) = α}

is a sequence of disjoint non-empty sets of length κ in Sκ = Sλ. This contradicts
the preceding paragraph. ❑

7. Equivalence of AD+ with the closure of the Suslin cardinals below Θ

Recall, working in ZFC for the moment, that for δ a strong limit cardinal and
G ⊆ Col(ω, <δ) generic, the set R∗

G =
⋃

α<δ RV [G|α] is called the set of symmetric
reals for Col(ω, <δ). That a certain set of reals R∗ is the symmetric reals for some
generic G ⊆ Col(ω, <δ) can be axiomatized as follows:

(1) Every real x ∈ R∗ is in V [g] for generic g ⊆ P for some P ∈ Vδ.
(2) sup{||x|| : x ∈ WO ∩ R∗} = δ.
(3) For x, y ∈ R∗, L[x, y] ∩ R ⊆ R∗.

If R∗ is the set of symmetric reals for Col(ω, <δ), then V (R∗) ∩ R = R∗ is a model
of ZF. The following is known as the Derived Model Theorem.

Theorem 7.1 (Woodin). Assume ZFC and that δ is a limit of Woodin cardinals
and R∗ is the set of symmetric reals for Col(ω, <δ). Define

Γ∗
AD+ = {A ⊆ R∗ : A ∈ V (R∗) and L(A, R∗) |= AD+}

Then L(Γ∗
AD+ , R∗) |= AD+. ⊣
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The model L(Γ∗
AD+ , R∗) is called the derived model. For R∗ the symmetric

reals for Col(ω, <δ), in V (R∗) define

A ∈ Hom∗ df
⇐⇒ A = p[T ] = R \ p[S] for T, S trees on ω × δ

Then Hom∗ = S
L(Γ∗

AD
+ ,R∗)

<∞ .
The derived model theorem gives a way of producing models of AD+ from large

cardinals. Starting with a model of ZF + AD + DCR, define

ΓAD+ = {A : L(A, R) |= AD+}.

Woodin produced an inner model N in a generic extension of V , so that

(1) δ = ωV
1 is a limit of Woodin cardinals in N ,

(2) RV is a set of symmetric reals over N for Col(ω, <δ),
(3) (Γ∗

AD+)N(R) = (ΓAD+)V , and

(4) (S∞)V = (Hom∗)N(R)

(5) For S ∈ (Γ∗
AD+)N(R),

∏
S ω

L(S,x)
2 /µ is the same computed in V or in

L(Γ∗
AD+ , R)N(R).

The item (5) is a little technical, but we need it below. In particular, it implies
that if S is a tree in L(Γ∗

AD+ , R)N(R) witnessing that κ∞ is Suslin, then L(S∞, R)

is the same computed in V or in L(Γ∗
AD+ , R)N(R).

These results imply that every AD+ model is a derived model and more gen-
erally, and more importantly for us here, every model of AD contains a maximal
class inner model of AD+ containing the reals, and this maximal model of AD+

contains all of the Suslin sets. So we have the following:

L(S∞, R) ⊆ L(ΓAD+ , R) ⊆ L(B∞, R) ⊆ L(P(R)),

where in the case that there is no largest degree notion, L(B∞, R) is also the
maximal model of AD+uniformization. Moreover, if κ∞ is Suslin, then L(S∞, R) =
L(ΓAD+ , R).

The desired characterization of AD+ models follows almost immediately:

Theorem 7.2 (Woodin). The following are equivalent under ZF + DCR

(1) AD+

(2) AD + The Suslin cardinals are closed below Θ.

