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Chapter 0

Preliminaries

(1) Throughout the book we assume ZFC. We use "virtual classes", writing
{z|p(z)} for the class of = such that p(z). We also write:

{t(z1,...,zn)|0(z1,...,2n)}, (where e.g.
Hz, .y xn) = {ylU(y,z1,...,20)})

for:
W\ 21 wnly = @, w0) Al )}
We also write

P(A) ={z]z C A},AUB ={z|z€ AV z€ B}
ANB={zlz€ ANz€ B},~A={z| ¢ A}

(2) Our notation for ordered n—tuples is (z1,...,xy,). This can be defined
in many ways and we don’t specify a definition.

(3) An n-ary relation is a class of n—tuples. The following operations are
defined for all classes, but are mainly relevant for binary relations:

dom(R) =: {z|V y(y,z) € R}

mg(R) =: {y| V z(y,z) € R}

Ro P ={{y,z)|V2|{y,2) € RA(z,z) € P}
RI1A={{y,x)|(y,z) e RNz € A}

R = {(y,z)|(z,y) € R}

We write R(z1,...,x,) for (z1,...,2,) € R.

(4) A function is identified with its extension or field — i.e. an n-ary
function is an n + l-ary relation F' such that

Nzi..xn Nz Nw(F(z,21, ..., 20) A F(w, 21, ..., 24))

—z=w)
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F(z1,...,x,) then denotes the value of F at x1,...,z,.

"Functional abstraction" (ty, . z.|e(x1,...,2,)) denotes the function
which is defined and takes value t;, .. whenever ¢(z1,...,z,) and
Loy, .z, 18 & set:

n

(tor,anlp(T1, .o T0)) =
{<y7 AR ,xnﬂy = tfﬂl,...,mn A QO(.Tl, v awn)}>

where e.g. tg, 2. = {z|¥(z,21,...,20)}.

Ordinal numbers are defined in the usual way, each ordinal being iden-
tified with the set of its predecessors: a = {v|v < a}. The nat-
ural numbers are then the finite ordinals: 0 = 0,1 = {0},...,n =
{0,...,n — 1}. On is the class of all ordinals. We shall often em-
ploy small greek letters as variables for ordinals. (Hence e.g. {a|p(a)}
means {z|r € OnAp(z)}.) We set:

sup A =:J(ANOn), inf A =: (AN On)
lub A =: sup{a + 1|a € A}.

A note on ordered n—tuples. A frequently used definition of ordered
pairs is:

(z,y) = =} {z, y}}-

One can then define n—tuples by:

() =1, (x1,29,...,20) =: (x1,(T1, ..., 2n)).

However, this has the disadvantage that every n + 1-tuple is also an
n—tuple. If we want each tuple to have a fixed length, we could instead
identify the n—tuples with vector of length n — i.e. functions with
domain n. This would be circular, of course, since we must have a
notion of ordered pair in order to define the notion of "function". Thus,
if we take this course, we must first make a "preliminary definition" of
ordered pairs — for instance:

(z,y) = {{z} {2, y}}
and then define:
(o, -y Tn-1) = {(20,0),..., (zp—1,n —1)}.

If we wanted to form n—tuples of proper classes, we could instead iden-
tify (Ao, ..., Ap—1) with:

((2,)](i=0Az € A)V...V(i=n—1Az € A1)}



(8)

(11)

Overhead arrow notation. The symbol T is often used to donate a
vector (xy,...,x,). It is not surprising that this usage shades into what
I shall call the informal mode of overhead arrow notation. In this mode
Z simply stands for a string of symbols x1, ..., x,. Thus we write f(Z)
for f(z1,...,%n), which is different from f((z1,...,2,)). (In informal
mode we would write the latter as f((Z)).) Similarly, ¥ € A means that
each of x1,...,z, is an element of A, which is different from (Z) € A.
We can, of course, combine several arrows in the same expression. For
instance we can write f(§(Z)) for f(g1(z1, ... 2n), - s gm(T1, ..., Tp)).

) or f(g(Z)) for

~—

Hll

Similarly we can write f(g(

f(gl(xl,l’ s 7$17;D1)7 cee vQM(xm,lﬁ R ’xmﬁvm))'

The precise meaning must be taken from the context. We shall often
have recourse to such abbreviations. To avoid confusion, therefore, we
shall use overhead arrow notation only in the informal mode.

A model or structure will for us normally mean an n+1-tuple (D, A1, ...
consisting of a domain D of individuals, followed by relations on that
domain. If ¢ is a first order formula, we call a sequence vy, ..., v, of
distinct variables good for o iff every free variable of ¢ occurs in the se-
quence. If M is a model, ¢ a formula, vy, ..., v, a good sequence for ¢
and z1,...,x, € M, we write: M = p(v1,...,vp)[x1,...,2y] to mean
that ¢ becomes true in M if v; is interpreted by x; for i = 1,...,n.
This is the satisfaction relation. We assume that the reader knows how
to define it. As usual, we often suppress the list of variables, writing
only M E ¢lzi,...,z,). We may sometimes indicate the variables
being used by writing e.g. ¢ = p(v1,...,vp).

€-models. M = (D, E,Ay,...,A,) is an €-model iff E is the restric-
tion of the €-relation to D?. Most of the models we consider will be
€-models. We then write (D, €, Ay,...,A,) or even (D, Aq,..., Ay)
for (D,€ ND?, Ay,..., A,). M is transitive iff it is an €-model and D
is transitive.

The Levy hierarchy. We often write Az € yp for Az(x € y — @),
and \/ z € yp for \/ z(z € y A ). Azriel Levy defined a hierarchy of
formulae as follows:

A formula is X (or Ilp) iff it is in the smallest class ¥ of formulae such
that every primitive formula is in ¥ and A v € up, \/v € up are in 3
whenever ¢ is in ¥ and v, u are distinct variables.

(Alternatively, we could introduce Av € w, \/v € u as part of the
primitive notation. We could then define a formula as being ¥ iff it
contains no unbounded quantifiers.)
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The X,,+1 formulae are then the formulae of the form \/ vy, where ¢
is II,,. The II,,4+1 formulae are the formulae of the form A vy when ¢
is 2.

If M is a transitive model, we let 3, (M) denote the set of relations on
M which are definable by a ¥, formula. Similarly for IT,,(M). We say
that a relation R is ¥, (M )(IL,(M)) in parameters p1,...,pm iff

R(xy,...,mp) < R(z1,.. ., Zn, D1, -, Pm)

and R is X, (M)(IT,(M)). X;(M) then denotes the set of relations
which are ¥; (M) in some parameters. Similarly for II, (M).

Kleene’s equation sign. An equation 'L ~ R’ means: 'The left side is
defined if and only if everything on the right side is defined, in which
case the sides are equal’. This is of course not a strict definition and
must be interpreted from case to case.

F(Z) ~ G(Hi(%),..., Hy(Z)) obviously means that the function F' is
defined at (xi,...,z,) iff each of the H; is defined at (¥) and G is
defined at (Hy(Z),..., H,(Z)), in which case equality holds.

The recursion schema of set theory says that, given a function G, there
is a function F with:

Fly, @) = G(y, 7, (F(2,7)|z € y)).

This says that F' is defined at (y, &) iff F' is defined at (z, &) for all
z € y and G is defined at (y, Z, (F(z,%)|z € y)), in which case equality
holds.

By the recursion theorem we can define:

TC(z) =2U | JTC(2)

zex

(the transitive closure of x)
rn(z) = lub{rn(z)|z € z}
(the rank of x).

By a normal ultrafilter on xk we mean an ultrafilter U on P(x) with
the property that whenever f : kK — k is regressive modulo U (i.e.
{v|f(v) < v} € U), then there is o < & such that {v|f(v) < v} € U.
Each normal ultrafilter determines an elementary embedding 7 of V/
into an inner model W. Letting

D = the class of functions f with domain &,

we can characterize the pair (W, ) uniquely by the conditions:
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e 7:V < W and crit(r) = &
o W=A{n(f)(r)| feD}
o 7(f)(x) € m(9)(r) & {v|f(v) € g(v)} € U.

U can then be recovered from 7 by:
U={xCklken(x)}.

We shall call (W, ) the extension of V' by U. W can be defined from
U by the well known ultrapower construction: We first define a "term
model" D = (D, %, €) by:

f=ge{vlfv) =g} el
feg o {vlfv) =g} €U

D is an equality model in the sense that = is not the identity relation
but rather a congruence relation for ). We can then factor D by =,
getting an identity model D\ 2, whose are the equivalence classes:

[z] = {yly = =}

D\ = turns out to be isomorphic to an inner model W. If o is the
isomorphism, we can define 7w by:

m(x) = o([consty])

where const, is the constant function x defined on «. W is then called
the ultrapower of V by U. 7 is called the canonical embedding.

(Extenders) The normal ultrafilter is one way of coding an embedding
of V into an inner model by a set. However, many embeddings cannot
be so coded, since 7(x) < 2" whenever (W, 7) is the extension by U. If
we wish to surmount this restriction, we can use extenders in place of
ultrafilters. (The extenders we shall deal with are also known as "short
extenders".)

An extender F at x maps |J P(u") into |J P(A\") for a A > w.

n<w nw

It engenders an embedding 7 of V' into an inner model W characterized
by:

o m:V < W, crit(n) =)

e Every element of W has the form 7 (f)(&) where aq,...,a, < A
and f is a function with domain k™

— — —

o m(f)(@) € m(g)(@) < (@) € T({{OIF(E) € 9(E)})
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F' is then recoverable from (W, 7) by:
F(X)=n(X)Nn\" for X C r".

The concept "F' is an extender" can be defined in ZFC, but we defer
that to Chapter 3. If (W, x) is as above, we call it the extension
of V by F. We also call W the ultrapower of V by F and 7 the
canonical embedding. (W, 7) can be obtained from F by a "term
model" construction analogous to that described above.

(Large Cardinals)

Definition 0.0.1. We call a cardinal x strong iff for all § > k there
is an extender F' such that if (W, ) is the extension of V' by F', then
Vg cWw.

Definition 0.0.2. Let A be any class. k is A-strong iff for all § > &
there is F' such that letting (W, 7) be the extension of V' by F, we
have:

ANVg ZW(A)QVB.

These concepts can of course be relativized to V; in place of V when
T is strongly inaccessible. We then say that k is strong (or A-strong)
up to T.)

Definition 0.0.3. 7 is Woodin iff 7 is strongly inaccessible and for
every A C V; there is kK < 7 which is A-strong up to 7.

(Embeddings)

Definition 0.0.4. Let M, M’ be e-structures and let 7 be a structure
preserving embedding of M into M’. We say that 7 is X,,—preserving
(in symbols: m: M —yx, M') iff for all 3, formulae we have:

M E plar,...,a,) < M = pn(ar),. .., (ay)]

for aj,...,a, € M. It is elementary (in symbols: = : M < M’ or
7w M —yx, M') iff the above holds for all formulae ¢ of the M-
language. It is easily seen that m is elementary iff it is 3,,—preserving
for all n < w.

We say that 7 is cofinal iff M' = J,cps 7(w).
We note the following facts, which we shall occasionally use:

Fact 1 Let 7 : M —x, M’ cofinally. Then 7 is X;—preserving.

Fact 2 Let 7 : M —y, M’ cofinally, where M is a ZFC™ model. Then
M' is a ZFC™ model and 7 is elementary.



Fact 3 Let 7 : M —y, M’ cofinally where M’ is a ZFC™ model. Then
M is a ZFC™ model and 7 is elementary.

We call an ordinal k the critical point of an embedding 7 : M — M’
(in symbols: x = crit(n)) iff 7[x =id and (k) > k.
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Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory — which dealt with “effective” functions
and relations on w — to transfinite domains. This, in turn, gave the impetus
for the development of fine structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek’s work, in which w is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on w can be developed in three different ways. We
can take the notion of algorithm as basic, defining a recursive function on w
to be one given by an algorithm. Since, however, we have no definition for the
general notion of algorithm, this approach involves defining a special class
of algorithms and then convincing ourselves that “Church’s thesis” holds —
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
as basic, defining an n-ary relation R on w to be recursively enumerable
(r.e.) if for some calculus involving statements of the form “R(iy,...,i,)”
(41,...,in < w), R is the set of tuples (i1,...,4,) such that “R(i1,...,i,)”
is provable. R is then recursive if both it and its complement are r.e. A
function defined on w is recursive if it is recursive as a relation. But again,
since we have no general definition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church’s
thesis.
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A third alternative is to base the theory on definability, taking the r.e. re-
lation as those which are definable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of defining formula tends to be a bit unnatural. The
situation changes radically, however, if we replace w by the set H = H,, of
heredetarily finite sets. We consider definability over the structure (H, €),
employing the familiar Levy hierarchy of set theoretic formulae:

IIy = ¥y =: formulae in which all quantifiers are bounded
Ynt1 =: formulae \/ zp where ¢ is II,

1,41 =: formulae A zy where @ is %,,.

We then call a relation on H r.e. (or H-r.e.) iff it is definable by a ¥;
formula. Recalling that w C H it then turns out that a relation on w is
H-r.e. iff it is r.e. in the classical sense. Moreover, there is an H-recursive
map 7 : H <> w such that A C H is H-r.e. iff 7”A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to transfinite
domains. Let N = (|N|, €, A;,..., Ay,) be any transitive structure. We first
define:

Definition 1.1.1. A relation on N is ¥, (N) (in the parameters py,...,p, €
N) iff it is N-definable (in p) by a ¥, formula. It is A, (N) (in p) if both it
and its completement are ¥, (N) (in p). It is X,,(N) iff it is X, (N) in some
parameters. Similarly for A, (V).

