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A very partial list of Ronald’s Major achievements

• The fine structure.

• The combinatorial principles like ♦,� , morasses and their
applications. ("Diamonds are the mathematician best
friends")

• The work on Soulsin problem . (A tour de force proof of
CON(SH + GCH).

• Coding the universe by a real technique.
• Covering theorems.
• Core models.
• Subcomplete forcings.
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The present talk is about joint work with J. Kennedy and J.
Vaananen (A work in progress)
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What does one expect from canonical inner model?

1. Robustness: Three meanings of robustness:
• Stability of the model under changes in the definition (In the

fixed universe of Set Theory)

• Robustness across universes of Set Theory, stability under
forcing extensions.

• The theory of the model (or an important part of it being
invariant under forcing extensions.

2. Completeness: Canonical definable objects should be
included.
Litmus test: Closure under sharps or other canonical
operations.
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Universe constructed from Generalized Logic

Generalized Logic L has two components (S,T ) where S is the
set of formulas (which may have free variables) and T is the
truth predicate relation, between a model M, a formula Φ and
an assignment to the free variables ~a

As usual M |= Φ(~a) is an alternative notation for T (M,Φ, ~a)

Definition
For a logic L and a set M we denote by DefL(M) the collection
of all subsets of M definable in the logic L in the structure
< M, ε > in the logic L using parameters from M.
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Inner constructed by the Logic L

Definition
Given the logic L. The sequence of sets LLα is defined by
induction on the ordinal α:

1. LL0 = ∅
2. For α limit LLα =

⋃
β<α LLβ

3. LLα+1 = DefL(LLα)

Definition
The inner model constructed by the logic L is C(L) =

⋃
α∈On LLα



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Inner constructed by the Logic L

Definition
Given the logic L. The sequence of sets LLα is defined by
induction on the ordinal α:

1. LL0 = ∅
2. For α limit LLα =

⋃
β<α LLβ

3. LLα+1 = DefL(LLα)

Definition
The inner model constructed by the logic L is C(L) =

⋃
α∈On LLα



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Two extreme examples

Goedel’s L is C(L) where L is first order logic.

L is very robust (under the two meanings of robustness) but
does not pass the litmus test for completeness.

Theorem (Myhill-Scott)
The class of hereditarily ordinal definable sets (a.k.a. HOD ) is
exactly C(L) where L is second order logic.
HOD has maximal completeness , canonical objects are ordinal
definable. It is somewhat robust under changes in the
definition, but non robust across universes of Set Theory.
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Some extensions of first order logic
1. L(Q1) is first order logic with the additional quantifier Q1

where Q1xΦ(x) means "There are uncountably many x ’s
such that Φ(x) holds."

2. L(QMM
1 ) is first order logic with the additional quantifier

("The Magidor-Malitz quantifier" ) QMM
1 where

QMM
1 xyΦ(x , y) means "There is an uncountable subset of

the model A such that for every x , y ∈ A Φ(x , y) holds".
3. L(Qcf

ω ) is first order logic with the additional quantifier Qcf
ω

where Qcf
ω xyΦ(x , y)" means "Φ(x , y) defines a linear order

having cofinality ω.
4. L(Qaa) is the logic ("stationary logic") is second order logic

with only unary second order variables . The only second
order quantifier is Qaa where QaaXΦ(X ) ( X is a second
order variable) meaning in a model M {X ∈ Pω1(M)|Φ(X )}
is a stationary subset of Pω1(M). (Pω1(M) is the collection
of countable subsets of M .)
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The four examples are nice logics

The four logics in the above examples we have a completeness
theorem , (For the Magidor -Malitz quantifier assuming ♦ω1 .)
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C(Q1) is L (though "being uncountable set" is not absolute
between models os Set Theory ) because if X ∈ L then if
κ = ωV

1 then X is uncountable in V iff L |= |X | ≥ κ.

Hence in any universe of set theory the steps of the
construction of L(Q1) can be defined in L.
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C(QMM
1 ) can be changed by forcing over L.

Usinging the ideas of Jensen We can define in L a sequence
〈Tα|α < ω2〉 of Souslin trees on ω1 which are independent in
the sense that we can destroy the Souslinity of some without
destroying the Soulinity of others.