Proof. (1) =⇒ (2) has already been discussed. So assume (2) holds. If κ∞ = Θ,
then we have AD+ all sets are Suslin and this easily gives AD+. So assume κ∞ <
Θ. Fix a tree, S, witnessing κ∞ is Suslin. Theorem 5.19 shows that S is a strongly
maximal degree and hence L(S∞, R) = L(P(R)) for S a tree on ω ×κ∞ witnessing
κ∞ is Suslin. From the derived model theorem, L(S∞, R) is the maximal model of
AD+. ❑

8. Appendix

Under AD, P(R) has a fair amount of structure. One facet of this is the Wadge
hierarchy. For A and B sets of reals, A is Wadge reducible to B, denoted A ≤w B,
if there is a continuous reduction of A to B, that is, there is continuous f : R → R
so that A = f−1[B]. Wadge showed that, assuming AD,

either A ≤w B or ¬B ≤w A
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where ¬A = R \ A. This gives a quasi-linear-order to P(R) with classes

[A]w = {B : B =w A or B =w ¬A}

A is selfdual if A =w ¬A, otherwise A is non-selfdual.
Martin showed that <w is wellfounded. Set w(A) to be the rank of A in <w.

Notice w(A) < w(B) ⇐⇒ A <w B, but w(A) ≤ w(B) ⇐⇒ A ≤w B or A ≤w ¬B.
Van Wesep showed that for A, cf(w(A)) = ω iff A is selfdual [VW78].

The height of the Wadge hierarchy is denoted Θ; this ordinal can be alterna-
tively defined by

Θ = sup{α : ∃f : R
onto
−−→ α}.

A pointclass (Wadge class), is any collection of sets of reals closed under continuous
reduction, in other words, a Wadge initial segment of P(R). To any pointclass Γ let
¬Γ = {¬A :A ∈ Γ} and ∆Γ = Γ∩¬Γ. A pointclass, Γ, is selfdual if Γ = ¬Γ(= ∆Γ).

A set A ∈ Γ is called Γ-complete iff Γ = {B : B ≤w A}. In the case that Γ
is non-selfdual, then Γ not only has a complete set, but even has a universal set,
that is, a set U ⊆ R × R such that A ∈ Γ ⇐⇒ A = Ux where Ux = {y : U(x, y)}.
There are even nice collections of universal sets that have the “s-n-m” property (see
[Jac10]) and thus “light face”, or “effective”, arguments from descriptive set theory
lift to Γ, once a collection of nice universal sets is fixed. Selfdual classes can have
complete sets, but a diagonal argument shows that they can never have a universal
set.

For any pointclass Γ, let wΓ = sup{w(A) + 1 : A ∈ Γ}. If Λ is selfdual and
cf(wΛ) = ω, then for any sequence Ai Wadge cofinal in Λ, letting A =

⊕
i Ai

we have w(A) = wΛ and Λ′ = {B : B ≤w A} is the first pointclass past Λ and is
selfdual. If cf(wΛ) > ω, then there is a non-selfdual Γ so that ∆Γ = Λ. This follows
from the result of Van Wesep mentioned above.

I will use ∨, ∧, etc., to operate on pointclasses. So

Γ ∧ Γ′ = {A ∩ A′ : A ∈ Γ & B ∈ Γ′},
∧

κ Γ =
{⋂

α<κ Aα : 〈Aα : α < κ〉 ∈ Γκ
}
,

etc. For example, Γ is closed under finite unions iff Γ∨Γ ⊆ Γ, and Γ is closed under
countable unions iff

∨
ω Γ ⊆ Γ. Notice that as long as Γ has a complete set, then

closure under
∨

ω is equivalent to closure under ∃ω and I will use these two notions
of closure interchangeably.

There are several ordinals other than wΓ associated to pointclasses, two impor-
tant ones are:

δΓ = sup{|| ≤ || : ≤∈ ∆Γ is a prewellordering}

σΓ = sup{|| ≺ || : ≺∈ Γ is a wellfounded relation}

Here I use || ≺ || to mean the ordinal rank of ≺. I will write ||x||≺ for the rank of x
in ≺. For a pointclass Γ, if ∆∧∆ ⊆ ∆, then δΓ ≤ σΓ, since for any prewellordering

≤∈ ∆ we can define x ≺ y
df

⇐⇒ x ≤ y ∧ y � x.

