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Abstract

We give a new proof via inner model theory that every thin Σ
Jα(R)
1

equivalence relation is ∆
Jα(R)
1 , where α begins a Σ1 gap and Σ

Jα(R)
1 is

closed under number quanti�cation, assuming ADJα(R).

In the recent past several results previously proved by direct applications of the

axiom of determinacy were shown via an inner model theoretic approach. Here we

give an inner model theoretic proof of a result of Harrington and Sami [1] on thin

equivalence relations. The proof makes it possible to isolate optimal hypotheses

in the case that Σ
Jα(R)
1 is closed under number quanti�cation, where α begins a

Σ1 gap.

Recall that an equivalence relation E is called thin if there is no perfect set of

pairwise E�inequivalent reals.

Theorem 0.1. Let α ≥ 2 begin a Σ1 gap in L(R). Assume ADJα(R). Also, setting

Γ = Σ
Jα(R)
1 , assume Γ to be closed under number quanti�cation, i.e., ∀ωΓ ⊂ Γ.

Let E be a thin Γ equivalence relation. Let N be an α-suitable mouse with a

capturing term for the complete Γ set. Then E is Γ̆ in any real coding N as a

parameter.

The notion of α�suitable mice with capturing terms (which is due to Woodin),

is described in our section 1 and in detail in [6]. Such α�suitable mice are in a

sense analogues of M#
n (capturing Σ1

n+2) which capture more complicated sets of

reals. The pointclass Γ = Σ
Jα(R)
1 as in the statement of Theorem 0.1 is scaled

under ADJα(R) (cf. [7]).

The remaining cases for α which we address in this paper are subsumed in
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Theorem 0.2. Let Γ = Σ
Jα(R)
n where α ≥ 2 begins a Σ1 gap, n = 1, and α is a

successor ordinal or cf(α) = ω, or else α ends a proper weak Σ1 gap and n is least

with ρn(Jα(R)) = R. Assume ADL(R). Then every thin Γ equivalence relation is

Γ̆.

In section 1 we collapse a substructure of a suitable premouse and prove upwards

absoluteness for the preimages of capturing terms. In section 2 we apply the

method of term capturing to prove theorem 0.1 building on an argument of Hjorth

[3, lemma 2.5] for Σ1
2 equivalence relations. In section 3 we give a proof of theorem

0.2.

We wish to thank the referee for his thorough and helpful report.

1 Weak term condensation

We �x an ordinal α ≥ 2 beginning a Σ1 gap in L(R) (cf. [7]) with the property that

Γ = Σ
Jα(R)
1 is closed under number quanti�cation. Let us also assume ADJα(R)

throughout.

De�nition 1.1. For any bounded subset A of ω1, the (α�)lower-part closure

Lpα(A) of A is the the model theoretic union of all A-premice N which are sound

above A, project to sup(A), and are ω1-iterable in Jα(R) (i.e., there is an iteration

strategy Σ ∈ Jα(R) with respect to countable iteration trees on N ).

Under ADJα(R), any two A-premice as in de�nition 1.1 are lined up,1 so that

Lpα(A) is well�de�ned.

De�nition 1.2. An A-premouse N for bounded A ⊆ ω1 with a unique Woodin

cardinal δ = δN is called α-suitable if

1. δ is minimal such that δ is Woodin in Lpα(N|δ), and

2. N is the Lpα closure of N|δ up to its ωth cardinal above δ, i.e. N =⋃
k<ωNk where N0 := N|δ and Nk+1 := Lpα(Nk) for all k < ω.

1Notice that if Σ and Σ′ ∈ Jα(R) witness the countable A-premice N and N ′ to be ω1-

iterable, respectively, then ω
L[Σ,Σ′,N ,N ′]
1 < ωV1 by ADJα(R), so thatN andN ′ can be successfully

compared in L[Σ,Σ′,N ,N ′].
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In what follows, we let δ = δN always denote the Woodin cardinal of an α-suitable

premouse N .

De�nition 1.3. An ω1-iteration strategy Σ for an α�suitable N is fullness-

preserving if for every iteration tree T on N according to Σ which lives on N|δ

1. if the branch to the last model P does not drop, then P is α-suitable, and

2. if the branch to P drops, then P is ω1-iterable in Jα(R).

De�nition 1.4. Suppose Σ is an ω1-iteration strategy for a countable α-suitable

A-premouse N and Q ∈ N is a forcing notion. A Q�name Ė ∈ NCol(ω,η), where

η ≥ δN , is said to capture a set E ⊆ R relative to Σ if

π(Ė)g = E ∩ P [g]

whenever π : N → P is a non-dropping iteration map produced by a countable

iteration tree which is according to Σ and g is π(Q)-generic over P. Ė is then

also called a (Q�)capturing term for E (relative to Σ).

