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Abstract

We investigate which Π2 sentences (over Hω2) that are consequences of
MM also follow from BMM+NSω1 is precipitous. It turns out that admissible
club guessing (acg), δe1

2 = ω2, the club bounding principle (CBP), and ψAC as

well as φAC follow from this weaker theory. This was known for δe1
2 = ω2 and

ψAC but not for φAC and acg. Additionally we show that if for all regular
θ ≥ ω2 there is a semiproper partial ordering that adds a generic iteration of
length ω1 with last model Hθ, then all stationary set preserving forcings are
semiproper.

1 Introduction

By NSω1 we denote the nonstationary ideal on ω1. A V -generic G for the forcing
(P(ω1) \ NSω1 ,⊂) is an ultrafilter on V that extends the club filter. Hence we can
form the ultrapower j : V → Ult(V,G) in V [G]. We will always assume the well-
founded part of such an ultrapower to be transitive. Clearly j has critical point ω1.
If every condition S ∈ P(ω1) \ NSω1 forces that Ult(V,G) is well-founded, then we
call NSω1 precipitous. Since the precipitousness of an ideal can be recast as a first
order statment, the model Ult(V,G) has a precipitous nonstationary ideal if V has
one. One can now pick a Ult(V,G)-generic for (P(ω1) \ NSω1 ,⊂)Ult(V,G) and form
another ultrapower. This leads to the notion of generic iterations.

Definition 1.1 Let M be a transitive model of ZFC− + “ω1 exists,” and let
I ⊆ P(ωM

1 ) be such that 〈M ;∈, I〉 |= “I is a uniform and normal ideal on ωM
1 .”

Let γ ≤ ω1. Then

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉 ∈ V

is called a putative generic iteration of 〈M ;∈, I〉 (of length γ + 1) iff the following
hold true.

1. M0 = M and I0 = I.

2. For all i ≤ j ≤ γ, πi,j : 〈Mi;∈, Ii〉 → 〈Mj ;∈, Ij〉 is elementary, Ii = π0,i(I),
and κi = π0,i(ωM

1 ) = ωMi
1 .

∗Both authors gratefully acknowledge support by DFG grant no. SCHI 484/3-1.
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3. For all i < γ, Mi is transitive and Gi is (P(κi) \ Ii,⊂)-generic over Mi.

4. For all i+ 1 ≤ γ, Mi+1 = Ult(Mi;Gi) and πi,i+1 is the associated ultrapower
map.

5. πj,k ◦ πi,j = πi,k for i ≤ j ≤ γ.

6. If λ ≤ γ is a limit ordinal, then 〈Mλ, πi,λ, i < λ〉 is the direct limit of
〈Mi, πi,j , i ≤ j < λ〉.

We call
〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ γ〉, 〈Gi; i < γ〉〉

a generic iteration of 〈M ;∈, I〉 (of length γ + 1) iff it is a putative generic iteration
of 〈M ;∈, I〉 of length γ + 1 and Mγ is transitive. 〈M ;∈, I〉 is generically γ iterable
iff for any γ ≤ ω1 every putative generic iteration of 〈M ;∈, I〉 of length γ + 1 is an
iteration.

Notice that we want (putative) iterations of a given model 〈M ;∈, I〉 to exist in
V , which amounts to requiring that the relevant generics Gi may be found in V .

In [CS09] the notion of forcing P(θ,NSω1) was defined for regular θ ≥ ω2.
Granted the precipitousness of nonstationary ideal NSω1 the forcing is nonempty
and preserves stationary subsets of ω1. Forcing with P(θ,NSω1) adds a generic
iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉
such that all Mi with countable index are countable and the last model Mω1 equals
Hθ. Here Ii is Mi’s nonstationary ideal and the κi = ωMi

1 are the critical points
of the generic ultrapowers πi,i+1 : Mi →Mi+1 ' Ult(Mi, Gi). It is also possible to
produce iterations as above with generically iterable M0. This fact is used in [CS09]
to show that BMM+NSω1 is precipitous implies δ˜1

2 = ω2. Note that δ˜1
2 = ω2 is a Π2

statment in Hω2 . In this paper we use generic iterations as above to analyse which
Π2 sentences in Hω2 that are consequences of ZFC+MM are also consequences of the
weaker theory ZFC + BMM + NSω1 is precipitous. Note that MM implies that NSω1

is ω2-saturated [FMS88] but by [Woo99, 10.103, 10.99] BMM + NSω1 is precipitous
does not1. We consider two Π2 statements in Hω2 . Both are known to hold in Hω2

if MM holds.

Definition 1.2 1. We call the following principle admissible club guessing (acg).
For all clubs C ⊆ ω1 there exists a real x such that

Ax := {α < ω1 ; Lα[x] is admissible} ⊂ C.

2. Let S ⊂ ω1. Then we set

S̃ := {α < ω2 ; ω1 ≤ α ∧ 1B  α̌ ∈ j(Š)},

where B = ro(P(ω1) \ NSω1) and j is a name for the corresponding generic
elementary embedding V → (M,E) ⊂ V B. Note that α ∈ S̃ if and only if for
all (one) canonical function(s) fα for α, there is a club C such that if β ∈ C
then fα(β) ∈ S.
Let ~S = 〈Si ; i ∈ ω〉, ~T = 〈Ti ; i ∈ ω〉 be sequences of pairwise disjoint subsets
of ω1, such that all Si are stationary and

ω1 =
⋃
{Ti ; i ∈ ω}.

ϕAC(~S, ~T ) is the conjunction of the following two statements:
1In the situation of [Woo99, 10.103] one considers a 2Pmax extension; there NSω1 is not satu-

rated but one can check that it is precipitous using the 2Pmax analysis in [Woo99, 6.14].
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(a) There is an ω1 sequence of distinct reals.2

(b) There is γ < ω2 and a continuous increasing function F : ω1 → γ with
range cofinal in γ such that for all i ∈ ω

F“Ti ⊂ S̃i.