8.1. The generalized projective hierarchy. A pointclass Λ is strongly clo-
sed if it is closed under real quantification and finite Boolean operations. Notice that
if Λ is strongly closed, then Λ is selfdual. The smallest strongly closed pointclass
is the pointclass of projective sets,

⋃
i Σ1

i . If Λ is strongly closed, then all three
ordinals wΛ, δΛ, and σΛ are the same [KSS81].

We will use the hierarchy of Levy classes more than the Wadge hierarchy. A
pointclass is a Levy class if it is non-selfdual and closed under one or both of the
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real quantifiers. If Γ is a Levy class closed under ∃R and not ∀R, then Γ is a Σ-
Levy class and its complement is the corresponding Π-Levy class. In [Ste81b],
Steel shows that for any non-selfdual pointclass Γ exactly one of Γ or ¬Γ satisfies
separation, we will use this to distinguish Σ-Levy classes and Π-Levy classes in case
Γ is closed under both real quantifiers. If a Levy class, Γ, is closed under both real
quantifiers, then take the Σ-Levy class to be the side on which separation fails; it
turns out that the Σ-class actually has the prewellordering property. Facts about
Levy classes and the associated ordinals are taken from [KSS81, Ste81a, Bec85];
a good source is [Jac10, “Wadge degrees and abstract pointclasses”].

By Wadge comparability we get a generalized projective hierarchy (Σ1
α, Π1

α),
for α < Θ, where Σ1

α is the αth Σ-Levy class and Π1
α is the corresponding αth

Π-Levy class. When discussing the general theory of Levy classes we will assume
that if Λ is strongly closed, then there is κ so that

∨
κ Λ * Λ. Steel showed that

the least such κ is cf(wΛ) [Ste81b]. If cf(wΛ) = ω, then
∨

ω Λ * Λ. Under the
assumption, if cf(wΛ) > ω, then Λ = ∆Γ for some pointclass Γ by the result of Van
Wesep mentioned above; Steel showed that Γ is a Levy class closed under ∀R with
the prewellordering property [Ste81b, Ste81a, Jac10]. Conversely, if Γ is non-
selfdual and has the prewellordering property, then

∨
κ ∆Γ * ∆Γ for κ least such

that there is a Γ-norm of length κ on a set in Γ \ ∆Γ. If Λ is selfdual and properly
contained in the ∞-Borel sets, then, Λ is not closed under arbitrary wellordered
unions. From results below, if Λ is strongly closed and properly contained in the
∞-Borel sets, then a fair amount of the Levy hierarchy above Λ is also contained
in the ∞-Borel sets.

We will quickly review a few of the relevant facts concerning the generalized
projective hierarchy. Set

δ1
α = δΣ1

α
σ1

α = σΣ1
α

w1
α = w∆1

α

For λ a limit I will also use δ1
<λ, σ1

<λ, and w1
<λ in the obvious way corresponding to

the class ∆1
<λ =

⋃
α<λ ∆1

α. Recall δ1
<λ = σ1

<λ = w1
<λ since ∆1

<λ is strongly closed; I

will use δ1
<λ when there is no particular reason to use one of the other two. Notice

δ1
α = δΠ1

α
= δ∆1

α
, but, in general, σ1

α 6= σΠ1
α
. Clearly, δ1

α ≤ σ1
α and w1

α ≤ δ1
α+1,

since for A ∈ ∆1
α, the relation x ≤ y iff f−1

x [A] ≤w f−1
y [A] can be seen to be ∆1

α+1

where fx : R → R is a (Lipschitz) continuous function coded by x. The following
lemma summarizes several properties of the generalized projective sets.

