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Hyperreal-valued probability measures

approximating a real-valued measure

November 19, 2013

In the measurement of probability we assign numbers to events in ac-
cordance to how likely they are. Standard probability theory assigns real
numbers to events, but there are well known problems with using real num-
bers as the measures of probability. One of them is that measure 0 events
do not form a homogeneous class, that is to say, there seem to be di↵erences
in probability among events which get assigned the same measure of their
probability, namely the lowest possible measure 0. To illustrate with a stan-
dard example, let ⌦ be any non–empty set. Let us randomly pick an element
of ⌦. What is the chance that a given element a 2 ⌦ gets chosen? If ⌦ is
finite, then the answer should be 1

n , where n is the number of elements of
⌦. But what if ⌦ is infinite? If the measure of probability is a real number
between 0 and 1, then the answer has to be 0, since it should be lower than
1
n for each n. But 0 is also the measure of the probability of the impossible
event of a being picked as well as not picked. These events seem to di↵er
in their probability, since one of them might well be the one that happens,
while the other one for sure will not.

To measure probability in a way to respect this di↵erence we thus need
to employ numbers other than the real numbers as measures of probability.
The reason for the failure of real numbers to be able to measure probability
fine enough to respect these di↵erences is, in the end, that real numbers have
the Archimedean property. Thus any positive real number, no matter how
small, is still larger than some 1

n , n 2 N. To have finer probability measures
we need to employ non-Archimedean number systems instead. Hyperreal
numbers are non-Archimedean extensions of the real numbers. Hyperreal
numbers in particular contain infinitesimals: positive numbers smaller than
all 1

n , for n 2 N. A hyperreal-valued probability measure employs them
instead of the reals as measures of probability. But can we be assured that
this will always help? Can we always replace a real-valued probability mea-
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sure with a regular hyperreal-valued one, i.e. one that gives measure 0 only
to the impossible event? By “replace” we mean that for every event X, the
hyperreal-valued probability ofX is to be infinitely close to (i.e. the absolute
value of their di↵erence is an infinitesimal) the real-valued probability of X.
The answer to this question is a�rmative: for any given real-valued proba-
bility measure there is a regular hyperreal-valued one that approximates it
up to an infinitesimal.

This result is not new. It is established, for example, in work on non-
standard measure theory, see [Henson, 1972] and [Cutland, 1983]. And it
follows from work on the connection of conditional probability functions
and non-standard probability theory, see [Krauss, 1968] and [McGee, 1994].
In this paper we propose a new and completely elementary proof of this
fact. While the known proofs mentioned above rely on general results in
measure theory or model theory and are sometimes indirect, we give a direct
proof using only elementary methods, relying not even on the ultraproduct
construction, but only on the compactness theorem.

Let ⌦ be any set (the sample space), and let F be a �-algebra on ⌦ (the
event space), that is, F ⇢ P(⌦) with F closed under complements, countable
unions, and ⌦ 2 F . A real-valued probability measure is a function µ from
F into [0, 1] \ R such that:

(1) µ(⌦) = 1,

(2) if X1, . . ., Xi, . . . are countably many pairwise disjoint subsets of ⌦,
then

µ(
[

i2N
Xi) =

X

i2N
µ(Xi)

The triple (⌦, F, µ) is a standard probability space. A probability measure is
regular just in case µ(X) > 0 for all X 6= ;, and uniform just in case for all
a, a

0 2 ⌦ µ({a}) = µ({a0}). Since the real numbers form an Archimedean
field there can be no uniform and regular real-valued probability measure
on an infinite sample space. No positive real number is small enough to be
measure of a singleton set. To get that we need to measure probability with
a non-Archimedean field.

A hyperreal field R⇤ is a non-Archimedean extension of the real numbers
that has the same first order properties as the real numbers. The elements
of a hyperreal field we also call hyperreal numbers. Since hyperreal fields
to not satisfy the least upper bound principle the notion of an infinite sum
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can’t be carried over straightforwardly from real numbers to hyperreal num-
bers. How a more general additivity principle should be formulated for
hyperreal-valued probability measures is not completely settled, although
there are a variety of possibilities, see [Benci et al., 2013] for one approach.
Consequently we only require a hyperreal-valued probability measure to be
finitely additivity. We can define a non-standard probability space and a
hyperreal-valued probability measure as follows:

Definition 1. We call (⌦,P(⌦), µ) a non–standard probability space i↵ ⌦
is a non–empty set and there are hyperreal numbers R⇤ such that µ : P(⌦) !
[0, 1] \ R⇤ satisfies the following statements.