ϕAC(~S, ~T ) is clearly Σ1({~S, ~T}) in 〈Hω2 ;∈〉. We set

φAC :≡ ∀~S∀~TϕAC(~S, ~T ).

Note that φAC is equivalent to a Π2 statement in 〈Hω2 ;∈〉.

Remark 1.3 The principle acg was isolated by Woodin. If MM holds, then the
universe is closed under the sharp operation (this is already a consequence of BMM).
So by [Woo99, 3.17] δ˜1

2 = ω2 and hence by [Woo99, 3.16, 3.19] acg holds.
The axiom φAC is due to Woodin. By [Woo99, 5.9] MM implies φAC . Note that by
an observation of Larson MM(c) already suffices, see [Woo99, p.200].

We now state our results.

Theorem 1.4 If BMM holds and additionally NSω1 is precipitous, then acg and
φAC hold.

We will prove the above theorem using (a variant of) P(θ,NSω1). The technology
developed to show φAC can also be used to yield ψAC . We sketch such a construc-
tion only since Woodin has shown that BMM + NSω1 is precipitous implies ψAC

using more straightforward methods, see [Woo99, 10.95]. The following diagram
illustrates the logical structure of the various statements:

BMM + NSω1 is precipitous

acg⇐
==

==
==

==
==

==
==

ψAC

�
wwwwwwww

φAC

===============⇒

∀x ∈ R : x] exists
⇐==

==
==

==
==

==

δ˜1
2 = ω2

�
wwwwwwww

CBP

�
wwwwwwww

=============⇒

Here CBP is the club bounding principle, i.e. the statement that every function
f : ω1 → ω1 is bounded by a canonical function for some ordinal < ω2 on a club.
The implication from ψAC to CBP is due to Aspero and Welch, see [AW02]. All
implications from acg are due to Woodin, see [Woo99, (proof of) 3.19].
The second part of this paper deals with the semiproperness of P(θ,NSω1) for all
regular θ ≥ ω2 (or more general the semiproperness of any class of forcings that
adds generic iterations like above). We will show:

Theorem 1.5 The following are equivalent:

1. For arbitrarily large θ ≥ ω2 there is a semiproper partial order P that adds a
generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.
2We are working in models of ZFC so this will trivially hold. It is more interesting if working

in models of ZF + DC.
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such that Hθ ⊂Mω1 and all Mi are countable.

2. All stationary set preserving forcings are semiproper

2 The principle acg

In this section, we shall clean up [CS09] by showing the following.

Lemma 2.1 BMM + NSω1 is precipitous =⇒ acg.

Proof. Fix some club C. We show that admissible club guessing holds under BMM
if the nonstationary ideal is precipitous. The forcing P′(ω2,NSω1) from [CS09]
adds a countable generically iterable M0 generically iterating in ωV

1 many steps to
〈(HV

ω2
)]
,∈,NSω1〉, i.e. an iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

For brevity we write πα instead of πα,ω1 . So there is some α0 < ω1 such that
C ∩ ωMα0

1 ∈ Mα0 and πα0(C ∩ ωMα0
1 ) = C. We can assume w.l.o.g. by changing

some indices that 0 = α0. We now show that in the extension by P′(ω2,NSω1) there
is a real y such that Ay ⊂ C. Let x be a real that codes M0 and let y code x].
Writing Cα = C ∩ ωMα

1 we have Cα ∈ Mα and πα(Cα) = C for all α < ω1. By
elementarity, Cα is unbounded in ωMα

1 . So by the closedness of C we have ωMα
1 ∈ C.

Claim 1. If α is an x-indiscernible and

〈〈M ′
i , π

′
i,j , I

′
i, κ

′
i; i ≤ j ≤ α〉, 〈G′

i; i < α〉〉

is an arbitrary generic iteration of M = M0
′ then α = ω

M ′
α

1 .

Proof of Claim 1. First note that M is generically ω1 + 1 iterable, by Theorem 18
of [CS09]. Fix an x-indiscernible α and an iteration as above. Every x-indiscernible
is inacessible in L[x], so for all β < α

L[x]Col(ω,β) |= α is inacessible.

Let g ⊂ Col(ω, β) be L[x]-generic. Assume w.l.o.g. that g is a real. Then, by

[Woo99, 3.15] (compare Lemma 19 in [CS09]), M ′
β ∩OR < ω

L[x,g]
1 . Hence ω

M ′
β

1 < α.

This implies ωM ′
α

1 ≤ α. So it follows easily that ωM ′
α

1 = α. (Claim 1)

If α is x]-admissible, then α is x-indiscernible. Hence by the above claim it
follows that each y-admissible < ω1 is in C. Hence Ax] ⊂ C. Since the existence of
a real y such that Ay ⊂ C can be recast as a Σ1-statement over Hω2 with C as a
parameter, BMM implies that it is already true in V .

3 Obtaining φAC

We modify the forcing P′(ω2,NSω1) from [CS09] to show an arbitrary instance of
φAC in the generic extension. An application of BMM will then give us the desired
result.
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3.1 Hitting many regular cardinals

The following lemma states that for a generically iterable 〈M, I〉 there is a generic
iteration that realizes many regular cardinals.

Lemma 3.1 (Hitting many regular cardinals lemma) Let 〈M, I〉 be a countable
model of ZFC− and let I be a precipitous ideal on ωM

1 . Assume that P(P(ω1)) exists
in M . Let θ, α ∈M be such that

M |= (22ω1 )
+

= θ = ℵα,

furthermore assume that
M |= (ℵα+ω1)

M exists.

Let θ′ := (ℵα+ω1)
M . Then a genericity iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ′〉, 〈Gi; i < θ′〉〉

of M0 = M exists such that for all β < ωM
1

π0,ℵM
α+β+1

(ωM
1 ) = ℵM

α+β+1.

