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General notation

This talk, applies set-theoretic ideas to a problem of analysis, and

therefore our notation will draw on that of two mathematical traditions.

Thus we usually denote the set {0, 1, 2, . . .} of natural numbers by ω,

though occasionally by N; this visual distinction allows us to write ωn for

the ordinal power and Nn for the set of n-tuples of natural numbers.

N+ is the set {1, 2, 3, . . .} of positive integers: in Definition 4·3 the

difference between N and N+ is important.

On a space, such as Baire space, comprising all sequences of length

ω of members of some set, we define the shift function s thus:

s(ζ)(n) = ζ(n+ 1) for n ⩾ 0.

Here we return to normal set-theoretic convention by considering the

domain of such sequences to be ω = {0, 1, 2, . . .}.
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We write ⊚ for the empty sequence: technically of course it is the

same as the empty set, which we write as ∅; and also the same as the

number zero, which we write as 0, since set-theorists customarily identify

each natural number n with the set {0, 1, . . . n− 1}.
We denote by <ωX the set of finite sequences of points in the set X,

including the empty sequence.

When s is a finite sequence, we write ℓh(s) for its length, so that

s = ⟨s(0), s(1), . . . s(ℓh(s) − 1)⟩. We also write ℓ(s) for its last element,

s(ℓh(s)− 1). Concatenation is denoted by ⌢, so ℓh(s⌢⟨p⟩) = ℓh(s) + 1.

For s a finite sequence and ζ an infinite sequence, we write s ⊑ ζ to

mean ∃k∀n < ℓh(s) s(n) = ζ(k + n). Similarly if t is a finite sequence we

write s ⊑ t to mean

∃k
(
ℓh(t) ⩾ k + ℓh(s) & ∀n < ℓh(s) s(n) = t(k + n)

)
.
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The original problem
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Let X be a Polish space and let f : X −→ X be a continuous function.

For k ∈ ω we write fk for the kth iterate of f , so that for each x ∈ X ,

f0(x) = x and fk+1(x) = f(fk(x)). For x and y in X we define

x ↷f y ⇐⇒df ∃ strictly increasing α : ω → ω with lim
n→∞

fα(n)(x) = y.

We write ωf (x) for the set {y | x ↷f y} of the accumulation points of

the forward orbit of x under f , including the periodic points. When f is

fixed in a discussion, we write x ↷ y for x ↷f y, and we sometimes write

y ↶ x for x ↷ y. We read x ↷ y as “x attacks y”.

PROPOSITION (i) ωf (x) is a closed subset of X .

(ii) if x ↷ y and y ↷ z then x ↷ z.
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We define an operator Γf on subsets of X by

Γf (X) =
∪

{ωf (x) | x ∈ X}.

Then starting from a given point a ∈ X , we define a transfinite sequence:

A0(a, f) = ωf (a)

Aβ+1(a, f) = Γf (A
β(a, f))

Aλ(a, f) =
∩
ν<λ

Aν(a, f) for λ a limit ordinal

By part (ii) of the Proposition, A0(a, f) ⊇ A1(a, f) ⊇ A2(a, f) . . . ; and

indeed for all ordinals α < β, Aα(a, f) ⊇ Aβ(a, f).
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DEFINITION The escape set or boundary is the union over all ordinals β

of the set of those points in ωf (a) eliminated at stage β of the iteration:

E(a, f) =df

∪
β

(
Aβ(a, f)∖Aβ+1(a, f)

)
.

Here X ∖ Y is the set-theoretic difference {x | x ∈ X and x /∈ Y }.
DEFINITION For x ∈ E(a, f), we write β(x, a, f) for the unique β with

x ∈ Aβ(a, f)∖Aβ+1(a, f).
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Thus if we make the following

DEFINITION θ(a, f) =df the least ordinal θ with Aθ(a, f) = Aθ+1(a, f),

we know that θ(a, f) is always well defined and at most ω1. Further for

all δ ⩾ θ, Aδ(a, f) = Aθ(a, f).

DEFINITION We write A(a, f) for this final set Aθ(a,f)(a, f). We call

A(a, f) the abode, and the ordinal θ(a, f) the score of the point a under

f .

Thus E(a, f) = ωf (a)∖A(a, f). We say that points in A(a, f) abide,

and points in E(a, f) escape.

The question raised in 1993 was to investigate the possible behaviour

of the function θ(a, f): what are its possible values ?
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Linking escape to well-foundedness

The slides of this section are taken from §2 of Delays.
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We introduce the trees we shall use to calculate β(b) for b ∈ E(a, f). We

shall define for our fixed a and for each b ∈ X a tree T a
b of finite sequences and

show using DC that b ∈ A(a, f) ⇐⇒ T a
b is ill-founded.

2·0 DEFINITION For b ∈ X , set

T a
b =df

{
s ∈ <ωX

∣∣ ℓh(s) > 0 =⇒
(
s(0) = b &

∀i :<ℓh(s) (a ↷ s(i)) &

∀i :<ℓh(s)−1 (ai+1 ↷ ai)
)}

.

Note that if t ≻ s ∈ T a
b , then t ∈ T a

b , so that T a
b is closed under shorten-

ing. Our definition is of most interest when b ∈ ωf (a), since

b /∈ ωf (a) ⇐⇒ T a
b = {⊚}.
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2·1 LEMMA (DC) b ∈ A(a, f) ⇐⇒ ∃ an infinite sequence ⟨xi|i < ω⟩
such that ∀i∈ω a ↷ xi and

b = x0 ↶ x1 ↶ x2 ↶ . . . .

Proof : given such a sequence, one checks easily by induction on ξ that each

of its members is in Aξ(a, f), hence is in A(a, f); in particular b = x0 is in

A(a, f). If no such sequence exists for a given b, then by DC the tree T a
b will

be well-founded under ≺, and hence we may define a rank function ϱ = ϱab
mapping T a

b to the ordinals by

ϱab (s) = sup{ϱab (s⌢⟨r⟩) + 1 | r ∈ X & s⌢⟨r⟩ ∈ T a
b }.

and show by induction on ξ that ϱab (s) = ξ =⇒ ℓ(s) /∈ Aξ+1(a, f): hence

b /∈ Aϱa
b (⟨b⟩)+1(a, f).
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2·2 COROLLARY (DC) For b ∈ ωf (a), b ∈ E(a, f) ⇐⇒ T a
b is well-

founded.