Lemma 8.1. For α < Θ the following hold:

(1) If Σ1
α has the prewellordering property, then it is closed under arbitrary

wellordered unions.
(2) If Σ1

α is closed under finite intersections, then there is a δ1
α complete

measure on σ1
α. (The argument for this essentially appears in [Kec78,

§5].)
(3) If Π1

α is closed under finite unions and has the prewellordering property,
then
(a) δ1

α = || ≤ ||, where ≤ is any Π1
α norm on a complete Π1

α set.
(b) σ1

α = δ1
α and so δ1

α is measurable.
(c) ∆1

α is closed under <δ1
α-wellordered unions. ⊣

To determine whether or not, for example, Π1
α is closed under finite unions, has

the prewellordering property, etc., depends on the nature of the projective hierarchy
to which Π1

α belongs.
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For λ a limit, ∆1
<λ is the largest strongly closed pointclass contained in ∆1

λ;
∆1

<λ is called the base of the projective hierarchy Projλ = 〈(Σ1
λ+n, Π1

λ+n) : n ∈ ω〉.

By First Periodicity, the behavior of the prewellordering property in the λth pro-
jective hierarchy, Projλ, is determined by what happens on (Σ1

λ, Π1
λ) and alternates

between the Σ-side and the Π-side.
The projective hierarchy Projλ is type I if cf(λ) = cf(w1

<λ) = ω. In this case,
∆1

<λ (
⊕

ω ∆1
<λ ( ∆1

λ. In type I hierarchies:

Σ1
λ =

∨
ω∆1

<λ = Σ0
1(∆

1
<λ) = Σ0

1(A) and Σ1
λ+1 = Σ1

1(∆
1
<λ) = Σ1

1(A)

for any A =
⊕

i Ai with 〈Ai : i ∈ ω〉 Wadge cofinal in ∆1
<λ, where Σ0

1(Λ) is the
smallest non-selfdual pointclass containing Λ and closed under ∃ω , Σ1

1(Λ) is the
smallest pointclass containing Λ and closed under ∃R and ∀ω, and where Σi

j(A) =

Σi
j({A}). Σ1

λ has the prewellordering property and so it is closed under arbitrary
wellordered unions and, moreover, it is closed under finite intersections, but not
∀ω.

In [Bec85], Becker proved the following:

Lemma 8.2. For λ a limit of countable cofinality

δ1
λ+1 = σ1

λ = w1
λ.

equivalently
δ1
1(A) = w(∆0

1(A)) = σΣ0
1
(A)

where A =
⊕

i∈ω Ai for some 〈Ai : i ∈ ω〉 Wadge cofinal in ∆1
<λ. ⊣

Of course we already knew that w(Σ0
1(A)) ≤ δ1

1(A) and that σΣ0
1
(A) ≤ σ1

1(A) =

δ1
1(A). Becker argues

σ1
1(A) ≤ σΣ0

1
(A) ≤ w(Σ0

1(A)).

This shows that ∆1
λ is quite a bit larger than ∆1

<λ at least as far as the Wadge
hierarchy is concerned (recall δ1

λ+1 is measurable).
In the case that cf(λ) > ω, then, as mentioned above, there is a Levy class Γ so

that ∆Γ = ∆1
<λ; if chosen to be on the side that separation fails, Γ is closed under

∀R and satisfies the prewellordering property. It follows that Γ = Π1
λ, if Γ is not

closed under ∃R, and Γ = Σ1
λ, otherwise. So for λ a limit of uncountable cofinality,

∆1
<λ = ∆1

λ and hence δ1
λ = w1

λ = w1
<λ = δ1

<λ and cf(λ) = cf(w1
<λ) = cf(w1

λ). There
are three subcases for the hierarchy when cf(λ) > ω.

If Π1
λ is not closed under ∃ω , and hence not under ∃R, then Projλ is called type

II. In [Ste81b], Steel showed that Π1
λ is closed under ∃ω iff Π1

λ is closed under finite
unions. In fact, Steel showed that is separation fails for Γ, then Γ ∨ Γ ⊆ Γ ⇐⇒∨

ω Γ ⊆ Γ.
If w1

λ is singular, then Π1
λ ∨ ∆1

λ * Π1
λ and thus Projλ is type II [Ste81a, pg

150]. Thus in the non-type II case w1
λ is regular and λ ≥ cf(λ) = cf(w1

λ) = w1
λ ≥ λ,

so λ = w1
λ. Also w1

λ = δ1
λ, the last equality having already been discussed.

