Notre Dame Journal of Formal Logic
 Hyperreal-valued probability measures approximating a real-valued measure
 --Manuscript Draft--

Manuscript Number:	
Full Title:	Hyperreal-valued probability measures approximating a real-valued measure
Short Title:	Hyperreal-valued probability measures
Article Type:	Probability, hyperreal numbers, measure
Keywords:	Classification 60A10
Corresponding Author:	Thomas Hofweber University of North Carolina at Chapel Hill Chapel Hill, NC UNITED STATES
Corresponding Author Secondary	
Information:	University of North Carolina at Chapel Hill
Corresponding Author's Institution:	Thomas Hofweber
Corresponding Author's Secondary Institution:	Thomas Hofweber First Author: First Author Secondary Information: Order of Authors: Ralf Schindler Order of Authors Secondary Information:
Abstract:	We give a direct and elementary proof of the fact that every real-valued probability measure can be approximated up to an infinitesimal by a regular hyperreal-valued one which is defined on every subset of the sample space.

Hyperreal-valued probability measures approximating a real-valued measure

November 19, 2013

In the measurement of probability we assign numbers to events in accordance to how likely they are. Standard probability theory assigns real numbers to events, but there are well known problems with using real numbers as the measures of probability. One of them is that measure 0 events do not form a homogeneous class, that is to say, there seem to be differences in probability among events which get assigned the same measure of their probability, namely the lowest possible measure 0 . To illustrate with a standard example, let Ω be any non-empty set. Let us randomly pick an element of Ω. What is the chance that a given element $a \in \Omega$ gets chosen? If Ω is finite, then the answer should be $\frac{1}{n}$, where n is the number of elements of Ω. But what if Ω is infinite? If the measure of probability is a real number between 0 and 1 , then the answer has to be 0 , since it should be lower than $\frac{1}{n}$ for each n. But 0 is also the measure of the probability of the impossible event of a being picked as well as not picked. These events seem to differ in their probability, since one of them might well be the one that happens, while the other one for sure will not.

To measure probability in a way to respect this difference we thus need to employ numbers other than the real numbers as measures of probability. The reason for the failure of real numbers to be able to measure probability fine enough to respect these differences is, in the end, that real numbers have the Archimedean property. Thus any positive real number, no matter how small, is still larger than some $\frac{1}{n}, n \in \mathbb{N}$. To have finer probability measures we need to employ non-Archimedean number systems instead. Hyperreal numbers are non-Archimedean extensions of the real numbers. Hyperreal numbers in particular contain infinitesimals: positive numbers smaller than all $\frac{1}{n}$, for $n \in \mathbb{N}$. A hyperreal-valued probability measure employs them instead of the reals as measures of probability. But can we be assured that this will always help? Can we always replace a real-valued probability mea-
sure with a regular hyperreal-valued one, i.e. one that gives measure 0 only to the impossible event? By "replace" we mean that for every event X, the hyperreal-valued probability of X is to be infinitely close to (i.e. the absolute value of their difference is an infinitesimal) the real-valued probability of X. The answer to this question is affirmative: for any given real-valued probability measure there is a regular hyperreal-valued one that approximates it up to an infinitesimal.

This result is not new. It is established, for example, in work on nonstandard measure theory, see [Henson, 1972] and [Cutland, 1983]. And it follows from work on the connection of conditional probability functions and non-standard probability theory, see [Krauss, 1968] and [McGee, 1994]. In this paper we propose a new and completely elementary proof of this fact. While the known proofs mentioned above rely on general results in measure theory or model theory and are sometimes indirect, we give a direct proof using only elementary methods, relying not even on the ultraproduct construction, but only on the compactness theorem.

Let Ω be any set (the sample space), and let F be a σ-algebra on Ω (the event space), that is, $F \subset \mathcal{P}(\Omega)$ with F closed under complements, countable unions, and $\Omega \in F$. A real-valued probability measure is a function μ from F into $[0,1] \cap \mathbb{R}$ such that:
(1) $\mu(\Omega)=1$,
(2) if $X_{1}, \ldots, X_{i}, \ldots$ are countably many pairwise disjoint subsets of Ω, then

$$
\mu\left(\bigcup_{i \in \mathbb{N}} X_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(X_{i}\right)
$$

The triple (Ω, F, μ) is a standard probability space. A probability measure is regular just in case $\mu(X)>0$ for all $X \neq \emptyset$, and uniform just in case for all $a, a^{\prime} \in \Omega \mu(\{a\})=\mu\left(\left\{a^{\prime}\right\}\right)$. Since the real numbers form an Archimedean field there can be no uniform and regular real-valued probability measure on an infinite sample space. No positive real number is small enough to be measure of a singleton set. To get that we need to measure probability with a non-Archimedean field.