Proof. Let g ⊂ Col(ω,< θ′) be generic over M . Since M is countable in V the
generic g can be chosen in V . Let P := P(ωM

1 )M \ I. For β < ωM
1 we set

gα+β+1 := g ∩ Col(ω,< ℵM
α+β+1).

Clearly all the gi defined in this fashion are generic overM . Recursively we construct
a generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ′〉, 〈Gi; i < θ′〉〉

such that for β < ωM
1 the sequence 〈Gi; i < ℵM

α+β+1〉 is in M [gα+β+1]. We induc-
tively maintain the following:

• For β < ωM
1 and i < ℵM

α+β+1 the set

Di = {d ∈Mi ; d ⊂ π0,i(P) ∧Mi |= d is a dense in π0,i(P)}

is countable in M [gα+β+1].

Set M0 = M , I0 = I and κ0 = ωM
1 . Assume we are at stage i < θ′ of the

construction. Let β < ωM
1 be least such that i < ℵM

α+β+1. Inductively we have that
Di is countable in M [gα+β+1]. Choose a Di generic Gi in M [gα+β+1]. At limit
stages form direct limits.
Let us check our inductive hypotheses in the successor case, the limit case being an
easy consequence of the fact that the sequence 〈Gi; i < ℵM

α+β+1〉 is in M [gα+β+1].
For the successor case note that an appropriate hull of

π0,i+1“(Hθ)M0 ∪ {κj ; j < i+ 1}

is (Hθi+1)
Mi+1 where θi+1 = π0,i+1(θ). This hull can be calculated in M [gα+β+1].

Hence Di+1 ⊂ (Hθi+1)
Mi+1 is also countable in M [gα+β+1]. It is trivial to maintain

that the sequence 〈Gj ; j < i+ 1〉 is in M [gα+β+1].
Now we need that ℵM

α+β+1 is regular in M . Hence

ω
M [gα+β+1]
1 = ℵM

α+β+1.

So an easy calculation shows that for all β < ωM
1

π0,ℵM
α+β+1

(ωM
1 ) = ℵM

α+β+1.
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Clearly the previous lemma can be generalized further. Since we only need the
case above, we refrained to state it in a more general fashion. Note that we have a
lot of freedom when choosing the generics of the iteration; the only true restriction
is that they come from small generic extensions. We will make use of this later.
We define a set of ordinals relative to a generic iteration. This set will come in
handy in the proof of the main result of this section.

Definition 3.2 Let 〈M, I〉 be a model of ZFC− + “ω1 exists,” such that M |= I
is precipitous. Let θ be a cardinal in M . Let

J := 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ρ〉, 〈Gi; i < ρ〉〉

be a generic iteration of 〈M0, I0〉 = 〈M, I〉. We inductively define the important
ordinals of J relative to θ.

1. 0 is an important ordinal.

2. If α is an important ordinal then the least ordinal γ such that π0,α(θ) ≤ γ = κγ

is the next important ordinal.

3. Limits of important ordinals are important.

Remark 3.3 Let 〈M, I〉 be countable and as in the previous definition and let J
as in the previous defintion and ρ = ω1. Then clearly the set of important ordinals
of J relative to θ is a club in ω1. Also, if α is important, then κα = α.

3.2 Forcing φAC

We will show the following theorem:

Theorem 3.4 Let ℵα = 22ω1 . Let θ := ℵα+ω1 . Let NSω1 be precipitous and
suppose H]

θ exists. Let F : ω1 → θ defined by

F (β) = ℵα+β+1.

Let ~S = 〈Sk ; k ∈ ω〉, ~T = 〈Tk ; k ∈ ω〉 be sequences of pairwise disjoint subsets of
ω1, such that all Sk are stationary and ω1 =

⋃
{Tk ; k ∈ ω}. There exists a forcing

construction P = P′(θ,NSω1 ,
~S, ~T ) that preserves stationary subsets such that if G

is P-generic over V , then in V [G] there is generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that if i < ω1, then Mi is countable and Mω1 = 〈H]
θ;∈,NSω1〉. In particular,

M0 is generically ω1-iterable. Additionally the following holds in V [G] for all k ∈ ω:

F“Tk ⊂ S̃k.

We use a similar setup as [CS09], i.e. we assume:

θ = 2<θ < 2θ < ρ = 2<ρ,

for some cardinal ρ. For reasons of convenience we like to think of ℵα = 22ω1 as ℵ3.
This eases notation considerably. Note that we can force ℵ3 = 22ω1 with stationary
set preserving forcing. If 2ω1 = ℵ2, then the precipitousness of NSω1 is preserved
by forcing with Col(ω3, 22ω1 ), since no new subsets of 2ω1 are added, see [Jec03,
22.19]. Nevertheless the reader will gladly verify that all of the following arguments
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go through for an arbitrary ℵα instead of ℵ3. If ℵα = ℵ3, then clearly θ = ℵω1 .
At this point a remark is in order. In [CS09] θ is supposed to be regular. Never-
theless it is straightforward to check that if one can add generic iterations like in in
[CS09] with last model Hη for arbitrarily large regular η you can also add generic
iterations with last model Hθ. We can hence work with a singular θ and use the
theory of [CS09].
Fix a well-order < of Hρ as in [CS09]. We now fix ~S = 〈Sk ; k ∈ ω〉, ~T = 〈Tk ; k ∈ ω〉
sequences of pairwise disjoint subsets of ω1, such that all Sk are stationary and
ω1 =

⋃
{Tk ; k ∈ ω}. We use

H = 〈Hρ;∈,H]
θ,NSω1 , <〉

and
M = 〈H]

θ;∈,NSω1 , <〉

since we are defining a variant of P′(θ,NSω1). We will now define our modified
forcing construction P′(θ,NSω1 ,

~S, ~T ).

