Increasing u_2 by a stationary set preserving forcing

Benjamin Claverie, Ralf Schindler^{*} Institut für Mathematische Logik und Grundlagenforschung Universität Münster Einsteinstr. 62, 48149 Münster, Germany

November 6, 2008

Abstract

We show that if I is a precipitous ideal on ω_1 and if $\theta > \omega_1$ is a regular cardinal, then there is a forcing $\mathbb{P} = \mathbb{P}(I, \theta)$ which preserves the stationarity of all I-positive sets such that in $V^{\mathbb{P}}$, $\langle H_{\theta}; \in, I \rangle$ is a generic iterate of a countable structure $\langle M; \in, \overline{I} \rangle$. This shows that if the nonstationary ideal on ω_1 is precipitous and $H_{\theta}^{\#}$ exists, then there is a stationary set preserving forcing which increases δ_2^1 . Moreover, if Bounded Martin's Maximum holds and the nonstationary ideal on ω_1 is precipitous, then $\delta_2^1 = u_2 = \omega_2$.

In this paper we modify Jensen's \mathcal{L} -forcing (cf. [Jen90a] and [Jen90b]) and apply this to the theory of precipitous ideals and the question about the size of u_2 . Forcings which increase the size of u_2 were already presented in the past. After Steel and van Wesep had shown that $u_2 = \omega_2$ is consistent in the presence of large cardinal hypotheses (cf. [SVW82]), Woodin proved that if the nonstationary ideal on ω_1 is ω_2 -saturated and $\mathcal{P}(\omega_1)^{\#}$ exists, then $u_2 = \omega_2$ (cf. [Woo99, Theorem 3.17]; in particular, $u_2 = \omega_2$ follows from Martin's Maximum by work of Foreman, Magidor and Shelah, cf. [FS88].) More recently, Ketchersid, Larson, and Zapletal also constructed forcings which increase u_2 (cf. [KLZ07]).

Recall that δ_2^1 is the supremum of the lengths of all Δ_2^1 well-orderings of the reals, and that if the reals are closed under sharps, then u_2 , the second uniform indiscernible, is defined to be the least ordinal above ω_1

^{*}Both authors gratefully acknowledge support by DFG grant no. SCHI 484/3-1. The second author also gratefully acknowledges support by NSF grant no. DMS-0401312. The authors wish to thank Philipp Doebler and the referee for valuable comments.

which is an x-indiscernible for every $x \in \mathbb{R}$. By the Kunen-Martin Theorem (cf. [Mos80, Theorem 2G.2]), if \leq is a $\Delta_2^1(x)$ prewellordering of \mathbb{R} , then the length of \leq is less than $\omega_1^{+L[x]}$. Moreover, if $x^{\#}$ exists, then there is a $\Delta_2^1(x^{\#})$ -prewellordering of \mathbb{R} of length $\omega_1^{+L[x]}$, which implies $\omega_1^{+L[x]} < \delta_2^1$. Also, $\omega_1^{+L[x^{\#}]} < u_2^x$, the least x-indiscernible above ω_1 . Therefore, if the reals are closed under sharps, then

$$u_2 = \sup\left\{\omega_1^{+L[x]}; x \in \mathbb{R}\right\} = \underline{\delta}_2^1.$$

In this paper we'll consider generic iterations of structures of the form $\langle M; \in, I \rangle$, where M is a transitive model of $\mathsf{ZFC}^* + \ \omega_1$ exists" and inside M, I is a uniform and normal ideal on ω_1^M . Here, ZFC^* is a reasonable weak fragment of ZFC such that $\mathsf{ZFC}^* + \ \omega_1$ exists" is suitable for taking generic ultrapowers by ideals on ω_1 (cf. [Woo99]). For a set X, we let $X^{\#}$ denote the least X-mouse, i.e., the least X-premouse $\mathcal{P} = (J_{\alpha}(X); \in, X, E_{\alpha})$, such that $E_{\alpha} \neq \emptyset, \mathcal{P}$ is sound above X, and \mathcal{P} is iterable. The universe of any $X^{\#}$ is a model of $\mathsf{ZFC}^* + \ \omega_1$ exists."

Let I be an ideal on ω_1 . We shall write $I^+ = \{x \subseteq \omega_1; x \notin I\}$ for the set of the *I*-positive sets. We shall also write $X \leq_I Y$ iff $X \setminus Y \in I$. Forcing with $\langle I^+, \leq_I \rangle$ adds a *V*-measure *G* and thereby a generic embedding $\pi: V \to \text{Ult}(V; G)$. The ideal *I* is *precipitous* iff Ult(V; G) is always wellfounded. (Cf. [Jec03, pp. 424ff.].)

Definition 1. Let M be a transitive model of $\mathsf{ZFC}^* + \ \omega_1$ exists," and let $I \subseteq \mathcal{P}(\omega_1^M)$ be such that $\langle M; \in, I \rangle \models \ "I$ is a uniform and normal ideal on ω_1^M ." Let $\gamma \leq \omega_1$. Then

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \gamma \rangle, \langle G_i; i < \gamma \rangle\rangle$$

is called a *putative generic iteration of* $\langle M; \in, I \rangle$ (of length $\gamma + 1$) iff the following hold true.

- i. $M_0 = M$ and $I_0 = I$.
- ii. For all $i \leq j \leq \gamma$, $\pi_{i,j} \colon \langle M_i; \in, I_i \rangle \to \langle M_j; \in, I_j \rangle$ is elementary, $I_i = \pi_{0,i}(I)$, and $\kappa_i = \pi_{0,i}(\omega_1^M) = \omega_1^{M_i}$.
- iii. For all $i < \gamma$, M_i is transitive and G_i is $\langle I_i, \leq_{I_i} \rangle$ -generic over M_i .
- iv. For all $i + 1 \leq \gamma$, $M_{i+1} = \text{Ult}(M_i; G_i)$ and $\pi_{i,i+1}$ is the associated ultrapower map.

- $pi_{j,k} \circ pi_{i,j} = \pi_{i,k}$ for $i \leq j \leq k$.
- vi. If $\lambda \leq \gamma$ is a limit ordinal, then $\langle M_{\lambda}, \pi_{i,\lambda}, i < \lambda \rangle$ is the direct limit of $\langle M_i, \pi_{i,j}, i \leq j < \lambda \rangle$.

We call

v.

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \gamma \rangle, \langle G_i; i < \gamma \rangle \rangle$$

a generic iteration of $\langle M; \in, I \rangle$ (of length $\gamma + 1$) iff it is a putative generic iteration of $\langle M; \in, I \rangle$ and M_{γ} is transitive. $\langle M; \in, I \rangle$ is generically $\gamma + 1$ iterable iff every putative generic iteration of $\langle M; \in, I \rangle$ of length $\gamma + 1$ is an iteration.

Notice that we want (putative) iterations of a given model $\langle M; \in, I \rangle$ to exist in V, which amounts to requiring that the relevant generics G_i may be found in V. The following lemma is therefore only interesting in situations in which M (or a large enough initial segment thereof) is countable so that we may actually find generics in V.

Lemma 2 (Woodin). Let M be a transitive model of ZFC, and let $I \subseteq \mathcal{P}(\omega_1^M)$ be such that $\langle M; \in, I \rangle \models$ "I is a uniform and normal precipitous ideal on ω_1^M ." Then $\langle M; \in, I \rangle$ is generically $\gamma + 1$ iterable whenever $\gamma < \min(M \cap \mathrm{OR}, \omega_1^V + 1)$.

Proof. The proof is taken from [Woo99, Lemma 3.10, Remark 3.11]. By absoluteness, if $\langle M; \in, I \rangle$ is not generically $\gamma + 1$ iterable, then $\langle H_{\kappa}^{M}; \in, I \rangle$ is not generically $\gamma + 1$ iterable inside $M^{\operatorname{Col}(\omega,\delta)}$ for some κ and δ such that κ is regular in $M, H_{\kappa}^{M} \models \mathsf{ZFC}^{*} + ``\omega_{1}$ exists," and $\delta \geq \gamma$ (cf. [Woo99, Lemma 3.8]). Let $\langle \kappa_{0}, \eta_{0}, \gamma_{0} \rangle$ be the least triple in the lexicographical order such that:

- $\kappa_0 > \omega_1^M$ is regular in M,
- $\eta_0 < \kappa_0$, and
- for some δ , inside $M^{\operatorname{Col}(\omega,\delta)}$, there is a putative iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \gamma_0 \rangle, \langle G_i; i < \gamma_0 \rangle \rangle$$

of $\langle H_{\kappa_0}^M; \in, I \rangle$ such that $\pi_{0,\gamma_0}(\eta_0)$ is ill-founded.