A hyperreal field \mathbb{R}^{*} is a non-Archimedean extension of the real numbers that has the same first order properties as the real numbers. The elements of a hyperreal field we also call hyperreal numbers. Since hyperreal fields to not satisfy the least upper bound principle the notion of an infinite sum
can't be carried over straightforwardly from real numbers to hyperreal numbers. How a more general additivity principle should be formulated for hyperreal-valued probability measures is not completely settled, although there are a variety of possibilities, see [Benci et al., 2013] for one approach. Consequently we only require a hyperreal-valued probability measure to be finitely additivity. We can define a non-standard probability space and a hyperreal-valued probability measure as follows:

Definition 1. We call $(\Omega, \mathcal{P}(\Omega), \mu)$ a non-standard probability space iff Ω is a non-empty set and there are hyperreal numbers \mathbb{R}^{*} such that $\mu: \mathcal{P}(\Omega) \rightarrow$ $[0,1] \cap \mathbb{R}^{*}$ satisfies the following statements.
(1) $\mu(\Omega)=1$.
(2) If $X \subset \Omega$ and $X \neq \emptyset$, then $\mu(X)>0$.
(3) If $k \in \mathbb{N}$ and $X_{1}, \ldots, X_{k} \subset \Omega$, where $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$, then $\mu\left(\bigcup_{i=1}^{k} X_{i}\right)=\sum_{i=1}^{k} \mu\left(X_{i}\right)$.
μ in a non-standard probability space is a hyperreal-valued probability measure. By our definition, a hyperreal-valued probability measure is regular. Note that the event space is not merely any sigma-algebra on Ω, but the whole powerset of Ω. Our main goal now is to give an elementary proof of the central result connecting standard and non-standard probability spaces, which says that any real-valued probability measure can be approximated up to an infinitesimal by a hyperreal-valued one. This in particular implies that we can always have a regular probability measure on any event space.

Theorem 2. Let $(\Omega, F, \bar{\mu})$ be a standard probability space. There is then some \mathbb{R}^{*} and $\mu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}^{*}$ such that $(\Omega, \mathcal{P}(\Omega), \mu)$ is a non-standard probability space and for $X \in F, \mu(X)$ is infinitely close to $\bar{\mu}(X)$.

Proof. Let us fix $(\Omega, F, \bar{\mu})$. We shall use a simple compactness argument. We enrich the usual first order language for an ordered field with constants " $\mu(\dot{X})$ " for every $X \subset \Omega$ (for the measure of X we are looking for) as well as by constants \dot{x} for all elements x of \mathbb{R}.

In this language, let Γ be the smallest class of formulae with the following properties. Γ contains the theory of

$$
(\mathbb{R} ; 0,1,<,+, \cdot,(x: x \in \mathbb{R}))
$$

and
(i) " $\mu(\dot{\Omega})=1 " \in \Gamma$.
(ii) If $X \subset \Omega$ and $X \neq \emptyset$, then " $\mu(\dot{X})>0$ " $\in \Gamma$.
(iii) If $k \in \mathbb{N}$ and $X_{1}, \ldots, X_{k} \subset \Omega$, where $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$, then, writing $X=\bigcup_{i=1}^{k} X_{i}, " \mu(\dot{X})=\sum_{i=1}^{k} \mu\left(\dot{X}_{i}\right) " \in \Gamma$.
(iv) If $X \subset \Omega$ and $X \in F$, say $\bar{\mu}(X)=x \in \mathbb{R}$, then for every $n \in \mathbb{N}$, $"|\mu(\dot{X})-\dot{x}|<\frac{1}{n} " \in \Gamma$.

It suffices to verify that Γ is consistent. In a model of Γ, μ is a finitely additive probability measure (by conditions (i) and (iii)), which is regular (by (ii)), defined on all of $\mathcal{P}(\Omega)$ (by (ii)) and approximates our given realvalued measure $\bar{\mu}$ up to an infinitesimal (by (iv)). In order to show that Γ is consistent, we verify that if $\bar{\Gamma} \subset \Gamma$ is finite, then there is a model of $\bar{\Gamma}$ whose universe is \mathbb{R} and which interprets all the symbols except for the " $\mu(\dot{X})$ " in the standard way. Let us thus fix a finite $\bar{\Gamma} \subset \Gamma$.