Definition 3.5 Conditions p in P′(θ,NSω1 ,
~S, ~T ) are triples

p = 〈〈κp
i ; i ∈ dom(p)〉, 〈πp

i ; i ∈ dom(p)〉, 〈τp
i ; i ∈ dom−(p)〉〉

such that the following conditions hold:

1. Both dom(p) and dom−(p) are finite, and dom−(p) ⊂ dom(p) ⊂ ω1.

2. 〈κp
i ; i ∈ dom(p)〉 is a sequence of countable ordinals.

3. 〈πp
i ; i ∈ dom(p)〉 is a sequence of finite partial maps from ω1 to H]

θ ∩ OR.

4. 〈τp
i ; i ∈ dom−(p)〉 is a sequence of complete H-types over Hθ, i.e., for each

i ∈ dom−(p) there is some x ∈ Hρ such that, having ϕ range over H-formulae
with free variables u,~v,

τp
i = {〈pϕq, ~z〉 ; ~z ∈ Hθ ∧H |= ϕ[x, ~z]}.

5. If i, j ∈ dom−(p), where i < j, then there is some n < ω and some ~u ∈ ran(πp
j )

such that
τp
i = {(m,~z) ; (n, ~u_m_~z) ∈ τp

j }.

6. In V Col(ω,θ), there is a model which certifies p with respect to M, i.e. a
model A such that H]

θ ∈ wfp(A), A |= ZFC−, for all stationary S, A |=
“S is stationary”, and inside A there is a generic iteration

J A := 〈〈MA
i , π

A
i,j , I

A
i , κ

A
i ; i ≤ j ≤ ω1〉, 〈GA

i ; i < ω1〉〉

such that

(a) if i < ω1, then MA
i is countable,

(b) if i < ω1 and if ξ < θ is definable over M from parameters in ran(πA
i,ω1

),
then ξ ∈ ran(πA

i,ω1
),

(c) Mω1 = 〈H]
θ;∈,NSω1〉,

(d) if i ∈ dom(p), then κp
i = κA

i and πp
i ⊂ πA

i,ω1
,

(e) if i ∈ dom−(p), then for all n < ω and for all ~z ∈ ran(πA
i,ω1

),

∃y ∈ Hθ (n, y_~z) ∈ τp
i =⇒ ∃y ∈ ran(πA

i,ω1
) (n, y_~z) ∈ τp

i .
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(f) Let DA be the set of important ordinals of J A relative to (πA
0,ω1

)−1(θ).
If γ ∈ DA then for all β < γ = κA

γ and all k ∈ ω.

ℵMA
γ

3+β+1 ∈ Sk ⇐⇒ β ∈ Tk.

If p, q ∈ P′(θ,NSω1 ,
~S, ~T ), then we write p ≤ q iff dom(q) ⊂ dom(p), dom−(q) ⊂

dom−(p), for all i ∈ dom(q), κp
i = κq

i and πq
i ⊂ πp

i , and for all i ∈ dom−(q), τ q
i = τp

i .

We now show theorem 3.4. First we show that P := P′(θ,NSω1 ,
~S, ~T ) 6= ∅, i.e.

the analog of Lemma 5 in [CS09]. Then we proceed as in [CS09] but we will skip
all lemmata and theorems that are literally the same and have literally the same
proof.

Lemma 3.6 P 6= ∅.

Proof. We need to verify, that in V Col(ω,θ) there is a model which certifies the trivial
condition with respect to M. Let g be Col(ω,< ρ)-generic over V . We work in
V [g] until further notice. So 〈V ;∈,NSω1〉 is ρ + 1 iterable, by Lemma 2 of [CS09].
Hence 〈H]

θ;∈,NSω1〉 is also ρ+ 1 iterable. We prepare a book-keeping device: pick
a bijection g : [ρ]<ρ → ρ and a familily 〈Sν , ν < ρ〉 of pairwise disjoint stationary
subsets of ρ. Now define f : ρ→ [ρ]<ρ by

f(i) = s ⇐⇒ i ∈ Sg(s).

Note that each s is enumerated stationarily often. We recursively construct a generic
iteration

J := 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ρ〉, 〈Gi; i < ρ〉〉

of M0 = 〈V ;∈,NSω1〉 togethter with a set of local generics gi. Later the restriction
of this iteration to 〈H]

θ;∈,NSω1〉 will be of interest. For each important ordinal of
the iteration a local generic gi will be picked. Suppose we have already constructed
J to some i < ρ. Note that we can calculate the important ordinals of J relative
to θ while we construct J . The following three clauses define the iteration.

1. If i is an important ordinal of J relative to θ, then pick some gi ⊂ Col(ω,<
π0,i(θ)) in V [g] that is generic over Mi. Then pick Gi in Mi[gi] such that if for
a (unique) j the set πj,i(f(i)) is stationary in Mi then πj,i(f(i)) ∈ Gi. Note
that j is unique because f(i) can only be stationary in Mj if sup f(i) = ω

Mj

1 .

2. If i is not important and γ is the largest important ordinal below i, then we
already have chosen some gγ ⊂ Col(ω,< π0,γ(θ)) in V [g] that is generic over
Mγ . In the case that i = ω

Mγ

3+β+1 for some β < κγ = γ we pick some Gi in

Mγ [gγ ∩ Col(ω,< ω
Mγ

3+β+2)] such that

β ∈ π0,γ(Tk) ⇐⇒ π0,i(Sk) ∈ Gi.

Note that since ~T is a partition of ω1, there is a unique k such that β ∈ π0,i(Tk).

3. If the first and second clause do not hold and γ is the largest important ordinal
below i, then we already have chosen some gγ ⊂ Col(ω,< π0,γ(θ)) in V [g] that
is generic over Mγ . In the case that i is not a successor cardinal < π0,γ(θ) in
Mγ there is a least β < κγ such that i < ω

Mγ

3+β+1. We pick some arbitrary Gi

in Mγ [gγ ∩ Col(ω,< ω
Mγ

3+β+1)]. Else we pick a completely arbitrary generic.
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Fix some important γ > 0. So J restricted to [γ, π0,γ(θ)[ is an iteration like in the
Hitting many regular cardinals lemma 3.1. Hence we know that the iteration is well
defined and additionally we have for β < κγ = γ and i := ℵMγ

3+β+1

i = πγ,i(κγ) = κi.