2·3 PROPOSITION For each b ∈ E(a, f), ϱab (⟨b⟩) < ω1.

2·4 COROLLARY θ ⩽ ω1

Proof : Each b in E(a, f) leaves the A-sequence at stage ϱab (⟨b⟩)+ 1, which is

countable. Hence by stage ω1 all those points that are to escape have already

done so. ⊣ (2·4)
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Points at the end of a path
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PROPOSITION Let f be a continuous map of a Polish space X into itself,

and suppose that we have an infinite sequence of points bi, with b0 ↶f

b1 ↶f b2 . . . ↶f b. Then we can choose integers ni, (increasing if we

wish), such that putting yi = fni(bi), the yi form a Cauchy sequence

converging to a point y with b ↷f y ↷f y ↷f bi for each i.

Proof : in these circumstances fn(bj) ↷ bi for j > i and arbitrary n. ⊣

That lends interest to the following definition:
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DEFINITION Let b0 ↶f b1 ↶f b2 . . . be an infinite path descending in the

relation ↷f . We say that a point y lies at the end of the path if it satisfies

two conditions:

(i) there are numbers ni such that y = limi→∞ fni(bi);

(ii) for each i, y ↷f bi.

PROPOSITION If both y and z are at the end of the same path, then

y ↷f z ↷f y; in particular all points at the end of a given path are

recurrent and attack each other.

Proof : True because z attacks each bi, hence attacks each fni(bi); hence

attacks y; and the situation is symmetric.⊣

REMARK When, as here, X = Y and f = s, the first condition will follow if

one proves that to each ℓ there is a large i and an ni with y ↾ℓ ⊑ sni(bi).
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Building points of large countable score
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Let γ ∈ ωX for some set X . Let (ni)i ∈ ωω be strictly increasing. Let

zi = γ ↾ni.

Let Y = X ∪ {mi | i ∈ ω} where the markers mi are distinct from each

other and from all members of X .

Define β ∈ ωY by

β =df z0
⌢⟨m0

⟩⌢z1⌢⟨m1

⟩⌢ . . .

Then β ↷s γ but γ ̸↷s β.

For a detailed account see §4 of Delays;

for more general embeddings, see Delhommé [6b].
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Preparations for a point of uncountable score

The slides of this section are taken from §3 of the paper

[2c] A. R. D. MATHIAS, Analytic sets under attack, Math. Proc. Cam-

bridge Phil. Soc. 138 (2005) 465–485.
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Finite trees and paths

We write ℓh(u) for the length of a finite sequence u.

3·0 DEFINITION F =df {u | u a non-empty finite sequence(
u(1), u(2), . . . , u(ℓh(u))

)
of natural numbers u(i) with 0 ⩽ u(i) < i for 1 ⩽ i ⩽ ℓh(u)}.

3·1 REMARK Contrary to habitual practice among set theorists, the

terms of u are indexed by 1, . . . , ℓh(u) rather than 0, . . . , ℓh(u)− 1.

For 1 ⩽ k ⩽ ℓh(u) we write u⩽k for the sequence
(
u(1), . . . , u(k)

)
;

that will be an element of F .
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3·3 DEFINITION If u =
(
u(1), u(2), . . . , u(ℓh(u))

)
∈ F , a positive

u-sequence is a non-empty finite sequence s = (p1, . . . , pℓ) with 1 ⩽ p1 <

p2 < · · · < pℓ ⩽ ℓh(u), so that ℓ = ℓh(s) and pℓ = max s; we further

require that u(p1) = 0, and for 1 ⩽ i < ℓh(s), u(pi+1) = pi.

The u-sequences are the positive u-sequences and the empty sequence,

which we write as ⊚.

As above, we write s⩽k for the sequence (p1, . . . , pk), where 1 ⩽ k ⩽
ℓh(s); that too will be a positive u-sequence. Further, we interpret s⩽0

as the empty sequence, ⊚.

3·4 EXAMPLE If u is the sequence (0,0,2,1,0), the u-sequences are ⊚, (1),

(2), (5), (1,4), and (2,3).
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3·5 We shall build our point in a space of infinite sequences of symbols, of

which there will be three kinds, recorders, predictors andmarkers. Certain

symbols will contain information that is either an element u of F—such

symbols will be called recorders, because they contain information about

the recent past of the infinite sequence of symbols under consideration—

or else a pair of finite sequences s, u where u ∈ F and s is a positive

u-sequence—such symbols will be called predictors because they contain

information about the near future of that infinite sequence. Nothing is

required of the third kind of symbol, the markers, save that there be a

countable infinity of them and that they be all distinct from each other

and from all recorders and predictors.
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It is extremely important that, from the point of view of the shift

function that we shall apply, each symbol is a single object; and, to give

visual emphasis to that point, we shall use square brackets [, ] to encase

each individual symbol, whereas we shall use pointed brackets
⟨
,
⟩
, to

encase finite or infinite sequences of symbols.

We shall associate to each recorder and each predictor two natural

numbers, its weight and its height.
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3·6 DEFINITION A recorder is an object [u] where u is in F . Its weight is

0 and its height is the length ℓh(u) of u as a member of F .

3·7 DEFINITION A predictor is an object [s;u] where u ∈ F and s is a

positive u-sequence. s will be called the path of the predictor [s;u], and

u its tree. The predictor’s weight is the length of its path, and its height

is the length of its tree.

3·8 REMARK The weight of [s;u] is not greater than its height.

3·9 DEFINITION We say that s is tight in u, or that u tightly contains s,

if s is a u-sequence and max s = ℓh(u). In the contrary case we shall use

the words loose and loosely. We may indeed define the looseness of u over

s as ℓh(u)−max s.
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3·10 For each u ∈ F and each u-sequence s we shall define a finite se-

quence zus of symbols. Our definition will proceed by a mode of induction

that will also be used in proving our theorem, which we shall call double

induction. To spell the method out in greater detail: we first consider

the case s = ⊚. Then we suppose that m ⩾ 1 and that we have already

treated all pairs u, s with s a u-sequence of length < m. On that sup-

position, we take an s of length m, and consider all u ∈ F for which s

is a u-sequence, starting with those u for which ℓh(u) = max s, and then

progressively treating longer u; thus for given s we proceed by induction

on the looseness of u over s. The following convention will be useful.