As I is precipitous in M, γ_0 and η_0 are limit ordinals. Choose some $i^* < \gamma_0$ and $\eta^* < \pi_{0,i^*}(\eta_0)$ such that $\pi_{i^*,\gamma_0}(\eta^*)$ is ill-founded. We may construe

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i^* \leqslant i \leqslant j \leqslant \gamma_0 \rangle, \langle G_i; i^* \leqslant i < \gamma_0 \rangle \rangle$$

as a putative generic iteration of $H^{M_{i^*}}_{\pi_{0,i^*}(\kappa_0)}$. By elementarity, the triple $\langle \pi_{0,i^*}(\kappa_0), \pi_{0,i^*}(\eta_0), \pi_{0,i^*}(\gamma_0) \rangle$ is the least triple $\langle \kappa, \eta, \gamma \rangle$ such that

- $\kappa > \omega_1^{M_{i^*}}$ is regular in M_{i^*} ,
- $\eta < \kappa$, and
- for some δ , inside $M_{i^*}^{\text{Col}(\omega,\delta)}$, there is a putative iteration

 $\langle\langle M'_i, \pi'_{i,j}, I'_i, \kappa'_i; i \leqslant j \leqslant \gamma \rangle, \langle G'_i; i < \gamma \rangle\rangle$

of
$$\langle H^{M_{i^*}}_{\pi_{0,i^*}(\kappa)}; \in, I_{i^*} \rangle$$
 such that $\pi'_{0,\gamma}(\eta)$ is ill-founded.

However, by the existence of

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i^* \leqslant i \leqslant j \leqslant \gamma_0 \rangle, \langle G_i; i^* \leqslant i < \gamma_0 \rangle \rangle$$

and by absoluteness, the triple $\langle \pi_{0,i^*}(\kappa_0), \eta^*, \gamma_0 - i^* \rangle$ contradicts the alleged characterization of the triple $\langle \pi_{0,i^*}(\kappa_0), \pi_{0,i^*}(\eta_0), \pi_{0,i^*}(\gamma_0) \rangle$ inside M_{i^*} .

By NS_{ω_1} we shall denote the nonstationary ideal on ω_1 .

We may now state and prove our main result.

Theorem 3. Let I be a precipitous ideal on ω_1 , and let $\theta > \omega_1$ be a regular cardinal. There is a poset $\mathbb{P}(I, \theta)$, preserving the stationarity of all sets in I^+ , such that if G is $\mathbb{P}(I, \theta)$ -generic over V, then in V[G] there is a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_{\theta}; \in, I \rangle$. If $I = NS_{\omega_1}$, then $\mathbb{P}_{NS_{\omega_1}}$ is stationary set preserving.

It is easy to see that every set in I^+ has to be stationary in V. The most difficult part of the construction is to arrange that every set in I^+ will remain stationary in the forcing extension.

The proof of Theorem 3 stretches over several lemmas and builds upon Jensen's [Jen90a] and [Jen90b]. Fixing I and θ , let us pick a regular cardinal ρ such that $2^{2^{<\theta}} < \rho$. Therefore, $H_{\theta} \in H_{\rho}$, and in fact every subset of

 $\mathcal{P}(H_{\theta})$ is in H_{ρ} as well. In particular, the forcing $\mathbb{P}(I,\theta)$ we are about to define will be an element of H_{ρ} . It is easy to verify that if a forcing $\mathbb{Q} \in V$ is ω_1 -distributive, then I is still precipitous in $V^{\mathbb{Q}}$. We may and shall therefore assume that $2^{<\theta} = \theta$ and $2^{<\rho} = \rho$, i.e., that $\operatorname{Card}(H_{\theta}) = \theta$ and $\operatorname{Card}(H_{\rho}) = \rho$, because if this were not true in V, then we may first force with $\mathbb{Q} = \operatorname{Col}(\rho, \rho) \times \operatorname{Col}(\theta, \theta)$ and work with $V^{\mathbb{Q}}$ rather than V as our ground model in what follows.

Our starting point is thus that in V, I is a precipitous ideal on ω_1 and θ and ρ are regular cardinals such that $\omega_2 \leq \theta = 2^{<\theta} < 2^{\theta} < \rho = 2^{<\rho}$. Let us fix a well-order, denoted by <, of H_{ρ} of order type ρ such that $< \upharpoonright H_{\theta}$ is an initial segment of < of order type θ . (In what follows, we shall also write < for $< \upharpoonright H_{\theta}$.) We shall write

$$\mathcal{H} = \langle H_{\rho}; \in, H_{\theta}, I, < \rangle,$$

and we shall also write

$$\mathcal{M} = \langle H_{\theta}; \in, I, < \rangle.$$

In what follows, models will always be models of the language of set theory. We shall tacitly assume that if \mathfrak{A} is a model, then the well-founded part wfp(\mathfrak{A}) of \mathfrak{A} is transitive.

Let us now define our forcing $\mathbb{P}(I, \theta)$.

Definition 4. Conditions p in $\mathbb{P}(I, \theta)$ are triples

$$p = \langle \langle \kappa_i^p; i \in \operatorname{dom}(p) \rangle, \langle \pi_i^p; i \in \operatorname{dom}(p) \rangle, \langle \tau_i^p; i \in \operatorname{dom}_(p) \rangle \rangle$$

such that the following hold true.

- i. Both dom(p) and dom_(p) are finite, and dom_(p) \subseteq dom(p) \subseteq ω_1 .
- ii. $\langle \kappa_i^p; i \in \text{dom}(p) \rangle$ is a sequence of countable ordinals.
- iii. $\langle \pi_i^p; i \in \operatorname{dom}(p) \rangle$ is a sequence of finite partial maps from ω_1 to θ .
- iv. $\langle \tau_i^p; i \in \text{dom}_-(p) \rangle$ is a sequence of complete \mathcal{H} -types over H_{θ} , i.e., for each $i \in \text{dom}_-(p)$ there is some $x \in H_{\rho}$ such that, having φ range over \mathcal{H} -formulae with free variables u, \vec{v} ,

$$\tau_i^p = \{ \langle \ulcorner \varphi \urcorner, \vec{z} \rangle \; ; \; \vec{z} \in H_\theta \land \mathcal{H} \models \varphi[x, \vec{z}] \}.$$

v. If $i, j \in \text{dom}_{-}(p)$, where i < j, then there is some $n < \omega$ and some $\vec{u} \in \text{ran}(\pi_i^p)$ such that

$$\tau_i^p = \{ (m, \vec{z}) ; (n, \vec{u} \frown m \frown \vec{z}) \in \tau_i^p \}.$$

vi. In $V^{\operatorname{Col}(\omega,2^{\theta})}$, there is a model which certifies p with respect to \mathcal{M} , by which we mean a model \mathfrak{A} such that $\theta + 1 \subset \operatorname{wfp}(\mathfrak{A})$, in fact $H_{\theta^+} \in \mathfrak{A}$, $\mathfrak{A} \models \mathsf{ZFC}^-$ (= $\mathsf{ZFC} \setminus \operatorname{Power Set}$), for all $S \in I^+$, $\mathfrak{A} \models "S$ is stationary," and inside \mathfrak{A} , there is a generic iteration

$$\langle\langle M_i^{\mathfrak{A}}, \pi_{i,j}^{\mathfrak{A}}, I_i^{\mathfrak{A}}, \kappa_i^{\mathfrak{A}}; i \leqslant j \leqslant \omega_1 \rangle, \langle G_i^{\mathfrak{A}}; i < \omega_1 \rangle \rangle$$

such that

- (a) if $i < \omega_1$, then $M_i^{\mathfrak{A}}$ is countable,
- (b) if $i < \omega_1$ and if $\xi < \theta$ is definable over \mathcal{M} from parameters in $\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$, then $\xi \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$,
- (c) $M^{\mathfrak{A}}_{\omega_1} = \langle H_{\theta}; \in, I \rangle,$
- (d) if $i \in \text{dom}(p)$, then $\kappa_i^p = \kappa_i^{\mathfrak{A}}$ and $\pi_i^p \subseteq \pi_{i,\omega_1}^{\mathfrak{A}}$,
- (e) if $i \in \text{dom}_{-}(p)$, then for all $n < \omega$ and for all $\vec{z} \in \text{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$,

$$\exists y \in H_{\theta} \ (n, y^{\frown} \vec{z}) \in \tau_i^p \Longrightarrow \exists y \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \ (n, y^{\frown} \vec{z}) \in \tau_i^p.$$

If $p, q \in \mathbb{P}$, then we write $p \leq q$ iff $\operatorname{dom}(q) \subseteq \operatorname{dom}(p)$, $\operatorname{dom}_{-}(q) \subseteq \operatorname{dom}_{-}(p)$, for all $i \in \operatorname{dom}(q)$, $\kappa_i^p = \kappa_i^q$ and $\pi_i^q \subseteq \pi_i^p$, and for all $i \in \operatorname{dom}_{-}(q)$, $\tau_i^q = \tau_i^p$.