By the second clause of the iteration we hence have for i as above and k ∈ ω:

β ∈ π0,γ(Tk) ⇐⇒ π0,i(Sk) ∈ Gi ⇐⇒ κi ∈ π0,i+1(Sk) ⇐⇒ i ∈ π0,ρ(Sk).

Let D denote the club of important ordinals and let S ∈ NSMρ
ω1

. Let j < ρ and s be
such that πj,ρ(s) = S. If i ∈ D \ j and f(i) = s, then πj,i(s) ∈ Gi. This shows that

D ∩ Sg(s) \ j ⊂ {i < ρ ; κi ∈ S},

so that in fact S is stationary in V [g].
Hence in M

Col(ω,π0,ρ(θ))
ρ there is a model that certifies the empty condition with

respect to π0,ρ(〈H]
θ;∈,NSω1〉). Now we can literally complete our proof by following

the last paragraph of the proof Lemma 5 in [CS09].

We can now literally adopt lemmata 6 through 15 of [CS09]. So we have, using
the notation of [CS09]:

Lemma 3.7 Let G ⊂ P is V -generic. Let κi = κp
i for some p ∈ G. Then in V [G]

H]
θ ∩ OR = ∪{ran(πi) ; i < ω1}

and
JG := 〈〈Mi, π̃i,j , Ii, κi; i ≤ j ≤ ωV

1 〉, 〈Gi; i < ω1〉〉

is a generic iteration of M0 such that if i < ω1, then Mi is countable, and Mω1 =
〈H]

θ;∈, I〉.

Let DG denote the important ordinals of JG. We can assume without loss of
generality that there are ~s, ~t ∈M0 such that π̃0,ω1(〈~s,~t〉) = 〈~S, ~T 〉.

Lemma 3.8 DG is club and for all γ ∈ DG the following holds: if β < κγ then
for all k ∈ ω

β ∈ π0,γ(tk) ⇐⇒ ℵMγ

3+β+1 ∈ π0,ω1(sk),

which by the choice of ~s and ~t means

β ∈ Tk ⇐⇒ ℵMγ

3+β+1 ∈ Sk

Proof. That DG is club is obvious.

Claim 1. p  γ̌ ∈ DĠ if and only if for all A which certify p, γ ∈ DA.

Proof of Claim 1. Fix p such that p  γ̌ ∈ DĠ and some structure A which certifies
p. Towards a contradiction suppose γ /∈ DA. Then there is some γ′ < γ, γ′ ∈ DA

with
(πA

γ′,ω1
)−1(θ) > γ.

We can extend p to p′ also certified by A such that dom(p′) contains all the relevant
points. Then

p′  γ̌ /∈ DĠ.

9



Contradiction! The other direction is easy. (Claim 1)

Now if β ∈ π0,γ(tk) and γ ∈ DG there is some p ∈ G with p  γ̌ ∈ DĠ and
β ∈ (πp

γ)−1 ◦πp
0(tk) (Note the following subtlety: πp

0 is only defined on the ordinals,
but using the well ordering < on H]

θ we can assume that dom(πp
0) contains tk). Let

p′ ≤ p be arbitrary and let A certify p′. Then ℵMA
γ

3+β+1 ∈ Sk by the above claim and
the fact that A certifies p′. So we may extend p′ to p′′ making sure

p′′  ℵMγ

3+β+1 ∈ π̃0,ω1(sk).

Hence the set of p′′ forcing the desired result is dense below p. The other direction
is similar.

We can now literally adopt lemmata 16 and 17 of [CS09] and their proofs; i.e.
it is clear that P′(θ,NSω1 , S, T ) is stationary set preserving.

To finish the proof of 3.4 we have to show that in V [G] for all k ∈ ω

F“Tk ⊂ S̃k.

For this fix k ∈ ω and some β ∈ Tk. By 3.8 we have for all γ ∈ DG \ (β + 1)

β ∈ Tk ⇐⇒ ℵMγ

3+β+1 ∈ Sk.

Lemma 3.9 The function f : DG \ (β + 1) → ω1

γ 7→ ℵMγ

3+β+1

is a canonical function for ℵV
3+β+1 < ω

V [G]
2 in V [G].

Proof. Let
JG := 〈〈Mi, π̃i,j , Ii, κi; i ≤ j ≤ ωV

1 〉, 〈Gi; i < ω1〉〉

denote the iteration that is added by G. Set η := ℵV
3+β+1. Fix some bijection

g : ω1 → η in V [G]. Let 〈Xi ; i ∈ ω1〉 be a continuous elementarty chain of countable
submodels of HV [G]

ω2 such that g,HV
θ ∈ X0. So clearly HV

θ ⊂ ∪{Xi ; i ∈ ω}. So for
all i ∈ ω1 we have

Xi ∩ η = g“(Xi ∩ ω1).

Clearly 〈Xi ∩HV
θ ; i ∈ ω1〉 is club in [HV

θ ]ω. Since the set {ran(π̃i,ω1)∩Hθ ; i ∈ ω1}
is also a club in [HV

θ ]ω there is a club C ⊂ ω1 such that for all i ∈ C

Xi ∩ η = ran(π̃i,ω1) ∩ η.

So for all i ∈ C we have

i = ran(π̃i,ω1) ∩ ω1 = Xi ∩ ω1

and thus
otp(g“i) = otp(ran(π̃i,ω1) ∩ η) = ℵMi

3+β+1 = f(i).

Hence f is a canonical function.