3·11 DEFINITION We write s′ for the sequence s with its last element

removed—so that if s is of length 1, s′ = ⊚—and we write u′ for u with

its last element removed.
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We proceed to our definition of zus by double induction, and first

treat the case of s = ⊚.

3·12 DEFINITION For u ∈ F ,

zu⊚ =df

⟨
[u⩽1], [u⩽2], . . . , [u⩽ℓh(u)−1], [u]

⟩
.

3·13 REMARK The length of zu⊚ equals that of u.

3·14 EXAMPLE

z
(0,0,2,1,0)
⊚ =

⟨
[(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

⟩



Jensenfest 3-viii-17 – 27

Now for u ∈ F and s a positive u-sequence we shall define zus .

3·15 DEFINITION

zus =df


⟨
[s;u]

⟩⌢zus′ if max s = ℓh(u);

zu
′

s
⌢⟨[s;u]⟩⌢zus′ if max s < ℓh(u).

The first clause handles the case that u tightly contains s, and the

second the cases when ℓh(u) is strictly greater than max s.

3·16 REMARK Note that [s;u] occurs only once in zus ; we shall refer to

it as the peak of zus . It is the only symbol in zus with sum of weight and

height equal to ℓh(s) + ℓh(u).

We give several examples to illustrate that definition.
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3·17 EXAMPLE If s is of length 1, then zus =
⟨
[s;u]

⟩⌢zu⊚ if max s = ℓh(u)

and zus = zu
′

s
⌢⟨[s;u]⟩⌢zu⊚ otherwise.

3·18 EXAMPLE If u is the sequence (0,0,2,1,0), then zu(5) is⟨
[(5); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

⟩
,

a sequence of six symbols, whereas zu(2) is⟨
[(2);(0, 0)], [(0)], [(0, 0)], [(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
⟩
,

which has eighteen, of which the heights, in order, are 2, 1, 2; 3, 1, 2, 3;

4, 1, 2, 3, 4; 5, 1, 2, 3, 4, 5.
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z
(0)
(1) =

⟨
[(1); (0)], [(0)]

⟩
;

z
(0,0)
(1) =

⟨
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)]

⟩
;

z
(0,0,2)
(1) =

⟨
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)]
⟩
;

z
(0,0,2,1)
(1) =

⟨
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
⟩
;

z
(0,0,2,1,0)
(1) =

⟨
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
⟩
.
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z
(0,0,2,1)
(1,4) =

⟨
[(1, 4); (0, 0, 2, 1)]

⟩⌢z(0,0,2,1)(1)

=
⟨
[(1, 4); (0, 0, 2, 1)],

[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
⟩
;
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z
(0,0,2,1,0)
(1,4) = z

(0,0,2,1)
(1,4)

⌢⟨[(1, 4); (0, 0, 2, 1, 0)]⟩⌢z(0,0,2,1,0)(1)

=
⟨
[(1, 4); (0, 0, 2, 1)],

[(1); (0)], [(0)],

[(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1, 4); (0, 0, 2, 1, 0)],

[(1); (0)], [(0)],

[(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
⟩
.
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z
(0,0,2)
(2,3) =

⟨
[(2, 3); (0, 0, 2)]

⟩⌢z(0,0,2)(2) ;

z
(0,0,2,1)
(2,3) = z

(0,0,2)
(2,3)

⌢⟨[(2, 3); (0, 0, 2, 1)]⟩⌢z(0,0,2,1)(2) ;

z
(0,0,2,1,0)
(2,3) = z

(0,0,2,1)
(2,3)

⌢⟨[(2, 3); (0, 0, 2, 1, 0)]⟩⌢z(0,0,2,1,0)(2)

= z
(0,0,2)
(2,3)

⌢⟨[(2, 3); (0, 0, 2, 1)]⟩⌢z(0,0,2,1)(2)
⌢⟨[(2, 3); (0, 0, 2, 1, 0)]⟩⌢z(0,0,2,1,0)(2)

which equals
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[(2, 3); (0, 0, 2)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2, 3); (0, 0, 2, 1)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2, 3); (0, 0, 2, 1, 0)],

[(2); (0, 0)], [(0)], [(0, 0)],

[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]
⟩
.
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3·19 EXAMPLE Suppose that 3 + max t = ℓh(v). Let vi = v⩽i+max t, so

that v0 = v⩽max t and v3 = v.

Then zvt is⟨
[t; v0]

⟩⌢zv0

t′
⌢⟨[t; v1]⟩⌢zv1

t′
⌢⟨[t; v2]⟩⌢zv2

t′
⌢⟨[t; v]⟩⌢zvt′ ,

which has precisely the four predictors shown of weight equal to the length

of t; all other predictors in zvt will be of lesser weight.
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Here is a first example of proof by double induction:

3·20 PROPOSITION If s is not ⊚, then the first symbol of zus is the

predictor [s;u⩽max s].

Proof : If u tightly contains s, zus =
⟨
[s;u]

⟩⌢zus′ of which the first symbol

is [s;u], which equals [s;u⩽max s]. Otherwise zus = zu
′

s
⌢⟨[s;u]⟩⌢zus′ , of

which the first symbol is that of zu
′

s , which, by the induction hypothesis,

is the predictor [s;u′
⩽max s]; but that in the context equals [s;u⩽max s].

⊣ (3·20)
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Notation for finite sequences

3·21 DEFINITION t ≼ s ⇐⇒df t is an extension of s; t ≺ s ⇐⇒df t

is an proper extension of s; s ≽ t ⇐⇒df s is an initial segment of t;

s ≻ t ⇐⇒df s is a proper initial segment of t.

3·22 REMARK Thus s ≽ t ⇐⇒ t ≼ s, and so on. ⊚ has no proper initial

segments, but is itself a proper initial segment of every finite sequence of

positive length. Note that longer sequences are lower in this ordering.

