Increasing u_{2} by a stationary set preserving forcing

Benjamin Claverie, Ralf Schindler*
Institut für Mathematische Logik und Grundlagenforschung
Universität Münster
Einsteinstr. 62, 48149 Münster, Germany

November 6, 2008

Abstract

We show that if I is a precipitous ideal on ω_{1} and if $\theta>\omega_{1}$ is a regular cardinal, then there is a forcing $\mathbb{P}=\mathbb{P}(I, \theta)$ which preserves the stationarity of all I-positive sets such that in $V^{\mathbb{P}},\left\langle H_{\theta} ; \in, I\right\rangle$ is a generic iterate of a countable structure $\langle M ; \in, \bar{I}\rangle$. This shows that if the nonstationary ideal on ω_{1} is precipitous and $H_{\theta}^{\#}$ exists, then there is a stationary set preserving forcing which increases δ_{2}^{1}. Moreover, if Bounded Martin's Maximum holds and the nonstationary ideal on ω_{1} is precipitous, then $\delta_{2}^{1}=u_{2}=\omega_{2}$.

In this paper we modify Jensen's \mathcal{L}-forcing (cf. [Jen90a] and [Jen90b]) and apply this to the theory of precipitous ideals and the question about the size of u_{2}. Forcings which increase the size of u_{2} were already presented in the past. After Steel and van Wesep had shown that $u_{2}=\omega_{2}$ is consistent in the presence of large cardinal hypotheses (cf. [SVW82]), Woodin proved that if the nonstationary ideal on ω_{1} is ω_{2}-saturated and $\mathcal{P}\left(\omega_{1}\right)^{\#}$ exists, then $u_{2}=\omega_{2}$ (cf. [Woo99, Theorem 3.17]; in particular, $u_{2}=\omega_{2}$ follows from Martin's Maximum by work of Foreman, Magidor and Shelah, cf. [FS88].) More recently, Ketchersid, Larson, and Zapletal also constructed forcings which increase u_{2} (cf. [KLZ07]).

Recall that δ_{2}^{1} is the supremum of the lengths of all Δ_{2}^{1} well-orderings of the reals, and that if the reals are closed under sharps, then u_{2}, the second uniform indiscernible, is defined to be the least ordinal above ω_{1}

[^0]which is an x-indiscernible for every $x \in \mathbb{R}$. By the Kunen-Martin Theorem (cf. [Mos80, Theorem 2G.2]), if \leq is a $\Delta_{2}^{1}(x)$ prewellordering of \mathbb{R}, then the length of \leq is less than $\omega_{1}^{+L[x]}$. Moreover, if $x^{\#}$ exists, then there is a $\Delta_{2}^{1}\left(x^{\#}\right)$-prewellordering of \mathbb{R} of length $\omega_{1}^{+L[x]}$, which implies $\omega_{1}^{+L[x]}<\delta_{2}^{1}$. Also, $\omega_{1}^{+L\left[x^{\#}\right]}<u_{2}^{x}$, the least x-indiscernible above ω_{1}. Therefore, if the reals are closed under sharps, then
$$
u_{2}=\sup \left\{\omega_{1}^{+L[x]} ; x \in \mathbb{R}\right\}={\underset{\sim}{d}}_{2}^{1}
$$

In this paper we'll consider generic iterations of structures of the form $\langle M ; \in, I\rangle$, where M is a transitive model of ZFC* + " ω_{1} exists" and inside M, I is a uniform and normal ideal on ω_{1}^{M}. Here, ZFC * is a reasonable weak fragment of ZFC such that ZFC* + " ω_{1} exists" is suitable for taking generic ultrapowers by ideals on ω_{1} (cf. [Woo99]). For a set X, we let $X^{\#}$ denote the least X-mouse, i.e., the least X-premouse $\mathcal{P}=\left(J_{\alpha}(X) ; \in, X, E_{\alpha}\right)$, such that $E_{\alpha} \neq \emptyset, \mathcal{P}$ is sound above X, and \mathcal{P} is iterable. The universe of any $X^{\#}$ is a model of ZFC* + " ω_{1} exists."

Let I be an ideal on ω_{1}. We shall write $I^{+}=\left\{x \subseteq \omega_{1} ; x \notin I\right\}$ for the set of the I-positive sets. We shall also write $X \leq_{I} Y$ iff $X \backslash Y \in I$. Forcing with $\left\langle I^{+}, \leq_{I}\right\rangle$ adds a V-measure G and thereby a generic embedding $\pi: V \rightarrow \operatorname{Ult}(V ; G)$. The ideal I is precipitous iff $\operatorname{Ult}(V ; G)$ is always wellfounded. (Cf. [Jec03, pp. 424ff.].)

Definition 1. Let M be a transitive model of ZFC* ${ }^{*}$ " ω_{1} exists," and let $I \subseteq \mathcal{P}\left(\omega_{1}^{M}\right)$ be such that $\langle M ; \in, I\rangle \models$ " I is a uniform and normal ideal on $\omega_{1}^{\bar{M}}$." Let $\gamma \leq \omega_{1}$. Then

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \gamma\right\rangle,\left\langle G_{i} ; i<\gamma\right\rangle\right\rangle
$$

is called a putative generic iteration of $\langle M ; \in, I\rangle$ (of length $\gamma+1$) iff the following hold true.
i. $M_{0}=M$ and $I_{0}=I$.
ii. For all $i \leq j \leq \gamma, \pi_{i, j}:\left\langle M_{i} ; \in, I_{i}\right\rangle \rightarrow\left\langle M_{j} ; \in, I_{j}\right\rangle$ is elementary, $I_{i}=$ $\pi_{0, i}(I)$, and $\kappa_{i}=\pi_{0, i}\left(\omega_{1}^{M}\right)=\omega_{1}^{M_{i}}$.
iii. For all $i<\gamma, M_{i}$ is transitive and G_{i} is $\left\langle I_{i}, \leq I_{i}\right\rangle$-generic over M_{i}.
iv. For all $i+1 \leq \gamma, M_{i+1}=\operatorname{Ult}\left(M_{i} ; G_{i}\right)$ and $\pi_{i, i+1}$ is the associated ultrapower map.
v.

$$
p i_{j, k} \circ p i_{i, j}=\pi_{i, k} \text { for } i \leqslant j \leqslant k
$$

vi. If $\lambda \leq \gamma$ is a limit ordinal, then $\left\langle M_{\lambda}, \pi_{i, \lambda}, i<\lambda\right\rangle$ is the direct limit of $\left\langle M_{i}, \pi_{i, j}, i \leqslant j<\lambda\right\rangle$.

We call

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \gamma\right\rangle,\left\langle G_{i} ; i<\gamma\right\rangle\right\rangle
$$

a generic iteration of $\langle M ; \in, I\rangle$ (of length $\gamma+1$) iff it is a putative generic iteration of $\langle M ; \in, I\rangle$ and M_{γ} is transitive. $\langle M ; \in, I\rangle$ is generically $\gamma+1$ iterable iff every putative generic iteration of $\langle M ; \in, I\rangle$ of length $\gamma+1$ is an iteration.

Notice that we want (putative) iterations of a given model $\langle M ; \in, I\rangle$ to exist in V, which amounts to requiring that the relevant generics G_{i} may be found in V. The following lemma is therefore only interesting in situations in which M (or a large enough initial segment thereof) is countable so that we may actually find generics in V.

Lemma 2 (Woodin). Let M be a transitive model of ZFC, and let $I \subseteq$ $\mathcal{P}\left(\omega_{1}^{M}\right)$ be such that $\langle M ; \in, I\rangle \models$ " I is a uniform and normal precipitous ideal on ω_{1}^{M}." Then $\langle M ; \in, I\rangle$ is generically $\gamma+1$ iterable whenever $\gamma<$ $\min \left(M \cap \mathrm{OR}, \omega_{1}^{V}+1\right)$.

Proof. The proof is taken from [Woo99, Lemma 3.10, Remark 3.11]. By absoluteness, if $\langle M ; \in, I\rangle$ is not generically $\gamma+1$ iterable, then $\left\langle H_{\kappa}^{M} ; \in, I\right\rangle$ is not generically $\gamma+1$ iterable inside $M^{\operatorname{Col}(\omega, \delta)}$ for some κ and δ such that κ is regular in $M, H_{\kappa}^{M} \models$ ZFC* $+" \omega_{1}$ exists," and $\delta \geq \gamma$ (cf. [Woo99, Lemma 3.8]). Let $\left\langle\kappa_{0}, \eta_{0}, \gamma_{0}\right\rangle$ be the least triple in the lexicographical order such that:

- $\kappa_{0}>\omega_{1}^{M}$ is regular in M,
- $\eta_{0}<\kappa_{0}$, and
- for some δ, inside $M^{\operatorname{Col}(\omega, \delta)}$, there is a putative iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \gamma_{0}\right\rangle,\left\langle G_{i} ; i<\gamma_{0}\right\rangle\right\rangle
$$

of $\left\langle H_{\kappa_{0}}^{M} ; \in, I\right\rangle$ such that $\pi_{0, \gamma_{0}}\left(\eta_{0}\right)$ is ill-founded.