Conditions p should be seen as finite attempts to describe the iteration leading to $\langle H_{\theta}; \in, I \rangle$, the first component being finitely many critical points κ_i^p of the iteration, and the second component being finite attempts π_i^p to describe the iteration maps restricted to the ordinals. The presence of <will guarantee that knowing the action of these maps on the ordinals means knowing the maps themselves. The third components τ_i^p will guarantee that the iteration maps extend to elementary maps into \mathcal{H} with some $x \in H_{\rho}$ of interest in their range (cf. Lemma 16 below), which will be relevant in the verification that $\mathbb{P}(I,\theta)$ preserves the stationarity of all sets in I^+ .

It should be stressed that $\omega_1^V \in I^+$, so that if \mathfrak{A} certifies any condition p with respect to \mathcal{M} , then $\omega_1^{\mathfrak{A}} = \omega_1^V$. It is also clear that

$$\mathfrak{A} \models \operatorname{Card}(H_{\theta}) = \aleph_1.$$

Let us start the discussion of $\mathbb{P}(I, \theta)$. Let us write $\mathbb{P} = \mathbb{P}(I, \theta)$ from now on.

Lemma 5. $\mathbb{P} \neq \emptyset$.

Proof. We need to verify that in $V^{\operatorname{Col}(\omega,2^{\theta})}$ there is a model which certifies the trivial condition $\langle \langle \rangle, \langle \rangle, \langle \rangle \rangle$ with respect to \mathcal{M} .

Let g be $\operatorname{Col}(\omega, < \rho)$ -generic over V. Notice that inside $V[g], \langle V; \in, I \rangle$ is generically $\rho + 1$ iterable by Lemma 2. Let us work inside V[g] until further notice.

Let us choose a bijection $\varphi : [\rho]^{<\rho} \to \rho$, and let $\langle S_{\nu}; \nu < \rho \rangle$ be a partition of ρ into pairwise disjoint stationary subsets of ρ . Define $f : \rho \to [\rho]^{<\rho}$ by

$$f(i) = s \iff i \in S_{\varphi(s)}$$

In other words, $f'' S_{\varphi(s)} = \{s\}$ for every $s \in [\rho]^{<\rho}$.

Let us recursively construct a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \rho \rangle, \langle G_i; i < \rho \rangle \rangle$$

of $M_0 = \langle H_{\theta}; \in, I \rangle$. Suppose $\langle \langle M_k, \pi_{k,j}, I_k, \kappa_k; k \leq j \leq i \rangle, \langle G_k; k < i \rangle \rangle$ has already been constructed, where $i < \rho$. If there is a (unique) $j \leq i$ such that $f(i) \in I_j^+$, i.e., $\pi_{j,i}(f(i)) \in I_i^+$, then let us choose G_i such that $\pi_{j,i}(f(i)) \in G_i$. If there is no such $j \leq i$, then we choose G_i arbitrarily. This defines the generic iteration.

Now let $S \in I_{\rho}^+$. Let $j < \rho$ and $s \in M_j$ be such that $\pi_{j,\rho}(s) = S$. Whenever $j \leq i < \rho$ and f(i) = s, then $\pi_{j,i}(s) \in G_i$, i.e., $\kappa_i \in \pi_{i,i+1}(\pi_{j,i}(s)) = \pi_{j,i+1}(s) \subseteq \pi_{j,\rho}(s) = S$. This shows that

$$S_{\varphi(s)} \setminus j \subseteq \{i < \rho \; ; \; \kappa_i \in S\},\$$

so that S is in fact stationary.

The map $\pi_{0,\rho} \colon H_{\theta} \to M_{\rho}$ admits a canonical extension $\pi \colon V \to N$, where N is transitive and $\pi(H_{\theta}) = M_{\rho}$. Let us now leave V[g] and pick some h which is $\operatorname{Col}(\omega, \pi(2^{\theta}))$ -generic over V[g]. Of course, h is also $\operatorname{Col}(\omega, \pi(2^{\theta}))$ -generic over N. Let $x \in \mathbb{R} \cap N[h]$ code $\pi((H_{\theta^+})^V)$ in a natural way. The existence of a model which certifies $\langle \langle \rangle, \langle \rangle, \langle \rangle \rangle$ with respect to $\pi(\mathcal{M})$ is then easily seen to be a $\Sigma_1^1(x)$ statement which holds true in V[g,h], as being witnessed by V[g]. By absoluteness, this statement is then also true in N[h]. That is, inside $N^{\operatorname{Col}(\omega,\pi(2^{\theta}))}$ there is a model which certifies $\langle \langle \rangle, \langle \rangle, \langle \rangle \rangle$ with respect to $\pi(\mathcal{M})$. By elementarity, in $V^{\operatorname{Col}(\omega,2^{\theta})}$ there is therefore a model which certifies $\langle \langle \rangle, \langle \rangle, \langle \rangle \rangle$ with respect to \mathcal{M} .

We will now prove some lemmata which will make sure that the generic filter indeed produces a generic iteration leading to $\langle H_{\theta}; \in, I \rangle$. If $p \in \mathbb{P}$, then from now on we shall often just say that \mathfrak{A} certifies p to express that \mathfrak{A} is a model which certifies p with respect to \mathcal{M} .

Lemma 6. Let $p \in \mathbb{P}$, let u be finite such that $\operatorname{dom}(p) \subseteq u \subseteq \omega_1$. There is $p' \leq p$ such that $u \subseteq \operatorname{dom}(p')$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. We may define p' such that $\operatorname{dom}(p') = u$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p), \ \kappa_{i}^{p'} = \kappa_{i}^{\mathfrak{A}}$ for $i \in u, \ \pi_{i}^{p'} = \pi_{i}^{p}$ for $i \in \operatorname{dom}(p), \ \pi_{i}^{p'} = \emptyset$ for $i \in \operatorname{dom}(p') \setminus \operatorname{dom}(p)$, and $\tau_{i}^{p'} = \tau_{i}^{p}$ for $i \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 7. Let $p \in \mathbb{P}$, $i \in \text{dom}(p)$ and $\xi < \theta$. There is a $p' \leq p$ and an $\alpha \in \text{dom}(\pi_i^{p'})$ such that $\xi < \pi_i^{p'}(\alpha)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Let α be such that $\pi_{i,\omega_1}^{\mathfrak{A}}(\alpha) > \xi$. (Such an α exists, as the iteration map $\pi_{i,\omega_1}^{\mathfrak{A}}$ is cofinal.) We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p)$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_j^{p'} = \kappa_j^p$ for $j \in \operatorname{dom}(p)$, $\pi_j^{p'} = \pi_j^p$ for $j \in \operatorname{dom}(p) \setminus \{i\}$, $\pi_i^{p'} = \pi_i^p \cup \left\{ \langle \alpha, \pi_{i,\omega_1}^{\mathfrak{A}}(\alpha) \rangle \right\}$, and $\tau_j^{p'} = \tau_j^p$ for $j \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 8. Let $p \in \mathbb{P}$, $i \in \text{dom}(p)$, $\xi < \zeta$ and $\zeta \in \text{dom}(\pi_i^p)$. There is a $p' \leq p$ such that $\xi \in \text{dom}(\pi_i^{p'})$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p)$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_{j}^{p'} = \kappa_{j}^{p}$ for $j \in \operatorname{dom}(p)$, $\pi_{j}^{p'} = \pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \setminus \{i\}$, $\pi_{i}^{p'} = \pi_{i}^{p} \cup \left\{ \langle \xi, \pi_{i,\omega_{1}}^{\mathfrak{A}}(\xi) \rangle \right\}$, and $\tau_{j}^{p'} = \tau_{j}^{p}$ for $j \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 9. Let $p \in \mathbb{P}$ and $\xi \in H_{\theta}$. There is a $p' \leq p$ such that $\xi \in \operatorname{ran}(\pi_i^{p'})$ for some $i \in \operatorname{dom}(p')$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Let $i < \omega_1$, $i \notin \operatorname{dom}(p)$, and $\overline{\xi}$ be such that $\pi_{i,\omega_1}^{\mathfrak{A}}(\overline{\xi}) = \xi$. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p) \cup \{i\}$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_j^{p'} = \kappa_j^{\mathfrak{A}}$ for $j \in \operatorname{dom}(p')$, $\kappa_i^{p'} = \kappa_i^{\mathfrak{A}}$, $\pi_j^{p'} = \pi_j^p$ for $j \in \operatorname{dom}(p) \setminus \{i\}$, $\pi_i^{p'} = \{\langle \overline{\xi}, \xi \rangle\}$, and $\tau_j^{p'} = \tau_j^p$ for $j \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leqslant p$.