3·23 DEFINITION We shall say that two finite sequences s and t cohere if

either s ≽ t or t ≽ s.



Jensenfest 3-viii-17 – 37

Properties of finite sequences

3·24 PROPOSITION Let u and v be members of F , and let t be both an

u-sequence and a v-sequence.

(i) ℓh(u) = ℓh(zu⊚);

(ii) for ℓ ⩽ ℓh(v), zv⊚ ↾ℓ = zv↾ℓ⊚ ;

(iii) v ≺ u =⇒ zvt ≺ zut ;

(iv) zvt = zut =⇒ v = u;

(v) zvt ≺ zut =⇒ v ≺ u.
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Proof of 3·24 (iii): If t = ⊚, use (ii): otherwise use an earlier instance to

note that zvt ≺ zv
′

t ≼ zut .

Proof of 3·24 (iv): Compare peaks.

Proof of 3·24 (v): The peak of zvt cannot be in zut , for otherwise u = v;

whence zut ≽ zv
′

t , giving, inductively, v′ ≼ u.
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3·25 DEFINITION An m-predictor is a predictor of weight exactly m. An

m-stretch is a finite sequence of symbols all of weight at most m.

3·26 LEMMA Let u ∈ F , s a u-sequence of weight > m. Let x ⊑ zus be

an m-stretch.

(i) x ⊑ zus′ ;

(ii) in fact x ⊑ zus⩽m
.
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Proof of 3·26 (i): Its weight forbids the peak of zus to lie in x.

Case 1: s is tight in u. Then zus =
⟨
[s;u]

⟩⌢zus′ , whence x ⊑ zus′ .

Case 2: otherwise. Then zus = zu
′

s
⌢⟨[s;u]⟩⌢zus′ , so either x ⊑ zu

′

s

or x ⊑ zus′ ; if the second alternative is false, we may iterate the first,

progressively shortening u till it does tightly contain s, and then apply

Case 1. ⊣ (3·26·i)
Proof of 3·26 (ii): By iterating Lemma 3·26 (i), progressively shortening

s. ⊣ (3·26·ii)
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Indeed we can sharpen that result:

3·27 PROPOSITION Let x be an m-stretch with all symbols of height at

most h. Suppose that x ⊑ zus . Then x ⊑ z
u⩽h
s⩽m .

Proof : For fixed x by double induction on s and u. If the peak of zus
occurs in x, then both the height and weight of x equal those of zus , and

then the proposition is trivially true. Otherwise x ⊑ zu
′

s or x ⊑ zus′ ; in the

first case the height is less and in the second the weight. In either case

we have a reduction to an earlier instance of the induction. ⊣ (3·27)

3·28 LEMMA The recorders in zus are those in zu⊚: namely non-empty

initial segments of u. Hence any two recorders in zus cohere.

Proof : By applying Proposition 3·27 to 0-stretches of length 1. ⊣ (3·28)
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3·29 LEMMA If s ≽ t and t is a u-sequence, then zus is a final segment of

zut ; if s ≻ t, that final segment is immediately preceded by the predictor

[s+;u], where s+ = t⩽ℓh(s)+1.

Proof : Write t0 = t, and progressively write tk+1 = t′k till we reach

tn = s. If n = 0 the Lemma is trivial; if n > 0, then we remark that

for each k, zutk ends in zutk+1
which is preceded by [tk;u]; finally note that

tn−1 = t⩽ℓh(s)+1. ⊣ (3·29)

3·30 LEMMA if u ≽ v and s is a u-sequence, then zus ≽ zvs ; if u ≻ v, the

term in zvs after that occurrence of zus is [s;u+]. where u+ = v⩽ℓh(u)+1.

Proof : The first part is Proposition 3·24 (iii) rephrased; the second part

holds if v′ = u, and stays true for longer v by an easy induction, as then

u ≻ v′ ≻ v. ⊣ (3·30)
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3·31 LEMMA If [s;u] occurs in zvt then s ≽ t and u ≽ v.

Proof : By a double induction on t and v. The lemma is true if [s;u] =

[t; v]. Otherwise [s;u] occurs in zvt′ or, provided t is loose in v, in zv
′

t ; in

either case we have a reduction to an earlier instance of the induction, to

which we then link either the fact that t′ ≻ t or that v′ ≻ v. ⊣ (3·31)

3·32 LEMMA An occurrence of [s;u] in zvt is followed by the whole of zus′ .

Proof : By a similarly structured induction on t and v. ⊣ (3·32)

3·33 LEMMA In any zus the immediate successor of an m-predictor is a

symbol of weight m− 1.

Proof : Immediate from the definition if m = 1; by Proposition 3·20
otherwise. ⊣ (3·33)
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3·34 LEMMA If s is of length m + 1,
⟨
[s;u]

⟩⌢x is a final segment of zws
and x is an m-stretch, then u = w and x = zus′ .

Proof : [s;w] is the last symbol of weight m+ 1 in zws . ⊣ (3·34)

3·35 PROPOSITION If s is of length m+ 1, x is an m-stretch, and y =df⟨
[s;u]

⟩⌢x⌢⟨[s; v]⟩ ⊑ zwr , then u = v′ and x = zus′ .

Proof by double induction: By Proposition 3·27, we can suppose r = s.

If v ̸= w, we have zws = zw
′

s
⌢⟨[s;w]⟩⌢zws′ and therefore y ⊑ zw

′

s ; thus we

may reduce the length of w until w = v.
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So our proposition is now reduced to the case that y ⊑ zvs . We then

have ⟨
[s;u]

⟩⌢x⌢⟨[s; v]⟩ ⊑ zv
′

s
⌢⟨[s; v]⟩⌢zvs′ ;

since [s; v] occurs in neither zv
′

s nor in zvs′ , we may be sure that the last

symbol of y occurs as the peak of zvs ; but then
⟨
[s;u]

⟩⌢x forms a final

segment of zv
′

s , so we may apply Lemma 3·34 to infer that u = v′ and

x = zus′ . ⊣ (3·35)
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3·36 COROLLARY If y =
⟨
[s;u1]

⟩⌢x1
⌢⟨[s;u2]

⟩⌢x2
⌢⟨[s;u3]

⟩
⊑ zwr , where

s is of length m + 1 and both x1 and x2 are m-stretches, then x1 ≻ x2,

and ℓh(u2) = ℓh(u1) + 1.