So the club DG \ (β + 1) and f from the previous lemma witness that in V [G]

1B  ℵV
3+β+1 ∈ j(Si),
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where B is (P(ω1) \NSω1)
V [G] and j is a name for the generic embedding added by

forcing with B. Hence ℵV
3+β+1 ∈ S̃i. This finishes the proof of 3.4.

Observe that the single instance of φAC that holds in V P′(θ,NSω1 ,~S,~T ) is a Σ1 state-
ment in Hω2 in the parameters ~S and ~T . Since P′(θ,NSω1 ,

~S, ~T ) preserves stationary
subsets an application of BMM yields the following corollary.

Corollary 3.10 If NSω1 is precipitous+BMM then φAC .

4 Obtaining ψAC

Definition 4.1 (Woodin) ψAC : Let S ⊂ ω1 and T ⊂ ω1 be stationary, costation-
ary sets. Then there exists a canonical function f for some η < ω2 such that for
some club C ⊂ ω1

{α < ω1 ; f(α) ∈ T} ∩ C = S ∩ C.

Note the following reformulation of the above definition in terms of generic
ultrapowers: let j be a name for the embedding induced by some generic G ⊂
P(ω1) \ NSω1 , with S, T as above we have

1P(ω1)\NSω1
 Š ∈ Ġ ⇐⇒ η ∈ j(T ).

Woodin has shown:

Theorem 4.2 ([Woo99, 10.95]) If BMM + NSω1 is precipitous then ψAC .

With the technology from the previous section on φAC it is possible to give a
different proof of 4.2. Since this is very similar to the section on φAC , we shall only
state the required results. The proofs are very similar to the φAC case.

Lemma 4.3 (Hitting regular cardinals lemma) Let 〈M, I〉 be a countable model of
ZFC∗ and let I be a precipitous ideal on ωM

1 . Assume that P(P(ω1)) exists in M .
Let θ ∈M be such that

M |= Card(P(P(ω1)))+ = θ,

and let θ′ ≥ θ such that θ′ is a regular cardinal in M . Then a genericity iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ θ′〉, 〈Gi; i < θ′〉〉

of M0 = M exists in V such that π0,θ′(ωM
1 ) = θ′.

We again modify the forcing P′(ω2,NSω1) to show a weak form of ψAC in the
generic extension. An application of BMM will then give us the desired result.

Theorem 4.4 Let NSω1 be precipitous and suppose H]
θ exists, where θ = 22ℵ1+

.
For all S, T stationary and costationary there exists a forcing construction P =
P′(θ,NSω1 , S, T ) that preserves stationary subsets, such that if G is P-generic over
V , then in V [G] there is generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉

such that if i < ω1, then Mi is countable and Mω1 = 〈H]
θ;∈,NSω1〉. In particular,

M0 is generically ω1-iterable. Additionally the following holds in V [G]: there is a
club C ⊂ ω1, such that for all α ∈ C

ωMα
1 ∈ S ⇐⇒ θα ∈ T,

where θα = π−1
α,ω1

(θ).
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We will now define our modified forcing construction P := P′(θ,NSω1 , S, T ).

Definition 4.5 Conditions p in P′(θ,NSω1 , S, T ) are triples

p = 〈〈κp
i ; i ∈ dom(p)〉, 〈πp

i ; i ∈ dom(p)〉, 〈τp
i ; i ∈ dom−(p)〉〉

such that the following conditions hold:

Conditions i.,ii.,iii.,iv.,v. as in definition 3.5 hold. We replace condition vi. as
follows:

vi. In V Col(ω,θ), there is a model which certifies p with respect to M, i.e. a
model A such that H]

θ ∈ wfp(A), A |= ZFC−, for all stationary S, A |=
“S is stationary”, and inside A there is a generic iteration

J A := 〈〈MA
i , π

A
i,j , I

A
i , κ

A
i ; i ≤ j ≤ ω1〉, 〈GA

i ; i < ω1〉〉

such that conditions (a),(b),(c),(d) and (e) as in definition 3.5 hold. We replace
(f).

(f) Let DA be the club of limits of important ordinals of J A relative to
πA−1

0,ω1
(θ). Let α ∈ DA. Let β be the next important ordinal above α.

Then
ω

MA
α

1 ∈ S ⇐⇒ πA−1
α,ω1

(θ) = ω
MA

β

1 ∈ T.
If p, q are conditions, then we write p ≤ q iff p ≤P′(θ,NSω1 ) q.

Applying the Hitting regular cardinals lemma one can show that certifying struc-
tures exist. Hence one has:

Lemma 4.6 P 6= ∅.

We can now literally adopt lemmata 6 through 15 of [CS09]. So we have, using
the definitions for πi,Mi, Ii, κi, Gi, π̃i,j, of [CS09]:

Lemma 4.7 Let G ⊂ P is V -generic. Let κi = κp
i for some p ∈ G. Then

H]
θ ∩ OR = ∪{ran(πi) ; i < ω1}

and
JG := 〈〈Mi, π̃i,j , Ii, κi; i ≤ j ≤ ωV

1 〉, 〈Gi; i < ω1〉〉
is a generic iteration of M0 such that if i < ω1, then Mi is countable, and Mω1 =
〈H]

θ;∈, I〉.

We set
θi := π̃−1

i,ω1
(θ),

an we let DG denote the club of limits of important ordinal of J relative to θ0. A
densitiy argument shows:

Lemma 4.8 DG is club and for all i ∈ DG

ωMi
1 ∈ S ⇐⇒ θi ∈ T.

Since the sequence 〈θi ; i ∈ DG〉 is a canonical function for θ in the forcing
extension, we have

1P(ω1)\NSω1
 Š ∈ Ġ ⇐⇒ θ ∈ ǰ(T ).