(1) µ(⌦) = 1.

(2) If X ⇢ ⌦ and X 6= ;, then µ(X) > 0.

(3) If k 2 N and X1, . . ., Xk ⇢ ⌦, where Xi \Xj = ; for all i 6= j, then

µ(
Sk

i=1 Xi) =
Pk

i=1 µ(Xi).

µ in a non-standard probability space is a hyperreal-valued probability mea-
sure. By our definition, a hyperreal-valued probability measure is regular.
Note that the event space is not merely any sigma-algebra on ⌦, but the
whole powerset of ⌦. Our main goal now is to give an elementary proof of
the central result connecting standard and non-standard probability spaces,
which says that any real-valued probability measure can be approximated
up to an infinitesimal by a hyperreal-valued one. This in particular implies
that we can always have a regular probability measure on any event space.

Theorem 2. Let (⌦, F, µ̄) be a standard probability space. There is then
some R⇤ and µ : P(⌦) ! R⇤ such that (⌦,P(⌦), µ) is a non–standard prob-
ability space and for X 2 F , µ(X) is infinitely close to µ̄(X).

Proof. Let us fix (⌦, F, µ̄). We shall use a simple compactness argument.
We enrich the usual first order language for an ordered field with constants
“µ(Ẋ)” for every X ⇢ ⌦ (for the measure of X we are looking for) as well
as by constants ẋ for all elements x of R.

In this language, let � be the smallest class of formulae with the following
properties. � contains the theory of

(R; 0, 1, <,+, ·, (x : x 2 R)),

and
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(i) “µ(⌦̇) = 1” 2 �.

(ii) If X ⇢ ⌦ and X 6= ;, then “µ(Ẋ) > 0” 2 �.

(iii) If k 2 N and X1, . . ., Xk ⇢ ⌦, where Xi \Xj = ; for all i 6= j, then,

writing X =
Sk

i=1 Xi, “µ(Ẋ) =
Pk

i=1 µ(Ẋi)” 2 �.

(iv) If X ⇢ ⌦ and X 2 F , say µ̄(X) = x 2 R, then for every n 2 N,
“|µ(Ẋ)� ẋ| < 1

n” 2 �.

It su�ces to verify that � is consistent. In a model of �, µ is a finitely
additive probability measure (by conditions (i) and (iii)), which is regular
(by (ii)), defined on all of P(⌦) (by (ii)) and approximates our given real-
valued measure µ̄ up to an infinitesimal (by (iv)). In order to show that � is
consistent, we verify that if �̄ ⇢ � is finite, then there is a model of �̄ whose
universe is R and which interprets all the symbols except for the “µ(Ẋ)” in
the standard way. Let us thus fix a finite �̄ ⇢ �.

Let {X1, . . . , Xn} be the set of all X ⇢ ⌦ such that “µ(Ẋ)” occurs
in a formula from �̄. We may assume w.l.o.g. that X1 = ⌦. For every
I ⇢ {1, . . . , n}, let us write

YI =
\

i2I
Xi \

[

j /2I

Xj .

Then {YI : I ⇢ {1, . . . , n}} is a partition of ⌦, and for every i, 1  i  n,
{YI : i 2 I ⇢ {1, . . . , n}} is a partition of Xi. The YI thus give us a finite
base from which every Xi can be generated as a union of elements in the
base. We need to assign positive real numbers to each “µ(Ẋi)” (for Xi 6= ;)
that satisfy the finitely many equations of the form of (iii) and (iv) that are
in �̄. It is tempting to define such a number based on how many elements of
the base are required to build Xi, what the smallst 1

n is that occurs in �̄ in
an equation of kind (iv) and how many non-empty Xi were assigned measure
0 by µ̄. But µ̄ might not be defined on Xi, since it is only defined on X ⇢ ⌦
with X 2 F , whereas µ needs to be defined on all of P(⌦). We shall write
“µ̄(X) #” for X 2 F , i.e., the fact that µ̄(X) is defined, or equivalently, X is
µ̄-measurable. In order to find values for our “µ(Ẋi)” we need to replace our
YI with µ̄-measurable Y ⇤

I , which we will define as the smallest µ̄-measurable
expansion of YI by other elements of our base as follows.