Lemma 10. Let $p \in \mathbb{P}$, $i \in \text{dom}(p)$, $j \in \text{dom}(p)$, i < j, $\xi \in \text{ran}(\pi_i^p)$. There is a $p' \leq p$ such that $\xi \in \text{ran}(\pi_j^{p'})$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Let $\overline{\xi}$ be such that $\pi_{j,\omega_1}^{\mathfrak{A}}(\overline{\xi}) = \xi$. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p)$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_k^{p'} = \kappa_k^{\mathfrak{A}}$ for $k \in \operatorname{dom}(p)$, $\pi_k^{p'} = \pi_k^p$ for $k \in \operatorname{dom}(p) \setminus \{j\}$, $\pi_j^{p'} = \pi_j^p \cup \{\langle \overline{\xi}, \xi \rangle\}$, and $\tau_k^{p'} = \tau_k^p$ for $k \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 11. Let $p \in \mathbb{P}$, $i, i+1 \in \text{dom}(p)$. Let $\xi \in \text{ran}(\pi_{i+1}^p)$. There is some $p' \leq p$ such that ξ is definable over \mathcal{M} from parameters in $\text{ran}(\pi_i^{p'}) \cup \{\kappa_i^p\}$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Since $M_{i+1}^{\mathfrak{A}} = \operatorname{Ult}(M_i^{\mathfrak{A}}, G_i^{\mathfrak{A}})$ there is an $f : \kappa_i^p = \omega_1^{M_i^{\mathfrak{A}}} \to M_i^{\mathfrak{A}}, f \in M_i^{\mathfrak{A}}$ such that $(\pi_{i+1}^p)^{-1}(\xi) = \pi_{i,i+1}^{\mathfrak{A}}(f)(\kappa_i^p)$, i.e., $\xi = \pi_{i,\omega_1}^{\mathfrak{A}}(f)(\kappa_i^p)$. Due to the presence of < in \mathcal{M} , the function $\pi_{i,\omega_1}^{\mathfrak{A}}(f)$ is definable over \mathcal{M} in some ordinal parameter $\lambda < \theta$. Let $\bar{\lambda}$ be such that $\lambda = \pi_{i,\omega_1}^{\mathfrak{A}}(\bar{\lambda})$. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p), \operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p), \kappa_j^{p'} = \kappa_j^{\mathfrak{A}}$ for $j \in \operatorname{dom}(p'), \pi_j^{p'} = \pi_j^p$ for $j \in \operatorname{dom}(p) \setminus \{i\}$,

$$\pi_i^{p'} = \pi_i^p \cup \left\{ \langle \bar{\lambda}, \lambda \rangle \right\},$$

and $\tau_i^{p'} = \tau_i^p$ for $i \in \text{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 12. Let $p \in \mathbb{P}$, and let $\lambda \in \text{dom}(p)$ be a limit ordinal. If $\xi \in \text{ran}(\pi_{\lambda}^{p})$, then there is some $p' \leq p$ and some $i < \lambda$ with $i \in \text{dom}(p')$ such that $\xi \in \text{ran}(\pi_{i}^{p'})$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Because $\operatorname{ran}(\pi_{\lambda,\omega_1}^{\mathfrak{A}}) = \bigcup_{i < \lambda} \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$, there is some $i < \lambda$ such that $\xi \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$. Let us without loss of generality assume that $i \in \operatorname{dom}(p)$. Let $\overline{\xi}$ be such that $\pi_{i,\omega_1}^{\mathfrak{A}}(\overline{\xi}) = \xi$. We may then define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p)$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_j^{p'} = \kappa_j^p$ for $j \in \operatorname{dom}(p)$, $\pi_j^{p'} = \pi_j^p$ for $j \in \operatorname{dom}(p) \setminus \{i\}$, $\pi_i^{p'} = \pi_i^p \cup \{\langle(\overline{\xi},\xi\rangle\}, \operatorname{and} \tau_i^{p'} = \tau_i^p$ for $i \in \operatorname{dom}_{-}(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 13. Let $p \in \mathbb{P}$, $i \in \text{dom}(p)$ and let ξ be definable over \mathcal{M} from parameters in $\operatorname{ran}(\pi_i^p)$. There is a $p' \leq p$ such that $\xi \in \operatorname{ran}(\pi_i^{p'})$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. We must have that $\xi \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$, as \mathfrak{A} certifies p (cf. condition (b)). Let $\pi_{i,\omega_1}^{\mathfrak{A}}(\bar{\xi}) = \xi$. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p)$, $\operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p)$, $\kappa_j^{p'} = \kappa_j^p$ for $j \in \operatorname{dom}(p)$, $\pi_j^{p'} = \pi_j^p$

for $j \in \operatorname{dom}(p) \setminus \{i\}$, $\pi_i^{p'} = \pi_i^p \cup \{\langle \overline{\xi}, \xi \rangle\}$, and $\tau_j^{p'} = \tau_j^p$ for $j \in \operatorname{dom}_-(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Lemma 14. Let $p \in \mathbb{P}$, let $i \in \text{dom}(p)$, and suppose that $D \in H_{\theta}$ is definable over \mathcal{M} from parameters in $\operatorname{ran}(\pi_i^p)$. Suppose also that

 $\mathcal{M} \models$ "D is dense in the partial order $\langle I^+, \leq_I \rangle$."

Then there is some $p' \leq p$ and some $X \in D$ which is definable over \mathcal{M} from parameters in $\operatorname{ran}(\pi_i^{p'})$ such that $\kappa_i^p \in X$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega,2^{\theta})}$ certify p. Let $\overline{D} \in M_i^{\mathfrak{A}}$ be such that $\pi_{i,\omega_1}^{\mathfrak{A}}(\overline{D}) = D$. As $G_i^{\mathfrak{A}}$ is $\langle (I_i^{\mathfrak{A}})^+, \leq_{I_i^{\mathfrak{A}}} \rangle$ -generic over $M_i^{\mathfrak{A}}, \overline{D} \cap G_i^{\mathfrak{A}} \neq \emptyset$. There is thus some $\overline{X} \in \overline{D}$ such that $\kappa_i^p = \kappa_i^{\mathfrak{A}} \in \pi_{i,i+1}^{\mathfrak{A}}(\overline{X}) \subset \pi_{i,\omega_1}^{\mathfrak{A}}(\overline{X})$. Let $X = \pi_{i,\omega_1}^{\mathfrak{A}}(\overline{X})$. Then $X \in D$ and $\kappa_i^p \in X$. Due to the presence of < in \mathcal{M} , there is some $\lambda < \theta$ such that X is definable over \mathcal{M} from the parameter λ . Let $\overline{\lambda}$ be such that $\lambda = \pi_{i,\omega_1}^{\mathfrak{A}}(\overline{\lambda})$. We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p), \operatorname{dom}_{-}(p') = \operatorname{dom}_{-}(p), \kappa_j^{p'} = \kappa_j^{\mathfrak{A}}$ for $j \in \operatorname{dom}(p'), \pi_j^{p'} = \pi_j^p$ for $j \in \operatorname{dom}(p) \setminus \{i\}$,

$$\pi_i^{p'} = \pi_i^p \cup \left\{ \langle \bar{\lambda}, \lambda \rangle \right\},$$

and $\tau_i^{p'} = \tau_i^p$ for $i \in \text{dom}_-(p')$. Then \mathfrak{A} also certifies p', and of course $p' \leq p$.