Proof : In the circumstances, x1 = zu1

s′ , x2 = zu2

s′ , and u1 = (u2)
′.

⊣ (3·36)

3·37 LEMMA If s is of lengthm+1, x is anm-stretch, and x⌢⟨[s; v]⟩ ⊑ zwt ,

then x is a final segment of zv
′

s .

Proof : The hypotheses imply, by Proposition 3·27, that x⌢⟨[s; v]⟩ ⊑ zvs ,

in which the only occurrence of [s; v] is the peak; but then x must be a

final segment of the preceding sequence, which is zv
′

s . ⊣ (3·37)
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3·38 LEMMA If the recorder [e], of height at least 2, occurs in zus , its

predecessor is [e⩽ℓh(e)−1]; if of height 1, its predecessor, if any, will be a

predictor of weight 1.

3·39 PROPOSITION If zus (i) and zus (i+1) are both recorders then ℓh(zus (i+

1)) = 1 + ℓh(zus (i)).

3·40 REMARK The unique longest m-stretch in zus is at the end, namely

zus⩽m
: for if s is of weight m, zus is itself an m-stretch; and if s is of greater

weight, the m-stretches in zus are those of zus′ and, provided s is loose in

u, of zu
′

s . By induction, the unique longest of those are zus⩽m
and zu

′

s⩽m
,

of which two the first is in any case strictly longer. ⊣ (3·40)
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3·41 PROPOSITION Suppose that x =df

⟨
[s;u]

⟩⌢zus′ ⊑ zwr but is not a

final segment thereof. Then the first symbol after the segment x of zwr is

of the form [t; v] where v′ = u and t ≼ s, and if t ≺ s there will be a later

occurrence in zwr of a symbol of weight that of s.

3·42 REMARK
⟨
[s;u]

⟩⌢zus′ is a final segment of zus , properly so if and only

if s is loose in u.

Towards the proof of Proposition 3·41, we first prove a Lemma to

cover the case s = r.

3·43 LEMMA x =df

⟨
[s;u]

⟩⌢zus′ is a final segment of zws if and only if

u = w.

Proof : One way is covered by Remark 3·42. For the other, since zws =

zw
′

s
⌢⟨[s;w]⟩⌢zws′ , the peak of zws is its last symbol of weight ℓh(s) and

therefore if x is a final segment of zws , the first symbol of x must be that

peak, whence zus′ = zws′ , whence u = w. ⊣ (3·43)
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Proof of Proposition 3·41: We consider s and u to be fixed and do a

double induction on r and w.

As always, we have

zwr = zw
′

r
⌢⟨[r;w]⟩⌢zwr′

The hypotheses imply that r ≼ s and, by Lemma 3·43, that w ≺ u; hence

the peak of zwr cannot lie in x, and therefore either x ⊑ zwr′ or x ⊑ zw
′

r .

If x ⊑ zwr′ , then x will not be a final segment of zwr′ , and so the

induction will apply.

If x ⊑ zw
′

r , either w′ ≺ u, whence by Lemma 3·43 x is not final in

zw
′

r , and the induction will again apply; or w′ = u, x is final—again by

Lemma 3·43—in zw
′

r and the next symbol is [r;w], which is of the desired

form [t; v] with v′ = u and t ≼ s.

The final clause follows from Lemma 3·33. ⊣ (3·41)
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3·44 PROPOSITION In any zus , if the same symbol, of weight m, occurs

twice, then between the two occurrences there must be an occurrence of

a symbol of weight m+ 1.

Proof by double induction: The indicated symbol, that which repeats,

cannot be the peak of zus , which occurs only once there.

If s is tight in u, the two occurrences must both be in zus′ , and we

have reduced to an earlier case.

Otherwise zus = zu
′

s ∩
⟨
[s;u]

⟩
∩ zus′ , and there are three possibilities:

both occurrences are before the peak, when both lie in zu
′

s ; both lie af-

ter, and therefore both lie in zus′—both times we have a reduction to an

earlier case—or one lies before the peak and the other after; but then the

proposition is proved, for the peak is of weight greater than m, and, if of

weight > m+1, will by Lemma 3·33 immediately be followed by symbols

of weights declining by 1 at each step, thus reaching a symbol of weight

m+ 1 before the second occurrence of the indicated symbol. ⊣ (3·44)
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The remaining slides are taken from §4 of Analytic sets under attack.

Introducing infinite sequences

We have introduced two of our three kinds of symbol. For the third,

the markers, we take infinitely many objects [m0], [m1], . . . distinct from

each other and from all recorders and predictors.

We define Y to be the space of all sequences of length ω of sym-

bols. Here we return to normal set-theoretic convention by considering

the domain of such sequences to be ω = {0, 1, 2, . . .}.
On Y we may define the shift function, which we again denote by s:

s(ζ)(n) = ζ(n+ 1) for n ⩾ 0.

As in section 4 of Delays we write ζ▷ξ, read ζ is near to ξ, if ζ = sn(ξ)

for some n ⩾ 0.
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4·0 DEFINITION The weight of a point ζ of Y is the supremum of the

weight of its predictors: thus either a natural number or ∞. The height

of a point ζ ∈ Y is the supremum of the height of its recorders and

predictors: again either a natural number or ∞.
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Introducing the real b

At last we are in a position to define our point b, which will lie in the

space Y.

4·1 DEFINITION Enumerate all sequences zus where u ∈ F and s is a

u-sequence, in some recursive fashion as zi (i = 0, 1, . . .).

Define

b =df z0
⌢⟨[m0]

⟩⌢z1⌢⟨[m1]
⟩⌢ . . .

4·2 THEOREM θ(b, s) = ω1.

To classify the points of Y attacked by b, we shall use the infinite

trees to which the members of F are codes of finite approximations.
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Introducing infinite trees
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4·3 DEFINITION T =df {τ : N+ −→ N | for all n ⩾ 1, 0 ⩽ τ(n) < n}
4·4 REMARK With the product topology of discrete finite spaces, T is a

compact space.

4·5 REMARK If one regards F as a tree, T is the set of all infinite paths

through it.