As I is precipitous in M, γ_{0} and η_{0} are limit ordinals. Choose some $i^{*}<\gamma_{0}$ and $\eta^{*}<\pi_{0, i^{*}}\left(\eta_{0}\right)$ such that $\pi_{i^{*}, \gamma_{0}}\left(\eta^{*}\right)$ is ill-founded. We may construe

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i^{*} \leqslant i \leqslant j \leqslant \gamma_{0}\right\rangle,\left\langle G_{i} ; i^{*} \leqslant i<\gamma_{0}\right\rangle\right\rangle
$$

as a putative generic iteration of $H_{\pi_{0, i^{*}\left(\kappa_{0}\right)}^{M_{i^{*}}} \text {. By elementarity, the triple }}$ $\left\langle\pi_{0, i^{*}}\left(\kappa_{0}\right), \pi_{0, i^{*}}\left(\eta_{0}\right), \pi_{0, i^{*}}\left(\gamma_{0}\right)\right\rangle$ is the least triple $\langle\kappa, \eta, \gamma\rangle$ such that

- $\kappa>\omega_{1}^{M_{i^{*}}}$ is regular in $M_{i^{*}}$,
- $\eta<\kappa$, and
- for some δ, inside $M_{i^{*}}^{\operatorname{Col}(\omega, \delta)}$, there is a putative iteration

$$
\left\langle\left\langle M_{i}^{\prime}, \pi_{i, j}^{\prime}, I_{i}^{\prime}, \kappa_{i}^{\prime} ; i \leqslant j \leqslant \gamma\right\rangle,\left\langle G_{i}^{\prime} ; i<\gamma\right\rangle\right\rangle
$$

$$
\text { of }\left\langle H_{\pi_{0, i^{*}}(\kappa)}^{M_{i^{*}}} ; \in, I_{i^{*}}\right\rangle \text { such that } \pi_{0, \gamma}^{\prime}(\eta) \text { is ill-founded. }
$$

However, by the existence of

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i^{*} \leqslant i \leqslant j \leqslant \gamma_{0}\right\rangle,\left\langle G_{i} ; i^{*} \leqslant i<\gamma_{0}\right\rangle\right\rangle
$$

and by absoluteness, the triple $\left\langle\pi_{0, i^{*}}\left(\kappa_{0}\right), \eta^{*}, \gamma_{0}-i^{*}\right\rangle$ contradicts the alleged characterization of the triple $\left\langle\pi_{0, i^{*}}\left(\kappa_{0}\right), \pi_{0, i^{*}}\left(\eta_{0}\right), \pi_{0, i^{*}}\left(\gamma_{0}\right)\right\rangle$ inside $M_{i^{*}}$.

By $\mathrm{NS}_{\omega_{1}}$ we shall denote the nonstationary ideal on ω_{1}.
We may now state and prove our main result.

Theorem 3. Let I be a precipitous ideal on ω_{1}, and let $\theta>\omega_{1}$ be a regular cardinal. There is a poset $\mathbb{P}(I, \theta)$, preserving the stationarity of all sets in I^{+}, such that if G is $\mathbb{P}(I, \theta)$-generic over V, then in $V[G]$ there is a generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle
$$

such that if $i<\omega_{1}$, then M_{i} is countable and $M_{\omega_{1}}=\left\langle H_{\theta} ; \in, I\right\rangle$. If $I=\mathrm{NS}_{\omega_{1}}$, then $\mathbb{P}_{\mathrm{NS}_{\omega_{1}}}$ is stationary set preserving.

It is easy to see that every set in I^{+}has to be stationary in V. The most difficult part of the construction is to arrange that every set in I^{+}will remain stationary in the forcing extension.

The proof of Theorem 3 stretches over several lemmas and builds upon Jensen's [Jen90a] and [Jen90b]. Fixing I and θ, let us pick a regular cardinal ρ such that $2^{2^{<\theta}}<\rho$. Therefore, $H_{\theta} \in H_{\rho}$, and in fact every subset of
$\mathcal{P}\left(H_{\theta}\right)$ is in H_{ρ} as well. In particular, the forcing $\mathbb{P}(I, \theta)$ we are about to define will be an element of H_{ρ}. It is easy to verify that if a forcing $\mathbb{Q} \in V$ is ω_{1}-distributive, then I is still precipitous in $V^{\mathbb{Q}}$. We may and shall therefore assume that $2^{<\theta}=\theta$ and $2^{<\rho}=\rho$, i.e., that $\operatorname{Card}\left(H_{\theta}\right)=\theta$ and $\operatorname{Card}\left(H_{\rho}\right)=\rho$, because if this were not true in V, then we may first force with $\mathbb{Q}=\operatorname{Col}(\rho, \rho) \times \operatorname{Col}(\theta, \theta)$ and work with $V^{\mathbb{Q}}$ rather than V as our ground model in what follows.

Our starting point is thus that in V, I is a precipitous ideal on ω_{1} and θ and ρ are regular cardinals such that $\omega_{2} \leq \theta=2^{<\theta}<2^{\theta}<\rho=2^{<\rho}$. Let us fix a well-order, denoted by $<$, of H_{ρ} of order type ρ such that $<\upharpoonright H_{\theta}$ is an initial segment of $<$ of order type θ. (In what follows, we shall also write $<$ for $<\upharpoonright H_{\theta}$.) We shall write

$$
\mathcal{H}=\left\langle H_{\rho} ; \in, H_{\theta}, I,<\right\rangle,
$$

and we shall also write

$$
\mathcal{M}=\left\langle H_{\theta} ; \in, I,<\right\rangle .
$$

In what follows, models will always be models of the languange of set theory. We shall tacitly assume that if \mathfrak{A} is a model, then the well-founded part $\operatorname{wfp}(\mathfrak{A})$ of \mathfrak{A} is transitive.

Let us now define our forcing $\mathbb{P}(I, \theta)$.
Definition 4. Conditions p in $\mathbb{P}(I, \theta)$ are triples

$$
p=\left\langle\left\langle\kappa_{i}^{p} ; i \in \operatorname{dom}(p)\right\rangle,\left\langle\pi_{i}^{p} ; i \in \operatorname{dom}(p)\right\rangle,\left\langle\tau_{i}^{p} ; i \in \operatorname{dom}_{-}(p)\right\rangle\right\rangle
$$

such that the following hold true.
i. Both $\operatorname{dom}(p)$ and $\operatorname{dom}_{-}(p)$ are finite, and $\operatorname{dom}_{-}(p) \subseteq \operatorname{dom}(p) \subseteq \omega_{1}$.
ii. $\left\langle\kappa_{i}^{p} ; i \in \operatorname{dom}(p)\right\rangle$ is a sequence of countable ordinals.
iii. $\left\langle\pi_{i}^{p} ; i \in \operatorname{dom}(p)\right\rangle$ is a sequence of finite partial maps from ω_{1} to θ.
iv. $\left\langle\tau_{i}^{p} ; i \in \operatorname{dom}_{-}(p)\right\rangle$ is a sequence of complete \mathcal{H}-types over H_{θ}, i.e., for each $i \in \operatorname{dom}_{-}(p)$ there is some $x \in H_{\rho}$ such that, having φ range over \mathcal{H}-formulae with free variables u, \vec{v},

$$
\tau_{i}^{p}=\left\{\langle\ulcorner\varphi\urcorner, \vec{z}\rangle ; \vec{z} \in H_{\theta} \wedge \mathcal{H} \models \varphi[x, \vec{z}]\right\} .
$$

v. If $i, j \in$ dom_ $_{-}(p)$, where $i<j$, then there is some $n<\omega$ and some $\vec{u} \in \operatorname{ran}\left(\pi_{j}^{p}\right)$ such that

$$
\tau_{i}^{p}=\left\{(m, \vec{z}) ;\left(n, \vec{u} \subset m^{\frown} \vec{z}\right) \in \tau_{j}^{p}\right\} .
$$

vi. In $V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$, there is a model which certifies p with respect to \mathcal{M}, by which we mean a model \mathfrak{A} such that $\theta+1 \subset \operatorname{wfp}(\mathfrak{A})$, in fact $H_{\theta^{+}} \in \mathfrak{A}$, $\mathfrak{A} \vDash$ ZFC $^{-}$(= ZFC \backslash Power Set), for all $S \in I^{+}, \mathfrak{A} \models$ " S is stationary," and inside \mathfrak{A}, there is a generic iteration

$$
\left\langle\left\langle M_{i}^{\mathfrak{A}}, \pi_{i, j}^{\mathfrak{A}}, I_{i}^{\mathfrak{A}}, \kappa_{i}^{\mathfrak{A}} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i}^{\mathfrak{A}} ; i<\omega_{1}\right\rangle\right\rangle
$$

such that
(a) if $i<\omega_{1}$, then $M_{i}^{\mathfrak{A}}$ is countable,
(b) if $i<\omega_{1}$ and if $\xi<\theta$ is definable over \mathcal{M} from parameters in $\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$, then $\xi \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$,
(c) $M_{\omega_{1}}^{\mathfrak{A}}=\left\langle H_{\theta} ; \in, I\right\rangle$,
(d) if $i \in \operatorname{dom}(p)$, then $\kappa_{i}^{p}=\kappa_{i}^{\mathfrak{A}}$ and $\pi_{i}^{p} \subseteq \pi_{i, \omega_{1}}^{\mathfrak{A}}$,
(e) if $i \in \operatorname{dom}_{-}(p)$, then for all $n<\omega$ and for all $\vec{z} \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$,

$$
\exists y \in H_{\theta}(n, y \frown \vec{z}) \in \tau_{i}^{p} \Longrightarrow \exists y \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)(n, y \frown \vec{z}) \in \tau_{i}^{p} .
$$

If $p, q \in \mathbb{P}$, then we write $p \leqslant q$ iff $\operatorname{dom}(q) \subseteq \operatorname{dom}^{(p)}$, $\operatorname{dom}_{-}(q) \subseteq \operatorname{dom}_{-}(p)$, for all $i \in \operatorname{dom}(q), \kappa_{i}^{p}=\kappa_{i}^{q}$ and $\pi_{i}^{q} \subseteq \pi_{i}^{p}$, and for all $i \in \operatorname{dom}_{-}(q), \tau_{i}^{q}=\tau_{i}^{p}$.