Following our above example of N = (H, €), it is natural to define a relation
on N as being N-r.e. iff it is X;(N), and N-recursive iff it is A;(N). A
partial function F on N is N-r.e. iff it is N-r.e. as a relation. F is N—
recursive as a function iff it is N-r.e. and dom(F) is A;(N).

(Note that X, ((H, €)) = ¥1((H, €)), which will not hold for arbitrary N.)

However, this will only work for an IV satisfying rather strict conditions since,
when we move to transfinite structures N, we must relativize not only the
concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of
H the finite sets were simply the elements of H.

Correspondingly we define:
u is N—finite iff u € N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:
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o If A is recursive and wu is finite, then A N is finite.

e If w is finite and F : u — N is recursive, then F”u is finite.

Those transitive structures N = (|N|,€ Aj,...,Ay,) which yield a satis-
factory recursion theory are called admissible. An ordinal « is then called
admissible iff L, is admissible. The admissible structures were character-
ized by Kripke and Platek as those transfinite structures which satisfy the
following axioms:

(1) 0,{z,y}, Uz are sets
(2) The Yo aziom of subsets:
xN{z|lp(z)} is a set
(where ¢ is any Yg—formula)

(3) The X axiom of collection:

/\:E Gu\/y o(x,y) —>\/v/\x eu\/yévgo(x,y),

(where ¢ is any Yp-formula).

Note. Kripke—Platek set theory (KP) consists of the above axioms together
with the axiom of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the ¥y ones). This axiom can be stated as:

Av(\z €yp(z) — o) — N\ vely)

and is also known as the axiom of induction.

Note. Although the definability approach is the one most often employed in
transfinite recursion theory, the approaches via algorithms and calculi have
also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = (|M|, € A,, ..., Ay) be admissible.

Lemma 1.1.1. Let w e M. Let A be A{(M). Then ANue M.

Proof: Let Az + \/ yAoyz;—Ax < \/yAiyz, where Ay, A are X,(M).
Then Az € u\ y(Aoyzr V Ajyz). Hence there is v € M such that
ANz eu\ye€v(AyzV Ayx). QED

Before verifying the second criterion we prove:
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Lemma 1.1.2. M satisfies:

/\:L"Eu\/yl...yncp(a:,g’) —>\/u/\$€u\/y1...yn € vo(z, )

for Xo—formulae .

Proof. Assume Az € u\/ y1...ynp(2z,7). Then

/\xeu\/w\/yl...ynewtp(as,gj).

3o

Hence there is v/ € M such that Az € u\Nw € v\ y1...yn € wo(x, 7).
Take v = Jv'. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let u € M,u C dom(F), where F is a X,(M) function.
Then F"v € M.

Proof. Let y = F(z) + \/ 2F zyz, where F' is a X(M) relation. Then

Az €u\ z,yF'zyz. Hence there is v € M such that

ANz eu\ zy € vF zyx. Hence F'u=vN{y|\/x € u\/z € vF'zzy}.
QED (Lemma 1.1.3)

Assuming the admissibility of M, we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let (y,Z) be a X1—formula. Then \/ yp(y,Z) is uniformly
21 mn M.

Note. “Uniformly” is a word which recursion theorists like to use. Here it
means that M = \/ yo(y, ) <> ¥(Z) for a 31 formula ¥ which depends only
on ¢ and not on the choice of M.

Lemma 1.1.5. Let p(y,Z) be 1. Then Ny € up(y, T) is uniformly X1 in
M.

Proof. Let ¢(y,Z) = \/ 2¢/(2,y,x), where ¢’ is Xy. Then

/\y € up(y,¥) < \/v/\y € u\/z c vy (z,y,x)

3o

in M. QED (Lemma 1.1.5)

Lemma 1.1.6. Let oo(Z), 1(Z) be 1. Then (0o(Z)Ap1(Z)), (@o(Z)Vep1(Z))
are uniformly 31 in M.
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Proof. Let ¢;(Z) =\ yi¥i(yi, £) where without loss of generality yo # yi.
Then

(o(@) A (@) < \/ w0 \/ w1 (6o, 2) A &1 (11, 7))
Similarly for V. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let 1, ..., o, be X1—formulae. Let W be formed from ¢1,. .., ¢n
using only conjunction, disjunction, existence quantification and bounded
uniwersal quantification. Then W(x1,...,xy) s uniformly 31 (M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R C M"™ is X1(M) in the parameter O iff it is X1(M) in no
parameter.

Proof. Let R(%) +» R'(0,Z). Then

R(¥) + \/z(R’(z,f) A /\y € zy #y).

QED (Lemma 1.1.8)

Note. R is in fact uniformly 31(M) in the sense that its X; definition
depends only on the original ¥; definition of R from (), and not on M.

Lemma 1.1.9. Let R(y1,...,yn) be a relation which is ¥1(M) in the the
parameter p. Fori=1,...,n let fi(x1,...,xm) be a partial function on M
which (as a relation) is X1 (M) in p. Then the following relation is uniformly
Zl(M) m p-

R(f1(D), ..., ful®)) < \[ w1 . /\yl—fl R(i)).

This follows by Lemma 1.1.7. (“Uniformly” again means that the 3; defini-
tion depends only on the 3 definition of R, fi,..., fn.)

Similarly:

Lemma 1.1.10. Let f(y1,.-.,Yn), gi(x1,...,xm)(@ = 1,...,n) be partial
functions which are ¥1(M) in p, then the function h(¥) ~ f(g(Z)) is uni-
formly ¥1(M) in p.

Proof.

QED (Lemma 1.1.10)
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Lemma 1.1.11. Let f;(Z) be a function which is 31(M) in p(i =1,...,n).
Let Ri(Z)(i = 1,...,n) be mutually exclusive relations which are ¥1(M) in
p. Then the function

f(&) >~ fi(T) if Ri(Z)
is uniformly ¥1(M) in p.

Proof.
) A Ri(7)).

<@
1
&H
o
<<
<
1
e
=7
8

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are X1 (M).

Lemma 1.1.12. The following functions are uniformly 31 (M):

(a) f(.T) = $,f($) = Ul‘,f(l‘,y) = ny’f(x’y) = l‘ﬂy,f(ﬂ;y) = l’\y
(set difference)

(b) f(z) = Cu(x), where Co(x) = 2, Cpy1 () = Ca(w) UU Cu(a)

(c) f(z1,...,xn) ={21,...,2n}

(d) f(z) =1 (where i < w)

() f(z1,...,xn) = (T1,...,Tn)

(f) f(z) = dom(z), f(z) = mg(z), f(z,y) = "y, f(z,y) =z ]y
fl@)=a7"

(8) flx1,...,zp) =21 X T2 X ... X Ty

(h) f(z) = (x)! where ((20,...,2n-1))F = z and (u)! = 0 in all other

x(z) if x is a function
(i) f(z,z) =z[z] = ¢ and z € dom(x)
() otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (¢), y = {z1,...,z,} can be expressed by the ¥o—
statement

xl,...,xnGy/\/\zEy(z:azl\/...\/Z:xn).
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(d) follows by induction on 4, since
0=0,i+1=1:U{i}

The proof of (e) depends on the precise definition of (z1,...x,). If we want
each tuple to have a unique length, then the following definition recommends
itself: First define a notion of ordered pair by: (z,y) =: {{z},{z,y}} Then
(x,y) is a 3 function. Then if (z1,...,2z,) =: {(x1,0),...,(xy,n—1)}, the
conclusion is immediate.

For (f) we display the proof that dom(z) is a ¥; function. Note that
x,y € Cp({x,y)) for a sufficient n. But since every element of dom(x) is
a component of a pair lying in z, it follows that dom(x) C C,(z) for a
sufficient n. Hence y = dom(z) can be expressed as:

/\z € y\/w(w,z> S A /\z,w € Cp(x)((w,z) ex — 2z €y).
To see (g), note that y = x1 X ... X z,, can be expressed by:

Nzi€xi...Nzn €xp(z1,...,2n) €Y
ANNwey\zi€xr...\zn €xpw=(21,...,2n).

To see (h) note that, for sufficiently large m,y = ()} can be expressed by:

Vzo..ozn—1(x=(20,...,2n—1) Ny = 2;)
Viy=0ANzo...2n-1 € Crp(z)x # (20, -+ 2n—1))

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on w and f : w — w is defined by:

f0) =k, f(n+1) = g(n, f(n)),

then f isrecursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of w we can express
this in the elegant form:

Let g:wx H— w be ¥;.
Then f:w — wis X1, where f(n) = g(n, f [n).

If we take g : H?> — H, then f will be ¥ where f(x) = g(x, f | 2) for x € H.
We can even take g as being a partial function on H2. Then f is ¥ where:

f(x) = g(z, (f(2)|z € x)).
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(This means that f(z) is defined if and only if f(z) is defined for z € x and
g is defined at (z, f [ x), in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M. If f is a partial
X, function and x C dom(f), we know by Lemma 1.1.3 that f”z € M. But
then fx € M, since f*(z) ~ (f(2), z) is a X; function with  C dom(f*),
and f*"x = f | x. The recursion theorem for admissibles M = (|M]|,€
JA1, ..., Ay) then reads:

Lemma 1.1.13. Let G(y,Z,u) be a X1(M) function in the parameter p.
Then there is exactly one function F(y,¥) such that

Fly, @) ~ G(y, 7, (F(z,7)|z € y)).

Moreover, F is uniformly ¥1(M) in p (i.e. the 31 definition depends only
on the X1 definition of G.)

Proof. We first show existence. Set:
I'z=: {f € M|f is afunction Adom(f) is
transitive A Ay € dom(f)f(y) = G(y,Z, fy)}

Set Fzg =Tz F = {(y, @)y € Fz}. Then F is 31(M) in p uniformly.

(1) F is a function.

Proof. Suppose not. Then for some & there are f,f' € T'z, y €
dom(f) Ndom(f’) such that f(y) # f'(y). Let y be €-minimal with
this property. Then f [y = f'|y. But then f(y) = G(y,Z, f [y) =
Gy, Z, f'ly) = f'(y). Contradiction! QED (1)

Hence F(y,Z) = f(y) if y € dom(f) and f € I'z.

(2) Let (y,%) € dom(F). Then y C dom(Fz),(y,Z, (F(z @)z € y)) €
dom(G) and
F(y, %) = Gy, T, (F(z,7)|z € y)).

Proof. Let y € dom(f), f € I'z. Then

F(y,7) = f(y) =Gy,

QED (2)

(3) Let y C dom(F3), (y,Z, Fz|y) € dom(G). Then y € dom(Fy).

Proof. By our assumption: Az €y\/ f(f € TzAz € dom(f)). Hence
there is w € M such that

Nzey\ feulf €Tznzedom(f)).
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Set: f' = J(uNTz). Then f' € Tz and y C dom(f’). Moreover
'y =Fzly. Set f" = f"U{(G(y, @, f'Ty),y)}. Then f” € I'z and
y € dom(f"), where f” C Fj. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F* satisfy the same condition. Set FZ(y) ~ F*(y,Z). Suppose
F* # F. Then F%(y) # Fz(y) for some &, y. Let y be €-minimal such that
FZ(y) # Fz(y). Then F} |y = F[y. Hence

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively definable
by: TC(z) = x U, TC(2). Similarly, the rank rn(x) of a set is definable
by rn(x) = lub{rn(z)|z € z}. Hence:

Corollary 1.1.14. TC,rn are uniformly X1(M).

The successor function sa = o + 1 on the ordinals is defined by:

[ xu{z}ifz € On
T =\ undefined if not

which is ;. The function a + 3 is defined by:

a+0=a«a
a+sv=s(a+v)
a+ A=, cya+vfor limit A.

This has the form:
z+y =Gy, (z+ 2]z €y)).
Similarly for the function = -y, ¥, ... etc. Hence:

Corollary 1.1.15. The ordinal functions o+ 1, + f3,0°, ... etc. are uni-
formly ¥, (M).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let h: M — M be 31 (M)
in p such that {(x,y)|z € h(y)} is well founded. There is a unique F such
that

Fly,7) = G(y, %, (F(2, )|z € h(y)))-
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Moreover, F is uniformly' $1(M) in p.

The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {(z,y)|x € h(y)} in place of €—minimality. We now consider the
structure of “really finite” sets in an admissible M.

Lemma 1.1.17. Let u € H,. The class u and the constant function
f(x) = u are uniformly 31 (M).

Proof. By e-induction on u: Let u = {z1,..., 2}

n
reusr o=z
i=1

n
r=uc ANycrzycun \z €.
=1

1=

QED

x € w is clearly a g condition. But then:
Lemma 1.1.18. Let w € M. Then the constant function f(z) = w is
uniformly 31 (M).
Proof.

x:w<—>(/\zExzew/\Q)Gx/\/\zea:zU{z}Ex)
(where 'z € w’ is ¥) QED
Lemma 1.1.19. The class Fin and the function f(x) = Py (z) are uniformly
¥1(M), where Fin = {z € M|T < w},P,(z) = P(z) N Fin.

Proof.

z € Fin «VnewV ffinex
y=Py(x) < AucyluCzAueFn)ADeyn
ANNzex{z} eyAANu,veyuUuv € y.

We must show that P,(x) € M. If w ¢ M, then rn(z) < w for all x € M,
Hence M = H,, is closed under P,,. If w € M, there is ¥,(M) f defined by

£(0) = {{z}]z € 2}, f(n + 1) = {uUv[(u,v) € f(n)*}.
Then Py(z) = fw € M. QED (Lemma 1.1.19)

But then:

! (“uniformly” meaning, of course, that the ¥; definition of F depends only on the ¥,
definition of G, h.)
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Lemma 1.1.20. Ifw € M, then H,, € M and the constant function f(x) =
H,, is uniformly X1 (M).