Now let G be \mathbb{P} -generic over V. Set

$$\kappa_i = \kappa_i^p \text{ for some (all) } p \in G \text{ with } i \in \operatorname{dom}(p)$$

$$\pi_i = \bigcup \{\pi_i^p; p \in G \land i \in \operatorname{dom}(p)\}, \text{ and}$$

$$\beta_i = \operatorname{dom}(\pi_i).$$

By Lemmas 6, 7, and 8, $\pi_i: \beta_i \to \theta$ is a well-defined cofinal order preserving map, and by Lemma 9, $\theta = \bigcup \{ \operatorname{ran}(\pi_i); i < \omega_1 \}$. For $i < \omega_1$, let X_i be the smallest $X \prec \mathcal{M}$ such that $\operatorname{ran}(\pi_i) \subseteq X$. By Lemma 13, $\operatorname{ran}(\pi_i) = X_i \cap \theta$. Let $\tilde{\pi}_i: M_i \cong X_i \prec \mathcal{M}$ be the uncollapsing map, so that $\tilde{\pi}_i \supset \pi_i$. For $i \leq j \leq \omega_1$, let $\tilde{\pi}_{i,j} = \tilde{\pi}_j^{-1} \circ \tilde{\pi}_i$. We then have that $\tilde{\pi}_{i,j}: M_i \to M_j$ is then well-defined by Lemma 10. For $i \leq \omega_1$, let $I_i = \tilde{\pi}_i^{-1}(I)$ and $\kappa_i = \tilde{\pi}_i^{-1}(\omega_1)$, and for $i < \omega_1$, let

$$G_i = \{ X \in \mathcal{P}(\kappa_i) \cap M_i ; \kappa_i \in \tilde{\pi}_{i,i+1}(X) \}.$$

Using Lemmas 11, 12, and 14, we then have the following.

Lemma 15. $\langle\langle M_i, \tilde{\pi}_{i,j}, I_i, \kappa_i ; i \leq j \leq \omega_1^V \rangle, \langle G_i ; i < \omega_1 \rangle\rangle$ is a generic iteration of M_0 such that if $i < \omega_1$, then M_i is countable, and $M_{\omega_1} = \langle H_{\theta}; \in , I \rangle$.

Let us now discuss the third component of a condition $p \in \mathbb{P}$.

Lemma 16. Suppose that \mathfrak{A} is a model. Let $p \in \mathbb{P}$ and $i \in \operatorname{dom}(p)$. Let $x \in H_{\rho}$ be such that τ_i^p is the complete \mathcal{H} -type of x over H_{θ} , i.e., having φ range over \mathcal{H} -formulae with free variables u, \vec{v} ,

$$\tau_i^p = \{ \langle \ulcorner \varphi \urcorner, \vec{z} \rangle \; ; \; \vec{z} \in H_\theta \land \mathcal{H} \models \varphi[x, \vec{z}] \}.$$

Then the following are equivalent.

- i. \mathfrak{A} certifies p with respect to \mathcal{M} .
- ii. $\theta + 1 \subset wfp(\mathfrak{A}), H_{\theta^+} \in \mathfrak{A}, \mathfrak{A} \models ZFC^-$, for all $S \in I^+, \mathfrak{A} \models "S$ is stationary," and inside \mathfrak{A} , there is a generic iteration

$$\langle\langle M_i^{\mathfrak{A}}, \pi_{i,j}^{\mathfrak{A}}, I_i^{\mathfrak{A}}, \kappa_i^{\mathfrak{A}}; i \leqslant j \leqslant \omega_1 \rangle, \langle G_i^{\mathfrak{A}}; i < \omega_1 \rangle \rangle$$

such that if $i < \omega_1$, then $M_i^{\mathfrak{A}}$ is countable, $M_{\omega_1}^{\mathfrak{A}} = \langle H_{\theta}; \in, I \rangle$, if $i \in \text{dom}(p)$, then $\kappa_i^p = \kappa_i^{\mathfrak{A}}$ and $\pi_i^p \subseteq \pi_{i,\omega_1}^{\mathfrak{A}}$, and if $i \in \text{dom}_{-}(p)$, then one of the following equivalent conditions holds.

(a)

$$\operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\}) \cap H_{\theta} = \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$$

(b) The map $\pi_{i,\omega_1}^{\mathfrak{A}} \colon M_i \to \mathcal{M}$ extends to some elementary map $\tilde{\pi} \colon H \to \mathcal{H}$ with $\tilde{\pi}(M_i) = \langle H_{\theta}; \in, I \rangle, \ \tilde{\pi} \upharpoonright M_i = \pi_{i,\omega_1}^{\mathfrak{A}}, \ and \ x \in \operatorname{ran}(\tilde{\pi}).$

(c)
$$\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \prec \langle H_{\theta}; \in, I, <, \tau_i^p \rangle.$$

Proof. i. \Rightarrow ii.(a): Let $y \in \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\}) \cap H_{\theta}$. Then y is definable over \mathcal{H} from parameters \vec{z} , x in $\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\}$. For some $n < \omega$, we then have that y is unique with $(n, y \cap \vec{z}) \in \tau_i^p$. As \mathfrak{A} certifies p (cf. condition vi.(e) in Definition 4), we then get that in fact $y \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$.

ii.(a) \Rightarrow ii.(b): Let $\tilde{\pi}$: $H \cong \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\}) \prec \mathcal{H}$, where H is transitive. It is obvious that this map works.

ii.(b) \Rightarrow ii.(a): As $x \in \operatorname{ran}(\tilde{\pi})$ and $\tilde{\pi} \supset \pi_{i,\omega_1}^{\mathfrak{A}}$, $\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \subset \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\}) \cap H_{\theta} \subset \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\tilde{\pi})) \cap H_{\theta} = \operatorname{ran}(\tilde{\pi}) \cap H_{\theta} = \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}).$

ii.(a) \Rightarrow ii.(c): We need to show that if $\vec{z} \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$ and φ is a formula (of the language associated with $\langle H_{\theta}; \in, I, <, \tau_i^p \rangle$) such that

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models \exists v \varphi(v, \vec{z}),$$
 (1)

then there is some $u \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$ with

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models \varphi(u, \vec{z}).$$

There is some recursive $\lceil \psi \rceil \mapsto \lceil \psi^* \rceil$ (assigning to each formula of the language associated with $\langle H_{\theta}; \in, I, <, \tau_i^p \rangle$ a formula of the language associated with $\langle H_{\rho}; \in, H_{\theta}, I, <, x \rangle$ such that for all $\vec{w} \in H_{\theta}$,

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models \psi(\vec{w})$$

iff

$$\langle H_{\rho}; \in, H_{\theta}, I, <, x \rangle \models \psi^*(\vec{w}).$$

Hence if (1) holds, then there is some $u \in H_{\theta}$ such that

$$\langle H_{\rho}; \in, H_{\theta}, I, <, x \rangle \models \varphi^*(u, \vec{z}).$$

There is then also some such $u \in H_{\theta}$ which is in Hull^{\mathcal{H}} $(ran(\pi_{i,\omega_1}^{\mathfrak{A}}) \cup \{x\})$, so that $u \in \operatorname{ran}(\pi_{i,\omega_1})^{\mathfrak{A}}$ by ii.(a). But then

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models \varphi(u, \vec{z}),$$

where $u \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$. ii.(c) \Rightarrow i.: Let $n < \omega$ and $\vec{z} \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$. Suppose there to be some $y \in H_{\theta}$ such that $(n, y^{\frown} \vec{z}) \in \tau_i^p$. Then

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models \exists y(n, y^{\frown} \vec{z}) \in \tau_i^p,$$

so that there is some $y \in \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}})$ with

$$\langle H_{\theta}; \in, I, <, \tau_i^p \rangle \models (n, y^{\frown} \vec{z}) \in \tau_i^p$$

as needed for condition vi.(e) in Definition 4.