The projective hierarchy, Projλ is called type III if Π1
λ is not closed under ∃R,

but is closed under finite unions, equivalently, countable unions. In the type III
case, λ = δ1

λ = w1
λ is regular, even measurable.

It is open whether or not w1
λ regular implies that Π1

λ ∨ Π1
λ ⊆ Π1

λ. If so, then
whether or not w1

λ is regular or not would determine the type of Projλ.
Finally, if cf(λ) > ω and Π1

λ is closed under both real quantifiers, then prewell-
ordering holds on the Σ-side. In this case, Projλ is a type IV hierarchy. As in the
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type III case, δ1
λ is measurable. In a type IV hierarchy, it is the pair (Σ1

λ+1, Π
1
λ+1)

that has weak closure properties. Π1
λ+1 = Σ1

λ ∧Π1
λ. This pointclass is closed under

∀R, but not finite unions, it has the prewellordering property.
For A a set of reals let Π(A) be whichever of Π1

1(A) or Π1
2(A) has the prewell-

ordering property. Let Σ(A), ∆(A), σ(A), and δ(A) have the obvious definitions.
The following lemma, a corollary of Lemma 8.1, summarizes what we will need.

Lemma 8.3. Let A be a set of reals,

(1) δ(A) is the rank of any Π(A)-norm on a complete Π(A) set.
(2) σ(A) = δ(A) is measurable.
(3) ∆(A) is closed under <δ(A)-wellordered unions/intersections. ⊣

8.2. Coding Lemma. One version of the Moschovakis Coding Lemma, see
[Mos09, Jac10], is as follows:

Theorem 8.4 (Moschovakis). Suppose Γ is a Σ-Levy class closed under finite
intersection and let ≺ be a wellfounded relation in Γ of rank γ. Let U ⊆ R × R be
universal for Γ. For any f : γ → P(R), there is ε so that for all β < γ:

(1) If f(β) 6= ∅, then ∃x, y ||x||≺ = β & Uε(x, y).
(2) For all x, y, Uε(x, y) implies x ∈ field(≺) and y ∈ f(||x||≺).

ε is called a code of f . ⊣

If Γ is a Σ-Levy class closed under finite intersections and ≺ is the strict part
of a prewellordering � of length γ with both ≺ and � in Γ, then for any S ⊆ γ
there is a � invariant code for C ∈ Γ for S, i.e., for x ∈ field(�):

C(x) ⇐⇒ S(||x||≺)

Since the same is true for γ \ S we have S is ∆ in �. The following variant of the
coding lemma is discussed in [Jac10, §2.2].

Theorem 8.5. If Γ is a Π-Levy class closed under ∨ with the prewellordering
property, e.g., Π(A) for any set A, then any subset of δΓ has a ∆Γ-code (rather
than a ∆∃RΓ-code) with respect to a fixed Γ-norm on a complete Γ-set. ⊣

There are several other variants of the coding lemma. I will use the terminology
S ∈ Γ to mean that there is a prewellordering ≤ in Γ so that {x : ||x||≤ ∈ S} ∈ Γ.
So for example, the preceding theorem can be stated as P(δΓ) ⊆ ∆Γ.

One way the coding lemma will be used is given by the following corollary.

Corollary 8.6. If M and N are models of ZF+AD, then for all γ < ΘN ∩ΘM ,
P(γ) ∩ M = P(γ) ∩ N . ⊣

In [KKMW81] it is shown that AD implies its own strengthening to <κ∞-
ordinal determinacy. What is actually shown is that if γ < Θ and A ⊆ γω is
κ-Suslin/κ-co-Suslin for some κ < Θ, then the game on γ, Gγ(A) is determined.
The determinacy of of Gγ(A) is absolute between any M and N modeling AD and
having the same reals provided γ < ΘM ∩ ΘN and the set A ∈ M ∩ N , since the
Coding Lemma will guarantee that these two models will have the same strategies,
since a strategy “is” a subset of γ. This gives the downward absoluteness of ordinal
determinacy mentioned in the introduction.
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