Proof. H, € M, since there is a X;(M) function g defined by g(0) =
0,9(n+1) = Py(g(n)). Then H, = Jg"w € M and f(x) = H, is X1(M)
since g and the constant function w are X1 (M). QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Godel’s definition of the constructible hierarchy (L,|r € On):

Lo=10
Ly+1 = Def(Ly)
Ly = U L, for limit A,

<A

where Def(u) is the set of all z C w which are (u, €)-definable in parameters
from u (taking Def() = {0}). (Note that if u is transitive, then u C Def(u)

and Def(u) is transitive.) Godel’s constructible universe is then L =: |J L,.
v€On

By fairly standard methods one can show:

Lemma 1.1.21. Let w € M. Then the function f(u) = Def(u) is uniformly
Y1 (M).

We omit the proof, which is quite lengthy. It involves “arithmetizing” the
language of first order set theory by identifying formulae with elements of w
or H,, and then showing that the relevant syntactic and semantic concepts
are M-recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let w € M. The function f(a) = Lo is uniformly
¥ (M).

The constructible hierarchy over a set u is defined by:

Lo(u) = TC({u})
Lys1(u) = Def(L, (1)
Ly(u) = U Ly(u) for limit A.

<A

Obviously:
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Corollary 1.1.23. Let w € M. The function f(u,a) = Lq(u) is uniformly
Y1 (M).

The constructible hierarchy relative to classes Ay, ..., A, is defined by:

Lo[A] =0 L

L ] = Def(L, (4], 4)

Ly[A] = U L,[A4] for limit A,
<

where Def(U, Ay, ..., A,) is the set of all z C u which are
(u,€,A1 Nu,..., A, Nu)—definable in parameters from u.

Much as before we have:

Lemma 1.1.24. Letw € M. Let Ay,..., A, be Ay (M) in the parameter p.
Then the function f(u) = Def(u, A1, ..., Ay) is uniformly 31 (M) in p.

Corollary 1.1.25. éet w € M. Let Ay,..., A, be as above. Then the
function f(a) = La[A] is uniformly X1 (M) in p.

—.

(In particular, if M = (|M|, €, A1, ..., A,). Then f(a) = Ly[A] is uniformly
X1 (M).)
(One could, of course, also define Lq(u)[A] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is defined over (u, €) by a tuple (p,z1,...,2,), where ¢
is a formula and z1,...,x, are elements of u which interpret free variables
of p. If u is transitive (hence u C Def(u)), we can also arrange that the well
ordering, which we shall call < (u,r), is an end extension of . The function
< (u,r) is uniformly ;. If we then set:

<o=0,<p11=< (Ly, <)

<= U <, for limit A,
<A

it follows that <, is a well ordering of L, for all v. Moreover <, is an end
extension of <, for v < a.

Similarly, if A is ¥1(M) in p, there is a hierarchy < (v € OnNM) such that
<2 well orders L,[A] and the function f(v) =<2 is ¥1(M) in p (uniformly
relative to the X; definition of A).

By Corollary 1.1.25 we easily get:
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Lemma 1.1.26. Let M = (|M|, €, Ay,...,A,) be admissible. Lel o =

—. -,

OnNM. Then (Lo[A], €, A) is admissible.

-

Proof: Set: LA = (L,[A], €, A). Axiom (1) holds trivially in L.
To verify the ¥p—axiom of subsets, let B be ;0(L§). Let u € L§.
Claim un B € LA,

Proof: Pick v < a such that u € Lf and B is ¥ in parameters from L‘f.
By X,—absoluteness we have:

un B € Def(LY) = LA, ¢ LA,
QED (Claim)

We now prove ¥p—collection. Let Rzy be a X,-relation. Let u € Lf such
that Az € u\/ yRxy.

Claim \/v € Lf/\m cu\y € vRry.

For each x € u let g(x) be the least v < « such that x € Lf. Then g is in
¥ (M) and u C dom(g). Hence § = sup ¢"u < o and

/\x € u\/y € Lfoy.
QED (Lemma 1.1.26)

Definition 1.1.2. Let o be an ordinal.

o « is admissible il L, is admissible

- -,

o «is admissible in Ay, ..., A, C iff L§ =: (Lo|A], € A) is admissible

— -

o f:a" — ais arecursive (in A) iff fis ¥,(La)(Z;(L2))

—,

o RCamis re. (in A)iff Ris X1(La)(Z1(LY)).

Note. The theory of a—recursive functions and relations on an admissible
« has been built up without references to Ly, using a formalized notion of
a-bounded calculus (Kripke) or a-bounded algorithm (Platek).

Similarly for a—recursiveness in Ay, ..., A,, taking the A; as "oracles".
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—,

A transitive structure M = (|M|,€ A) is called strongly admissible iff, in
addition to the Kripke—Platek axioms, it satisfies the X1 aziom of subsets:

xN{z|p(z)} is a set (for ¥; formulae ).

Kripke defines the projectum J, of an admissible ordinal « to be the least
d such that AnN§ ¢ L, for some X;(Ly,) set A. He shows that d, = «a iff
« is strongly admissible. He calls « projectible iff §, < «. There are many
projectible admissibles — e.g. d, = w if « is the least admissible greater
than w. He shows that for every admissible « there is a X, (Ly) injection f,
of L, into d,.

The definition of projectum of course makes sense for any a > w. By
refinements of Kripke’s methods it can be shown that f, exists for every
a > w and that §, < a whenever a > w is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions
f:Vvr=Vv

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f: V"™ — V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:

) = x; (here Zis x1, ..., xy)



1.2. PRIMITIVE RECURSIVE SET FUNCTIONS 23

(v) fly, %) = Ug(z7)

zZ€yY

(vi) f(y, %) = g9(y, T, (f(2,D)|z € y))

We also define:

Definition 1.2.2. R C V"™ is a primitive recursive relation iff there is a
primitive recursive function r such that R = {(Z)|r(Z) # 0}.

(Note It is possible for a function on V' to be primitive recursive as a relation
but not as a function!)

We begin by developing some elementary consequences of these definitions:

Lemma 1.2.1. If f: V™ = V is primitive recursive and k : n — m, then g
18 primitive recursive, where

9(zos - - s Tm—1) = f(@k(0): - - - s Th(n—1))-

Proof. By (i), (iv).

Lemma 1.2.2. The following functions are primitive recursive

(a) By (i), (v), Lemma 1.2.1, since Jz; = U =

St

The proof depends on the precise definition of n—tuple. We could for in-

stance define (z,y) = {{z}, {z,y}} and (x1,...,z,) = (@1, (x2,...,2pn))
for n > 2.
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If, on the other hand, we wanted each tuple to have a unique length, we
could call the above defined ordered pair (z,y) and define:

(1, xn) = {(21,0),...,(xp,n —1)}.

QED (Lemma 1.2.2)
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Lemma 1.2.3. (a) ¢ is pr

(b) If f: V"™ =V, R C V™ are primitive recursive, then so is

oty ={ 4 11

(¢) R C V"™ is primitive recursive iff its characteristic functions xgr is a
primitive recursive function

(d) If R C V" is primitive recursive so is R =: V" \ R

(e) Let f; : V" — V,R; C V"™ be pr(i = 1,...,m) where Ry,...,R,, are

mutually disjoint and |J R; = V™. Then f is pr where:
i=1

f(Z) = fi(x) when R;Z.
(f) If RzZ is primitive recursive, so is the function

[y, Z) = y N {z|RzZ}

(9) If Rz is primitive recursive so is \| z € yRz%

m
(h) If R;Z is primitive recursive (i = 1,...,m), then so is \/ R;%
i=1
(i) If Ry,..., Ry are primitive recursive relations and ¢ is a Xg formula,

then {(Z)|(V, R, ..., Ry) = @[Z]} is primitive recursive.

() If f(z,Z) is primitive recursive, then so are:

9(y,7) = {f(2,7) : z € y}
9y, @) = (f(2,7): z€y)
(k) If R(z,Z) is primitive recursive, then so is

That z € y such that RzZ if exactly
f(y, @) =< one such z € y exists;

0 if not.
Proof.

() gy {z}\y#0
(b) Let RT <> (%) £ 0. Then ¢(z) = | f(a).

zer(Z)
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o nin- {318

(d) x-r(%) =1\ xr(Z)

v 00
Then f(Z) = fI(Z)U...U f,().

(f) f(y,Z) = U h(z,T), where:

z€y

| {z}if R2Z
Wz 7) = { () if not

(g) Let PyZ <»:\/ z € yRzZ. Then xp(¥) = U xr(z,©).
Z€yY

(h) Let PZ¥ <> \/ R;@. Then

Xp(f) :XR1 U... UXRn(.f).
(i) is immediate by (d), (g), (h)
(0 9y, 2) = U{f(z2)}, gy, %) = U{{f(27),2)}

zZ€yY z&y

(k) R'zuZ <: (z € u NRzZANN\Z € u(z # 2/ — —RZ'Z)) is primitive
recursive by (i). But then:

Fy, @) = Jyn {2|R zyzY})
QED (Lemma 1.2.3)

Lemma 1.2.4. Fach of the functions listed in §1 Lemma 1.1.12 is primitive
TECUTSIVE.

Proof. (a) Uz = U.,¢, 2, 2Uy = U{z,y}, 2Ny, 2\ y are primitive recursive
by Lemma 1.2.3 (f).

(b)—(e) follow by computation from (a).

(8) 1 X T2 X -+ X Ty = f(Z)

o fo' (%) = {(2)}

o [111(%) =U.ep, [0, Tim1, 2, Tig1, - Th)
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(f) then follows by Lemma 1.2.3 (f), since for sufficient n we have:

e dom(x) = Cp(x)N{z | Vw e Cp(x){w, z)z}
e mg(z) =Ch(x)N{z| Vwe Cy(z)(z,w) € x}
o 2"y =Cp(z) N{u|Vz,we Cu(y)(u=(zw) ExAw e y)}

o 27l = Cula) N {u |V 2w € Col@) ({2, w) € 2 A u = (1,2))}

(h), (i) then follow by Lemma 1.2.3 (f).
QED (Lemma 1.2.4)

Note Up until now we have only made use of the schemata (i) — (v). This
will be important later. The functions and relations obtainable from (i)
— (v) alone are called rudimentary and will play a significant role in fine
structure theory. We shall use the fact that Lemmas 1.2.1 — 1.2.3 hold with
"rudimentary" in place of "primitive recursive".

Using the recursion schema (vi) we then get:

Lemma 1.2.5. The functions TC(z), rn(z) are primitive recursive.

The proof is the same as before (§1 Corollary 1.1.14).

Definition 1.2.3. f: On" xV"™ — V is primitive recursive iff f’ is primitive
recursive, where

f/(g,f):{ f(yax) 1f3/17,?/n60f1

() if not
As before:
Lemma 1.2.6. The ordinal function o+ 1,a+ B, - 3,05, ... are primitive
recursive.

Definition 1.2.4. Let f: V"l V.

f%(c € On) is defined by:

fo(y’f) =Y
foy, &) = f(f*(y,2), Z)
Ay, )= U f(y,Z) for limit .

r<

Then:
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Lemma 1.2.7. If f is primitive recursive, so is g(a,y,Z) = f*(y, T).

There is a strengthening of the recursion schema (vi) which is analogous to
§1 Lemma 1.1.16. We first define:

Definition 1.2.5. Let h : V — V be primitive recursive. h is manageable
iff there is a primitive recursive o : V' — On such that

x € h(y) = o(x) < o(y).

(Hence the relation = € h(y) is well founded.)

Lemma 1.2.8. Let h be manageable. Let g : V"2 — V be primitive recur-
sive. Then f: V" =V is primitive recursive, where:

f(y, %) = g9(y, T, (f(2,7)|z € h(y))).

Proof. Let o be as in the above definition. Let |z| = lub{|y||ly € h(x)} be
the rank of x in the relation y € h(z). Then |z| < o(z). Set:

O(z,%,u) = U{(g(yjf, z[h(y)),y)|ly € u A h(y) C dom(z)}.
By induction on «, if u is h—closed (i.e. x € u — h(z) C u), then:
0°(0,7,u) = (5, D)y € u A ly] < a)
Set h(v) = vU |J h(2). Then h®({y}) is h-closed for a > |y|. Hence:

ZEv

fly, &) = ©7WH 0,2 k7Y ({y}))(y)-
QED (Lemma 1.2.8)

Corresponding to §1 Lemma 1.1.17 we have:

Lemma 1.2.9. Let u € H,. The constant function f(x) = u is primitive
recursive.

Proof: By e-induction on u. QED

As we shall see, the constant function f(x) = w is not primitive recursive,
so the analog of §1 Lemma 1.1.18 fails. We say that f is primitive recursive
in the parameters p1,...,pmH:

f(&) = g(&, p), where g is primitive recursive.

In place of §1 Lemma 1.1.19 we get:
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Lemma 1.2.10. The class Fin and the function f(x) = P, (x) are primitive
recursive in the parameter w.

Proof: Let f be primitive recursive such that f(0,z) = {0} U {{z}|z € z},
f(n+1,2) = {uUv|(u,v) € f(n,z)?}. Then P, (z) = |J f(n,z). But then:

new

xEFinH\/nEw\/ge UPZ(mxw)g:on.

n<w
QED

Corollary 1.2.11. The constant function f(x) = H,, is primitive recursive
i the parameter w.

Proof: H, = |J P (0). QED
n<w
Corresponding to Lemma 1.1.21 of §1 we have:

Lemma 1.2.12. The function Def(u) is primitive recursive in the parameter
w.

The proof involves carrying out the proof of §1 Lemma 1.1.21 (which we also
omitted) while ensuring that the relevant classes and functions are primitive
recursive. We give not further details here (though filling in the details can
be an arduous task). A fuller account can be found in [PR| or [AS].