It is easy to see that if $X \in I$ and $X \in ran(\tilde{\pi}_{i,\omega_1})$, where $i < \omega_1$, then $\{\kappa_j; i \leq j < \omega_1\} \subset \omega_1 \setminus X$. This means that no set in I will be stationary in $V^{\mathbb{P}}$.

Lemma 17. If $S \in I^+$, then S is stationary in $V^{\mathbb{P}}$.

Proof. Let $S \in I^+$, and let $p \in \mathbb{P}$ and \dot{C} be such that $p \Vdash \dot{C}$ is club in $\check{\omega_1}$. We need to see that there is some $p' \leq p$ and some $\alpha < \omega_1$ such that $p' \Vdash \check{\alpha} \in \dot{C} \cap \check{S}$.

Let

$$R = \{(r, \delta); r \in \mathbb{P}, \delta < \omega_1, \text{ and } r \Vdash_{\mathbb{P}} \delta \in \dot{C} \}.$$

Notice that $p, R, \leq_{\mathbb{P}} \in H_{\rho}$. Let τ the the complete \mathcal{H} -type of $\langle p, R, \leq_{\mathbb{P}} \rangle$ over H_{θ} . Let $\mathfrak{A} \in V^{\operatorname{Col}(\omega, 2^{\theta})}$ certify p with respect to \mathcal{M} . Recall that $H_{\theta} \in \mathfrak{A}$ and $\omega_1^{\mathfrak{A}} = \omega_1^V$. We have that $\langle \operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}); i < \omega_1 \rangle$ is a continuous tower of countable substructures of H_{θ} with $\bigcup \{\operatorname{ran}(\pi_{i,\omega_1}^{\mathfrak{A}}); i < \omega_1\} = H_{\theta}$. Since S is stationary in $\mathfrak{A}, H_{\theta^+} \in \mathfrak{A}$ and thus $\tau \in \mathfrak{A}$, we may therefore pick an $\alpha < \omega_1$ such that

i. κ^A_α = α and dom(p) ⊆ α,
ii. ran(π^A_{α,ω1}) ≺ ⟨H_θ; ∈, I, <, τ⟩, and
iii. α ∈ S.

We may define p' such that $\operatorname{dom}(p') = \operatorname{dom}(p) \cup \{\alpha\}$, $\operatorname{dom}_{-}(p') = \operatorname{dom}(p)_{-} \cup \{\alpha\}$, $\kappa_{i}^{p'} = \kappa_{i}^{p}$ for all $i \in \operatorname{dom}(p)$, $\kappa_{\alpha}^{p'} = \alpha$, $\pi_{i}^{p'} = \pi_{i}^{p}$ for all $i \in \operatorname{dom}(p)$, $\pi_{\alpha}^{p'} = \emptyset$, $\tau_{i}^{p'} = \tau_{i}^{p}$ for all $i \in \operatorname{dom}_{-}(p)$, and $\tau_{\alpha}^{p'} = \tau$. Using Lemma 16, we see that \mathfrak{A} still certifies p' by the above choice of α . Also, notice that if $i \in \operatorname{dom}_{-}(p)$, then τ_{i}^{p} is (trivially) definable over \mathcal{H} from the parameter p, so that because τ is the complete \mathcal{H} -type of $\langle p, R, \leq_{\mathbb{P}} \rangle$ over H_{θ} , we get that there is an $n < \omega$ such that

$$\tau_i^p = \{ (m, \vec{z}) ; (n, m^{\frown} \vec{z}) \in \tau \}.$$

We thus have $p' \in \mathbb{P}$, and of course $p' \leq p$.

We claim that $p' \Vdash \check{\alpha} \in \dot{C} \cap \check{S}$. Suppose not. Then p' does not force $\dot{C} \cap \check{\alpha}$ to be unbounded in $\check{\alpha}$. Pick $q \leq p'$ and $\xi < \alpha$ such that

$$q \Vdash \sup(\dot{C} \cap \check{\alpha}) = \check{\xi}.$$
 (2)

Let the model \mathfrak{B} certify q with respect to \mathcal{M} . By Lemma 16,

$$\operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{\alpha,\omega_{1}}^{\mathfrak{B}}) \cup \{\langle p, R, \leq_{\mathbb{P}} \rangle\}) \cap H_{\theta} = \operatorname{ran}(\pi_{\alpha,\omega_{1}}^{\mathfrak{B}}).$$
(3)

Let us now set

$$q' = \langle \langle \kappa_i^q; i \in \operatorname{dom}(q) \upharpoonright \alpha \rangle, \langle \pi_i^q; i \in \operatorname{dom}(q) \upharpoonright \alpha \rangle, \langle \tau_i^q; i \in \operatorname{dom}_-(q) \upharpoonright \alpha \rangle \rangle.$$

Of course, $q \leq q' \leq p$. If $i \in \text{dom}_{-}(q') = \text{dom}_{-}(q) \upharpoonright \alpha$, then there is some $n < \omega$ and some $\vec{u} \in \text{ran}(\pi_{\alpha}^{q})$ such that

$$\tau_i^{q'} = \{ (m, \vec{z}) \; ; \; (n, \vec{u} \ m \ \vec{z}) \in \tau_{\alpha}^q = \tau \}$$

By the choice of τ , we must then have that

$$\tau_i^{q'} \in \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{\alpha,\omega_1}^{\mathfrak{B}}) \cup \{ \langle p, R, \leq_{\mathbb{P}} \rangle \})$$

for every $i \in \text{dom}_{-}(q')$, because if

$$\tau = \{ \langle \ulcorner \varphi \urcorner, \vec{z} \rangle; \vec{z} \in H_{\theta} \land \mathcal{H} \models \varphi[\langle p, R, \leq_{\mathbb{P}} \rangle, \vec{z}] \},\$$

then

$$\tau_i^{q'} = \tau_i^q = \{ \langle m, \vec{z} \rangle; \vec{z} \in H_\theta \land \mathcal{H} \models \varphi[\langle p, R, \leq_{\mathbb{P}} \rangle, \vec{u}^{\frown} m^{\frown} \vec{z}] \}.$$

This implies that in fact

$$q' \in \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi^{\mathfrak{B}}_{\alpha,\omega_{1}}) \cup \{\langle p, R, \leq_{\mathbb{P}} \rangle\}).$$

$$(4)$$

Because $q' \Vdash_{\mathbb{P}} "\dot{C}$ is club in $\check{\omega_1}$," there is some $\gamma > \xi$ and some $q'' \leq_{\mathbb{P}} q'$ such that $q'' \Vdash_{\mathbb{P}} \check{\gamma} \in \dot{C}$, i.e., $(q'', \gamma) \in R$, and therefore by (4)

$$\operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{\alpha,\omega_{1}}^{\mathfrak{B}}) \cup \{\langle p, R, \leq_{\mathbb{P}} \rangle\}) \models \exists \gamma > \xi \; \exists q'' \leq_{\mathbb{P}} q' \; (q'', \gamma) \in R,$$

which means that there is some $q'' \leq q'$ with

$$q'' \in \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi^{\mathfrak{B}}_{\alpha,\omega_{1}}) \cup \{\langle p, R, \leq_{\mathbb{P}} \rangle\})$$
(5)

such that

$$q'' \Vdash_{\mathbb{P}} \sup(\dot{C} \cap \check{\alpha}) > \check{\xi}$$

In particular, $\operatorname{dom}(q'') \subseteq \alpha$. We must now have that

q'' and q are incompatible.

We derive a contradiction by constructing some $q^* \leqslant q'', q$.