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the set of all $X \subset \Omega$ such that " $\mu(\dot{X})$ " occurs in a formula from $\bar{\Gamma}$. We may assume w.l.o.g. that $X_{1}=\Omega$. For every $I \subset\{1, \ldots, n\}$, let us write

$$
Y_{I}=\bigcap_{i \in I} X_{i} \backslash \bigcup_{j \notin I} X_{j} .
$$

Then $\left\{Y_{I}: I \subset\{1, \ldots, n\}\right\}$ is a partition of Ω, and for every $i, 1 \leq i \leq n$, $\left\{Y_{I}: i \in I \subset\{1, \ldots, n\}\right\}$ is a partition of X_{i}. The Y_{I} thus give us a finite base from which every X_{i} can be generated as a union of elements in the base. We need to assign positive real numbers to each " $\mu\left(\dot{X}_{i}\right)$ " (for $X_{i} \neq \emptyset$) that satisfy the finitely many equations of the form of (iii) and (iv) that are in $\bar{\Gamma}$. It is tempting to define such a number based on how many elements of the base are required to build X_{i}, what the smallst $\frac{1}{n}$ is that occurs in $\bar{\Gamma}$ in an equation of kind (iv) and how many non-empty X_{i} were assigned measure 0 by $\bar{\mu}$. But $\bar{\mu}$ might not be defined on X_{i}, since it is only defined on $X \subset \Omega$ with $X \in F$, whereas μ needs to be defined on all of $\mathcal{P}(\Omega)$. We shall write " $\bar{\mu}(X) \downarrow$ " for $X \in F$, i.e., the fact that $\bar{\mu}(X)$ is defined, or equivalently, X is $\bar{\mu}$-measurable. In order to find values for our " $\mu\left(\dot{X}_{i}\right)$ " we need to replace our Y_{I} with $\bar{\mu}$-measurable Y_{I}^{*}, which we will define as the smallest $\bar{\mu}$-measurable expansion of Y_{I} by other elements of our base as follows.

For every $I \subset\{1, \ldots, n\}$, let us denote by Y_{I}^{*} the smallest Y of the form

$$
Y=Y_{I} \cup Y_{I_{1}} \cup \ldots \cup Y_{I_{m}},
$$

where $m \in \mathbb{N}, I_{i} \subset\{1, \ldots, n\}$ for every $i, 1 \leq i \leq m$, and $\bar{\mu}(Y)$ is defined. (We allow $m=0$, i.e., $Y=Y_{I}$.) Notice that Y_{I}^{*} is well-defined, as $\Omega=$ $X_{1}, \bar{\mu}(\Omega) \downarrow$, and the intersection of finitely many $\bar{\mu}$-measurable sets is $\bar{\mu}-$ measurable, so that we may equivalently write Y_{I}^{*} as

$$
\bigcap\left\{Y=Y_{I} \cup Y_{I_{1}} \cup \ldots \cup Y_{I_{m}}: m \in \mathbb{N} \wedge \forall i\left(I_{i} \subset\{1, \ldots, n\}\right) \wedge \bar{\mu}(Y) \downarrow\right\} .
$$

Let us write \mathcal{F} for the set of all Y_{I}^{*}, where $I \subset\{1, \ldots, n\}$. It is easy to see that $Y_{I}^{*}=\emptyset$ iff $Y_{I}=\emptyset$.

Let $Y_{I}^{*}, Y_{I^{\prime}}^{*} \in \mathcal{F}$, where $I, I^{\prime} \subset\{1, \ldots, n\}$. Suppose that $Y_{I}^{*} \cap Y_{I^{\prime}}^{*} \neq \emptyset$. There is then some $J \subset\{1, \ldots, n\}$ such that $Y_{J} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$. As $\bar{\mu}\left(Y_{I}^{*}\right) \downarrow$ and $\bar{\mu}\left(Y_{I^{\prime}}^{*}\right) \downarrow$, we must have $Y_{J}^{*} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$. If $Y_{I} \cap Y_{J}^{*}=\emptyset$, then $Y_{I}^{*} \backslash Y_{J}^{*}$ is a $\bar{\mu}$-measurable set of the right form which is properly contained in Y_{I}^{*}, which contradicts the choice of Y_{I}^{*}. Hence $Y_{I}^{*} \subset Y_{J}^{*}$. Symmetrically, we get $Y_{I^{\prime}}^{*} \subset Y_{J}^{*}$, and thus $Y_{I}^{*} \cup Y_{I^{\prime}}^{*} \subset Y_{J}^{*} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$, i.e., $Y_{I}^{*}=Y_{I^{\prime}}^{*}$.