Hence:

Corollary 1.2.13. The function f(a) = L is primitive recursive in w.

Similarly:
Lemma 1.2.14. The function f(a,x) = Lo(x) is primitive recursive in w.

Lemma 1.2.15. Let A C V' be primitive recursive in the parameter p. Then
f(a) = LA is primitive recursive in p.

One can generalize the notion primitive recursive to primitive recursive in
the class A CV (or in the classes Aq,..., A, C V).

We define:
Definition 1.2.6. Let A;,..., A, C V. The function f : V" — V is
primitive recursive in Aq,..., A, iff it is obtained by successive applications

of the schemata (i) — (vi) together with the schemata:

flz) =xa,(x)(i=1,...,n).
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A relation R is primitive recursive in Aq,..., A, iff

R ={(D)[f(Z) # 0}

for a function f which is primitive recursive in Aq,..., A,.

It is obvious that all of the previous results hold with "primitive recursive in
Aq, ..., A" in place of "primitive recursive".

By induction on the defining schemata of f we can show:

Lemma 1.2.16. Let [ be primitive recursive in Ai,...,A,, where each
A; is primitive recursive in Bi,...,Bn,. Then f is primitive recursive in
By,...,Bpn.

The proof is by induction on the defining schemata leading from A;,..., A,
to f. The details are left to the reader. It is clear, however, that this proof is
uniform in the sense that the schemata which give in f from By, ..., By, are
not dependent on By, ..., By or Ay,...,A,, but only on the schemata which
lead from Aj,..., A, to f and the schemata which led from Bjy,..., By, to
AZ(Z = 1,... ,TL).

This will be made more precise in §1.2.2

1.2.2 PR Definitions

Since primitive recursive functions are proper classes, the foregoing discus-
sion must ostensibly be carried out in second order set theory. However, we
can translate it into ZF by talking about primitive recursive definitions. By
a primitive recursive definition we mean a finite sequence of equations of the
form (i) — (vi) such that:

e The function variable on the left side does not occur in a previous
equation in the sequence

e every function variable on the right side occurs previously on the left
side with the same number of argument places.

We assume that the language in which we write these equation has been
arithmetized — i.e. formulae, terms, variables etc. have been identified in a
natural way with elements of w (or at least H,).

Every primitive recursive definition s defines a function Fs. If s = (s, ..., Sp—1),
then F, = F"!, where F! interprets the leftmost function variable of s;.
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This is defined in a straightforward way. If e.g. s; is "f(y, %) = | g(z, Z)"
zZey
and g was leftmost in s;, then we get

Fi(y,7) = | JF/(z,%).

Let PD be the class of primitive recursive definitions. In order to define
{{(z,s)|s € PD ANz € Fs} in ZF we proceed as follows:

Let s = (s0,...,8,-1) € PD. Let M be any admissible structure. By
induction we can then define (Fi™|i < n) where F! a function on M™ (n;
being the number of argument places). By admissibility we know that F!
exists and is defined on all of M™. We then set: FM = FIM  This defines
the set (FM|s € PD). If M C M’ and M’ is also admissible, it follows by
any induction on i < n that F*M = F&M' | M. Hence FM c FSM/. We can
then set:
Fo = [ J{FM|M is admissible}.

Note that by §1, each FM has a uniform ¥; definition ¢, which defines
FéM over every admissible M. It follows that ¢g defines Fs in V. Thus
we have won an important absoluteness result: Every primitive recursive
function has a ¥, definition which is absolute in all inner models, in all
generic extensions of V', and indeed, in all admissible structures M = (|M|, €
). This absoluteness phenomenon is perhaps the main reason for using the
theory of primitive recursive functions in set theory. Carol Karp was the first
to notice the phenomenon — and to plumb its depths. She proved results
going well beyond what I have stated here, showing for instance that the
canonical ¥ definition can be so chosen, that F[ M is the function defined
over M by s whenever M is transitive and closed under primitive recursive
function. She also improved the characterization of such M: Call an ordinal
a nice if it is closed under each of the function:

fola, B) = a+B; fila, B) = - B, fa(a, B) = a? ... ete.

(More precisely: fit1(a, ) = f’f(a) for i > 1, where fi(a) = fi(a, ), ¢° ()
is defined by: ¢°(a) = «, ¢°*1(a) = g(¢°(a)), g™ (o) = supg®(«) for limit \.)
V<A

She showed that L, is primitive recursively closed iff « is nice. Moreover,

Ly[A1, ..., A,] is closed under functions primitive recursive in Ay, ..., A, iff
« i8 nice.
Primitive recursiveness in classes Aq, ..., A, can also be discussed in terms of

primitive recursive definitions. To this end we appoint new designated func-
tion variable @;(¢ = 1,...,n), which will be interpreted by xa,(i =1,...,n).
By a primitive recursive definition in a1,...,a, we mean a sequence of equa-
tion having either the form (i) — (vi), in which a4, ..., a, do not appear, or
the form
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() fl@reeo wp) = aila)i= 1, .nj=1,...,p)

We impose our previous two requirements on all equations not of the form
(*).

If s = (sg,...,8,—1) is a pr definition in ay,...,a,, we successively define
oA An (i < n) as before, setting Fsi’A(ml, o p) = Xa,(x;) if s; has the

form (*). We again set F;T = anfl’g. The fact that {(z,s)|z € F;Y} is
uniformly (V, €, Ay, ..., A,) definable is shown essentially as before:

Given an admissible M = (|M|, €, a1, ..., a,) we define F2™ FM = pp=tM
as before, restricting to M. The existence of the total function FM follows
as before by admissibility. Admissibility also gives a canonical 37 definition
s such that

y=FM(&) & M ¢y, 7).

(Thus FM is uniformly ¥ regardless of M.) If M, M’ are admissibles of
the same type and M C M’ (i.e. M is structurally included in M’), then
FM = FM' 1 M. Thus we can let Fi4" be the union of all FM such that
M = (M|, e, A;n|M]|,..., A, N|M]) is admissible. o4 then defines F over
(V, /D (Here, Karp refined the construction so as to show that FSA M =FM
whenever M = (|M|,&, A1 N |M|,..., A, N |M]|) is transitive and closed
under function primitive recursive in Aq,..., A,. It can also be shown that
M = (|M|,€,As,..., Ay) is closed under functions primitive recursive in

Ay, ..., A, iff |M| is primitive recursive closed and M is amenable, (i.e.
xNA; e Mforalz e M,v=1,...,n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let A; C
V' be primitive recursive in By,..., B, with primitive recursive def s; in
bi,... bm (i =1,...,m). Let f be primitive recursive in Aj,..., A, with
primitive recursive definition s in ai,...,ad,. Then f is primitive recursive
in By, ..., By by aprimitive recursive definition s in by, ..., by. §' is uniform
in the sense that it depends only on si,...,s, and s, not on By,...,By,. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function
81+, 8m,8 > 8

with the following property: Let By, ..., By, be any classes. Let s; define g;
from B(i =1,...,n). Set: A; = {z|gi(z) #0}ini=1,...,n. Let f be the
function defined by s from A. Then s’ defines f from B.

Note (H,, €) is an admissible structure; hence Fy | H,, = szw. This shows
that the constant function w is not primitive recursive, since w ¢ H,. It
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can be shown that f : w — w is primitive recursive in the sense of ordinary
recursion theory iff

s | fe)ifrew
f(x)—{ 0 if not

is primitive recursive over H,. Conversely, there is a primitive recursive map
o : H, < wsuch that f: H, — H,, is primitive recursive over H,, iff o fo~*
is primitive recursive in sense of ordinary recursion theory.

1.3 1ll founded ZF~ models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF~ (where the language of ZF~ may contain predicates other than €).
Let A = (A, €p,B1,...,By) be such a model. For X C A we of course
write A|X = (X,€4 NX?2,...). By the well founded core of A we mean
the set of all v € A such that €, NC(x)? is well founded, where C(z) is
the closure of {x} under €5. Let wfc(A) be the restriction A|C of A to
its well founded core C. Then wfc(A) is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive
structure. Hence A is isomorphic to a structure A’ such that wfc(A') is
transitive (i.e. wfc(A') = (A4’, €, m) where A’ is transitive). We call such A’
grounded, defining:

Definition 1.3.1. A = (A, €,,...) is grounded iff wfc(A) is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF~ has a
grounded model. Clearly

(1) wC wic(A) if A is grounded.
For any ZF~ model A we have:
(2) If z € A and {z|z €4 x} C wic(A), then z € wic(A).

Proof: C(z) = {z} UU{C(2)|z €a z}. QED

By Yp—absoluteness we have:
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(3) Let A be grounded. Let ¢ be ¥y and let x1,...,z, € wic(A). Then

wic(A) F ¢la] © A o[a].

By €-induction on = € wfc(A) it follows that the rank function is
absolute:

(4) mn(z) = rn®(z) for z € wic(A) if A is grounded.
The converse also holds:
(5) Let rn®(z) € wfc(A). Then = € wfc(A).

Proof: Let » = rn®(z). Then r is an ordinal by (3). Assume that r is the
least counterexample. Then rn®(z) < r for z €5 x. Hence {z]z €4 2} C
wic(A) and x € wfc(A) by (2).

Contradiction! QED

We now prove:

Lemma 1.3.1. Let A be grounded. Then wic(A) is admissible.

Proof: Axiom (1) and axiom (2) (X—subsets) follow trivially from (3). We
verify the axiom of X collection. Let R(x,y) be Xy(wfc(A)). Let u € wic(A)
such that Az € u\/ yR(x,y). It suffices to show:

Claim: \/v Az € u\/y € vR(x,y).
Let R’ be ¥,(A) by the same definition in the same parameters as R. Then
R = R'nwifc(A)? by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is » € On® such that = ¢ wfc(A). Hence

A Ern(y) < rfor all y € wic(A)

by (4). Hence there is an 7 € On® such that
(6) ANz euVy(R (z,y) NA = rn(y) <r)
Since A models ZF~, there must be a least such r. But then:

(7) r € wic(A).
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Since by (2) there would otherwise be an r’ such that A = ' < r and
" ¢ wic(A). Hence (6) holds for /, contradicting the minimality of r.
QED (7)

But there is w such that

8) NxeuVyewR (x,y) Arn(y) <r).

Let A = v = {y € w|rn(y) < r}. Then rn®(v) < r. Hence rn®(v) € wic(A)
and v € wic(A) by (5). But:

/\az € u\/y € vRzy.

QED (Lemma 1.3.1)

As immediate corollaries we have:

Corollary 1.3.2. Let 6 = OnNwic(A). Then Ls(u) is admissible whenever
u € wic(A).

Corollary 1.3.3. L{ = (L;[A], AN Ls[A]) is admissible whenever A €
Y, (A) (since (A, A) is a ZF~ model.

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF~
by KP (Kripke—Platek set theory). In this form Lemma 1.3.1 is known as
Ville’s Lemma.

1.4 Barwise Theory

Jon Barwise worked out the syntax and model theory of certain infinitary
(but M-finite) languages in countable admissible structures M. In so doing,
he created a powerful and flexible tool for set theory, which we shall utilize
later in this book. In this chapter we give an introduction to Barwise’s work.

1.4.1 Syntax

Let M be admissible. Barwise developed a first order theory in which ar-
bitrary M-finite conjunction and disjunction are allowed. The predicates,
however, have only a (genuinely) finite number of argument places and there
are no infinite strings of quantifiers. In order that the notion "M -finite"
have a meaning for the symbols in our language, we must "arithmetize" the
language — i.e. identify its symbols with objects in M. There are many ways
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of doing this. For the sake of definitness we adopt a specific arithmetization
of M—finitary first order logic:

Predicates: For each x € M and each n such that 1 < n < w we appoint
an n—ary predicate P} =: (0, (n, z)).

Constants: For each z € M we appoint a constant ¢, =: (1, z).

Variables: For each x € M we appoint a variable v, =: (2, z).

Note The set of variables must be M—infinite, since otherwise a single for-
mula might exhaust all the variables.

We let P02 be the identity predicate = and also reserve P? as the €-predicate

(€).

By a primitive formula we mean Pty ...t, =: (3,(P,t1,...,t,)) where P is
an n—ary predicate and tq,...,t, are variables or constants.

We then define:
—p =t (4,9), (p V) =: (5,{(p,¥)),
(e A1) =:(6,{p,¥)), (0 = ¥) = (T, (, ¥)),
(o < ¥) = (8,(w,¥)), Ave = (9, (v, 9)),
Vg = (10, (v, ¢)).

The infinitary conjunctions and disjunctions are

/Y\f:: <117f>7Wf:: <127f>

The set F'ml of first order M—formulae is then the smallest set X which
contains all primitive formulae, is closed under =, A, V, —, <>, and such that

e If v is a variable and ¢ € X, then Avp € X and \Jvp € X.

o If f = (pili € I) € M and ¢; € X for i € I, then /\ f € X and
W feX.

(In this case we also write:
Mo = MW 20— A
i€l i€l

If B € M is a set of formulae we may also write: /{\ B for /\ ¢.)
peB
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It turns out that the usual syntactical notions are Ay(M), including: F'ml,
Const (set of constants), Vbl (set of variables), Sent (set of all sentences),
as are the functions:

Fr(y) = The set of free variables in ¢

©(Y/t) ~ the result of replacing occurences of the variable v by ¢ (where
t € VblUConst), as long as this can be done without a new occurence
of t being bound by a quantifier in ¢ (if ¢ is a variable).

That Vbl, Const are Aq (in fact Xg) is immediate. The characteristic func-
tion X of Fml is definable by a recursion of the form:

X(z) = G(z, (X(2)|z € TC(x))

where G : M? — M is A;. (This is an instance of the recursion schema in §1
Lemma 1.1.16. We are of course using the fact that any proper subformula
of p lies in TC(p).)