Using that We can code a non constructible subset of ω2 as the
set B = {α < ω2|Tαis Soulin}. Since one can express in
L(QMM

1 ) that (T ,≺) is a Souslin tree then one gets
B ∈ C(QMM

1 ). So we can have models in which
C(QMM

1 |= 2ℵ0 = ℵ1 as well as models in which
C(QMM

1 |= 2ℵ0 = ℵ2.
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The effect of 0] on C(QMM
1 )

Theorem
If 0] exists then C(QMM

1 ) = L

Sketch of proof: The main lemma is:

Lemma
Assume 0] exists . Let A be a subset of unordered pairs such
that A ∈ L . Then there is a set B such that |B| ≥ ω1 and
[B]2 ⊆ A iff L |= ∃B(|B| ≥ ω1 ∧ [B]2 ⊆ A)
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C(Qcf
ω ) is closed under sharps.

Theorem
Let X ∈ C(Qcf

ω ) be a set of ordinals such that X ] exists then
X ] ∈ C(Qcf

ω )

The proof is based on the following lemma:

Lemma
X is a set of ordinals such that X ] exists. Let λ be an ordinal
above sup(X ) which has uncountable cofinality and which is a
regular cardinal in L[X ] then λ is one of the canonical
indescernibles for X .
Since in X ∈ C(Qcf

ω ) then we can find in C(Qcf
ω ) arbitrarily long

sequences of λ’s satisfying the conditions in the lemma, so we
can find enough indescernibles for X to define X ].



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

C(Qcf
ω ) is closed under sharps.

Theorem
Let X ∈ C(Qcf

ω ) be a set of ordinals such that X ] exists then
X ] ∈ C(Qcf

ω )

The proof is based on the following lemma:

Lemma
X is a set of ordinals such that X ] exists. Let λ be an ordinal
above sup(X ) which has uncountable cofinality and which is a
regular cardinal in L[X ] then λ is one of the canonical
indescernibles for X .

Since in X ∈ C(Qcf
ω ) then we can find in C(Qcf

ω ) arbitrarily long
sequences of λ’s satisfying the conditions in the lemma, so we
can find enough indescernibles for X to define X ].



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

C(Qcf
ω ) is closed under sharps.

Theorem
Let X ∈ C(Qcf

ω ) be a set of ordinals such that X ] exists then
X ] ∈ C(Qcf

ω )

The proof is based on the following lemma:

Lemma
X is a set of ordinals such that X ] exists. Let λ be an ordinal
above sup(X ) which has uncountable cofinality and which is a
regular cardinal in L[X ] then λ is one of the canonical
indescernibles for X .
Since in X ∈ C(Qcf

ω ) then we can find in C(Qcf
ω ) arbitrarily long

sequences of λ’s satisfying the conditions in the lemma, so we
can find enough indescernibles for X to define X ].



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Some more closure of C(Qcf
ω )

C(Qcf
ω ) is closed under a large variety of definable operations

for instance:

Theorem

• If C is a set of ordinals then the Dodd-Jensen core models
over X is included in C(Qcf

ω ).
• Let X be a set of ordinals in C(Qaa). Suppose that in V

there is an inner model M with a measurable cardinal κ
such X ⊆ κ and X ∈ M . Then there is such a model in
C(Qaa).

• If X ∈ C(Qcf
ω ) and X † exists then X † ∈ C(Qcf

ω )
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Robustness of C(Qcf
ω )

By forcing over L one can change C(Qcf
ω ). In particular make it

violate the Continuum Hypothesis.

Theorem
Assume there is a proper class of Woodin cardinals.Then
• The theory of C(Qcf

ω ) is not changed by set forcing.

• The set of reals of C(Qcf
ω ) is not changed by set forcing.

• The theory of C(Qcf
ω ) is the same as the theory of C(Qcf

<κ)
for every regular cardinal κ. ( The quantifier Qcf

<κxyΦ(x , y)
means "Φ(x , y) defines a linear order whose cofinality is
less than κ".)
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less than κ".)
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Question
Does C(Qcf

ω ) satisfy CH, ♦ω1 ?

Given a set X we can define C(Qcf
ω )(X ) by including X as a

predicate in the construction.

Theorem (Assuming Woodin cardinals)
The sets of reals y such that C(Qcf

ω )(y) |= CH,♦ω1 contains a
Turing cone.
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Limiting the completeness of C(Qcf
ω )

Theorem (M.-Schindler)
Suppose there is a Woodin cardinal and that M]

1 exists. (M]
1 is a

countable canonical model for Woodin cardinal with its sharp.)
then every real of C(Qcf

ω ) appears in M]
1.
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Large cardinals in C(Qcf
ω )

Question
Can C(Qcf

ω ) contain large cardinals like measurables?