We can now literally adopt lemmata 16 and 17 of [CS09] and their proofs; i.e.
it is clear that P′(θ,NSω1 , S, T ) is stationary set preserving. Hence theorem 4.4
follows.
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5 The semiproperness of P(NSω1
, θ)

In [CS09] it was shown that P(NSω1 , θ) preserves stationary subsets of ω1 provided
that NSω1 is precipitous. Since it is consistent relative to large cardinals that all
stationary set preserving forcings are semiproper, the forcing P(NSω1 , θ) can clearly
be semiproper. We show that the semiproperness of the forcings P(NSω1 , θ) implies
a generalization of Chang’s Conjecture which in turn implies the semiproperness of
all stationary set preserving forcings.
Recall the definition of semiproperness.

Definition 5.1 A notion of forcing P is semiproper if for every sufficiently large λ,
every well-ordering < of Hλ and every countable elementary submodel X ≺ 〈Hλ;∈
, <〉 the following holds:

∀p ∈ X ∩ P ∃q ≤ p : q is (X,P)-semigeneric,

where q is (X,P)-semigeneric if for every name α̇ ∈ X for a countable ordinal

∃β ∈ X : q  α̇ = β̌.

Definition 5.2 ([She98, XIII. 1.5])

• Let x, y be countable. We write x @ y if x ∩ ω1 = y ∩ ω1 and x ⊂ y.

• A set S ⊂ [W ]ω is semistationary in [W ]ω if {y ∈ [W ]ω ; ∃x ∈ S : x @ y} is
stationary in [W ]ω.

• Let λ ≥ ω2. We denote by SSR([λ]ω) the following principle: For every S
semistationary in [λ]ω there is W ⊂ λ, Card(W ) = ω1 ⊂ W and S ∩ [W ]ω is
semistationary in [W ]ω.

• If SSR([λ]ω) holds for all cardinals λ ≥ ω2 then we will say that Semistationary
Reflection (SSR) holds.

Note that [She98] has a more general notation for the above reflection principles.
In [She98] the principle SSR([λ]ω) is called Rss(ℵ2, λ) and SSR is called Rss(ℵ2).

Lemma 5.3 ([She98, XIII.1.7(3)]) Semistationary Reflection implies that all sta-
tionary set preserving forcings are semiproper.

Definition 5.4 ([FMS88]) (†) is an abbreviation for: every stationary set preserv-
ing forcing is semiproper.

Foreman, Magidor and Shelah have shown:

Lemma 5.5 ([FMS88, Theorem 26]) If (†) then NSω1 is precipitous.

We will consider a generalization of Chang’s Conjecture that we call CC∗∗.

Definition 5.6 Let λ ≥ ω2. CC∗(λ) is the following axiom: There are arbitrarily
large regular cardinals θ > λ such that for all well-orderings < of Hθ and for all
a ∈ [λ]ω1 and for all countable X ≺ 〈Hθ;∈, <〉 there is a countable Y ≺ 〈Hθ;∈, <〉
such that X @ Y and there is some b ∈ Y ∩ [λ]ω1 such that a ⊂ b.
CC∗∗ is CC∗(λ) for all cardinals λ ≥ ω2.
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Note that CC∗(ω2) implies Todorčević’s CC∗; in the case of CC∗ one only re-
quires for an X as above that X @ Y and X ∩ ω2 6= Y ∩ ω2, see [Tod93]. Note
that CC∗(ω2) (and also CC∗) implies the usual Chang Conjecture by building a
continuous chain of countable elementary submodels of length ω1; at each successor
stage apply CC∗∗. So the countable ordinals of the last model of the chain are the
same as the first model’s.
The next theorem answers a question of Todorčević who asked the second author
under which cirumstances P(NSω1 , θ) is semiproper.
The authors would like to thank Daisuke Ikegami for communicating valuable re-
sults about the relationship of CC∗∗, SSR and (†).

Theorem 5.7 The following are equivalent:

1. NSω1 is precipitous and for all regular θ ≥ ω2 the partial ordering P(NSω1 , θ)
is semiproper.

2. For arbitrarily large θ ≥ ω2 there is a semiproper partial order P that adds a
generic iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

such that Hθ ⊂Mω1 and all Mi are countable.

3. CC∗∗

4. SSR

5. (†)

Before we prove the above theorem note that the Namba-like forcing in [KLZ07]
is stationary set preserving (cf. [Zap]) and hence P(NSω1 , θ) is not the only example
witnessing the consistency of 2.

Proof. 1. =⇒ 2. is trivial and 4. =⇒ 5. is Lemma 5.3.
5. =⇒ 1. is clear since by 5.5, NSω1 is precipitous in this case and so by [CS09]
the forcing P(NSω1 , θ) exists for all regular θ ≤ ω2 and preserves stationary subsets
of ω1.
It remains to show 2. =⇒ 3. and 3. =⇒ 4. For the first implication we assume that
CC∗∗ does not hold and work toward a contradiction. So there is a least cardinal
λ0 ≥ ℵ2 for which CC∗∗ fails. Since 2. holds there is a least θ0 > λ0 such that a
semiproper P exists that adds an iteration

〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

such that Hθ0 ⊂ Mω1 and all Mi are countable. Let θ > θ0 large enough so that
a name for an iteration as above and P(P) are both in Hθ. Let < be some well-
ordering of Hθ. Now fix some arbitrary X ≺ 〈Hθ;∈, <〉 and some a ∈ [λ0]ω. Our
aim is now to construct a Y ≺ 〈Hθ;∈, <〉 like in CC∗∗. For this we first show that
it suffices to do so in a generic extension:

Claim 1. If there is some generic extension of V that contains some Y ≺ 〈Hθ;∈, <〉
such that X @ Y and there is some b ∈ Y ∩ [λ0]ω1 ∩ V such that a ⊂ b then there
is already some Z ∈ V with Z ≺ 〈Hθ;∈, <〉, X @ Z and b ∈ Z.