Theorem 1.5. (Woodin, see [6]) Assume ADJα(R) holds, where α ≥ 2 begins a

Σ1 gap in L(R) and Σ
Jα(R)
1 is closed under number quanti�cation. Let E ⊆ R be

a Σ
Jα(R)
1 set. There is then a countable α-suitable A-premouse N and a fullness-

preserving ω1-iteration strategy Σ for N such that for every η ≥ δ in N there is

a Col(ω, η)�name capturing E relative to Σ.

Let us �x such an A-premouse N together with a fullness-preserving ω1-iteration

strategy Σ. A weak capturing property is retained for A-premice which embed

into an initial segment of N :

Lemma 1.6. Let E ⊆ R be a Σ
Jα(R)
1 set and let Ė, σ be Col(ω, δ)-capturing terms

for E and its Σ
Jα(R)
1 scale (relative to Σ). Let π :M→N|(δ+n)N be su�ciently

elementary with Ė, σ ∈ rng(π) and n ≥ 2. Let Ē = π−1(Ė). Then Ēg ⊆ E for

every Col(ω, π−1(δ))-generic �lter g overM.

Proof. We argue that it is possible to replace Ė with the name for the projection

of a tree and we then use upwards absoluteness for this name. Suppose g is

Col(ω, δ)-generic over N and Ṫ ∈ N is a Col(ω, δ)-name for the tree

T = {(x|k, (r0(x)N [g], ..., rk−1(x)N [g])) : x ∈ Ėg = E ∩N [g], k < ω} (1)
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where the ri are the ranks in the scale as computed in N [g] via the capturing

term σ for the scale. The tree T is the image of a countable subtree S of the

tree from the scale on E in V via the map which collapses the set of ordinals

occuring in S to a transitive set, so that p[Ṫ g]N [g] ⊆ E ∩ N [g]. This implies

Ėg = E ∩N [g] = p[Ṫ g]N [g].

Notice that T = Ṫ g is independent from the choice of the particular generic g, and

hence T ∈ N . This is because if p, q ∈ Col(ω, δ) are two conditions, then we may

pick generics gp and gq over N with p ∈ gp and q ∈ gq such that N [gp] = N [gq].

As Ė and σ capture E and the scale over N , respectively, we get that Ėgp = Ėgq

and σgp = σgq , so that Ṫ gp = Ṫ gq , as Ṫ is de�ned from Ė and σ as in (1).

Now as p[T ]N [g] = Ėg,

NCol(ω,δ) p[Ť ] = Ė,

and therefore

MCol(ω,π−1(δ)) p[π−1(Ť )] = Ē.

This yields that Ēh = p[π−1(T )]M[h] ⊆ p[T ] ⊆ E for every Col(ω, π−1(δ))-generic

h overM.

WhenM is iterated, the capturing term is still upwards absolute:

Lemma 1.7. (Weak term condensation) Let E ⊆ R be a Σ
Jα(R)
1 set and Ė, σ

Col(ω, δ)-capturing terms for E and its Σ
Jα(R)
1 scale (relative to Σ). Let, for

n ≥ 2, π : M → N|(δ+n)N be su�ciently elementary with Ė, σ ∈ rng(π) and

Ē := π−1(Ė). Let ρ : M→ P be a non-dropping iteration map via the pullback

strategy. Then ρ(Ē)g ⊆ E for every Col(ω, ρ(π−1(δ)))-generic �lter g over P.

Proof. Let ρπ : N → R denote the iteration map of the tree copied onto N .

There is an embedding π∗ : P → R|ρπ((δ+n)N ) such that the diagram

P π∗
//R|ρπ((δ+n)N )

M

ρ

OO

π // N|(δ+n)N

ρπ

OO

commutes. Then ρ(Ē)g ⊆ E by the previous lemma applied to R.
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2 At the beginning of a gap

As in the previous section we shall assume that α begins a Σ1 gap in L(R), Σ
Jα(R)
1

is closed under number quanti�cation, and ADJα(R) holds. Let N be an α-suitable

A-premouse (for some A) as in de�nition 1.2, and let Σ be an ω1�iteration strategy

for N .

De�nition 2.1. Let T be a normal iteration tree of countable length on N , and

suppose that T lives below δN .2 We then say that T is short i� for all limit

ordinals λ < lh(T ), Lpα(M(T � λ)) |= δ(T � λ) is not Woodin. Otherwise, we

say that T is maximal.

Lemma 2.2. The restriction of the ω1-iteration strategy Σ to short trees on N
is Σ

Jα(R)
1 .