Conditions p should be seen as finite attempts to describe the iteration leading to $\left\langle H_{\theta} ; \in, I\right\rangle$, the first component being finitely many critical points κ_{i}^{p} of the iteration, and the second component being finite attempts π_{i}^{p} to describe the iteration maps restricted to the ordinals. The presence of $<$ will guarantee that knowing the action of these maps on the ordinals means knowing the maps themselves. The third components τ_{i}^{p} will guarantee that the iteration maps extend to elementary maps into \mathcal{H} with some $x \in H_{\rho}$ of interest in their range (cf. Lemma 16 below), which will be relevant in the verification that $\mathbb{P}(I, \theta)$ preserves the stationarity of all sets in I^{+}.

It should be stressed that $\omega_{1}^{V} \in I^{+}$, so that if \mathfrak{A} certifies any condition p with respect to \mathcal{M}, then $\omega_{1}^{\mathfrak{R}}=\omega_{1}^{V}$. It is also clear that

$$
\mathfrak{A} \models \operatorname{Card}\left(H_{\theta}\right)=\aleph_{1} .
$$

Let us start the discussion of $\mathbb{P}(I, \theta)$. Let us write $\mathbb{P}=\mathbb{P}(I, \theta)$ from now on.

Lemma 5. $\mathbb{P} \neq \emptyset$.

Proof. We need to verify that in $V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ there is a model which certifies the trivial condition $\langle\rangle,\langle \rangle,\langle \rangle\rangle$ with respect to \mathcal{M}.

Let g be $\operatorname{Col}(\omega,<\rho)$-generic over V. Notice that inside $V[g],\langle V ; \in, I\rangle$ is generically $\rho+1$ iterable by Lemma 2 . Let us work inside $V[g]$ until further notice.

Let us choose a bijection $\varphi:[\rho]^{<\rho} \rightarrow \rho$, and let $\left\langle S_{\nu} ; \nu<\rho\right\rangle$ be a partition of ρ into pairwise disjoint stationary subsets of ρ. Define $f: \rho \rightarrow[\rho]^{<\rho}$ by

$$
f(i)=s \Longleftrightarrow i \in S_{\varphi(s)} .
$$

In other words, f " $S_{\varphi(s)}=\{s\}$ for every $s \in[\rho]^{<\rho}$.
Let us recursively construct a generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \rho\right\rangle,\left\langle G_{i} ; i<\rho\right\rangle\right\rangle
$$

of $M_{0}=\left\langle H_{\theta} ; \in, I\right\rangle$. Suppose $\left\langle\left\langle M_{k}, \pi_{k, j}, I_{k}, \kappa_{k} ; k \leqslant j \leqslant i\right\rangle,\left\langle G_{k} ; k<i\right\rangle\right\rangle$ has already been constructed, where $i<\rho$. If there is a (unique) $j \leq i$ such that $f(i) \in I_{j}^{+}$, i.e., $\pi_{j, i}(f(i)) \in I_{i}^{+}$, then let us choose G_{i} such that $\pi_{j, i}(f(i)) \in G_{i}$. If there is no such $j \leq i$, then we choose G_{i} arbitrarily. This defines the generic iteration.

Now let $S \in I_{\rho}^{+}$. Let $j<\rho$ and $s \in M_{j}$ be such that $\pi_{j, \rho}(s)=S$. Whenever $j \leq i<\rho$ and $f(i)=s$, then $\pi_{j, i}(s) \in G_{i}$, i.e., $\kappa_{i} \in \pi_{i, i+1}\left(\pi_{j, i}(s)\right)=$ $\pi_{j, i+1}(s) \subseteq \pi_{j, \rho}(s)=S$. This shows that

$$
S_{\varphi(s)} \backslash j \subseteq\left\{i<\rho ; \kappa_{i} \in S\right\},
$$

so that S is in fact stationary.
The map $\pi_{0, \rho}: H_{\theta} \rightarrow M_{\rho}$ admits a canonical extension $\pi: V \rightarrow N$, where N is transitive and $\pi\left(H_{\theta}\right)=M_{\rho}$. Let us now leave $V[g]$ and pick some h which is $\operatorname{Col}\left(\omega, \pi\left(2^{\theta}\right)\right)$-generic over $V[g]$. Of course, h is also $\operatorname{Col}\left(\omega, \pi\left(2^{\theta}\right)\right)$ generic over N. Let $x \in \mathbb{R} \cap N[h]$ code $\pi\left(\left(H_{\theta^{+}}\right)^{V}\right)$ in a natural way. The existence of a model which certifies $\langle\rangle,\langle \rangle,\langle \rangle\rangle$ with respect to $\pi(\mathcal{M})$ is then easily seen to be a $\Sigma_{1}^{1}(x)$ statement which holds true in $V[g, h]$, as being witnessed by $V[g]$. By absoluteness, this statement is then also true in $N[h]$. That is, inside $N^{\operatorname{Col}\left(\omega, \pi\left(2^{\theta}\right)\right)}$ there is a model which certifies $\langle\rangle,\langle \rangle,\langle \rangle\rangle$ with respect to $\pi(\mathcal{M})$. By elementarity, in $V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ there is therefore a model which certifies $\langle\rangle,\langle \rangle,\langle \rangle\rangle$ with respect to \mathcal{M}.

We will now prove some lemmata which will make sure that the generic filter indeed produces a generic iteration leading to $\left\langle H_{\theta} ; \in, I\right\rangle$. If $p \in \mathbb{P}$, then from now on we shall often just say that \mathfrak{A} certifies p to express that \mathfrak{A} is a model which certifies p with respect to \mathcal{M}.