Now let h(p) be the set of immediate subformulae of ¢ (e.g. h(—p) = {¢},

h(M\pi) = {¢ili € I}, h(Avp) = {¢} etc.) Then h satisfies the condition in
icl
§1 Lemma 1.1.16. It is fairly easy to see that

Fr(p) = G(p, (F(z)|z € h(p)))

where G is a ¥; function defined on F'ml. Then Sent = {¢|Fr(y) = 0}.

To define ¢(Y/t) we first define it on primitive formulae, which is straightfor-
ward. We then set:

(e A)(Y/t) = (e(Y/t) A(Y/t)) (similarly for A, —, )
—p(°/t) = =(e(°/1))
(/é(}cpi)(”/t) ~ M (p:i(Y/t)) similarly for \)/.

i€l
Nupifu=wv
(Aup)(¥/t) ~ < Au(p(®/t)) if u#v,t (similarly for \/)

otherwise undefined

This has the form:

p(*/t) = G, 0, (X (/)| X € h(p))),

where G is X1 (M). The domain of the function f(p,v,t) = ¢(%/t) is A1 (M),
however, so f is M-recursive.
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(We can then define:

(Mt t) = (Y wr) L (T wn) (YY) L (Y )

where v1,...,v, is a sequence of distinct variables and w1, ..., w, is any
sequence of distinct variables which are different from vq,...,v,, t1,...,tn
and do not occur bound or free in ¢. We of cours follow the usual conventions,
writing @(t1,...,t,) for p(*0"/ty, ..., t,), taking vi,..., v, as known.)

M —finite predicate logic has the axioms:

e all instances of the usual propositional logic axiom schemata (enough
to derive all tautologies with the help of modus ponens).

o Mei— v ;= Wi (jeUeM)
ieU ieU

o Nz = p(*/t), p(*/t) = Vayp

o z=y — (p(z) ¢ ¢(y))
The rules of inference are:

o w (modus ponens)

. @fj\qiw itz ¢ Fr(y)

o \/ﬁjfw if x ¢ Fr(p)

* R (ue M)

o DU (ue M)

We say that ¢ is provable from a set of sentences A iff  is in the smallest set
which contains A and the axioms and is closed under the rules of inference.
We write A F ¢ to mean that ¢ is provable from A. F ¢ means the same as

0k .

However, this definition of provability cannot be stated in the 1st order lan-
guage of M and rather misses the point which is that a provable formula
should have an M—finite proof. This, as it turns out, will be the case when-
ever Ais 3;(M). In order to state and prove this, we must first formalize the
notion of proof. Because we have not assumed the axiom of choice to hold
in our admissible structure M, we adopt a somewhat unorthodox concept of
proof:
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Definition 1.4.1. By a proof from A we mean a sequence (p;|i < «) such
that a € On and for each ¢ < o, p; C F'ml and whenever ¢ € p;, then either

Y € A or v is an axiom or ¢ follows from |Jpp by a single application of
h<i
one of the rules.

Definition 1.4.2. p = (p;|i < «) is a proof of ¢ from A iff pis a proof from
Aand p € pi.

<o
(Note that this definition does not require a proof to be M—finite.)

It is straightforward to show that ¢ is provable iff it has a proof. However,
we are more interested in M—finite proofs. If A is ¥;(M) in a parameter
q, it follows easily that {p € M|p is a proof from A} is ¥;(M) in the same
parameter. A more interesting conclusion is:

Lemma 1.4.1. Let A be ¥,(M). Then At ¢ iff there is an M —finite proof
of v from A.

Proof: (+) trivial. We prove (—)
Let X = the set of ¢ such that there is p € M which proves ¢ from A.
Claim: {p|AF ¢} C X.

Proof: We know that A C X and all axioms lie in X. Hence it suffices to
show that X is closed under the rules of proof. This must be demonstrated
rule by rule. As an example we show:

Claim: Let ¢ — 1; be in X for i € u. Then ¢ — M\¢; € X.
1€u

Proof: Let P(p,¢) mean: p is a proof of ¢ from A. Then P is X;(M). We
have assumed:

(1) NicuVp Plp,o = ).
Now let P(p,xz) <> \/ zP'(z,p, x) where P’ is ¥y. We then have:

(2) Nicu\Vp\zP'(z,p,0 = ;).
Hence there is v € M with:

(3) Nieu\p,ze€vP (z,p,0 — ;).
Set: w={pev|\Vicu\zevP (z,p,0— i)}
Set: a = |J dom(p). For i < a set:
pew

q; = U{pi]p € wAi € dom(p)}
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Then ¢ = (¢;|i < &) € M is a proof.
? But then ¢"{p — X\ ;} is a proof of ¢ — M\ ;. Hence ¢ — M\ €
iU iU iU
X.
QED (Lemma 1.4.1)
From this we get the M —finiteness lemma:
Lemma 1.4.2. Let A be ¥,(M). Then At ¢ iff there is a C A such that

a €M andat .

Proof: («+) is trivial. We prove (—). Let p € M be a proof of ¢ from A.
Set:

a = the set of ¢ such that for some ¢ € dom(p), ¢ € p; and ¥ is neither an

axiom nor follows from |Jp; by an application of a single rule.
I<i

Then a C A, a € M, and p is a proof of ¢ from a. QED (Lemma 1.4.2)
Another consequence of Lemma 1.4.1 is:

Lemma 1.4.3. Let A be X1(M) in q. Then {p|A @} is X1(M) in the
same parameter (uniformly in the 31 definition of A).

Proof: {p|AF ¢} ={p|Vp € M p proves ¢ from A}.

Corollary 1.4.4. Let A be X1(M) in q. Then "A is consistent” is 11y (M)
in the same parameter (uniformly in the X1 definition of A).

"p proves ¢ from u" is uniformly ¥;(M). Hence:

Lemma 1.4.5. {(u,¢)|u € M Aut ¢} is uniformly X1(M).

Corollary 1.4.6. {(u € M|u is consistent} is uniformly I, (M).

Note. Call a proof p strict iff p; = 1 for i € dom(p). This corresponds to
the more usual notion of proof. If M satisfies the axiom of choice in the

form: Every set is enumerable by an ordinal, then Lemma 1.4.1 holds with
"strict proof” in place of "proof". We leave this to the reader.
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1.4.2 Models

We will not normally employ all of the predicates and constants in our M-
finitary first order logic, but cut down to a smaller set of symbols which we
intend to interpret in a model. Thus we define a language to be a set IL of
predicates and constants. By a model of I we mean a structure:

A = (A, (t]t € L))

such that |A| # 0, P C |A|™ whenever P is an n-ary predicate, and ¢® € |A|
whenever c is a constant. By a variable assignment we mean a partial map
of f of the variables into A. The satisfaction relation A = ¢|[f] is defined in
the usual way, where A = [f] means that the formula ¢ becomes true in A
if the free variables of ¢ are interpreted by the assignment f. We leave the
definition to the reader, remarking only that:

A):/é(\%[f] < Ni€uh E ilf]
AEWeilfl < VieuAE pilf]

1€EU

We adopt the usual conventions of model theory, writing A = (|A|,#4,...) if
we think of the predicates and constants of L as being arranged in a fixed
sequence t1, to,.... Similarly, if ¢ = ¢(v1,...,v,) is a formula in which at
most the variables vy,..., v, occur free, we write A = ¢lay,...,ay] for:

A = o[f] where f(v;) = a; fori=1,...,n.

If ¢ is a sentence we write: A = . If A is a set of sentences, we write A = A
to mean: A = ¢ for all p € A.

Proof: The correctness theorem says that if A is a set of L sentences and
A = A, then A is consistent. (We leave this to the reader.)

Barwise’s Completeness Theorem says that the converse holds whenever our
admissible structure is countable:

Theorem 1.4.7. Let M be a countable admissible structure. Let L be an
M-language and let A be a set of statements in L. If A is consistent in
M~finite predicate logic, then L has a model A such that A = A.

Proof: (Sketch)

We make use of the following theorem of Rasiowa and Sikorski: Let B be
a Boolean algebra. Let X; C B(i < w) be such that the Boolean union
|J Xi = b; exists in the sense of B. Then B has an ultrafilter U such that

biEUHXiﬂU#@fori<w.
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(Proof. Successively choose ¢;(i < w) by: ¢g = 1, ¢j+1 = ¢; Nb # 0, where
be X;U{-b} Let U= {a€B|Vi(c; Ca)}. Then U is a filter and extends
to an ultrafilter on B.)

Extend the language L by adding an M —infinite set C' of new constants. Call
the extended language LL*. Set:

[o] = {IAF (Y < @)}
for L*—sentences . Then
B =: {[¢]|p € Sentr+}

is the Lindenbaum algebra of L* with the defining equations:

[Pl U] = eVl [l N Y] = [e Al el = [-¢]
Uleil = [N\ eil(i € u), N @] = [N @il (i € u)

icU €U 1cU icU
gc[w(C)] = [Vop(v)), Qc[w(C)] = [Ave(v)].

The last two equations hold because the constants in C', which do not occur in
the axiom A, behave like free variables. By Rasiowa and Sikorski there is then
an ultrafilter U on B which respects the above operations. We define a model
A = (JA], (t*|t € L)) as follows: For ¢ € C set [¢] =: {¢' € C|[c =] € U}.
If P € L is an n—place predicate, set:

PA([e1), ... [en]) &1 [Pet, ... en] € U

If t € Ll is a constant, set:

th = [¢] where c € C,[t =] € U.

A straightforward induction then shows:

AEpllal,...,le] < [plcry...,en)] €U

for formulae ¢ = ¢(v1,...,v,) with at most the free variables vq,...,v,. In
particular, A |= ¢ <> [p] € U for L*—statements ¢. Hence A = A.
QED (Theorem 1.4.7)

Combining the completeness theorem with the M—finiteness lemma, we get
the well known Barwise compactness theorem:

Corollary 1.4.8. Let M be countable. Let L be a language. Let A be a
X, (M) set of sentences in L. If every M—finite subset of A has a model,
then so does A.
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1.4.3 Applications

Definition 1.4.3. By a theory or aziomatized language we mean a pair
L = (LLy, A) such that L is a language and A is a set of Lo—sentences. We
say that A models L iff A is a model of Ly and A = A. We also write L - ¢
for: (¢ € Fmly, and A F ¢). We say that L = (Lo, A) is (M) (in p) iff
Lo is Aj(M) (in p) and A is ¥1(M) (in p). Similarly for: L is A(M) (in p).

We now consider the class of axiomatized languages containing a fixed pred-
icate €, the special constants z(x € M) (we can set e.g. z = (1, (0, z))), and
the basic axioms:

o Extensionality

o Nv(véx + Wv=z) for x € M.

zEx

(Further predicates, constants, and axioms are allowed of course.) We call
any such theory an "€-theory". Then:

Lemma 1.4.9. Let A be a grounded model of an €-theory L. Then z* =
x € wic(A) forx € M.

In an €-theory L. we often adopt the set of axioms ZFC™ (or more precisely
ZFC; ). This is the collection of all L-sentences ¢ such that ¢ is the universal
quantifier closure of an instance of the ZFC™ axiom schemata — but does
not contain infinite conjunctions or disjunctions. (Hence the collection of all
subformulae is finite.) (Similarly for ZF~, ZFC, ZF'.)

(Note If we omit the sentences containing constants, we get a subset B C
ZFC™ which is equivalent to ZFC™ in L. Since each element of B contain
at most finitely many variables, we can restrict further to the subset B’ of
sentences containing only the variables v;(i < w). If w € M and the set
of predicates in L is M-finite, then B’ will be M-finite. Hence ZFC™ is
equivalent in L to the statement X\ B’.)

We now bring some typical applications of e-theories. We say that an ordinal
« is admissible in a C « iff (L,[a], €, a) is admissible.

Lemma 1.4.10. Let o > w be a countable admaissible ordinal. Then there is
a C w such that « is the least ordinal admissible in a.

This follows straightforwardly from:
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Lemma 1.4.11. Let M be a countable admissible structure. Let L be a
consistent X,(M) €-theory such that L = ZF~. Then L has a grounded
model A such that A # wic(A) and OnNwfc(A) = OnNM.

We first show that lemma 1.4.11 implies lemma 1.4.10. Take M = L,. Let
L be the M-theory with:

Predicate: €
Constants: z(z € M), a

Axioms: Basic axioms +ZFC™ + 3 is not admissible in a(8 € M)

Then L is consistent, since (H,,,€,a) is a model, where a is any a C w
which codes a well ordering of type > «a. Let L be a grounded model of L
such that wfc(A) # A and OnNwic(A) = a. Then wfc(A) is admissible by
§3. Hence so is Ly[a] where a = a®. QED

Note This is a very typical application in that Barwise theory hands us an ill
founded model, but our interest is entirely concentrated on its well founded
part.

Note Pursuing this method a bit further we can use lemma 1.4.11 to prove:
Let w < ap < ... < ap_1 be a sequence of countable admissible ordinals.
There is a C w such that «; = the i—th o < w which is admissible in
a(l=0,...,n—1).

We now prove lemma 1.4.11 by modifying the proof of the completeness
theorem. Let I'(v) be the set of formulae: v € On, v > B(8 € OnAM). Add
an M-infinite (but A,(M)) set E of new constants to L. Let L’ be L with
the new constants and new axioms: I'(e) (e € E). Then L’ is consistent,
since any M—finite subset of the axioms can be modeled in an arbitrary
grounded model A of L by interpreting the new constants as sufficiently
large elements of a. As in the proof of completeness we then add a new
class C of constants which is not M-finite. We assume, however, that C is
Ay (M). We add no further axioms, so the elements of C' behave like free
variables. The so—extended language " is clearly X, (M).