4·6 DEFINITION For τ ∈ T , a (positive) τ -sequence is a (non-empty) finite

sequence of positive integers p1 < · · · < pk with τ(p1) = 0 and τ(pn+1) =

pn for each 1 ⩽ n < k. Thus ⊚ is a τ -sequence. A τ -path is an infinite

sequence π = (p1, p2, . . .) with τ(p1) = 0 and τ(pn+1) = pn for each

n ⩾ 1. For such π we write π⩽k for its initial segment (p1, p2, . . . , pk),

where k ⩾ 1.

We speak of τ as well-founded if there are no τ -paths: ill-founded if

there are.



Jensenfest 3-viii-17 – 56

4·7 REMARK We may regard each τ ∈ T as coding a tree, of which the

top point is 0 and m <τ n if m is not 0 and for some ℓ > 0, τ ℓ(m) = n.

4·8 REMARK Every countably infinite tree T of finite sequences under

end-extension is coded by some τ ∈ T . To see that, partition ω into

infinitely many infinite sets Xi. List the members of T as v0, v1, v2, . . .

We define a first assignment λ of natural numbers to members of T by

induction on the length of each member as a finite sequence.

Assign 0 to the top point ⊚ of T . Once a natural number λ(vi) has

been assigned to vi, assign distinct members of Xi ∖ {m | m ⩽ λ(vi)} to

the immediate extensions of vi. Let µ : Im (λ) ∼= ω be the order-preserving

bijection of the set of all natural numbers used in the first assignment λ,

so that µ◦λ is a bijection between T and ω, which is the final assignment;

let χ be its inverse.

Now set τ(n) to be the m such that χ(m) = χ(n)′. Then τ ∈ T , and

(ω,<τ ) ∼= (T,≺).
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Properties of infinite sequences attacked by b

4·9 LEMMA If the recorder [e], of height at least 2, occurs in some ζ at-

tacked by b, its predecessor in ζ is [e⩽ℓh(e)−1]; if of height 1, its predecessor,

if any, in ζ will be a predictor of weight 1.

Proof : By Lemma 3·38. ⊣ (4·9)

4·10 PROPOSITION If ζ(i) is a recorder then ζ(i+ 1), if a recorder, is of

height one more than ζ(i).

4·11 LEMMA If b ↷s ξ, ξ contains no markers: hence to each ℓ there are

u and s with ξ ↾ℓ ⊑ zus .

Proof : No marker occurs twice in b. ⊣ (4·11)
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4·12 LEMMA Any two recorders, d and e, in ξ cohere.

Proof : Pick ℓ with both d and e occurring in ξ ↾ ℓ, and let ξ ↾ ℓ ⊑ zvt .

Then by Lemma 3·28 both d and e are initial segments of v. ⊣ (4·12)

4·13 LEMMA If b ↷ ζ and an m-predictor occurs in ζ, then m-predictors

occur infinitely often in ζ.

Proof : By Lemma 3·32 and Proposition 3·41.
4·14 PROPOSITION If b ↷s ζ then the height of ζ is ∞.

Proof by cases, according to the weight of ζ: If ζ is of weight 0, then we

use Proposition 4·10.
If on the other hand ζ is of positive finite weight, m, we consider the

sequence of m-predictors in ζ. By Proposition 3·41, their height increases
by one each time. Hence the zu⊚’s that ζ contains are of unbounded length.

Finally, if ζ is of infinite weight, then by Remark 3·8 it must also be

of infinite height. Hence it contains recorders of every height. ⊣ (4·14)
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4·15 Thus if b ↷s ζ, ζ has recorders of unbounded height; they cohere to

define a tree, which we shall call τζ , in T . This tree is uniquely determined

by ζ; by the coherence property, Lemma 4·12, no u ∈ F other than the

initial segments of τζ may occur in ζ.
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Points of finite weight attacked by b

We proceed to give an exact description of the points of finite weight

attacked by b.

4·16 DEFINITION For τ ∈ T and s a τ -sequence, set

ξτs =df

∪
k⩾max s

zτ↾ks

which will be a member of our symbol space Y.
4·17 EXAMPLE ξτ⊚ =

⟨
[τ⩽1], [τ⩽2], [τ⩽3], . . . , [τ⩽k−1], [τ⩽k], [τ⩽k+1], . . .

⟩
,

which has no predictors.
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4·18 EXAMPLE Suppose that s is a positive τ -sequence with max s = 5.

Then ξτs =⟨
[s; τ⩽5]

⟩⌢zτ⩽5

s′
⌢⟨[s; τ⩽6]

⟩⌢zτ⩽6

s′
⌢⟨[s; τ⩽7]

⟩⌢zτ⩽7

s′
⌢ . .⌢

⟨
[s; τ⩽k]

⟩⌢zτ⩽k

s′
⌢ . . .

which has infinitely many predictors of weight 5 but none of weight 6 or

more.

4·19 REMARK The tree defined by ξτs equals τ .
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Points of weight nought attacked by b

4·20 PROPOSITION For each τ ∈ T , b ↷s ξ
τ
⊚; each ξτ⊚ is of weight nought;

no γ near ξτ⊚ attacks itself.

Proof : The first part holds since each zu⊚ occurs infinitely often as a

segment of b; the second is plain; and the third holds because no recorder

occurs twice in any ξτ⊚. ⊣ (4·20)

4·21 PROPOSITION If b ↷s ζ and ζ is of weight 0, then ζ ▷ ξ
τζ
⊚ .

Proof : By Proposition 4·10, if ζ(0) is of height k then ζ = sk−1(ξ
τζ
⊚ ).

⊣ (4·21)
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Points of positive finite weight attacked by b

4·22 PROPOSITION For each positive τ -sequence s, b ↷s ξτs ; each ξτs is

of finite weight equal to ℓh(s); and no γ near ξτs attacks itself.

Proof of the last part: No predictor of weight ℓh(s) occurs twice in ξτs .