Lemma 6. Let $p \in \mathbb{P}$, let u be finite such that $\operatorname{dom}(p) \subseteq u \subseteq \omega_{1}$. There is $p^{\prime} \leqslant p$ such that $u \subseteq \operatorname{dom}\left(p^{\prime}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=u$, $\operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{i}^{p^{\prime}}=\kappa_{i}^{\mathfrak{A}}$ for $i \in u, \pi_{i}^{p^{\prime}}=\pi_{i}^{p}$ for $i \in \operatorname{dom}(p), \pi_{i}^{p^{\prime}}=\emptyset$ for $i \in \operatorname{dom}\left(p^{\prime}\right) \backslash \operatorname{dom}(p)$, and $\tau_{i}^{p^{\prime}}=\tau_{i}^{p}$ for $i \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 7. Let $p \in \mathbb{P}, i \in \operatorname{dom}(p)$ and $\xi<\theta$. There is a $p^{\prime} \leqslant p$ and an $\alpha \in \operatorname{dom}\left(\pi_{i}^{p^{\prime}}\right)$ such that $\xi<\pi_{i}^{p^{\prime}}(\alpha)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Let α be such that $\pi_{i, \omega_{1}}^{\mathfrak{A}}(\alpha)>\xi$. (Such an α exists, as the iteration map $\pi_{i, \omega_{1}}^{\mathfrak{A}}$ is cofinal.) We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{p}$ for $j \in \operatorname{dom}(p)$, $\pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}, \pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\left\{\left\langle\alpha, \pi_{i, \omega_{1}}^{\mathfrak{A}}(\alpha)\right\rangle\right\}$, and $\tau_{j}^{p^{\prime}}=\tau_{j}^{p}$ for $j \in$ dom_ $_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 8. Let $p \in \mathbb{P}, i \in \operatorname{dom}(p), \xi<\zeta$ and $\zeta \in \operatorname{dom}\left(\pi_{i}^{p}\right)$. There is a $p^{\prime} \leqslant p$ such that $\xi \in \operatorname{dom}\left(\pi_{i}^{p^{\prime}}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=$ $\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{p}$ for $j \in \operatorname{dom}(p), \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}, \pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\left\{\left\langle\xi, \pi_{i, \omega_{1}}^{\mathfrak{A}}(\xi)\right\rangle\right\}$, and $\tau_{j}^{p^{\prime}}=\tau_{j}^{p}$ for $j \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 9. Let $p \in \mathbb{P}$ and $\xi \in H_{\theta}$. There is a $p^{\prime} \leqslant p$ such that $\xi \in \operatorname{ran}\left(\pi_{i}^{p^{\prime}}\right)$ for some $i \in \operatorname{dom}\left(p^{\prime}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Let $i<\omega_{1}, i \notin \operatorname{dom}(p)$, and $\bar{\xi}$ be such that $\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{\xi})=\xi$. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p) \cup\{i\}$, $\operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{\mathfrak{A}}$ for $j \in \operatorname{dom}\left(p^{\prime}\right), \kappa_{i}^{p^{\prime}}=\kappa_{i}^{\mathfrak{A}}, \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}, \pi_{i}^{p^{\prime}}=\{\langle\bar{\xi}, \xi\rangle\}$, and $\tau_{j}^{p^{\prime}}=\tau_{j}^{p}$ for $j \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 10. Let $p \in \mathbb{P}, i \in \operatorname{dom}(p), j \in \operatorname{dom}(p), i<j, \xi \in \operatorname{ran}\left(\pi_{i}^{p}\right)$. There is a $p^{\prime} \leqslant p$ such that $\xi \in \operatorname{ran}\left(\pi_{j}^{p^{\prime}}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Let $\bar{\xi}$ be such that $\pi_{j, \omega_{1}}^{\mathfrak{A}}(\bar{\xi})=\xi$. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{k}^{p^{\prime}}=\kappa_{k}^{\mathfrak{A}}$ for $k \in \operatorname{dom}(p), \pi_{k}^{p^{\prime}}=\pi_{k}^{p}$ for $k \in \operatorname{dom}(p) \backslash\{j\}, \pi_{j}^{p^{\prime}}=\pi_{j}^{p} \cup\{\langle\bar{\xi}, \xi\rangle\}$, and $\tau_{k}^{p^{\prime^{k}}}=\tau_{k}^{p}$ for $k \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 11. Let $p \in \mathbb{P}, i, i+1 \in \operatorname{dom}(p)$. Let $\xi \in \operatorname{ran}\left(\pi_{i+1}^{p}\right)$. There is some $p^{\prime} \leqslant p$ such that ξ is definable over \mathcal{M} from parameters in $\operatorname{ran}\left(\pi_{i}^{p^{\prime}}\right) \cup\left\{\kappa_{i}^{p}\right\}$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Since $M_{i+1}^{\mathfrak{A}}=\operatorname{Ult}\left(M_{i}^{\mathfrak{A}}, G_{i}^{\mathfrak{A}}\right)$ there is an $f: \kappa_{i}^{p}=\omega_{1}^{M_{i}^{\mathfrak{Z}}} \rightarrow M_{i}^{\mathfrak{A}}, f \in M_{i}^{\mathfrak{A}}$ such that $\left(\pi_{i+1}^{p}\right)^{-1}(\xi)=\pi_{i, i+1}^{\mathfrak{A}}(f)\left(\kappa_{i}^{p}\right)$, i.e., $\xi=\pi_{i, \omega_{1}}^{\mathfrak{A}}(f)\left(\kappa_{i}^{p}\right)$. Due to the presence of $<$ in \mathcal{M}, the function $\pi_{i, \omega_{1}}^{\mathfrak{A}}(f)$ is definable over \mathcal{M} in some ordinal parameter $\lambda<\theta$. Let $\bar{\lambda}$ be such that $\lambda=\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{\lambda})$. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=$ $\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{\mathfrak{A}}$ for $j \in \operatorname{dom}\left(p^{\prime}\right), \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}$,

$$
\pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\{\langle\bar{\lambda}, \lambda\rangle\}
$$

and $\tau_{i}^{p^{\prime}}=\tau_{i}^{p}$ for $i \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 12. Let $p \in \mathbb{P}$, and let $\lambda \in \operatorname{dom}(p)$ be a limit ordinal. If $\xi \in$ $\operatorname{ran}\left(\pi_{\lambda}^{p}\right)$, then there is some $p^{\prime} \leq p$ and some $i<\lambda$ with $i \in \operatorname{dom}\left(p^{\prime}\right)$ such that $\xi \in \operatorname{ran}\left(\pi_{i}^{p^{\prime}}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Because $\operatorname{ran}\left(\pi_{\lambda, \omega_{1}}^{\mathfrak{A}}\right)=\bigcup_{i<\lambda} \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$, there is some $i<\lambda$ such that $\xi \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$. Let us without loss of generality assume that $i \in \operatorname{dom}(p)$. Let $\bar{\xi}$ be such that $\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{\xi})=\xi$. We may then define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{p}$ for $j \in \operatorname{dom}(p), \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}, \pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\left\{\langle(\bar{\xi}, \xi\rangle\}\right.$, and $\tau_{i}^{p^{\prime}}=\tau_{i}^{p}$ for $i \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 13. Let $p \in \mathbb{P}, i \in \operatorname{dom}(p)$ and let ξ be definable over \mathcal{M} from parameters in $\operatorname{ran}\left(\pi_{i}^{p}\right)$. There is a $p^{\prime} \leqslant p$ such that $\xi \in \operatorname{ran}\left(\pi_{i}^{p^{\prime}}\right)$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. We must have that $\xi \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$, as \mathfrak{A} certifies p (cf. condition (b)). Let $\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{\xi})=\xi$. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{p}$ for $j \in \operatorname{dom}(p), \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$
for $j \in \operatorname{dom}(p) \backslash\{i\}, \pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\{\langle\bar{\xi}, \xi\rangle\}$, and $\tau_{j}^{p^{\prime}}=\tau_{j}^{p}$ for $j \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Lemma 14. Let $p \in \mathbb{P}$, let $i \in \operatorname{dom}(p)$, and suppose that $D \in H_{\theta}$ is definable over \mathcal{M} from parameters in $\operatorname{ran}\left(\pi_{i}^{p}\right)$. Suppose also that

$$
\mathcal{M} \models \text { " } D \text { is dense in the partial order }\left\langle I^{+}, \leq_{I}\right\rangle \text {." }
$$

Then there is some $p^{\prime} \leq p$ and some $X \in D$ which is definable over \mathcal{M} from parameters in $\operatorname{ran}\left(\pi_{i}^{p^{\prime}}\right)$ such that $\kappa_{i}^{p} \in X$.

Proof. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p. Let $\bar{D} \in M_{i}^{\mathfrak{A}}$ be such that $\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{D})=D$. As $G_{i}^{\mathfrak{A}}$ is $\left\langle\left(I_{i}^{\mathfrak{A}}\right)^{+}, \leq_{I_{i}^{\mathfrak{A}}}\right\rangle$-generic over $M_{i}^{\mathfrak{A}}, \bar{D} \cap G_{i}^{\mathfrak{A}} \neq \emptyset$. There is thus some $\bar{X} \in \bar{D}$ such that $\kappa_{i}^{p}=\kappa_{i}^{\mathfrak{A}} \in \pi_{i, i+1}^{\mathfrak{A}}(\bar{X}) \subset \pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{X})$. Let $X=\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{X})$. Then $X \in D$ and $\kappa_{i}^{p} \in X$. Due to the presence of $<$ in \mathcal{M}, there is some $\lambda<\theta$ such that X is definable over \mathcal{M} from the parameter λ. Let $\bar{\lambda}$ be such that $\lambda=\pi_{i, \omega_{1}}^{\mathfrak{A}}(\bar{\lambda})$. We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p), \operatorname{dom}_{-}\left(p^{\prime}\right)=$ $\operatorname{dom}_{-}(p), \kappa_{j}^{p^{\prime}}=\kappa_{j}^{\mathfrak{A}}$ for $j \in \operatorname{dom}\left(p^{\prime}\right), \pi_{j}^{p^{\prime}}=\pi_{j}^{p}$ for $j \in \operatorname{dom}(p) \backslash\{i\}$,

$$
\pi_{i}^{p^{\prime}}=\pi_{i}^{p} \cup\{\langle\bar{\lambda}, \lambda\rangle\}
$$

and $\tau_{i}^{p^{\prime}}=\tau_{i}^{p}$ for $i \in \operatorname{dom}_{-}\left(p^{\prime}\right)$. Then \mathfrak{A} also certifies p^{\prime}, and of course $p^{\prime} \leqslant p$.