Now set:

Aw)=:{v¢Oontu | J{v<ptu|J{e<v}.

pseM eeE

Claim Let ¢ € C. Then [J{[¢]|¢ € A(c)} =1 in the Lindenbaum algebra of
L”.
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Proof: Suppose not. Then there is ¢ such that A+ ¢ — 1 for all p € A(c)
and AU {1} is consistent, where L” = (ILjj, A). Pick an e € E which does
not occur in 1. Let A* be the result of omitting the axioms I'(e) from A.
Then A* U{-9} UTI'(e) F ¢ < e. By the finiteness lemma there is § € M
such that A* U {9y} U {8 < e} F ¢ < e. But e behaves here like a free
variable, so A* U {=¢} ¢ < 8. But A D A* and AU {=¢} F B < c. Hence
AU{-y} F B < B and AU {9} is inconsistent.

Contradiction! QED (Claim)

Now let U be an ultrafilter on the Lindenbaum algebra of I.” which respects
both two operations listed in the proof of the completeness theorem and the
unions (J{[¢]|ly € A(c)} for ¢ € C. Let X = {p|[¢] € U}. Then as before,
L” has a grounded model A, all of whose elementes have the form ¢* for
¢ € C and such that:

AEypiffpe X

for L”-statements ¢. But then for each z € A we have either x ¢ Ony or
x < fforaf € OnnNM or e® < v for all e € E. In particular, if 2 € Ony
and x > S for all 8 € OnNM, then there is e® < z in A. But 8 < e for all
B € OnNM. Hence Ony \ Onys has no minimal element in A.

QED (Lemma 1.4.11)

Another typical application is:

Lemma 1.4.12. Let W be an inner model of ZFC. Suppose that, in W, U
is a normal measure on k. Let T > k be reqular in W. Set: M = (HWV,U).
Assume that M is countable in V. Then for any o < k there is M = (H,U)
such that

e M = U is a normal measure on ® for a & € M

o M iterates to M in o many steps.
(Hence M is iterable, since M is.)

Proof: The case a = 0 is trivial, so assume a > 0. Let é be least such that
Ls(M) is admissible. Let L be the e-theory on Ls(M) with:

Predicate: €

Constants: z(x € Ls(M)), M

Axiom: e Basic axioms +ZFC™
e M = (H,U) }= (ZFC™ + U is a normal measure on a x < H)
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e M iterates to M in o many steps.

It will suffice to show:
Claim L is consistent.

We first show that the claim implies the theorem. Let A be a grounded model
of L. Then Ls(M) C wfc(A). Hence M, M € wfc(A), where M = M*. But
then in A there is an iteration (M;|i < a) of M to M. By absoluteness
(M;|i < a) really is such an iteration. QED

We now prove the claim.

Case 1l a <k

Iterate (W,U) a many times, getting (W;, U;)(i < «) with iteraton maps
mi ;. Then 7y (o) = . Set M; = mo;(M). Then (M;|i < o) is an iteration
of M with iteration maps m; ; [ M;. But My = mo(M). Hence (H,+, M)
models 7y (L). But then 7 o (L) is consistent. Hence so is L. QED

Case 2 a =k

Iterate (W,U) 8 many times, where 79 g(k) = 8. Then (M;|i < f3) iterates
M to Mg in 3 many steps. Hence (H,+, M) models my g(LL). Hence m g(LL)
is consistent and so is L. QED (Lemma 1.4.12)

Barwise theory is useful in situations where one is given a transitive struc-
ture @ and wishes to find a transitive structure Q with similar properties
inside an inner model. Another tool, which is often used in such situations,
is Schoenfield’s lemma, which, however, requires coding ) by a real. Unsur-
prizingly, Schoenfield’s lemma can itself be derived from Barwise theory. We
first note the well known fact that every ¥4 condition on a real is equivalent
to a ¥1(H,, ) condition, and conversely. Thus it suffices to show:

Lemma 1.4.13. Let H,, = ¢la],a C w, where ¢ is ¥1. Then:

H., = vla) in L(a).

Proof: Let ¢ =/ 2z, where ¢ is Xo. Let H,, = 9|z, a] where

m(z) = § < a < wy and « is admissible in a. Let L be the language on
L (a) with:

Predicate: €

Constants: z(z € Ly(a))

Axioms: Basic axioms +ZFC™ 4+ \/ z(¢(z,a) A rn(z) = §).
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Then L is consistent, since (H,,,a) is a model. We cannot necessarily chose
a such that it is countable in L(a), however. Hence, working in L(a), we
apply a Skolem-Loéwenheim argument to Lo (a), getting countable @,d, 7
such that 7 : Lz(a) < La(a) and 7(0) = 6. Let L be defined from ¢
over Lg(a) as I was defined from § over Ly(a). Then L is consistent by
corollary 1.4.4. Since Lg(a) is countable in L(a), L has a grounded model
A € L(a). But then there is z € A such that A |= 1[z,a] and rn®(z) = 4.
Thus rn(z) = B € wfc(A) and z € wfc(A). Thus wfc(A) = |z, a], where
wic(A) C H,, in L(a). Hence Hy,, = ¢[a] in L(a). QED
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Chapter 2

Basic Fine Structure Theory

2.1 Introduction

Fine structure theory arose from the attempt to describe more precisely the
way the constructable hierarchy grows. There are many natural questions.
We know for instance by Godel’s condensation lemma that there are count-
able ~y such that L, models ZFC™ 4 w; exists. This means that some 3 <~y
is a cardinal in L, but not in L. Hence there is a subset b C 8 lying in L
but not in L,. Hence there must be a least o > v such that such a subset
lies in L4171 = Def(L,). What happens there, and what do such « look like?
It turns out that there is then a ¥ ,(L,) injection of L, into 3, and that «
can be anything — even a successor ordinal. The body of methods used to
solve such questions is called fine structure theory.

In chapter 1 we developed an elaborate body of methods for dealing with
admissible structures. In order to deal with questions like the above ones,
we must try to adapt these methods to an arbitrary L,. A key concept in
this endeavor is that of amenability:

Definition 2.1.1. A transitive structure M = (|M|, €, A1,..., A,,) is amen-
able iff ANz e Mforalz e M,i=1,...,n.

Omitting almost all proofs, we now sketch the fine structural demonstration
that if 5 < oand b C fisa X,(L,) set with b ¢ L,, then there is a X ,(L,)
injection of L, into 5. Given any structure of the form M = (L, By, ..., By)
we define its projectum to be the least p such that there is A C L, such that
Ais ¥;(M) and A ¢ M. (Thus (L,, A) is amenable whenever A C L, is
3, (M).) It turns out that, whenever p is the projectum of L,, then there is
a 3, (L) injection of L, into p. Now suppose that b is X, (L), where a, 8, b

49
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are as above. Let p? be the projectum of L, and let fO be a 3, (L) injection
of L, into p°. Clearly p° < 3, so f° injects L, into 3. Now suppose that b
is ¥y(Ly) but not X, (Lg,)-

If p° < B the result follows as before, so suppose 3 < p. By the existence
of fO there is an A% C p® which completely codes L, and f°. The structure
N® = (L, A% is then called a reduct of Lo. It then follows that any set
a C Ly is X (NY) if and only if it is X,,,(Lqs). In particular b is ¥1(NV)
and b ¢ N°. Hence p' < B3, where p' is the projectum of N°. It turns
out, however, that in very many respects N? behaves exactly like an L. In
particular there is a 3;(N®) injection f! of NY into p'. Thus f!o f%is a
Y, (Ly) injection of L, into 5.

Now suppose that b is X3(L,) but not $5(L,) and that 3 < p'. Then b
is ¥5(N?) and we can repeat the above proof, using N° in place of L.
This gives us a reduct N' of N and a X,(N') injection f2? of N! into the
projectum p? of N'. But bis X;(N') and b ¢ N'. Hence p?> < 8. f2oflof0
is then a ¥ (L) injection of L, into 8. Proceeding in this way, we see that
if bis ¥,,1(La), then there is a ¥,(L,) map f = f"o...o f¥ injecting Ly
into 8. But bis X, for some n.

The first proof of the above result was due to Hilary Putnam and did not use
the full fine structure analysis we have just outlined. However, our analysis
yielded many new insights; giving for instance the first proof that L, is X,
uniformizable for all n > 1. (I.e. every X, relation is uniformizable by a X,
function.)

Not long afterwards fine structure theory was used to prove some deep global
properties of L, such as:

L = Og for all infinite cardinals .

It was also used to prove the covering lemma for L. That, in turn, led to
extended versions of fine structure theory which could be used to analyze
larger inner models, in which some large cardinals could be realized. (Here,
however, the fine structure theory was needed not only to analyze the inner
model, but even to define it in the first place.)

Carrying out the above analysis of L requires a very fine study of definability
over an arbitrary L,. In order to achieve this, however, one must overcome
some formidable technical obstacles which arise from Gddel’s definition of
the constructible hierarchy: At successors «, L, is not even closed under
ordered pairs, let alone other basic set functions like unit set, crossproduct
etc. One solution is to employ the theory of rudimentary functions in an
auxiliary role. These functions, which were discovered by Gandy and Jensen,
are exactly the functions which are generated by the schemata for primitive
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recursive functions when the recursion schema is omitted. (Cf. the remark
following chapter 1, §2, Lemma 1.2.4). If rn(z;) < yfori=1,...,n and fis
rudimentary, then r(f(z1,...,2,)) < v+ w. All reasonable "elementary"
set theoretic functions are rudimentary. If « is a limit ordinal, then L,
is closed under rudimentary functions. If « is a successor, then closing L,
under rudimentary functions yields a transitive structure L}, of rank a+w. It
then turns out that every X (L}) definable subset of L, is already X,,(Lq),
and conversely. Hence we can, in effect, replace the rather weak definability
theory of L, by the rather nice definability theory of L},. (This method was
used in [JH], except that LY was given a different but equivalent definition,
since the rudimentary functions were not yet known.) It turns out that if V is
transitive and rudimentarily closed, and Rud(N) is defined to be the closure
of N U{N} under rudimentary functions, then P(N) N Rud(/N) = Def(N).
This suggests an alternative version of the constructible hierarchy in which
every level is rudimentarily closed. We shall index this hierarchy by the class
Lm of limit ordinals, setting:

J = H, = Rud(0)
Jotw = Rud(J,) for a € Lm

Jy= U J, for A a limit p.t. of Lm.
v<A

Note. Setting J = |JJa, we have: J = L. In fact J, = L, whenever « is pr
(6%
closed.

Note. This indexing was introduced by Sy Friedman. In [FSC| we indexed
by all ordinals, so that our J,, corresponds to the J, of [FSC]. The usage
in [FSC] has been followed by most authors. Nonetheless, we here adopt
Friedman’s usage, which seems to us more natural, since we then have: a =

rn(Jy) = OnNJ,.

In the following section, we develop the theory of rudimentary functions.

2.2 Rudimentary Functions

Definition 2.2.1. f : V" — V is a rudimentary (rud) function iff it is
generated by successive applications of schemata (i) — (v) in the definition
of primitive recursive in chapter 1, §2.

A relation R C V™ is rud iff there is a rud function f such that: RZ¥ <
f(&) = 1. In chapter 1, §1.2 we established that:
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Lemma 2.2.1. Lemmas 1.2.1 — 1.2.4 of chapter 1, §1.2 hold with rud’ in
place of ’pr’.

Note. Our definition of 'rud function’, like the definition of 'pr function’ is
ostensibly in second order set theory, but just as in chapter 1, §1.2 we can
work in ZFC by talking about rud definitions. The notion of rud definition
is defined like that of pr definition, except that instances of schema (vi) are
not allowed. As before, we can assign to each rud definition s a rud function
F, : V™ = V with the property that FM = F, | M whenever M is admissible
and FM : M™ — M is the function on M defined by s. But then if M is
transitive and closed under rud functions, it follows by induction on the
length of s that there is a unique FM = F, [ M.

A rudimentary function can raise the rank of its arguments by at most a
finite amount:

Lemma 2.2.2. Let f: V" — V be rud. Then there is p < w such that
f(@) CcPP(TC(x1U...Uxy)) for all x1,...,xp,.

(H)egce rn(fZ) < max{rn(z1),...,m(z,)} +p and Y f(Z) CcTC(x1U... U

Proof: Call any such p sufficient for f. Then if p is sufficient, so is every
g > p. By induction on the defining schemata for f, we prove that f has
a sufficient p. If f is given by an initial schema, this is trivial. Now let
f(@) = h(g1(Z),...,gm(Z)). Let p be sufficient for h and g be sufficient for
gi(t = 1,...,m). It follows easily that p + ¢ is sufficient for f. Now let

fly, @) = Ug(z, &), where p is sufficient for g. It follows easily that p is
zZEey
sufficient for f. QED

By lemma 2.2.1 and chapter 1 lemma 1.2.3 (i) we know that every X relation
is rud. We now prove the converse. In fact we shall prove a stronger result.
We first define:

Definition 2.2.2. f: V"™ — V is simple iff whenever R(z, ) is a ¥ relation,
then so is R(f(Z), 7).

The simple functions are obviously closed under composition. The simplicity
of a function f is equivalent to the conjunction of the two conditions:

(i) = € f() is Xo

(ii) If A(z, @) is X, then A z € f(Z)A(z, 1) is Xo,
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for given these we can verify by induction on the Xg definition of R that
R(f(7),7) is So.
But then:

Lemma 2.2.3. All rud functions are simple.

Proof: Using the above facts we verify by induction on the defining schemata
of f that f is simple. The proof is left to the reader. QED

In particular:

Corollary 2.2.4. Every rud function f is Xg as a relation. Moreover f[U
is uniformly 3Xo(U) whenever U is transitive and rud closed.