We have verified that that for all I and I^{\prime}, I with $I^{\prime} \subset\{1, \ldots, n\}$, if Y_{I}^{*}, $Y_{I^{\prime}}^{*} \in \mathcal{F}$ and $Y_{I}^{*} \cap Y_{I^{\prime}}^{*} \neq \emptyset$, then $Y_{I}^{*}=Y_{I^{\prime}}^{*}$. In other words, \mathcal{F} is a partition of Ω into (finitely many) $\bar{\mu}$-measurable sets.

Let us now pick $\epsilon \in \mathbb{R}, \epsilon>0$, such that $\epsilon<\frac{1}{n}$ for all occurences of " $\frac{1}{n}$ " in a formula of type (iv) from $\bar{\Gamma}$ and also $\epsilon<\bar{\mu}\left(Y_{I}^{*}\right)$ for all $I \subset\{1, \ldots, n\}$ such that $\bar{\mu}\left(Y_{I}^{*}\right)>0$. Let k be the number of $Y \in \mathcal{F}$ such that $\bar{\mu}(Y)=0$ and " $\mu(\dot{Y})$ " occurs in $\bar{\Gamma}$, and let l be the number of $Y \in \mathcal{F}$ such that $\bar{\mu}(Y)>0$ and " $\mu(\dot{Y})$ " occurs in $\bar{\Gamma}$. For $Y \in \mathcal{F}$, let $\#(Y)$ be the number of non-empty subsets $Y_{I}, I \subset\{1, \ldots n\}$, of Y. Let us now define, for $I \subset\{1, \ldots, n\}$,

$$
\mu\left(Y_{I}\right)= \begin{cases}0 & \text { if } Y_{I}^{*}=\emptyset \\ \frac{1}{\#\left(Y_{I}^{*}\right)} \cdot \frac{\epsilon}{k} & \text { if } Y_{I}^{*} \neq \emptyset \text { and } \bar{\mu}\left(Y_{I}^{*}\right)=0 \\ \frac{1}{\#\left(Y_{I}^{*}\right)} \cdot\left(\bar{\mu}\left(Y_{I}^{*}\right)-\frac{\epsilon}{l}\right) & \text { if } Y_{I}^{*} \neq \emptyset \text { and } \bar{\mu}\left(Y_{I}^{*}\right)>0\end{cases}
$$

We then also define, for $1 \leq i \leq n$,

$$
\mu\left(\dot{X}_{i}\right)=\sum_{i \in I \subset\{1, \ldots, n\}} \mu\left(Y_{I}\right) .
$$

It is straightforward to see that this assignment verifies that $\bar{\Gamma}$ is consistent.

Corollary 3. Let Ω be any infinite sample space. There is a hyperreal field \mathbb{R}^{*} of at most cardinality $2^{|\Omega|}$ and a regular probability measure from $\mathcal{P}(\Omega)$ into \mathbb{R}^{*}.

Proof: Take some real-valued probability measure $\bar{\mu}$ defined on some σ algebra on Ω. By the Theorem there is a hyperreal field \mathbb{R}^{*} and a regular probability measure from $\mathcal{P}(\Omega)$ into \mathbb{R}^{*}. We can see from the proof that the size of the theory Γ is bounded by the cardinality of $\mathcal{P}(\Omega)$, and thus by the downward Löwenheim-Skolem Theorem there is such an \mathbb{R}^{*} of at most size $2^{|\Omega|}$.

References

[Benci et al., 2013] Benci, V., Horsten, L., and Wenmackers, S. (2013). Nonarchimedean probability. Milan Journal of Mathematics, 81(1):121-151.
[Cutland, 1983] Cutland, N. (1983). Nonstandard measure theory and its applications. Bulletin of the London Mathematical Society, 15:529-589.
[Henson, 1972] Henson, C. W. (1972). On the non-standard representation of measures. Transactions of the American Mathematical Society, 172:437-446.
[Krauss, 1968] Krauss, P. (1968). Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academie Scientiarum Hungaricae, 19(3-4):229-241.
[McGee, 1994] McGee, V. (1994). Learning the impossible. In Eells, E. and Skyrms, B., editors, Probability and Conditionals: Belief Revision and Rational Decision. Cambridge University Press.