Now let G be \mathbb{P}-generic over V. Set

$$
\begin{gathered}
\kappa_{i}=\kappa_{i}^{p} \text { for some (all) } p \in G \text { with } i \in \operatorname{dom}(p) \\
\pi_{i}=\bigcup\left\{\pi_{i}^{p} ; p \in G \wedge i \in \operatorname{dom}(p)\right\}, \text { and } \\
\beta_{i}=\operatorname{dom}\left(\pi_{i}\right)
\end{gathered}
$$

By Lemmas 6,7 , and $8, \pi_{i}: \beta_{i} \rightarrow \theta$ is a well-defined cofinal order preserving map, and by Lemma $9, \theta=\bigcup\left\{\operatorname{ran}\left(\pi_{i}\right) ; i<\omega_{1}\right\}$. For $i<\omega_{1}$, let X_{i} be the smallest $X \prec \mathcal{M}$ such that $\operatorname{ran}\left(\pi_{i}\right) \subseteq X$. By Lemma $13, \operatorname{ran}\left(\pi_{i}\right)=X_{i} \cap \theta$. Let $\tilde{\pi}_{i}: M_{i} \cong X_{i} \prec \mathcal{M}$ be the uncollapsing map, so that $\tilde{\pi}_{i} \supset \pi_{i}$. For $i \leq j \leq \omega_{1}$, let $\tilde{\pi}_{i, j}=\tilde{\pi}_{j}^{-1} \circ \tilde{\pi}_{i}$. We then have that $\tilde{\pi}_{i, j}: M_{i} \rightarrow M_{j}$ is then well-defined by Lemma 10. For $i \leq \omega_{1}$, let $I_{i}=\tilde{\pi}_{i}^{-1}(I)$ and $\kappa_{i}=\tilde{\pi}_{i}^{-1}\left(\omega_{1}\right)$, and for $i<\omega_{1}$, let

$$
G_{i}=\left\{X \in \mathcal{P}\left(\kappa_{i}\right) \cap M_{i} ; \kappa_{i} \in \tilde{\pi}_{i, i+1}(X)\right\}
$$

Using Lemmas 11, 12, and 14, we then have the following.

Lemma 15. $\left\langle\left\langle M_{i}, \tilde{\pi}_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}^{V}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle$ is a generic iteration of M_{0} such that if $i<\omega_{1}$, then M_{i} is countable, and $M_{\omega_{1}}=\left\langle H_{\theta} ; \epsilon\right.$, $I\rangle$.

Let us now discuss the third component of a condition $p \in \mathbb{P}$.
Lemma 16. Suppose that \mathfrak{A} is a model. Let $p \in \mathbb{P}$ and $i \in \operatorname{dom}(p)$. Let $x \in H_{\rho}$ be such that τ_{i}^{p} is the complete \mathcal{H}-type of x over H_{θ}, i.e., having φ range over \mathcal{H}-formulae with free variables u, \vec{v},

$$
\tau_{i}^{p}=\left\{\langle\ulcorner\varphi\urcorner, \vec{z}\rangle ; \vec{z} \in H_{\theta} \wedge \mathcal{H} \models \varphi[x, \vec{z}]\right\} .
$$

Then the following are equivalent.
i. \mathfrak{A} certifies p with respect to \mathcal{M}.
ii. $\theta+1 \subset \operatorname{wfp}(\mathfrak{A}), H_{\theta^{+}} \in \mathfrak{A}, \mathfrak{A} \models \mathrm{ZFC}^{-}$, for all $S \in I^{+}, \mathfrak{A} \models$ " S is stationary," and inside \mathfrak{A}, there is a generic iteration

$$
\left\langle\left\langle M_{i}^{\mathfrak{A}}, \pi_{i, j}^{\mathfrak{A}}, I_{i}^{\mathfrak{A}}, \kappa_{i}^{\mathfrak{A}} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i}^{\mathfrak{A}} ; i<\omega_{1}\right\rangle\right\rangle
$$

such that if $i<\omega_{1}$, then $M_{i}^{\mathfrak{2}}$ is countable, $M_{\omega_{1}}^{\mathfrak{2}}=\left\langle H_{\theta} ; \in, I\right\rangle$, if $i \in$ $\operatorname{dom}(p)$, then $\kappa_{i}^{p}=\kappa_{i}^{\mathfrak{A}}$ and $\pi_{i}^{p} \subseteq \pi_{i, \omega_{1}}^{\mathfrak{Q}}$, and if $i \in \operatorname{dom}_{-}(p)$, then one of the following equivalent conditions holds.
(a)

$$
\operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \cup\{x\}\right) \cap H_{\theta}=\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) .
$$

(b) The map $\pi_{i, \omega_{1}}^{\mathfrak{A}}: M_{i} \rightarrow \mathcal{M}$ extends to some elementary map $\tilde{\pi}: H \rightarrow$ \mathcal{H} with $\tilde{\pi}\left(M_{i}\right)=\left\langle H_{\theta} ; \in, I\right\rangle, \tilde{\pi} \upharpoonright M_{i}=\pi_{i, \omega_{1}}^{\mathfrak{A}}$, and $x \in \operatorname{ran}(\tilde{\pi})$.
(c) $\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \prec\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle$.

Proof. i. \Rightarrow ii.(a): Let $y \in \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{R}}\right) \cup\{x\}\right) \cap H_{\theta}$. Then y is definable over \mathcal{H} from parameters \vec{z}, x in $\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{R}}\right) \cup\{x\}$. For some $n<\omega$, we then have that y is unique with $\left(n, y^{\frown} \vec{z}\right) \in \tau_{i}^{p}$. As \mathfrak{A} certifies p (cf. condition vi.(e) in Definition 4), we then get that in fact $y \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$.
ii.(a) \Rightarrow ii.(b): Let $\tilde{\pi}: H \cong \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \cup\{x\}\right) \prec \mathcal{H}$, where H is transitive. It is obvious that this map works.
ii.(b) \Rightarrow ii.(a): As $x \in \operatorname{ran}(\tilde{\pi})$ and $\tilde{\pi} \supset \pi_{i, \omega_{1}}^{\mathfrak{A}}, \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \subset \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \cup\right.$ $\{x\}) \cap H_{\theta} \subset \operatorname{Hull}^{\mathcal{H}}(\operatorname{ran}(\tilde{\pi})) \cap H_{\theta}=\operatorname{ran}(\tilde{\pi}) \cap H_{\theta}=\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$.
ii.(a) \Rightarrow ii.(c): We need to show that if $\vec{z} \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$ and φ is a formula (of the language associated with $\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle$) such that

$$
\begin{equation*}
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models \exists v \varphi(v, \vec{z}) \tag{1}
\end{equation*}
$$

then there is some $u \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$ with

$$
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models \varphi(u, \vec{z})
$$

There is some recursive $\ulcorner\psi\urcorner \mapsto\left\ulcorner\psi^{*}\right\urcorner$ (assigning to each formula of the language associated with $\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle$ a formula of the language associated with $\left.\left\langle H_{\rho} ; \in, H_{\theta}, I,<, x\right\rangle\right)$ such that for all $\vec{w} \in H_{\theta}$,

$$
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models \psi(\vec{w})
$$

iff

$$
\left\langle H_{\rho} ; \in, H_{\theta}, I,<, x\right\rangle \models \psi^{*}(\vec{w}) .
$$

Hence if (1) holds, then there is some $u \in H_{\theta}$ such that

$$
\left\langle H_{\rho} ; \in, H_{\theta}, I,<, x\right\rangle \models \varphi^{*}(u, \vec{z})
$$

There is then also some such $u \in H_{\theta}$ which is in $\operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) \cup\{x\}\right)$, so that $u \in \operatorname{ran}\left(\pi_{i, \omega_{1}}\right)^{\mathfrak{A}}$ by ii.(a). But then

$$
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models \varphi(u, \vec{z})
$$

where $u \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$.
ii.(c) \Rightarrow i.: Let $n<\omega$ and $\vec{z} \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$. Suppose there to be some $y \in H_{\theta}$ such that $(n, y \frown \vec{z}) \in \tau_{i}^{p}$. Then

$$
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models \exists y(n, y \frown \vec{z}) \in \tau_{i}^{p}
$$

so that there is some $y \in \operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right)$ with

$$
\left\langle H_{\theta} ; \in, I,<, \tau_{i}^{p}\right\rangle \models(n, y \frown \vec{z}) \in \tau_{i}^{p}
$$

as needed for condition vi.(e) in Definition 4.
It is easy to see that if $X \in I$ and $X \in \operatorname{ran}\left(\tilde{\pi}_{i, \omega_{1}}\right)$, where $i<\omega_{1}$, then $\left\{\kappa_{j} ; i \leq j<\omega_{1}\right\} \subset \omega_{1} \backslash X$. This means that no set in I will be stationary in $V^{\mathbb{P}}$.

Lemma 17. If $S \in I^{+}$, then S is stationary in $V^{\mathbb{P}}$.

Proof. Let $S \in I^{+}$, and let $p \in \mathbb{P}$ and \dot{C} be such that $p \Vdash \dot{C}$ is club in $\check{\omega_{1}}$. We need to see that there is some $p^{\prime} \leqslant p$ and some $\alpha<\omega_{1}$ such that $p^{\prime} \Vdash \check{\alpha} \in \dot{C} \cap \check{S}$.