Corollary 2.2.5. Every rud relation is Xg.

We now list some facts which follow easily from the foregoing lemmas.

Fact 1. Let f: V™ — V such that z € f(¥) is a X relation. If there is
a rudimentary function g such that f(#) C ¢(Z), then f is a rudimentary
function.

Proof. Lemma 2.2.1 and Lemma 1.2.3 we have: f(Z) = g(Z)n{z | z € f(Z)}.
QED(Fact 1)

Fact 2. Let f: V" — V such that y = f(&) is a g relation. If there is
a rudimentary function g such that f(Z) € g(&), then f is a rudimentary
function.

Proof. z € f(Z) is X, since it is expressed by: \/y € ¢(Z)z € y. But then
f(@) cUg(@). QED(Fact 2)

Definition 2.2.3.

[(u) =: uUUuU {Hz,y} | z,y € u}U
{zUy|zycutU{zny|zyculU{z\y|zycu}
Definition 2.2.4. We define rudimentary function C}; (n < w) by: Cj(u) =

u, Cpy1(u) = T(CF(w).

Fact 3. Let n < w. If p < w is sufficiently large, then for all n we have:

o If 1,...,m, € u, then (z1,...,2,) € Cp(u)

o If (1,...,2,) € u, then x1,..., 2, € Cy(u).
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In Chapter 1, §2 we relativized the concept 'pr’ to 'pr in Ay,...,A,". We
can do the same thing with 'rud’.

Definition 2.2.5. Let A; C V(i =1,...,m). f: V"™ = V is rudimentary
in Ay,..., Ay (rud in A, ..., A,) if and only if it is obtained by successive
applications of the schemata (i) — (v) and:

f(z) =xa,(x) (i=1,...,n)
where x4 is the characteristic function of A.
Lemma 2.2.1 and 2.2.2 obviously hold with rud in Ay,..., A, in place of

'rud’. Lemma 2.2.3 and its corollaries do not hold, however, since e.g. the
relation {z} € A is not ¥y in A.

However, we do get:

Lemma 2.2.6. Every function rud in Ay, ..., A, is obtainable as a compo-
sition of rud function, and the functions

flz)=A;inz(i=1,...,n).

Proof: Let RC be the set of such compositions. More precisely, RC is the
set of functions obtainable from rud function by successive application of the
schemata:

e f(X)=A;Ng(@) (i=1,...,n)
o f(&) = g(h(Z))

It suffices to show:

Claim. If g is in RC, then so is:

f<u7£) = U 9(275)'

ZEU

We define:

Definition 2.2.6. Let f: V™ — V be in RC. f is viable if and only the
function:

fr(u) = fI(unTPy)
is in RC, where TP,, =the class of all n-tuples (z1,...,z,).
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Then:

1) If f is viable, then f’ is in RC, where
(1) : :

?) = f(z )

ZEU

Proof. Set k(u,Z) = {{(zZ) | 2 € u}. Then k is rud. But f*(u, &) = f |
k(u,Z). Hence | Jrng(f*(u, %)) = f'(u, T). QED(1)
Hence it suffices to show:

Claim. Every f in RC is viable.

We prove this by induction on the defining schemata of f. We show:

(A) Every rud function is viable
(B) If g(Z) is viable, so is f(¥) = A; N g(Z)

(C) If g(y1,--.,yn) is viable and h;(Z) is viable for ¢ = 1,...,n, then
f(®) = g(h(Z)) is viable.

We first prove (A). Let f(z1,...,zy) be rud. Set f§(u,Z) = {{f(Z), (Z))}.
We then recursively define:

fﬁ&-l(u7$’i+1a cee 7xﬂ) = U fin(u¢zv$i+la .. .,$n>
ZEU
for i <n. Then f(u) = fu™ and f*(u) = f}'(u) [u. QED(A)

We now prove (B). Set k(a,w) = {{a Ny,z) | (y,z) € w}. Then k is
rudimentary. To see this, note that x € k(a,w) is X, since:

z € k(a,w) <= \/y,x € C}(w)(z = (any,z) Ay, z) € w)
for sufficient n. ut k(a,w) C C({a,w}) for sufficient n. But
k(a, f*(w) = {{a N f(Z), () | (Z) € u}.
Set: f(u)0: Urng(f*) = Upey f(T)- Let @ = 4; N f(u). Then:

k(a, f*(u) = {{4: 0 f(2), (D)) | (%) € u}
= fa,(u) where fa,(Z) = A; N f(Z).

Hence f7 (u) lies in RC and f4, is viable. QED(B)
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We now prove (C). Let f(Z) = g(h(Z), where g is m-ary anf h; is n-ary for
i=1,...,m. Set:

m

y= k@) = \/Zaly=(22) AN (z,2) € wi),

=1

where the existence quantifier can be bounded by C;({w}) for sufficient p,
and: k(w) € Cp({w}) for sufficient p. But:

k(hi(w), .. hip(w) = {(h1(Z), ..., hin(T), (Z)) | (Z) € uN TPy}
Set: k(u) = rg(k(hi(u),..., k%, (u))). Then:

F(w) = {(I1(@), .., (@) | (7) € uN TP},

Hence:
prod(g* (), A(w)) = f [uNTPy = f*(u),
where:
prod(w,v) = {(y, zrg | \/x((y,m) cwA(z,z) €v)}.

But u = prod(w, v) is ¥ since it is expressed by:

v,z eCpw)\/z€C(v){y,z) €wA (z,2) €v)

for sufficient p. Moreover: prod(w,v) C Cp({w,v}) for sufficient p. Hence
prod is a rud function and f* lies in RC. Hence f is viable.

QED (Lemma 2.2.6)

Definition 2.2.7. X is rudimentarily closed (rud closed) if and only if it
is closed under rudimentary functions. (M, Ay,..., A,) is rud closed if and
only if M is closed under functions rudimentary in Ay, ..., A,.

If M =(|M|,Ai,...,A,) is transitive and rud closed, then it is amenable,
since it is closed under f(z) =z N A. By lemma 2.2.6 we then have:

Corollary 2.2.7. Let M = (|M|Ay, ..., Ay) be transitive. M is rud closed
iff it is amenable and |M| is rud closed.

Corresponding to corollary 2.2.4 we have:

Corollary 2.2.8. Every function f which is rud in A is X1 in A as a
relation. Moreover f U is 31 ((U, ANU)) by the same 31 definition whenever
(U, ANU) is transitive and rud closed. (Similarly for "rud in Ay,..., A,".)
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Proof: f is obtained from rud functions by successive application of the
schemata:

A

D)

9(%)
g(h(Z)

8y
Il

e f(Z)
o f(7)

8y

— 8l

The result follows by induction on these schemata. QED (Corollary 2.2.8)

In Chapter 1 §2.2 we extended the notion of "pr definition" so as to deal

with functions pr in classes A1,..., A,. We can do the same for rudimentary
functions:

We appoint new designated function variables aq,...,a, and define the set
of rud definitions in aq,...,a, exactly as before, except that we omit the
schema (vi). Given Aj,..., A, we can, exactly as before, assign to each
rud definition s in aq,...,a, a function FSAI""’A" are then exactly the func-

tions rud in Aj,..., A,. Since lemma 2.2.6 (and with it, corollary 2.2.8) is
proven by induction on the defining schemata, its proof implicitly defines an
algorithm which assigns to each s a ¥; formula ¢, which defines FSA.

Corresponding to chapter 1 §1 Lemma 1.1.13 we have:

Lemma 2.2.9. Let f berud in A1, ..., A,, where each A; istud in By,. .., By,.
Then f isrud in By,..., Bn,.

The proof is again by induction on the defining schemata. It shows, in fact
that f is wniformly rud in B in the sense that its rud definition from B
depends only on its rud definition from A and the rud definition of A; from
B(i=1,...,n).

We also note:

Lemma 2.2.10. Let m : M —x, M, where M, M are rud closed. Then
m preserves rudimentarity in the following sense: Let f be defined from the
predicates of M by the rud definition s. Let f be defined from the predicates

of M by s. Then n(f(%)) = f(n(Z)) for x1,...,2, € M.

Proof: Let o, be the canonical Y1 definition. Then M = o4y, 7] — M |=
ws|m(y), m(Z)] by Xp—preservation. QED (Lemma 2.2.10)

We now define:

Definition 2.2.8.
rud(U) =: The closure of U under rud functions

rudy,,.. a,(U) =: The closure of U under functions rud in Ay,..., A4,
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(Hence rud(U) = rudy(U).)

Lemma 2.2.11. If U is transitive, then so is rud(U).

Proof: Let W =rud(U). Let Q(z) mean: TC({z}) C W. By induction on
the defining schemata of f we show:

(Q(z) AN .. ANQ(x)) = Q(f (21, ..., 24))

for z1,...,x, € W. The details are left to the reader. But x € U — Q(x)
and each z € W has the form f(Z) where f is rud and z1,...,z, € U. Hence
TC({z}) C W for z € W. QED

The same proof shows:

Corollary 2.2.12. If U is transitive, then so is rud ;(U).

Using Corollary 2.2.12 and Lemma 2.2.3 we get:

Lemma 2.2.13. Let U be transitive and W = rud(U). Then the restriction
of any Xo(W) relation to U is Xy(U).

Proof: Let R be Xy(W). Let R(Z) + R/(Z,p) where R’ is Xo(W) and
Ply.-.,0pn € W. Let p; = fi(Z), where f; is rud and 2;,...,2, € U. Then
for z1,...,2,m € U:

R(@) < R(Z, f(2)
+ R'(Z,2)
where R” is X (U), by lemma 2.2.3. QED (Lemma 2.2.13)
We now define:

Definition 2.2.9. Let U be transitive.

Rud(U) =: rud(U U{U})
Rud 4(U) =: rud 4(U U {U})

Then Rud(U) is a proper transitive extension of U. By Lemma 2.2.13:
Corollary 2.2.14. Def(U) = P(U) NRud(U) if U # 0 is transitive.
Proof: If A € Def(U), then A is Xo(U U{U}). Hence A € Rud(U). Con-

versely, if A € Rud(U), then A is X,(U U{U}) by lemma 2.2.13. Tt follows
easily that A € Def(U). QED (Corollary 2.2.14)
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Note. To see that A € Def(U), consider the €-language augmented by a
new constant U which is interpreted by U. We assign to every g formula
¢ in this language a first order formula ¢’ not containing U such that for all
T1,--.,2n € U:

UUu{U} Eola] « U = ¢'[7].

(Here x; is taken to interpret v; where vq,...,v, is an arbitrarily chosen
sequence of distinct variables, including all variables which occur free in ¢.)
We define ¢’ by induction on . For primitive formulae we set first:

(yEw)’szw,(yEU)’:v:v,
Uev)=v#v,(UeclU)=\Vvv#o.

For sentential combinations we do the obvious thing:
(e A) = (" AY), (m9) = ~¢,
etc. Quantifiers are treated as follows:

(Avewp) =Avewy
(AveUp) = Ave'

Given finitely many rud functions si,...,s, we say that they constitute a
basis for the rud function iff every rud function is obtainable by successive
application of the schemata:

o f(z1,...,zn)=2; (j=1,...,n)

o [(Z)=s5i(91(Z), ..., 9m(T)) (i =1....p)

Note that if s1,...,s, is a basis, then rud(U) is simply the closure of U
under the finitely many functions s1,...,s,. We shall now prove the Basis
Theorem, which says that the rud functions possess a finite basis. We first
define:

Definition 2.2.10. (z,y) =: {{z},{z,y}}; (x) = z,

(x1,...,2n) = (21, (22,...,2p)) for n. > 2.

(Note: Our "official" notation for n—tuples is (z1,...,x,). However, we
have refrained from specifying its definition. Thus we do not know whether

(#) = (2).)

We also set:
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Definition 2.2.11.

r@y={(z,w)|z €z Ahwey}
dom™(x) = {z[Vy(y,2) € x}
w*z = {yl(y,2) € z}

Theorem 2.2.15. The following functions form a basis for the rud function:

Fo(a:,y) - {Q?,y}

Fl(xa y) =7 \ Yy

By(z,y)=z®y

Fs5(z,y) = {(u,z,v)|z € A (u,v) € y}
Fy(z,y) = {(u,v,2)|z € x A (u,v) € y}
Fs(z,y) = U=z

Fg(z,y) = dom™ ()

Fr(z,y) ={(z,w)|z,w € x A z € w}
Fy(z,y) ={z"z|z € y}

Proof: The proof stretches over several subclaims. Call a function f good
iff it is obtainable from Fy, ..., Fg by successive applications of the above
schemata. Then every good function is rud. We must prove the converse.
We first note:

Claim 1 The good functions are closed under composition —i.e.if g, hy, ..., hy

—

are good, then so is f(Z) = g(h(X)).

Proof: Set G = the set of good function g(yi,...,¥yy) such that whenever
hi(Z) is good fori = 1,...,r, then so is f(Z) = g(h(Z)). By a straightforward
induction on the defining schemata it is easily shown that all good functions
are in G. QED (Claim 1)

Claim 2 The following functions are good:

{z.yhz\y, 2@y, 20y =U{z,y},
xﬂy:x\(:v\y),{xl,...,:ﬁn}:{xl}U...U{xn},

——
Cn(u):uUUuU...UU...Uu,(xl,...,xn)

(since (x1,...,x,) is obtained by iteration of Fy.) By an €-formula we
mean a first order formula containing only € as a non logical predicate. If
© = ¢(v1,...,0,) is any €-formula in which at most the distinct variables
(v1,...,v,) occur free, set:

to(u) =: {(z1,...,2p)|Z € uA (u, €) = ¢[Z]}.