⊣ (4·22)
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4·23 LEMMA If the weight of ζ, attacked by b, is bounded, let m be the

largest weight of a predictor occurring in ζ. Then:

(i) ζ has infinitely many predictors of weight m;

(ii) there is a unique sequence sζ of lengthm such that every predictor

of weight m occurring in ζ is of the form [sζ ; v] for some v ∈ F with v an

initial segment of τζ and sζ a v-sequence;

(iii) to each ℓ there are u ≻ τζ and t ≽ sζ with ζ ↾ℓ ⊑ zut and the two

stretches ζ ↾ℓ and zut having the same height and weight.

Proof : The first part is just Lemma 4·13. The second part is a conse-

quence of the principle of coherence. The third follows from Proposition

3·27. ⊣ (4·23)
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4·24 PROPOSITION If b ↷s ζ and ζ is of finite weight m > 0, then there

is a unique τζ-sequence sζ , of length m, such that ζ ▷ ξ
τζ
sζ .

Proof : By comparing Lemma 4·23 with Example 4·18; in each case a

segment
⟨
[s;u]

⟩⌢zus′ is promptly followed by a segment
⟨
[s; v]

⟩⌢zvs′ where
v′ = u and s = sζ . The “missing” initial segment determines the shift

required. ⊣ (4·24)

4·25 LEMMA If t and s are τ -sequences with s = t′, then ξτt ↷s ξ
τ
s .

Proof : By examination of Example 4·18.
4·26 PROPOSITION If t and s are τ -sequences with t ≺ s, then ξτt ↷s ξ

τ
s .
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Points of infinite weight attacked by b

Suppose that ζ, attacked by b, is of infinite weight. We know that

if [s;u] and [t; v] occur in ζ then as they both lie in some zwr , u and v

cohere, both being initial segments of w, and s and t cohere, both being

initial segments of r. The union of the trees of the predictors in ζ will be

the tree τζ . The union of the paths of the predictors in ζ will be a τζ-path

that we shall call πζ . πζ is infinitely long because ζ is of infinite weight;

hence τζ is ill-founded.

Denote by sk the τζ-sequence (πζ)⩽k and by γk the point ξ
τζ
sk of Y.

Plainly γk+1 ↷s γk for each k. We wish to show that ζ lies at the

end of the path γ0 ↶s γ1 ↶s . . . There are two things to be verified: that

ζ is the limit of well-chosen finite shifts of the γk’s, and that ζ attacks

each γk.
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First, given ℓ ∈ ω, let m be the greatest weight of any symbol occur-

ring in the initial segment ζ ↾ℓ, so that segment is an m-stretch. Then by

Proposition 3·27 there are w and s such that ζ ↾ℓ ⊑ zws with w an initial

segment of τζ and s an initial segment of πζ , and therefore

ζ ↾ℓ ⊑ zws⩽m
⊑ γm.

Thus ζ ↾ℓ will be an initial segment of an appropriate shift of γm.

Secondly, for given k and ℓ pick initial segments w and s of τζ and

πζ so that γk ↾ ℓ ⊑ zws . Let [r;u] be a predictor occurring as late in ζ as

desired and of weight strictly exceeding the height of w. Then u ≺ w and

r ≺ s. Therefore

γk ↾ℓ ⊑ zws ⊑ zur′ ⊑ ζ,

since zur′ occurs as a segment of ζ immediately after the given occurrence

of [r;u].
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Thus, remembering our remarks on slides 30 and 31 about points at

the end of a path, we have proved:

4·30 PROPOSITION If b ↷s ζ and ζ is of infinite weight, then there are

unique τζ and πζ defined by ζ; τζ is ill-founded, and ζ lies at the end of

the τζ-path πζ and is therefore recurrent.

So we have shown that all points of infinite weight attacked by b are

recurrent. We now prove the converse.
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4·31 PROPOSITION If b ↷s ρ ↷s ρ, then ρ contains recorders and also

contains predictors of every positive weight.

Proof : ρ has no markers; hence for each ℓ there are u and s such that

ρ ↾ ℓ ⊑ zus . The immediate successor of a predictor of weight m > 1 will

be a predictor of weight m− 1; the immediate successor of a predictor of

weight 1 will be a recorder. Hence ρ must contain recorders.

Since ρ is recurrent, any symbol in it recurs infinitely often. We

complete the proof by remarking, following Proposition 3·44, that between
two occurrences of the same recorder, there must occur a predictor of

weight one; and between two occurrences of the same predictor of weight

m there must occur a predictor of weight m+ 1. ⊣ (4·31)
Combining those two propositions yields this characterisation:

4·32 PROPOSITION If b ↷s ρ, ρ is recurrent if and only if it is of infinite

weight.
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4·33 EXAMPLE We illustrate the way in which recurrent points arise.

Suppose that τ ∈ T is ill-founded, and that π is an infinite τ -path. We

choose strictly increasing integers nk such that π⩽k is a τ⩽nk−1 path, so

that π(k) < nk and π⩽k is not tight in τ⩽nk
.

The most “efficient” choice might be to set nk = π(k) + 1, but other

choices are of course possible.

Fix k, and suppose for the sake of example that nk+1 equals nk + 3.

Write s for π⩽k, and t for π⩽k+1, so that t′ = s. Write u for τ⩽nk
, u+ for

τ⩽nk+1, u
++ for τ⩽nk+2, and v for τ⩽nk+1

, so that v′ = u++.
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Consider the following string of symbols:

zu
′

s
⌢⟨[s;u]⟩⌢zus′︸ ︷︷ ︸

zu
s

⌢⟨[s;u+]
⟩⌢zu+

s′

︸ ︷︷ ︸
zu+
s

⌢⟨[s;u++]
⟩⌢zu++

s′

︸ ︷︷ ︸
zu++
s

⌢⟨[t; v]⟩⌢zvt′

︸ ︷︷ ︸
sℓ(zv

t )

To see that the entire string is expressible as a shift of zvt , note that

zu
++

s = zv
′

t′ , which is an end-segment of zv
′

t , so we must choose ℓ to be 1

if t is tight in v′, and to be 1 + ℓh(zv
′′

t ) otherwise.
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4·34 REMARK For further variety in the construction of recurrent points,

reflect that if s is loose in u and has successive extensions s+, s++, say,

which are also u-sequences, the string
⟨
[s;u]

⟩⌢zus′ is an end-segment of zus
but also of zus+ and of zus++ , and hence can be followed by

⟨
[s;u+]

⟩⌢zu+

s′ ,⟨
[s+;u+]

⟩⌢zu+

s or
⟨
[s++;u+]

⟩⌢zu+

s+ , to yield, respectively, end-segments

of zu
+

s , zu
+

s+ or zu
+

s++ .
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Proof of the main result

4·35 LEMMA If b ↷s ξ, τξ ̸= σ ∈ T , and s is a σ-sequence, then ξ ̸↷s ξ
σ
s .