Let

$$
R=\left\{(r, \delta) ; r \in \mathbb{P}, \delta<\omega_{1}, \text { and } r \Vdash_{\mathbb{P}} \check{\delta} \in \dot{C}\right\} .
$$

Notice that $p, R, \leq_{\mathbb{P}} \in H_{\rho}$. Let τ the the complete \mathcal{H}-type of $\left\langle p, R, \leq_{\mathbb{P}}\right\rangle$ over H_{θ}. Let $\mathfrak{A} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$ certify p with respect to \mathcal{M}. Recall that $H_{\theta} \in \mathfrak{A}$ and $\omega_{1}^{\mathfrak{A}}=\omega_{1}^{V}$. We have that $\left\langle\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{A}}\right) ; i<\omega_{1}\right\rangle$ is a continuous tower of countable substructures of H_{θ} with $\bigcup\left\{\operatorname{ran}\left(\pi_{i, \omega_{1}}^{\mathfrak{Q}}\right) ; i<\omega_{1}\right\}=H_{\theta}$. Since S is stationary in $\mathfrak{A}, H_{\theta^{+}} \in \mathfrak{A}$ and thus $\tau \in \mathfrak{A}$, we may therefore pick an $\alpha<\omega_{1}$ such that
i. $\kappa_{\alpha}^{\mathfrak{A}}=\alpha$ and $\operatorname{dom}(p) \subseteq \alpha$,
ii. $\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{A}}\right) \prec\left\langle H_{\theta} ; \in, I,<, \tau\right\rangle$, and
iii. $\alpha \in S$.

We may define p^{\prime} such that $\operatorname{dom}\left(p^{\prime}\right)=\operatorname{dom}(p) \cup\{\alpha\}$, $\operatorname{dom}_{-}\left(p^{\prime}\right)=\operatorname{dom}(p)_{-} \cup$ $\{\alpha\}, \kappa_{i}^{p^{\prime}}=\kappa_{i}^{p}$ for all $i \in \operatorname{dom}(p), \kappa_{\alpha}^{p^{\prime}}=\alpha, \pi_{i}^{p^{\prime}}=\pi_{i}^{p}$ for all $i \in \operatorname{dom}(p)$, $\pi_{\alpha}^{p^{\prime}}=\emptyset, \tau_{i}^{p^{\prime}}=\tau_{i}^{p}$ for all $i \in \operatorname{dom}_{-}(p)$, and $\tau_{\alpha}^{p^{\prime}}=\tau$. Using Lemma 16, we see that \mathfrak{A} still certifies p^{\prime} by the above choice of α. Also, notice that if $i \in$ dom $_{-}(p)$, then τ_{i}^{p} is (trivially) definable over \mathcal{H} from the parameter p, so that because τ is the complete \mathcal{H}-type of $\left\langle p, R, \leq_{\mathbb{P}}\right\rangle$ over H_{θ}, we get that there is an $n<\omega$ such that

$$
\tau_{i}^{p}=\left\{(m, \vec{z}) ;\left(n, m^{\frown} \vec{z}\right) \in \tau\right\} .
$$

We thus have $p^{\prime} \in \mathbb{P}$, and of course $p^{\prime} \leqslant p$.
We claim that $p^{\prime} \Vdash \check{\alpha} \in \dot{C} \cap \check{S}$. Suppose not. Then p^{\prime} does not force $\dot{C} \cap \check{\alpha}$ to be unbounded in $\check{\alpha}$. Pick $q \leqslant p^{\prime}$ and $\xi<\alpha$ such that

$$
\begin{equation*}
q \Vdash \sup (\dot{C} \cap \check{\alpha})=\check{\xi} . \tag{2}
\end{equation*}
$$

Let the model \mathfrak{B} certify q with respect to \mathcal{M}. By Lemma 16 ,

$$
\begin{equation*}
\operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\{\langle p, R, \leq \mathbb{P}\rangle\}\right) \cap H_{\theta}=\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) . \tag{3}
\end{equation*}
$$

Let us now set

$$
q^{\prime}=\left\langle\left\langle\kappa_{i}^{q} ; i \in \operatorname{dom}(q) \upharpoonright \alpha\right\rangle,\left\langle\pi_{i}^{q} ; i \in \operatorname{dom}(q) \upharpoonright \alpha\right\rangle,\left\langle\tau_{i}^{q} ; i \in \operatorname{dom}_{-}(q) \upharpoonright \alpha\right\rangle\right\rangle .
$$

Of course, $q \leqslant q^{\prime} \leqslant p$. If $i \in \operatorname{dom}_{-}\left(q^{\prime}\right)=$ dom_ $_{-}(q) \upharpoonright \alpha$, then there is some $n<\omega$ and some $\vec{u} \in \operatorname{ran}\left(\pi_{\alpha}^{q}\right)$ such that

$$
\tau_{i}^{q^{\prime}}=\left\{(m, \vec{z}) ;\left(n, \vec{u}^{`} m^{\frown} \vec{z}\right) \in \tau_{\alpha}^{q}=\tau\right\} .
$$

By the choice of τ, we must then have that

$$
\tau_{i}^{q^{\prime}} \in \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\{\langle p, R, \leq \mathbb{p}\rangle\}\right)
$$

for every $i \in \operatorname{dom}_{-}\left(q^{\prime}\right)$, because if

$$
\tau=\left\{\langle\ulcorner\varphi\urcorner, \vec{z}\rangle ; \vec{z} \in H_{\theta} \wedge \mathcal{H} \models \varphi\left[\left\langle p, R, \leq_{\mathbb{P}}\right\rangle, \vec{z}\right]\right\},
$$

then

$$
\tau_{i}^{q^{\prime}}=\tau_{i}^{q}=\left\{\langle m, \vec{z}\rangle ; \vec{z} \in H_{\theta} \wedge \mathcal{H} \models \varphi\left[\langle p, R, \leq \mathbb{P}\rangle, \vec{u}^{`} m^{\frown} \vec{z}\right]\right\} .
$$

This implies that in fact

$$
\begin{equation*}
q^{\prime} \in \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\left\{\left\langle p, R, \leq_{\mathbb{P}}\right\rangle\right\}\right) . \tag{4}
\end{equation*}
$$

Because $q^{\prime} \Vdash_{\mathbb{P}}$ " \dot{C} is club in $\check{\omega_{1}}$," there is some $\gamma>\xi$ and some $q^{\prime \prime} \leq_{\mathbb{P}} q^{\prime}$ such that $q^{\prime \prime} \Vdash_{\mathbb{P}} \check{\gamma} \in \dot{C}$, i.e., $\left(q^{\prime \prime}, \gamma\right) \in R$, and therefore by (4)

$$
\operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\{\langle p, R, \leq \mathbb{P}\rangle\}\right) \models \exists \gamma>\xi \exists q^{\prime \prime} \leq \mathbb{P} q^{\prime}\left(q^{\prime \prime}, \gamma\right) \in R,
$$

which means that there is some $q^{\prime \prime} \leqslant q^{\prime}$ with

$$
\begin{equation*}
q^{\prime \prime} \in \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\left\{\left\langle p, R, \leq_{\mathbb{P}}\right\rangle\right\}\right) \tag{5}
\end{equation*}
$$

such that

$$
q^{\prime \prime} \Vdash_{\mathbb{P}} \sup (\dot{C} \cap \check{\alpha})>\check{\xi} .
$$

In particular, $\operatorname{dom}\left(q^{\prime \prime}\right) \subseteq \alpha$. We must now have that

$$
q^{\prime \prime} \text { and } q \text { are incompatible. }
$$

We derive a contradiction by constructing some $q^{*} \leqslant q^{\prime \prime}, q$.
Let

$$
\tilde{\pi}: H \cong \operatorname{Hull}^{\mathcal{H}}\left(\operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right) \cup\{\langle p, R, \leq \mathbb{P}\rangle\}\right) \prec \mathcal{H},
$$

where H is transitive. By (3), $M_{\alpha}^{\mathfrak{B}}=\tilde{\pi}^{-1}\left(\left\langle H_{\theta} ; \in, I\right\rangle\right) \in H$ and $\tilde{\pi} \upharpoonright M_{\alpha}^{\mathfrak{B}}=$ $\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}$. In $V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$, there is a model \mathfrak{C} which certifies $q^{\prime \prime}$. In $\mathcal{H}^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$, there is hence some generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle
$$

such that $M_{\omega_{1}}=\left\langle H_{\theta} ; \in, I\right\rangle$ and for all $i \in \operatorname{dom}\left(q^{\prime \prime}\right), \kappa_{i}^{q^{\prime \prime}}=\kappa_{i}$ and $\pi_{i}^{q^{\prime \prime}} \subseteq \pi_{i, \omega_{1}}$.
 generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \alpha\right\rangle,\left\langle G_{i} ; i<\alpha\right\rangle\right\rangle
$$