We know it can contain inner models for measurables . Since it
contains the Dodd-Jensen Core Model , if our universe is the
Dodd-Jensen core model then V = C(Qcf

ω ) . Hence it can
contain cardinals like Ramsey cardinals.
What if we start from a canonical inner model for measurable
Lµ?

Theorem
Assume V = Lµ. Let Mα be the α’s iterate of V by the (unique)
normal measure on the unique measurable cardinal. Then
C(Qcf

ω ) = Mω2 [P] where P is a Prikry sequence of the unique
measurable cardinal of Mω2 . In particular C(Qcf

ω ) has no
measurable cardinal.
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Club Determinacy

Theorem ( A proper class of measurable Woodins or
MM++)
Let Φ(P) be a formula of L(Qaa) with the second order
quantifier P. Then for every ordinal α if we let M = LQaa

α then
either

{P ∈ Pω1(M)|M |= Φ(P)}

contains a club in Pω1(M) or

{P ∈ Pω1(M)|M |= ¬Φ(P)}

Contains a club in Pω1(M).
(The formula Φ(P) may contain more second order unary
variables which are replaced by parameters from Pω1(M).
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Robustness of C(Qaa)

Theorem
Assume there is a proper class of measurable Woodin
cardinals.Then
• The theory of C(Qaa) is not changed by set forcing.

• The set of reals of C(Qaa) is not changed by set forcing.

Theorem
Assume a proper class of measurable Woodins, then C(Qaa)
satisfies CH and ♦ω1 .



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Robustness of C(Qaa)

Theorem
Assume there is a proper class of measurable Woodin
cardinals.Then
• The theory of C(Qaa) is not changed by set forcing.
• The set of reals of C(Qaa) is not changed by set forcing.

Theorem
Assume a proper class of measurable Woodins, then C(Qaa)
satisfies CH and ♦ω1 .



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Robustness of C(Qaa)

Theorem
Assume there is a proper class of measurable Woodin
cardinals.Then
• The theory of C(Qaa) is not changed by set forcing.
• The set of reals of C(Qaa) is not changed by set forcing.

Theorem
Assume a proper class of measurable Woodins, then C(Qaa)
satisfies CH and ♦ω1 .



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

Robustness of C(Qaa)

Theorem
Assume there is a proper class of measurable Woodin
cardinals.Then
• The theory of C(Qaa) is not changed by set forcing.
• The set of reals of C(Qaa) is not changed by set forcing.

Theorem
Assume a proper class of measurable Woodins, then C(Qaa)
satisfies CH and ♦ω1 .



The Logic of "there are uncountably many " The Magidor-Malitz logic The countable cofinality Logic Stationary Logic

The Qaa- extender

Let M = Lα(Qaa). We define an extender on M by cosidering
all functions f : Pω1(M)→ M such that there is a Qaa formula
Φ(P, x) such that for all P ∈ Pω1

〈M, ε,P〉 |= Φ(P, x)↔ x = F (P).

Consider the equivalence relation on these functions F ≡ G iff
{P ∈ Pω1(M)|F (P) = G(P)} contains a club in Pω1(M).
Similarly [F ]≡ is member of [G]≡ iff {P ∈ Pω1(M)|F (P)εG(P)}
contains a club in Pω1(M).
This is defines an extender E(Qaa) : M → Ultaa(M).

Lemma
E(Qaa) is definable in C(Qaa). and it is iterable.
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Hence we can define an "Qaa −mouse.

Lemma
Every countable Qaa mouse can be iterated to structure of the
form Lβ(Qaa) . Hence any two countable mice can be
compared.
The proof of CH and ♦ω1 is based on :

Lemma
For every real x ∈ C(Qaa) there is (in C(Qaa)) a countable
mouse M such that x ∈ M.

Lemma
If a real x ∈ Lα+1(Qaa)− Lα(Qaa) then

C(Qaa) |= P(ω) ∩ Lα+1(Qaa) is countable

.
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The study of the inner models constructed by generalized
logics sheds light both about Set Theory and about the
expressive power of the generalized logics and quantifiers.

It is a fascinating combination of Set Theory and Generalized
Model Theory.
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We wish that the founding father of inner models
theory will have many more productive and
enjoyable years !

Ronald, thank you !
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