Proof : Let e be an initial segment of σ that is not one of τξ. Then [e]

occurs in ξσs but not in any ξ
τξ
πξ↾k, hence not in ξ. ⊣ (4·35)

4·36 LEMMA If b ↷s ζ ↷s γ ▷ξ
σ
s and σ is well-founded, then ζ is of finite

weight.

Proof : If ζ were of infinite weight, τζ would be ill-founded. But τζ = σ.

⊣ (4·36)

4·37 PROPOSITION Let σ ∈ T be well-founded. If b ↷s ζ ↷s γ ▷ ξ
σ
s then

there is a t ≺ s such that ζ is near ξσt .

Proof : Take t = sζ , as in Proposition 4·24. t ≼ s since ζ ↷s γ; since

γ ̸↷s γ, t ≺ s. ⊣ (4·37)
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4·38 COROLLARY For σ well-founded, β(ξσ⊚, b, s) = ϱσ(0).

Here β is as in Definition 1·1, and ϱσ is the rank function defined on

the nodes of σ, as in section 1 of Delays. The number 0 is the top node

in the tree relation <σ defined in Remark 4·7 above.

Proof : By lemmata 4·4 and 4·6 of Delays, taking T to be the tree coded

by σ, xT to be b and, for s a σ-sequence, xs to be ξσs . Proposition 4·37
above shows that b plays the rôle required of xT in lemma 4·6 of Delays.

⊣ (4·38)
Proof of Theorem 4·2: Let η be any countable ordinal and let σ ∈ T
be well-founded with ϱσ(0) = η: such σ may be constructed following

Remark 4·8 and Delays, proposition 4·1. Theorem 4·7 of Delays may now

be applied, to show that θ(b, s) > η. Since η was arbitrary, θ(b, s) ⩾ ω1;

by Delays, corollary 2·5, θ(b, s) ⩽ ω1; thus θ(b, s) = ω1. ⊣ (4·2)
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4·39 Thus we arrive at the following attractive picture: the recurrent

points attacked by b are all at the ends of paths through ill-founded trees,

and they are all maximal recurrent in b in the sense of definition 3·21 of

Delays; all other points attacked by b are near to some ξτs for uniquely

determined τ and s; the points that escape are those near to ξτs with τ

well-founded below s.

4·40 REMARK The abode A(b, s) is a complete analytic set, since the

assignment τ 7→ ξτ⊚ is continuous, and τ is ill-founded if and only if

ξτ⊚ ∈ A(b, s). Similarly E(b, s) is a complete co-analytic set.
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4·41 REMARK Our methods confirm a conjecture of Martin Goldstern:

let

G =df {α ∈ N | ωs(α) ⩽ ℵ0}.

G is co-analytic since

α ∈ G ⇐⇒ ∀β(α ↷s β =⇒ β is hyperarithmetic in α).

We shall show that G is complete by exhibiting a continuous reduction of

the collection of well-founded trees to it.

For τ ∈ T , define ξτ by modifying Definition 4·1: let (wτ
i )i list all

zus where u ≻ τ and s is a u-sequence—plainly such a list may be found

uniformly recursive in τ by deleting all zus with u ̸≻ τ from the recursive

list (zi)i—and then set
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ξτ =df wτ
0
⌢⟨[m0]

⟩⌢wτ
1
⌢⟨[m1]

⟩⌢wτ
2
⌢⟨[m2]

⟩⌢ · · ·

If τ is well-founded, ξτ will be in G, since it attacks only points near

to ξτs for some τ -sequence s.

If τ is ill-founded, then ξτ will attack some recurrent point at the

end of a τ -path. The variety of construction of recurrent points indicated

in Example 4·33 and Remark 4·34 may readily be exploited to prove that

the set of recurrent points at the end of a given path is uncountable, and

indeed contains a perfect set.

Thus if τ is ill-founded, ξτ will not be in G.

Since the association τ 7→ ξτ is continuous, indeed recursive, we have

reduced a known complete co-analytic set to G, which must, therefore,

itself be complete co-analytic.
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Open problems

PROBLEM Which ordinals are the scores under shift of recursive points

of N ?

Every recursive ordinal is possible; the first non-recursive ordinal is

possible; ω1 is possible; are there any others ? My candidate is ωL
1 .

A familiar concept in dynamics is that of a minimal recurrent point.

Using AC and the lemma about points at the end of a path one can build

maximal recurrent points:

PROBLEM Are maximal recurrent points found in nature ?

REMARK Matt Foreman and collaborators have papers applying descrip-

tive set theory to problems in ergodic theory. For example, with Beleznay,

he showed that the collection of distal flows is not Borel.

REMARK There are papers on uniformly recurrent sequences.
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More recent work

[2d] A. R. D. MATHIAS, Choosing an attacker by a local derivation, Acta

Universitatis Carolinae - Math. et Phys., 45(2004) 59–65.

That paper is the surviving fragment of attempts to prove that un-

countable scores are impossible.

PROBLEM (James Cummings) In a system without points of uncountable

score, is score a Π1
1 norm ?

PROBLEM The paper

[2e] A. R. D. MATHIAS, A scenario for transferring high scores, Acta Uni-

versitatis Carolinae - Math. et Phys., 45 (2004) 67–73.

shows that a dynamical system satisfying four hypotheses will contain a

point of uncountable score: I know of systems satisfying three of those

hypotheses but are there any systems satisfying all four ?
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Yet more recent work

[6a] C. DELHOMMÉ. Transfer of scores to the shift’s attacks of Cantor

space.

[6b] C. DELHOMMÉ. Representation in the shift’s attacks of Baire space.

[formerly On embedding transitive relations in that of shift-attack.]

[6c] C. DELHOMMÉ. Completeness properties of the relation of attack.