Proof. Let T be a countable short iteration tree of limit length which is on N and

according to Σ. We then have that Σ(T ) = b if and only if there is a Q�structure
Q EMT

b such that Q is ω1�iterable in Jα(R). This immediately shows that Σ,

restricted to short trees, is in Σ
Jα(R)
1 .

Lemma 2.3. For all n ≥ 1 there is M C N and a fully elementary map π :

M→N|(δ+n)N with γ = π−1(δ) < δ and VMγ = V Nγ .

Proof. Let us construct (Hi : i < ω) ∈ N as follows. Let P = N|(δ+n)N + 1. Set

H0 = ∅, and given Hi set

Hi+1 = HullPΣ1
(V Nsup(Hi∩δ)+1)

for i < ω. Then γ = sup(
⋃
i<ωHi ∩ δ) < δ since δ is inaccessible in N . Let

π∗ :M∗ →
⋃
i<ω

Hi = HullPΣ1
(V Nγ )

be the inverse of the collapsing map. The construction ensures that VM
∗

γ =

V Nγ . We have crit(π) = γ and ρ1(M∗) = γ. We easily get M∗ C N by the

Condensation Lemma (see [8, theorem 5.5.1] or [5, theorem 8.2]). Then

π∗ � (π∗)−1(N|(δ+n)N )

2That T lives below ξ means that T may be construed as an iteration tree on N|ξ.
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is as desired.

Let us �x a notation: given a forcing P and a P-name τ , let τi for i = 0, 1 denote

P× P-names such that τ gi = τ gi for any P× P-generic �lter g = g0 × g1.

Lemma 2.4. Let E be a thin Σ
Jα(R)
1 equivalence relation. Suppose Ė captures E

over N for the forcing S = P× P. Then for every P-name τ ∈ N for a real,

(p, p) NS τ0Ėτ1

holds for a dense set of conditions p ∈ P.

Proof. The proof is essentially that of [3, lemma 2.2]. Suppose the set is not

dense. In this case let p∅ be a condition such that for every r ≤ p∅ there are

conditions p, q ≤ r with

(p, q) NS ¬τ0Ėτ1.

Let (Di : i < ω) enumerate the dense open subsets of P × P in N . We can

inductively construct a family (ps : s ∈ 2<ω) of conditions in P so that for all

s, t ∈ 2<ω

1. pt ≤ ps if s ⊆ t,

2. ps decides τ � lh(s),

3. (ps, pt) ∈ D0 ∩ · · · ∩Dn for s 6= t in 2n, and

4. (psa0, psa1) NS ¬τ0Ėτ1.

Let further gx := {p ∈ P : ∃n < ω(px�n ≤ p)} for each x ∈ R. Then gx × gy is

P× P-generic overM for any x, y ∈ R with x 6= y by condition 3, and we have

Ėgx×gy = E ∩N [gx × gy]

since Ė captures E for S. Thus ¬τ gxEτ gy for x 6= y because τ gx = (τ0)gx×gy and

τ gy = (τ1)gx×gy and thus

N [gx × gy] � ¬τ gxĖgx×gyτ gy

holds by condition 4. Since τ gx depends continuously on x by condition 2, the

perfect set {τ gx : x ∈ R} would contradict that E is thin.
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By theorem 1.5, we may assume that our N satis�es the hypothesis of the fol-

lowing theorem.

Theorem 2.5. Let E be a thin Σ
Jα(R)
1 equivalence relation and suppose N has

capturing terms for both E and a Σ
Jα(R)
1 scale on E. Then E is Π

Jα(R)
1 in (any

real coding) N .

Proof. This is similar to the proof of [3, lemma 2.5]. Let

π :M = N|β → N|δ++N

be as in (the proof of) Lemma 2.3 with both Ė and a capturing term for a Σ
Jα(R)
1

scale on E in rng(π). This is possible since these capturing terms have size

δ+N . Let γ = π−1(δ) and Ē := π−1(Ė). Let ṙ be the preimage under π of the

Col(ω, δ)-name for the generic real for the extender algebra at δ. Let further σ, τ

be Col(ω, γ)-names for reals such that MCol(ω,γ) ṙ = σ⊕τ , where σ⊕τ enumerates

the bits of σ and τ .

We claim that for a, b ∈ R the fact that ¬aEb holds true is equivalent to the

following condition.

Condition 2.6. There are c, d ∈ R and a non-dropping iteration map ρ : N → P
which is produced by an iteration tree T which lives on N|γ and is according to

Σ such that

1. aEc and bEd,

2. c⊕ d = ρ(ṙ)g for some Col(ω, ρ(γ))-generic �lter g over P, and

3. 1 P[g]
Col(ω,ρ(δ)) ¬čρ(Ė)ď.3

Condition 2.6 clearly implies ¬aEb by our hypotheses.