such that $M_{\alpha}=\tilde{\pi}^{-1}\left(\left\langle H_{\theta} ; \in, I\right\rangle\right)=M_{\alpha}^{\mathfrak{B}}$ and for all $i \in \operatorname{dom}\left(q^{\prime \prime}\right), \kappa_{i}^{q^{\prime \prime}}=\kappa_{i}$ and $\tilde{\pi}^{-1}\left(\pi_{i}^{q^{\prime \prime}}\right) \subseteq \pi_{i, \alpha}$, i.e., $\pi_{i}^{q^{\prime \prime}} \subseteq \tilde{\pi} \circ \pi_{i, \alpha}=\pi_{\alpha, \omega}^{\mathfrak{B}} \circ \pi_{i, \alpha}$. Because $M_{\alpha}^{\mathfrak{B}}$ is countable in $\mathfrak{B}, \theta+1 \subset \operatorname{wfp}(\mathfrak{B})$, and $\mathfrak{B} \in V^{\operatorname{Col}\left(\omega, 2^{\theta}\right)}$, there is therefore by absoluteness some generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \alpha\right\rangle,\left\langle G_{i} ; i<\alpha\right\rangle\right\rangle \in \mathfrak{B}
$$

such that $M_{\alpha}=M_{\alpha}^{\mathfrak{B}}$ and for all $i \in \operatorname{dom}\left(q^{\prime \prime}\right), \kappa_{i}^{q^{\prime \prime}}=\kappa_{i}$ and $\pi_{i}^{q^{\prime \prime}} \subseteq \pi_{\alpha, \omega_{1}}^{\mathfrak{B}} \circ \pi_{i, \alpha}$. Let

$$
\begin{equation*}
\left\langle\left\langle M_{i}^{*}, \pi_{i, j}^{*}, I_{i}^{*}, \kappa_{i}^{*} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i}^{*} ; i<\omega_{1}\right\rangle\right\rangle \in \mathfrak{B} \tag{6}
\end{equation*}
$$

be defined as follows. If $i \leq j \leq \alpha$, then we set $M_{i}^{*}=M_{i}, \pi_{i, j}^{*}=\pi_{i, j}$, $I_{i}^{*}=I_{i}, \kappa_{i}^{*}=\kappa_{i}$, and if $i<\alpha$, then we set $G_{i}^{*}=G_{i}$. If $\alpha \leq i \leq j \leq \omega_{1}$, then we set $M_{i}^{*}=M_{i}^{\mathfrak{B}}$ (there is no conflict for $i=\alpha$, as $M_{\alpha}^{\mathfrak{B}}=M_{\alpha}$), $\pi_{i, j}^{*}=\pi_{i, j}^{\mathfrak{B}}$, $I_{i}^{*}=I_{i}^{\mathfrak{B}}, \kappa_{i}^{*}=\kappa_{i}$, and if $\alpha \leq i<\omega_{1}$, then we set $G_{i}^{*}=G_{i}^{\mathfrak{B}}$. Finally, if $i \leq \alpha \leq j$, then we set $\pi_{i, j}^{*}=\pi_{\alpha, j}^{\mathfrak{B}} \circ \pi_{i, \alpha}$. The existence of the generic iteration (6) inside \mathfrak{B} clearly shows that \mathfrak{B} in fact certifies $q^{\prime \prime}$. However, as $\operatorname{dom}\left(q^{\prime \prime}\right) \supseteq \operatorname{dom}(q) \upharpoonright \alpha$, the very same generic iteration (6) shows that \mathfrak{B} certifies q.

Let us now define $q^{*} \in \mathbb{P}$ as follows. Let $\operatorname{dom}\left(q^{*}\right)=\operatorname{dom}(q) \cup \operatorname{dom}\left(q^{\prime \prime}\right)$ and $\operatorname{dom}_{-}\left(q^{*}\right)=\operatorname{dom}(q)_{-} \cup \operatorname{dom}_{-}\left(q^{\prime \prime}\right)$. (Neither $\operatorname{dom}(q)$ and $\operatorname{dom}\left(q^{\prime \prime}\right)$ nor $\operatorname{dom}(q)_{-}$and dom_($\left.q^{\prime \prime}\right)$ need to be disjoint, but $\operatorname{dom}(q) \cap \alpha \subseteq \operatorname{dom}\left(q^{\prime \prime}\right)$ and $\operatorname{dom}(q)_{-} \cap \alpha \subseteq \operatorname{dom}_{-}\left(q^{\prime \prime}\right)$.) For $i \in \operatorname{dom}\left(q^{*}\right) \operatorname{set} \kappa_{i}^{q^{*}}=\kappa_{i}^{*}$. For $i \in \operatorname{dom}_{-}\left(q^{\prime \prime}\right)$ set $\tau_{i}^{q^{*}}=\tau_{i}^{q^{\prime \prime}}$, and for $i \in \operatorname{dom}_{-}(q)$, set $\tau_{i}^{q^{*}}=\tau_{i}^{q}$. Also, for $i \in \operatorname{dom}\left(q^{\prime \prime}\right)$ set $\pi_{i}^{q^{*}}=\pi_{i}^{q^{\prime \prime}}$. Finally, for $i \in \operatorname{dom}(q) \backslash \alpha$, we need some adjustment in order to actually get a condition. By (5), there is some finite $\vec{u} \subseteq \operatorname{ran}\left(\pi_{\alpha, \omega_{1}}^{\mathfrak{B}}\right)$ such that

$$
q^{\prime \prime} \in \operatorname{Hull}^{\mathcal{H}}(\{\vec{u},\langle p, R, \leq \mathbb{P}\rangle\}) .
$$

We then also have some $n<\omega$ such that for every $i \in \operatorname{dom}_{-}\left(q^{\prime \prime}\right)$,

$$
\tau_{i}^{q^{\prime \prime}}=\tau_{i}^{q^{*}}=\left\{(m, \vec{z}) ;\left(n, \vec{u} \subset m^{\complement} \vec{z}\right) \in \tau_{\alpha}^{q^{*}}=\tau_{\alpha}^{p^{\prime}}=\tau\right\} .
$$

We may assume without loss of generality that $\pi_{i, \omega_{1}}^{*}{ }^{\prime \prime} \operatorname{dom}\left(\pi_{i}^{q^{*}}\right) \subseteq \vec{u}$ for $i \in \operatorname{dom}\left(q^{\prime \prime}\right) \subseteq \alpha$. For $j \in \operatorname{dom}\left(q^{*}\right), j \geqslant \alpha$, we then set

$$
\pi_{j}^{q^{*}}=\pi_{j, \omega_{1}}^{*} \upharpoonright\left(\left(\pi_{j, \omega_{1}}^{*}\right)^{-1}(\vec{u}) \cup \operatorname{dom}\left(\pi_{j}^{q^{\prime \prime}}\right)\right) .
$$

It is now straightforward to see that $q^{*} \in \mathbb{P}$. Notice that if $i \in \operatorname{dom}_{-}\left(q^{*}\right) \cap$ $\alpha=\operatorname{dom}_{-}\left(q^{\prime \prime}\right)$ and $j \in \operatorname{dom}_{-}\left(q^{*}\right) \backslash \alpha=\operatorname{dom}_{-}(q) \backslash \alpha$, and if

$$
\tau_{\alpha}^{q^{*}}=\tau_{\alpha}^{q}=\left\{(m, \vec{z}) ;\left(k, \vec{v} \subset m^{\frown} \vec{z}\right) \in \tau_{j}^{q^{*}}=\tau_{j}^{q}\right\},
$$

where $\vec{v} \in \operatorname{ran}\left(\pi_{j}^{q^{*}}\right)=\operatorname{ran}\left(\pi_{j}^{q}\right)$, then
$\tau_{i}^{q^{*}}=\tau_{i}^{q^{\prime \prime}}=\left\{(m, \vec{z}) ;\left(n, \vec{u} \frown m^{\frown} \vec{z} \in \tau_{\alpha}^{q^{*}}\right\}=\left\{(m, \vec{z}) ;\left(k, \vec{v} \frown n^{\frown} \vec{u} \frown m^{\frown} \vec{z} \in \tau_{j}^{q^{*}}\right\}\right.\right.$
and $\vec{v}, \vec{u} \subseteq \operatorname{ran}\left(\pi_{j}^{q^{*}}\right)$. Of course, $q^{*} \leqslant q, q^{\prime \prime}$. We have reached a contradiction.

This finishes the proof of Theorem 3.
A straightforward adaptation yields the following result.
Theorem 18. Let I be a precipitous ideal on ω_{1}, and let $\theta>\omega_{1}$ be a regular cardinal. Suppose that $H_{\theta}^{\#}$ exists. There is a poset \mathbb{P}, preserving the stationarity of all sets in I^{+}, such that if G is \mathbb{P}-generic over V, then in $V[G]$ there is a generic iteration

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle
$$

such that if $i<\omega_{1}$, then M_{i} is countable and $M_{\omega_{1}}=\left\langle H_{\theta}^{\#} ; \in, I\right\rangle$. In particular, M_{0} is generically $\omega_{1}+1$ iterable. If $I=\mathrm{NS}_{\omega_{1}}$, then \mathbb{P} is stationary set preserving.