For every I ⇢ {1, . . . , n}, let us denote by Y

⇤
I the smallest Y of the form

Y = YI [ YI1 [ . . . [ YIm ,
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where m 2 N, Ii ⇢ {1, . . . , n} for every i, 1  i  m, and µ̄(Y ) is defined.
(We allow m = 0, i.e., Y = YI .) Notice that Y

⇤
I is well–defined, as ⌦ =

X1, µ̄(⌦) #, and the intersection of finitely many µ̄–measurable sets is µ̄–
measurable, so that we may equivalently write Y

⇤
I as

\
{Y = YI [ YI1 [ . . . [ YIm : m 2 N ^ 8i (Ii ⇢ {1, . . . , n}) ^ µ̄(Y ) #}.

Let us write F for the set of all Y ⇤
I , where I ⇢ {1, . . . , n}. It is easy to

see that Y ⇤
I = ; i↵ YI = ;.

Let Y

⇤
I , Y

⇤
I0 2 F , where I, I 0 ⇢ {1, . . . , n}. Suppose that Y

⇤
I \ Y

⇤
I0 6= ;.

There is then some J ⇢ {1, . . . , n} such that YJ ⇢ Y

⇤
I \ Y

⇤
I0 . As µ̄(Y ⇤

I ) #
and µ̄(Y ⇤

I0) #, we must have Y

⇤
J ⇢ Y

⇤
I \ Y

⇤
I0 . If YI \ Y

⇤
J = ;, then Y

⇤
I \ Y

⇤
J

is a µ̄-measurable set of the right form which is properly contained in Y

⇤
I ,

which contradicts the choice of Y ⇤
I . Hence Y

⇤
I ⇢ Y

⇤
J . Symmetrically, we get

Y

⇤
I0 ⇢ Y

⇤
J , and thus Y ⇤

I [ Y

⇤
I0 ⇢ Y

⇤
J ⇢ Y

⇤
I \ Y

⇤
I0 , i.e., Y

⇤
I = Y

⇤
I0 .

We have verified that that for all I and I

0, I with I

0 ⇢ {1, . . . , n}, if Y ⇤
I ,

Y

⇤
I0 2 F and Y

⇤
I \ Y

⇤
I0 6= ;, then Y

⇤
I = Y

⇤
I0 . In other words, F is a partition

of ⌦ into (finitely many) µ̄–measurable sets.
Let us now pick ✏ 2 R, ✏ > 0, such that ✏ < 1

n for all occurences of “ 1
n” in

a formula of type (iv) from �̄ and also ✏ < µ̄(Y ⇤
I ) for all I ⇢ {1, . . . , n} such

that µ̄(Y ⇤
I ) > 0. Let k be the number of Y 2 F such that µ̄(Y ) = 0 and

“µ(Ẏ )” occurs in �̄, and let l be the number of Y 2 F such that µ̄(Y ) > 0
and “µ(Ẏ )” occurs in �̄. For Y 2 F , let #(Y ) be the number of non–empty
subsets YI , I ⇢ {1, . . . n}, of Y . Let us now define, for I ⇢ {1, . . . , n},

µ(YI) =

8
>><

>>:

0 if Y ⇤
I = ;

1
#(Y ⇤

I ) ·
✏
k if Y ⇤

I 6= ; and µ̄(Y ⇤
I ) = 0

1
#(Y ⇤

I ) · (µ̄(Y
⇤
I )�

✏
l ) if Y ⇤

I 6= ; and µ̄(Y ⇤
I ) > 0.

We then also define, for 1  i  n,

µ(Ẋi) =
X

i2I⇢{1,...,n}

µ(YI).

It is straightforward to see that this assignment verifies that �̄ is consistent.
⇤

Corollary 3. Let ⌦ be any infinite sample space. There is a hyperreal field
R⇤ of at most cardinality 2|⌦| and a regular probability measure from P(⌦)
into R⇤.
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Proof: Take some real-valued probability measure µ̄ defined on some �-
algebra on ⌦. By the Theorem there is a hyperreal field R⇤ and a regular
probability measure from P(⌦) into R⇤. We can see from the proof that the
size of the theory � is bounded by the cardinality of P(⌦), and thus by the
downward Löwenheim-Skolem Theorem there is such an R⇤ of at most size
2|⌦|. ⇤
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