Let

$$\tilde{\pi} \colon H \cong \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\pi_{\alpha,\omega_1}^{\mathfrak{B}}) \cup \{\langle p, R, \leq_{\mathbb{P}} \rangle\}) \prec \mathcal{H},$$

where H is transitive. By (3), $M^{\mathfrak{B}}_{\alpha} = \tilde{\pi}^{-1}(\langle H_{\theta}; \in, I \rangle) \in H$ and $\tilde{\pi} \upharpoonright M^{\mathfrak{B}}_{\alpha} = \pi^{\mathfrak{B}}_{\alpha,\omega_1}$. In $V^{\operatorname{Col}(\omega,2^{\theta})}$, there is a model \mathfrak{C} which certifies q''. In $\mathcal{H}^{\operatorname{Col}(\omega,2^{\theta})}$, there is hence some generic iteration

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that $M_{\omega_1} = \langle H_{\theta}; \in, I \rangle$ and for all $i \in \text{dom}(q'')$, $\kappa_i^{q''} = \kappa_i$ and $\pi_i^{q''} \subseteq \pi_{i,\omega_1}$. By the elementarity of $\tilde{\pi}$, there is hence in $H^{\text{Col}(\omega, \tilde{\pi}^{-1}(2^{\theta}))} \subseteq V^{\text{Col}(\omega, 2^{\theta})}$ some generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \alpha \rangle, \langle G_i; i < \alpha \rangle \rangle$$

such that $M_{\alpha} = \tilde{\pi}^{-1}(\langle H_{\theta}; \in, I \rangle) = M_{\alpha}^{\mathfrak{B}}$ and for all $i \in \operatorname{dom}(q'')$, $\kappa_{i}^{q''} = \kappa_{i}$ and $\tilde{\pi}^{-1}(\pi_{i}^{q''}) \subseteq \pi_{i,\alpha}$, i.e., $\pi_{i}^{q''} \subseteq \tilde{\pi} \circ \pi_{i,\alpha} = \pi_{\alpha,\omega}^{\mathfrak{B}} \circ \pi_{i,\alpha}$. Because $M_{\alpha}^{\mathfrak{B}}$ is countable in $\mathfrak{B}, \theta + 1 \subset \operatorname{wfp}(\mathfrak{B})$, and $\mathfrak{B} \in V^{\operatorname{Col}(\omega, 2^{\theta})}$, there is therefore by absoluteness some generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \alpha \rangle, \langle G_i; i < \alpha \rangle \rangle \in \mathfrak{B}$$

such that $M_{\alpha} = M_{\alpha}^{\mathfrak{B}}$ and for all $i \in \operatorname{dom}(q'')$, $\kappa_i^{q''} = \kappa_i$ and $\pi_i^{q''} \subseteq \pi_{\alpha,\omega_1}^{\mathfrak{B}} \circ \pi_{i,\alpha}$. Let

$$\langle \langle M_i^*, \pi_{i,j}^*, I_i^*, \kappa_i^*; i \leqslant j \leqslant \omega_1 \rangle, \langle G_i^*; i < \omega_1 \rangle \rangle \in \mathfrak{B}$$
(6)

be defined as follows. If $i \leq j \leq \alpha$, then we set $M_i^* = M_i$, $\pi_{i,j}^* = \pi_{i,j}$, $I_i^* = I_i$, $\kappa_i^* = \kappa_i$, and if $i < \alpha$, then we set $G_i^* = G_i$. If $\alpha \leq i \leq j \leq \omega_1$, then we set $M_i^* = M_i^{\mathfrak{B}}$ (there is no conflict for $i = \alpha$, as $M_{\alpha}^{\mathfrak{B}} = M_{\alpha}$), $\pi_{i,j}^* = \pi_{i,j}^{\mathfrak{B}}$, $I_i^* = I_i^{\mathfrak{B}}$, $\kappa_i^* = \kappa_i$, and if $\alpha \leq i < \omega_1$, then we set $G_i^* = G_i^{\mathfrak{B}}$. Finally, if $i \leq \alpha \leq j$, then we set $\pi_{i,j}^* = \pi_{\alpha,j}^{\mathfrak{B}} \circ \pi_{i,\alpha}$. The existence of the generic iteration (6) inside \mathfrak{B} clearly shows that \mathfrak{B} in fact certifies q''. However, as $\operatorname{dom}(q'') \supseteq \operatorname{dom}(q) \upharpoonright \alpha$, the very same generic iteration (6) shows that \mathfrak{B} certifies q.

Let us now define $q^* \in \mathbb{P}$ as follows. Let $\operatorname{dom}(q^*) = \operatorname{dom}(q) \cup \operatorname{dom}(q'')$ and $\operatorname{dom}_{-}(q^*) = \operatorname{dom}(q)_{-} \cup \operatorname{dom}_{-}(q'')$. (Neither $\operatorname{dom}(q)$ and $\operatorname{dom}(q'')$ nor $\operatorname{dom}(q)_{-}$ and $\operatorname{dom}_{-}(q'')$ need to be disjoint, but $\operatorname{dom}(q) \cap \alpha \subseteq \operatorname{dom}(q'')$ and $\operatorname{dom}(q)_{-} \cap \alpha \subseteq \operatorname{dom}_{-}(q'')$.) For $i \in \operatorname{dom}(q^*)$ set $\kappa_i^{q^*} = \kappa_i^*$. For $i \in \operatorname{dom}_{-}(q'')$ set $\tau_i^{q^*} = \tau_i^{q''}$, and for $i \in \operatorname{dom}_{-}(q)$, set $\tau_i^{q^*} = \tau_i^q$. Also, for $i \in \operatorname{dom}(q'')$ set $\pi_i^{q^*} = \pi_i^{q''}$. Finally, for $i \in \operatorname{dom}(q) \setminus \alpha$, we need some adjustment in order to actually get a condition. By (5), there is some finite $\vec{u} \subseteq \operatorname{ran}(\pi_{\alpha,\omega_1}^{\mathfrak{B}})$ such that

$$q'' \in \operatorname{Hull}^{\mathcal{H}}(\{\vec{u}, \langle p, R, \leq_{\mathbb{P}} \rangle\}).$$

We then also have some $n < \omega$ such that for every $i \in \text{dom}_{-}(q'')$,

$$\tau_i^{q''} = \tau_i^{q^*} = \{ (m, \vec{z}) \; ; \; (n, \vec{u} \frown m \frown \vec{z}) \in \tau_\alpha^{q^*} = \tau_\alpha^{p'} = \tau \}.$$

We may assume without loss of generality that $\pi_{i,\omega_1}^* \operatorname{dom}(\pi_i^{q^*}) \subseteq \vec{u}$ for $i \in \operatorname{dom}(q'') \subseteq \alpha$. For $j \in \operatorname{dom}(q^*)$, $j \ge \alpha$, we then set

$$\pi_{j}^{q^{*}} = \pi_{j,\omega_{1}}^{*} \upharpoonright ((\pi_{j,\omega_{1}}^{*})^{-1}(\vec{u}) \cup \operatorname{dom}(\pi_{j}^{q''}))$$

It is now straightforward to see that $q^* \in \mathbb{P}$. Notice that if $i \in \text{dom}_{-}(q^*) \cap \alpha = \text{dom}_{-}(q'')$ and $j \in \text{dom}_{-}(q^*) \setminus \alpha = \text{dom}_{-}(q) \setminus \alpha$, and if

$$\tau^{q^*}_{\alpha}=\tau^q_{\alpha}=\{(m,\vec{z});(k,\vec{v}^\frown m^\frown \vec{z})\in \tau^{q^*}_j=\tau^q_j\},$$

where $\vec{v} \in \operatorname{ran}(\pi_j^{q^*}) = \operatorname{ran}(\pi_j^q)$, then

$$\tau_i^{q^*} = \tau_i^{q''} = \{(m, \vec{z}); (n, \vec{u} \cap m \cap \vec{z} \in \tau_\alpha^{q^*}\} = \{(m, \vec{z}); (k, \vec{v} \cap n \cap \vec{u} \cap m \cap \vec{z} \in \tau_j^{q^*}\}$$

and $\vec{v}, \vec{u} \subseteq \operatorname{ran}(\pi_j^{q^*})$. Of course, $q^* \leqslant q, q''$. We have reached a contradiction.

This finishes the proof of Theorem 3.

A straightforward adaptation yields the following result.

Theorem 18. Let I be a precipitous ideal on ω_1 , and let $\theta > \omega_1$ be a regular cardinal. Suppose that $H_{\theta}^{\#}$ exists. There is a poset \mathbb{P} , preserving the stationarity of all sets in I^+ , such that if G is \mathbb{P} -generic over V, then in V[G] there is a generic iteration

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_{\theta}^{\#}; \in, I \rangle$. In particular, M_0 is generically $\omega_1 + 1$ iterable. If $I = \mathsf{NS}_{\omega_1}$, then \mathbb{P} is stationary set preserving.