Proof of Claim 1. If Y is in some generic extension W of V , then by b ∈ V there is
a tree T ∈ V searching for a countable Z ≺ 〈Hθ;∈, <〉 such that b ∈ Z and X @ Z.
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So T has a branch in W , this is clearly witnessed by Y . By the absoluteness of well-
foundedness we have a branch through T in V and hence there is some countable
Z ≺ 〈Hθ;∈, <〉 with X @ Z and b ∈ Z in V . (Claim 1)

By the minimality of λ0 and θ0 some semiproper forcing and some name for an
iteration as above exist in X. Let us call this forcing P again. Let G ⊂ P be generic
over V .

Claim 2. X[G] ≺ Hλ[G].

This claim is part of the folklore. For the readers convenience we give a
Proof of Claim 2. An induction along the first order formulae will yield the desired
result: let φ be a formula and let σ ∈ X denote some name such that

Hλ[G] |= ∃yφ(y, σG).

Then by the fullness of the forcing names we have

Hλ |= ∃τ∀p ∈ P(p  ∃yφ(y, σ) =⇒ p  φ(τ, σ)).

So by elementarity such a τ exists in X. By the inductive hypothesis we have

Hλ[G] |= φ(τG, σG) ⇐⇒ X[G] |= φ(τG, σG).

(Claim 2)

By our hypothesis we can force the existence of a generic iteration

J̇G = 〈〈Mi, πi,j , Ii, κi; i ≤ j ≤ ω1〉, 〈Gi; i < ω1〉〉.

with Mω1 ⊃ Hθ. So by the regularity of θ we have a ∈ Mω1 . Note that X[G] can
calculate M0.

Claim 3. Let β < α ≤ ω1. All elements of Mα are of the form πβ,α(f)(~ξ) for some
f : κn

β →Mβ , f ∈Mβ and ordinals ξ1, ..., ξn < ωMα
1 .

This claim is also part of the folklore. Nevertheless we give a proof for the readers
convenience.
Proof of Claim 3. Fix β < ω1. We show this by induction on α. Let α = γ + 1.
Then Mα is isomorph to Ult(Mγ , Gγ). Hence every element of Mα has the form
πγ,α(f)(κγ) for some f : κγ → Mγ , f ∈ Mγ . By the inductive hypothesis f is of
the form πβ,γ(g)(~ξ) for some g : κn

β →Mβ , g ∈Mβ and ~ξ ∈ κn
γ . Then

πγ,α(f)(κγ) = πγ,α(πβ,γ(g)(~ξ))(κγ) = πβ,α(g)(~ξ)(κγ),

since the critical point of πγ,α is κγ .
The case Lim(α) simply uses the fact that Mα is the direct limit of all Mγ for
γ < α: if x ∈ Mα, then x = πγ,α(x̄) for some γ < α and some x̄ ∈ Mγ . Without
loss of generality we may assume β < γ. Then x̄ is of the form πβ,γ(g)(~ξ) for some
g : κn

β →Mβ , g ∈Mβ and ordinals ~ξ ∈ κn
γ . Then

x = πγ,α(x̄) = πγ,α(πβ,γ(g)(~ξ)) = πβ,α(g)(~ξ).

(Claim 3)
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By setting β = 0 and α = ω1 in the above claim, we have that there is some
f ∈M0, f : κn

0 →M0 and ~ξ = ξ1, ..., ξn < ω1 such that

a = π0,ω1(f)(~ξ).

This f is in X[G]. We set

b :=
⋃
{π0,ω1(f)(~α) ; ~α ∈ ωn

1 ∧ π0,ω1(f)(~α) ∈ ([Hθ]ω1)V }.

Clearly a ⊂ b and Card(b) = ω1. Since the parameters π0,ω1(f), [Hθ]ω1 used in the
definition of b are in V we have that b ∈ V . Also b ∈ X[G]. By the semiproperness
of P X @ X[G]. So X[G] witnesses that in some generic extension of V there is
some Y as desired. This suffices to show by claim 1.
We now show that 3. =⇒ 4. This implication is a slight generalization of [Tod93,
Lemma 6]. Fix an ordinal λ ≥ ω2 and a semistationary S ⊂ [ω2]ω. We set

W := {W ⊂ λ ; Card(W ) = ω1 ⊂W}

and
T := {y ∈ [λ]ω ; ∃x ∈ S : x @ y}.

By the very definition of semistationarity T is stationary. Let us assume that SSR
does not hold and work toward a contradiction. For all W ∈ W

SW := {y ∈ [W ]ω ; ∃x ∈ S ∩ [W ]ω : x @ y}

is nonstationary. For each W ∈ W we may hence pick a function

fW : [W ]<ω →W

such that
SW ∩ {x ∈ [W ]ω ; fW “[x]<ω ⊂ x} = ∅.

Let F denote the collection of these fW . Let θ > λ be regular large enough such that
F ,W, S, T ∈ Hθ and such that the implications of CC∗∗ hold for this θ. Let < be a
well-ordering of Hθ. Pick a countable M ≺ 〈Hθ;∈, <〉 such that F ,W, S, T, λ ∈M
and

M ∩ λ ∈ T.

Let
a := (M ∩ λ) ∪ ω1.

Since CC∗∗ holds, there is a countable M∗ ≺ Hθ and some b ∈ [θ]ω1 such that
M @ M∗, a ⊂ b and b ∈ M∗. Clearly W := b ∩ λ ∈ W ∩M∗. So fW ∈ M∗. Then
by elementarity of M∗

fW “[W ∩M∗]<ω ⊂W ∩M∗.

By the choice of a and the properties of M∗ we have

M ∩ λ @ W ∩M∗.

Since we have M ∩ λ ∈ T there is some x ∈ S such that x @ M ∩ λ. Note that
x ∈ [W ]ω. By the transitivity of @,

x @ W ∩M∗.

This implies W ∩M∗ ∈ SW . We thus have a contradiction to the choice of fW .
This finishes the proof.
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