Proof. Let $\rho>2^{2^{\theta}}$, and let $\mathbb{P}=\left(\operatorname{Col}(\rho, \rho) \times \operatorname{Col}\left(\theta^{+}, \theta^{+}\right)\right) * \mathbb{P}\left(I, \theta^{+}\right)$, where $\mathbb{P}\left(I, \theta^{+}\right)$is as in Theorem 3. Let

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle
$$

be a generic iteration which is added by forcing with \mathbb{P}. Setting $N_{i}=$ $\pi_{i, \omega_{1}}^{-1}\left(H_{\theta}\right)$, we will have that $\pi_{i, \omega_{1}}^{-1}\left(H_{\theta}^{\#}\right)=N_{i}^{\#}$. The iterability of M_{0} follows from Lemma 2. Notice that $\left\langle N_{0}^{\#} ; \in, I_{0}\right\rangle$ is generically $\omega_{1}+1$ iterable iff $\left\langle L\left[N_{0}\right] ; \in, I_{0}\right\rangle$ is generically $\omega_{1}+1$ iterable.

Lemma 19 (Woodin). Let M be a countable transitive model of $\mathrm{ZFC}^{*}+$ " ω_{1} exists," and let $I \subseteq \mathcal{P}\left(\omega_{1}^{M}\right)$ be such that $\langle M ; \in, I\rangle \models$ "I is a uniform and normal ideal on ω_{1}^{M}." Let $\alpha<\omega_{1}$, and suppose $\langle M ; \in, I\rangle$ to be generically $\alpha+1$ iterable. Let z_{0} be a real which codes $\langle M ; \in, I\rangle$, let z_{1} be a real which codes α, and let $z=z_{0} \oplus z_{1}$. Let

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \alpha\right\rangle,\left\langle G_{i} ; i<\alpha\right\rangle\right\rangle
$$

be a generic iteration of $\langle M ; \in, I\rangle$ of length $\alpha+1$. Then $M_{\alpha} \cap \mathrm{OR}<\omega_{1}^{L[z]}$.
Proof. The proof is taken from [Woo99, p. 56f.]. Let $A \subset \mathbb{R}$ be defined by $x \in A$ iff x codes a countable ordinal ξ (which we write as $\xi=\|x\|$) such that for some generic iteration

$$
\left\langle\left\langle M_{i}^{\prime}, \pi_{i, j}^{\prime}, I_{i}, \kappa_{i}^{\prime} ; i \leqslant j \leqslant \alpha\right\rangle,\left\langle G_{i}^{\prime} ; i<\alpha\right\rangle\right\rangle
$$

of $\langle M ; \in, I\rangle$ of length $\alpha+1, \xi \subseteq M_{\alpha}^{\prime}$. The set A is $\Sigma_{1}^{1}(z)$, so that by the Boundedness Lemma (cf. [Jec03, Corollary 25.14]),

$$
\sup \{\xi ; \exists x \in A \xi=\|x\|\}<\omega_{1}^{L[z]}
$$

In particular, $M_{\alpha} \cap \mathrm{OR}<\omega_{1}^{L[z]}$.
Lemma 20. Suppose I to be a precipitous ideal on ω_{1}. Let $\theta \geq \omega_{2}$ be regular, and suppose that $H_{\theta}^{\#}$ exists. Let $\mathbb{P}=\mathbb{P}^{\prime}(I, \theta)$ be as in Theorem 18, and let G be \mathbb{P}-generic over V. In $V[G]$, let

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle \in V[G]
$$

be a generic iteration such that if $i<\omega_{1}$, then M_{i} is countable and $M_{\omega_{1}}=$ $\left\langle H_{\theta}^{\#} ; \in, I\right\rangle$. Let $z \in \mathbb{R} \cap V[G]$ code $\left\langle\pi_{0, \omega_{1}}^{-1}\left(H_{\theta}\right) ; \in, I_{0}\right\rangle$. Then $\theta<\omega_{1}^{+L[z]}$. In particular, $V[G] \vDash \theta<{\underset{\sim}{d}}_{2}^{1}$.

Proof. For a canonical choice of $z, z^{\#}$ exists in $V[G]$ and $z^{\#}$ codes $\left\langle M_{0} ; \in\right.$,$\left.I_{0}\right\rangle$. It therefore suffices to prove $\theta<\omega_{1}^{+L[z]}$. Suppose that $\omega_{1}^{+L[z]} \leq \theta$. Let us work in $V[G]$ to derive a contradiction. Let $X \prec H_{\Omega}$ be countable (where Ω is regular and large enough) such that $z^{\#}$ and

$$
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle
$$

are both elements of X, and let $\sigma: N \cong X \prec H_{\Omega}$, where N is tranitive. Let $\alpha=X \cap \omega_{1}=\omega_{1}^{N}$. Since $z^{\#} \in X$, we have that

$$
\mathcal{P}(\alpha) \cap L[z] \subseteq \mathcal{P}(\alpha) \cap N
$$

so that $\sigma^{-1}\left(\omega_{1}^{L[z]}\right)=\alpha^{+L[z]}$. Also,

$$
\begin{gathered}
\sigma^{-1}\left(\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \omega_{1}\right\rangle,\left\langle G_{i} ; i<\omega_{1}\right\rangle\right\rangle\right)= \\
\left\langle\left\langle M_{i}, \pi_{i, j}, I_{i}, \kappa_{i} ; i \leqslant j \leqslant \alpha\right\rangle,\left\langle G_{i} ; i<\alpha\right\rangle\right\rangle,
\end{gathered}
$$

so that $\sigma^{-1}(\theta)=M_{\alpha} \cap \mathrm{OR}$. Let $g \in V[G]$ be $\operatorname{Col}(\omega, \alpha)$-generic over N. Then $M_{\alpha} \cap \mathrm{OR} \geq \alpha^{+L[z]}=\omega_{1}^{L[z \oplus g]}$. This contradicts Lemma 19.

Recall that Bounded Martin's Maximum, BMM, may be formulated as follows. If $\mathbb{Q} \in V$ is a stationary set preserving forcing, then

$$
H_{\omega_{2}}^{V} \prec_{\Sigma_{1}} H_{\omega_{2}}^{V Q} .
$$

It was shown in [Sch04] that BMM implies that V is closed under sharps. Of course, having a precipitous ideal on ω_{1} also yields that the reals are closed under sharps.

Corollary 21. Suppose that BMM holds and $\mathrm{NS}_{\omega_{1}}$ is precipitous. Then $u_{2}=\omega_{2}$.

Proof. Let $\alpha<\omega_{2}$. Let $\varphi \equiv \exists z \in \mathbb{R}\left(\alpha<\omega_{1}^{+L[z]}\right)$. The statement φ is Σ_{1} over $H_{\omega_{2}}$ in the parameters ω_{1}, α, and φ holds in $V^{\mathbb{P}}$, where $\mathbb{P}=\mathbb{P}^{\prime}\left(N S_{\omega_{1}}, \omega_{2}\right)$. Therefore, φ must hold in V. As α was arbitrary, we have shown that $u_{2}^{V}=\omega_{2}$.

Recall that the Bounded Semiproper Forcing Axiom, BSPFA, may be formulated as follows. If $\mathbb{Q} \in V$ is a semiproper forcing, then

$$
H_{\omega_{2}}^{V} \prec_{\Sigma_{1}} H_{\omega_{2}}^{V^{Q}} .
$$

For a formulation of the Reflection Principle RP cf. [Jec03, p.688].
Corollary 22. Suppose BSPFA and RP both hold. Then $u_{2}=\omega_{2}$.
Proof. The Reflection Principle RP implies that all stationary set preserving forcings are semiproper, and it implies that $\mathrm{NS}_{\omega_{1}}$ is precipitous (cf. [Jec03, p.688]). The rest of the proof is the same as that of the previous corollary.

References

[FS88] Magidor Menachem Foreman, Matthew and Saharon Shelah. Martin's Maximum, Saturated Ideals, and Nonregular Ultrafilters. Part I. Annals of Mathematics, 127(1):1-47, 1988.
[Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
[Jen90a] Ronald Jensen. Making cardinals ω-cofinal. 1990. Handwritten notes, available at http://www-irm.mathematik.huberlin.de/~raesch/org/jensen/ pdf/Making_Cards.pdf.
[Jen90b] Ronald Jensen. On some problems of Mitchell, Welch and Vickers. 1990. Handwritten notes, available at http://www-irm.mathematik.huberlin.de/~raesch/org/jensen/pdf/Some_Problems.pdf.
[KLZ07] Richard Ketchersid, Paul Larson, and Jindřich Zapletal. Increasing δ_{2}^{1} and Namba style forcing. Journal of Symb. Logic, 72(4):1372-1387, 2007.
[Mos80] Yiannis Moschovakis. Descriptive Set Theory. North Holland Publishing Company, Amsterdam, New York, Oxford, 1980.
[Sch04] Ralf Schindler. Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum. Math. Logic Quarterly, 50(6):52732, 2004.
[SVW82] John R. Steel and Robert Van Wesep. Two consequences of determinacy consistent with choice. Trans. Amer. Math. Soc., 272(1):67-85, 1982.
[Woo99] W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of de Gruyter Series in Logic and its Applications. Walter de Gruyter \& Co., Berlin, 1999.

[^0]: *Both authors gratefully acknowledge support by DFG grant no. SCHI 484/3-1. The second author also gratefully acknowledges support by NSF grant no. DMS-0401312. The authors wish to thank Philipp Doebler and the referee for valuable comments.