Proof. Let $\rho > 2^{2^{\theta}}$, and let $\mathbb{P} = (\operatorname{Col}(\rho, \rho) \times \operatorname{Col}(\theta^+, \theta^+)) * \mathbb{P}(I, \theta^+)$, where $\mathbb{P}(I, \theta^+)$ is as in Theorem 3. Let

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

be a generic iteration which is added by forcing with \mathbb{P} . Setting $N_i = \pi_{i,\omega_1}^{-1}(H_{\theta})$, we will have that $\pi_{i,\omega_1}^{-1}(H_{\theta}^{\#}) = N_i^{\#}$. The iterability of M_0 follows from Lemma 2. Notice that $\langle N_0^{\#}; \in, I_0 \rangle$ is generically $\omega_1 + 1$ iterable iff $\langle L[N_0]; \in, I_0 \rangle$ is generically $\omega_1 + 1$ iterable.

Lemma 19 (Woodin). Let M be a countable transitive model of ZFC^* + " ω_1 exists," and let $I \subseteq \mathcal{P}(\omega_1^M)$ be such that $\langle M; \in, I \rangle \models$ "I is a uniform and normal ideal on ω_1^M ." Let $\alpha < \omega_1$, and suppose $\langle M; \in, I \rangle$ to be generically $\alpha + 1$ iterable. Let z_0 be a real which codes $\langle M; \in, I \rangle$, let z_1 be a real which codes α , and let $z = z_0 \oplus z_1$. Let

$$\langle\langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \alpha \rangle, \langle G_i; i < \alpha \rangle\rangle$$

be a generic iteration of $\langle M; \in, I \rangle$ of length $\alpha + 1$. Then $M_{\alpha} \cap \text{OR} < \omega_1^{L[z]}$.

Proof. The proof is taken from [Woo99, p. 56f.]. Let $A \subset \mathbb{R}$ be defined by $x \in A$ iff x codes a countable ordinal ξ (which we write as $\xi = ||x||$) such that for some generic iteration

$$\langle \langle M'_i, \pi'_{i,j}, I_i, \kappa'_i; i \leqslant j \leqslant \alpha \rangle, \langle G'_i; i < \alpha \rangle \rangle$$

of $\langle M; \in, I \rangle$ of length $\alpha + 1$, $\xi \subseteq M'_{\alpha}$. The set A is $\Sigma_1^1(z)$, so that by the Boundedness Lemma (cf. [Jec03, Corollary 25.14]),

$$\sup\{\xi; \exists x \in A\xi = ||x||\} < \omega_1^{L[z]}$$

In particular, $M_{\alpha} \cap \text{OR} < \omega_1^{L[z]}$.

Lemma 20. Suppose I to be a precipitous ideal on ω_1 . Let $\theta \geq \omega_2$ be regular, and suppose that $H_{\theta}^{\#}$ exists. Let $\mathbb{P} = \mathbb{P}'(I, \theta)$ be as in Theorem 18, and let G be \mathbb{P} -generic over V. In V[G], let

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle \in V[G]$$

be a generic iteration such that if $i < \omega_1$, then M_i is countable and $M_{\omega_1} = \langle H_{\theta}^{\#}; \in, I \rangle$. Let $z \in \mathbb{R} \cap V[G]$ code $\langle \pi_{0,\omega_1}^{-1}(H_{\theta}); \in, I_0 \rangle$. Then $\theta < \omega_1^{+L[z]}$. In particular, $V[G] \models \theta < \underline{\delta}_2^1$.

Proof. For a canonical choice of z, $z^{\#}$ exists in V[G] and $z^{\#}$ codes $\langle M_0; \in , I_0 \rangle$. It therefore suffices to prove $\theta < \omega_1^{+L[z]}$. Suppose that $\omega_1^{+L[z]} \leq \theta$. Let us work in V[G] to derive a contradiction. Let $X \prec H_{\Omega}$ be countable (where Ω is regular and large enough) such that $z^{\#}$ and

$$\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle$$

are both elements of X, and let $\sigma \colon N \cong X \prec H_{\Omega}$, where N is tranitive. Let $\alpha = X \cap \omega_1 = \omega_1^N$. Since $z^{\#} \in X$, we have that

$$\mathcal{P}(\alpha) \cap L[z] \subseteq \mathcal{P}(\alpha) \cap N,$$

so that $\sigma^{-1}(\omega_1^{L[z]}) = \alpha^{+L[z]}$. Also,

$$\sigma^{-1}(\langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \omega_1 \rangle, \langle G_i; i < \omega_1 \rangle \rangle) = \langle \langle M_i, \pi_{i,j}, I_i, \kappa_i; i \leq j \leq \alpha \rangle, \langle G_i; i < \alpha \rangle \rangle,$$

so that $\sigma^{-1}(\theta) = M_{\alpha} \cap \text{OR}$. Let $g \in V[G]$ be $\text{Col}(\omega, \alpha)$ -generic over N. Then $M_{\alpha} \cap \text{OR} \ge \alpha^{+L[z]} = \omega_1^{L[z \oplus g]}$. This contradicts Lemma 19.

Recall that Bounded Martin's Maximum, BMM, may be formulated as follows. If $\mathbb{Q} \in V$ is a stationary set preserving forcing, then

$$H^V_{\omega_2} \prec_{\Sigma_1} H^{V^\mathbb{Q}}_{\omega_2}.$$

It was shown in [Sch04] that BMM implies that V is closed under sharps. Of course, having a precipitous ideal on ω_1 also yields that the reals are closed under sharps.

Corollary 21. Suppose that BMM holds and NS_{ω_1} is precipitous. Then $u_2 = \omega_2$.

Proof. Let $\alpha < \omega_2$. Let $\varphi \equiv \exists z \in \mathbb{R} (\alpha < \omega_1^{+L[z]})$. The statement φ is Σ_1 over H_{ω_2} in the parameters ω_1 , α , and φ holds in $V^{\mathbb{P}}$, where $\mathbb{P} = \mathbb{P}'(NS_{\omega_1}, \omega_2)$. Therefore, φ must hold in V. As α was arbitrary, we have shown that $u_2^V = \omega_2$.

Recall that the Bounded Semiproper Forcing Axiom, BSPFA, may be formulated as follows. If $\mathbb{Q} \in V$ is a semiproper forcing, then

$$H^V_{\omega_2} \prec_{\Sigma_1} H^{V^\mathbb{Q}}_{\omega_2}$$

For a formulation of the Reflection Principle RP cf. [Jec03, p.688].

Corollary 22. Suppose BSPFA and RP both hold. Then $u_2 = \omega_2$.

Proof. The Reflection Principle RP implies that all stationary set preserving forcings are semiproper, and it implies that NS_{ω_1} is precipitous (cf. [Jec03, p.688]). The rest of the proof is the same as that of the previous corollary.

References

- [FS88] Magidor Menachem Foreman, Matthew and Saharon Shelah. Martin's Maximum, Saturated Ideals, and Nonregular Ultrafilters. Part I. Annals of Mathematics, 127(1):1–47, 1988.
- [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.

- [Jen90a] Ronald Jensen. Making cardinals ω-cofinal. 1990. Handwritten notes, available at http://www-irm.mathematik.huberlin.de/~raesch/org/jensen/ pdf/Making_Cards.pdf.
- [Jen90b] Ronald Jensen. On some problems of Mitchell, Welch and Vickers. 1990. Handwritten http://www-irm.mathematik.hunotes, available at berlin.de/~raesch/org/jensen/pdf/Some_Problems.pdf.
- [KLZ07] Richard Ketchersid, Paul Larson, and Jindřich Zapletal. Increasing δ_2^1 and Namba style forcing. Journal of Symb. Logic, 72(4):1372–1387, 2007.
- [Mos80] Yiannis Moschovakis. *Descriptive Set Theory*. North Holland Publishing Company, Amsterdam, New York, Oxford, 1980.
- [Sch04] Ralf Schindler. Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum. Math. Logic Quarterly, 50(6):527– 32, 2004.
- [SVW82] John R. Steel and Robert Van Wesep. Two consequences of determinacy consistent with choice. Trans. Amer. Math. Soc., 272(1):67–85, 1982.
- [Woo99] W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of de Gruyter Series in Logic and its Applications. Walter de Gruyter & Co., Berlin, 1999.