On the other hand, given a, b ∈ R with ¬aEb, let ρ : N → P be a non-dropping

iteration map which is produced by a tree T which lives on N|γ and is according

to Σ such that for some Col(ω, ρ(γ))-generic �lter g over ρ(M) = P|ρ(β) we have

that a⊕ b = ρ(ṙ)g.

3As Col(ω, γ) × Col(ω, δ) ∼= Col(ω, δ), it is easy to see that P[g] has a term capturing E,

which we here confuse with ρ(Ė).
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By lemma 2.4 and the elementarity of π, if ε ∈ MCol(ω,γ) is a name for a real,

then for a dense set D ∈M of p ∈ Col(ω, γ),

(p, p) MCol(ω,γ)×Col(ω,γ) ε0Ēε0.

Using the elementarity of ρ, there is hence some q ∈ g such that

(q, q) ρ(M)
Col(ω,ρ(γ))×Col(ω,ρ(γ)) ρ(σ)0ρ(Ē)ρ(σ)1 ∧ ρ(τ)0ρ(Ē)ρ(τ)1. (2)

Let h be Col(ω, ρ(γ))-generic below q over both (P|ρ(β))[g] and P and let c, d ∈ R
with c⊕ d = ṙh. We then have both aEc and bEd by (2) and by lemmas 1.6 and

1.7. As ¬aEb, this means that ¬cEd, so that 1 P[g]
Col(ω,ρ(δ)) ¬čρ(Ė)ď.

We have shown that condition 2.6 holds.

Finally, it is true that Σ, restricted to short trees, is Σ
Jα(R)
1 by lemma 2.2, so that

the reformulation of ¬aEb given by condition 2.6 shows that ¬E is ∃R ∀N Σ
Jα(R)
1

in N . As we assume Σ
Jα(R)
1 to be closed under number quanti�cation, this shows

that E is Π
Jα(R)
1 in N , as desired.

3 ω-co�nal pointclasses

The argument in the last section used that Σ
Jα(R)
1 be closed under number quan-

ti�cation. We do not know how to drop this hypothesis, unless we replace the

hypothesis ADJα(R) by ADL(R).

We thus now turn to the case that α ≥ 2 begins a gap and Σ
Jα(R)
1 is not closed

under number quanti�cation. In this case α = ᾱ+1 or cf(α) = ω, since cf(α) > ω

and Jα(R) � ∀nϕ(x, n) imply that there is some ᾱ < α with Jᾱ(R) � ∀nϕ(x, n).

Hence A ∈ Σ
Jα(R)
1 i� A is a countable union of sets in Jα(R).

Lemma 3.1. Assume AD. Let Γ be a relativized scaled pointclass closed under

∃R. Suppose Γk ⊆ ∆ for k < ω are pointclasses such that for every A ∈ Γ there

are Ak ∈ Γk with A =
⋃
k<ω Ak. Then every thin Γ equivalence relation is ∆.

Proof. Let E be a thin Γ equivalence relation. Then E is co-κ-Suslin via some

tree T , since the class of κ-Suslin sets is closed under countable intersections:

trees Tk on ω × κ with Ak = p[Tk] for k < ω can be amalgamated into a tree T

with
⋂
k<ω Ak = p[T ].
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There is no ω1-sequence of reals under AD so that L[T ] ∩ R is countable. Hence

there is a Cohen real in V over L[T ]. Harrington and Shelah [2] proved that

if there is a Cohen real over L[T ] (or if the complement of p[T ] is transitive in

a Cohen generic extension of L[T ]), then E has at most κ equivalence classes

and the set of equivalence classes is wellordered. Let (Aγ : γ < δ) enumerate

the equivalence classes of E, where δ ≤ κ. Now Γ is closed under wellordered

unions by [4, lemma 2.18], since it is closed under ∃R and has the prewellordering

property. So

R2 − E =
⋃

γ 6=δ<κ

(Aγ × Aδ)

is Γ.

Theorem 3.2. Let Γ = Σ
Jα(R)
n where α ≥ 2 begins a Σ1 gap, n = 1, and α is a

successor ordinal or cf(α) = ω, or else α ends a proper weak Σ1 gap and n is least

with ρn(Jα(R)) = R. Assume ADL(R). Then every thin Γ equivalence relation is

Γ̆.

Proof. If α begins a gap and α = ᾱ + 1, let Γk = Σ
Jᾱ(R)
k . If cf(α) = ω, let

α = supαk and Γk = Jαk(R). Finally let Γk = Jα(R) for each k < ω if α ends a

gap. The previous lemma applies in each case.
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