Note. We follow the usual convention of suppressing the list of variables.
We should, of course, write: t, 4, v, (1)
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Note. Recall our convention that ¥ € u means that x; € u fori =1,...,n.
Then ¢, is rud. We claim:
Claim 3 ¢, is good for every €—formula ¢.
Proof:
(1) It holds for p =v; € v; (1 <i<j <n)
Proof: For i = 2,3 set:
F2(u,w) = w, FZmH(u,w) = Fi(u, " (u,w))
then FJ™ is good for all m. For m > 1 we have:
El'(u,w) = {(x1,...,2m, 2)|T €EuNz € w}
FI (0, w0) = {(, 31, - . Ty 2)| € U A (3, 2) € w}
We also set
u™= {(z1,...,2,)|T € u}
= " (u,u)
If j = n, then
to(u)={(z1,...,2)|[T € u A w; € ;}
= Fy (u, F;il*l(u, Fr(u,u))).
Now let n > j. Noting that:
Fy(u™ w) = {(y, 2,21, ..., xm)|T € u A (y,2) € w},
we have:
to(u) = Fy ' (u, F{ 7 (u, Fa(ul™™), Pr(u, u)))).
QED (1)
(2) It holds for p = v; € v;.

Proof: t,(w) =0 =w\ w.

If it holds for ¢ = ¢(v1,...,v,), then for —p.
Proof:
toglw) = (W™ \ to(w))

QED (3)
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(4) If it holds for ¢, 1, then for ¢ A, ¢ V 1b. (Hence for p — ¥, @ <>

by (3).)
Proof:
tovy(w) = to(w) Uty (w) = U{tp(w), ty(w)}
tony(w) = to(w) Nty (w), where xNy = (2 \ (z\y)).
QED (4)
(5) If it holds for ¢ = ¢(u,v1,...,vy), then for Aup, \V, ¢.
Proof:
ty up(w) = Fo(ty(w), to(w)) hence
t/\ugo(w) = tﬁ\/uwp(w) by (3)
QED (5)
(6) It holds for ¢ = v; = v; (i,j < n).
Proof: Let ¢(v1,...,v,) = \2(z € v; > 2 € v;). Then for (¥) € UM
we have:

€t¢ uUU & xp = x4,

since z;,2; C (uU Uu) Hence

to(u) = ul™ Nty (uU Uu)

QED (6)
(7) It holds for ¢ =v; € v; (i < j)
Proof:
vj €y <—>\/u(u:vj/\uevi).
We apply (6), (5) and (4). QED (7)

But then if ¢(vi,...,v,) = Qui,...Quy (U,
normal form, we apply (1), (2), (6), (7) and (3
But then ¢, is good by iterated applications of (5

¥)) is any formula in prenex
), (4) to see that ¢ is good.
(5)- QED (Claim 3)

In our application we shall use the function ¢, only for ¥ formulae ¢. We
shall make strong use of the following well known fact, which can be proven
by induction on n.

Fact Let ¢ = ¢(v1,...,vy) be a ¥y formula in which at most n quantifiers
occur. Let u be any set and let z1,..., 2, € u. Then V = ¢[Z] <> Cp(u) =
o[ ].

Definition 2.2.12. Let f: V"™ — V be rud. f is verified iff there is a good
f*:V — V such that f"U™ C f*(U) for all sets U. We then say that f*
verifies f.
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Claim 4 Every verified function is good.

Proof: Let f be verified by f*. Let ¢ be the ¥ formula: y = f(x1,...,2,).
For sufficient m we know that for any set u we have:

y = [f(@) < (y,7) € tp(Crn(uU f*(u)))
for y, @ € wU f*(u).

Define a good function F by:
F(u) = (f*(u) ®u™) N to(Cru(wl f*(w))).

Then F'(u) is the set of (f(Z),&) such that ¥ € u. In particular, if u =
{z1,...,2,}, then:

Fy(F({7}){(@)}) = {f(@)}
and f(7) = U Fs(F({E), {(®)}). QED (Claim 4)

Thus it remains only to prove:
Claim 5 Every rud function is verified.

Proof: We proceed by induction on the defining schemata of f.

Case 1 f(Z)=u;
Take f*(u) =u=u\ (u\u).

Case 2 f(Z) =x; \ z;
Let ¢ be the formula z € 2\ y. Then for z,x,y € v we have

zex\y vzl
< (z,2,y) € tyo(v).
But z,y € u — 2z \ y C |Ju. Hence for all z,y,u and all z we have:
zex\y ¢ (2,72,9) Etw(uUUu).
Hence:
f'u c {z\ ylz,y € u} = Fy(t,(uU Uu),u(2)).
QED (Case 2)

Case 3 f(Z) = {zi, x;}
Then f"u™ = {{z,y}|z,y € u} = Ju?. QED (Case 3)

Case 4 f(7) = g(i(7))
Let b} verify h; and g* verify g. Then f*(u) = ¢*(Uh}(u)) verifies f.

QED (Case 4)
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Case 5 f(y, %) = Jg(z,&). Let g* verify g. Let ¢ = p(w,y,Z) be the ¥y
zZEY
formula: \/ z € y w € g(z,Z). For sufficient m we have:

\/z cywe g(z,7) < (w,y,%) € t,(Cr(uU UQ*(U)))

for all w,y,Z € uUJg*(u).

Set F(u) = to(Cr(uUJg*(uw))). Then g(z,%) C Jg*(u) whenever
Yy, & € uand z € y. Hence

F(u)*(y.7) = | Jo(z, %)

zey

for y, ¥ € u. Hence
f//un-H C Fg(F(u),u("H)).

QED (Theorem 2.2.15)

Combining Theorem 2.2.15 with Lemma 2.2.6 we get:

Corollary 2.2.16. Let Ay,..., A, C V. Then Fy,..., Fy together with the
functions a;(x) = x N A;(i = 1,...,n) form a basis for the functions which
are rudimentary in Ay, ..., An,.

Let M = (|M|, €, A1,..., Ay). ‘Ear’ denotes the satisfaction relation for M
and ’):%/["’ denotes its restriction to X, formulae. We can make good use of
the basis theorem in proving:

Lemma 2.2.17. )z%j is uniformly 31 (M) over transitive rud closed M =
(|M], €, A1,..., Ap).

Proof: We shall prove it for the case n = 1, since the extension of our proof
to the general case is then obvious. We are then given: M = (|M], €, A).
By a wariable evaluation we mean a function e which maps a finite set of
variables of the M-language into |M|. Let E be the set of such evaluations.
If e € E, we can extend it to an evaluation e* of all variables by setting:

« e(v) if v € dom(e)
¢ (v)—{ () if not

= ple] then means that ¢ becomes true in M if each free variable v in ¢
is interpreted by e*(v).

We assume, of course, that the first order language of M has been "arithme-
tized" in a reasonable way — i.e. the syntactic objects such as formulae and
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variables have been identified with elements of H,, in such a way that the
basic syntactic relations and operations become recursive. (Without this the
assertion we are proving would not make sense.) In particular the set Vbl of
variables, the set F'ml of formulae, and the set F'mly of Yp—formulae are all
recursive (i.e. Aj(H,)). We first note that every ¥o(M) relation is rud, or
equivalently:

(1)

Let o be 3g. Let vy, ..., v, be a sequence of distinct variables contain-
ing all variables occuring free in ¢. There is a function f uniformly
rud in A such that

Ea ple] < fef(v1),...e"(vy)) =1

for all e € F.

Proof: By induction on ¢. We leave the details to the reader.
QED (1)

The notion A—good is defined like "good" except that we now add the
function Fy(x,y) = x N A to our basis. By Corollary 2.2.16 we know
that every function rud in A is A-good. We now define in H, an
auxiliary term language whose terms represent the A-good function.
We first set: F(x,y) =: (i, (z,y)) fori =0,...,9: & = (10, z). The set
Tm of Terms is then the smallest set such that

e ¥ is a term whenever v € Vbl

o If t, are terms, then so is F(¢, ') for i =0,...,9.
Applying the methods of Chapter 1 to the admissible set H,, it follows
easily that the set T'm is recursive (i.e. Aj(H,)). Set

C(t) ~: The smallest set C such that the term ¢ € C and C' is closed
under subterms (i.e. Fi(s,s') € C — 5,8 € C).

Then C(t) € H, for t € T'm, and the function C(t) is recursive (hence
A1(H,)). Since Vbl is recursive, the function
Vbl(t) ~: {v e Vbl|o € C(t)} is recursive.

We note that:

Every recursive relation on H,, is uniformly ¥, (M).

Proof: It suffices to note that: H,, is uniformly ¥ (M), since

x € H, H\/f\/u\/ncp(f,u,n,w)

where ¢ is the Xy formula: f is a function A u is transitive
AMeEwWANf:ineuAz €. QED (2)
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Given e € E we recursively define an evaluation (e(t)|t € T'm) by:

e(v) = e*(v) for v € Vbl
e(Fi(t,s)) = Fi(e(t), e(s)).

Then:
(3) {{y,e,t)lec ENt e Tm Ay ==¢(t)} is uniformly ¥;(M).
Proof: Let e € E, t € Tm. Then y = €(t) can be expressed in M by:
\/g\/u\/v(u =C(t) Nv=Vbl(t) N p(y,e,u,v,y,t))
where ¢ is the ¥ formula:

(g is a function Adom(g) =uAAz€cvzecu

ANz € v((z € dom(e) A g(z) = e(z))V
V(z & dom(e) A g(&) = 0))

9 .
AN Nt s, i €u(t=Fi(s,s') =
=0

- s g(t) = Fi(g(s), y(s")

QED (3)

(4) Let f(x1,...,zy,) be A—good. Let vq,...,v), be any sequence of distinct
variables. There is ¢ € T'm such that

fle*(v1),...,e"(vy)) = €(t)
for all e € E.

—

Proof: By induction on the defining schemata of f. If f(
we take t = v;. If (7)) = €(s;) for e € E(i = 0,1), and
Fi(90(Z), 91(%)), we set t = F(so, s1). Then

e(t) = Fi(e(s0),e(s1)) = Fi(go(7), 91(7)) = f ().

L,

~—~
ST
SN—

)
f

QED (4)
But then:

(5) Let ¢ be a X formula. Thereist € T'm such that M = ple] <> €(t) =1
forall e € E.

Proof: Let vy,...,v, be a sequence of distinct variables containing all
variables which occur free in . Then

M = ¢le] < M = gle*(v1), ..., ¢"(vn)]
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for all e € E. Set

DID= it uar

Then f is rudimentary, hence A—good. Let t € T'm such that

(%) f(e*(v1),...,e"(vy)) =€(t).
Then: M |= ¢le] «» e(t) = 1. QED (5)
(5) is, however, much more than an existence statement, since our
proofs are effective: Clearly we can effectively assign to each ¥ formula
¢ a sequence v(yp) = (v1,...,v,) of distinct variables containing all
variables which occur free in . But the proof that the f defined by
(%) is rud in fact implicity defines a rud definition D, such that D,
defines such an f = fp, over any rud closed M = (M, €, A). The
proof that f is A—good is by induction on the defining schemata and
implicitly defines a term ¢ = T, which satisfies (**) over any rud closed
M. Thus our proofs implicitly describe an algorithm for the function
¢ — T,. Hence this function is recursive, hence uniformly »(M).
But then ¥ satisfaction can be defined over M by:

M = ple] <:e(T,) = 1.
QED (Lemma 2.2.17)

Corollary 2.2.18. Let n > 1. |:§/[" is uniformly X, (M) for transitive rud
closed structures M = (|M|, €, A1,..., Ap).

(We leave this to the reader.)

2.2.1 Condensation

The condensation lemma for rud closed sets U = (U, €) reads:

Lemma 2.2.19. Let U = (U, €) be transitive and rud closed. Let X <y, U.
Then there is an isomorphism 7 : U +— X, where U is transitive and rud
closed. Moreover, w(f(Z)) = f(n(Z)) for all rud functions f.

Proof: X satisfies the extensionality axiom. Hence by Mostowski’s isomor-
phism theorem there is 7 : U <~ X, where U is transitive. Now let f be
rud and z1,...,2, € U. Then there is 4’ € X such that ¢/ = f(7(Z)), since
X <5, U. Let m(y) = ¢/. Then y = f(Z), since the condition 'y = f(Z)’ is
Yo and 7 is ¥j—preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = (|M|, €, Ay,..., Ay) is much
weaker, however. We state it for the case n = 1.
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Lemma 2.2.20. Let M = (|M|, €, A) be transitive and rud closed. Let
X <x, M. There is an isomorphism 7 : M <~ X, where M = (|M|, €, A)
18 transitive and rud closed. Moreover:

(a) m(ANz)=ANm(x) forv € M.

(b) Let f berud in A. Let f be characterized by: f(¥) = fo(Z, AN f1(Z)),
where fo, fi are rud. Set: f(Z) =: fo(Z, AN f1(F)). Then:

m(f(@) = f(7(2)).

The proof is left to the reader.

2.3 The J, hierarchy

We are now ready to introduce the alternative to Goédel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.

J, = Rud(0)
Ja+w = Rud(Jg) for f € Lm

Jy= U J, for A alimit point of Lm
F<A

It can be shown that L = |JJ, and, indeed, that L, = J, for a great many
[e%
a (for instance closed «). Note that J, = L, = H,,,.

By §2 Corollary 2.2.14 we have:
P(Ja> NJatw = Def(Ja)v

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J-hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between J, and (J,, €).

Lemma 2.3.1. rn(J,) = OnNJ, = a.

Proof: By induction on a € Lm. For a = w it is trivial. Now let a = f+w,
where 8 € Lm. Then 8 = OnnJg € Def(Jg) C J,o. Hence g+ n € J, for
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n < w by rud closure. But rn(J,) < 8+ w = « since J, is the rud closure
of Jo U{Js}. Hence OnNJ, = a = rn(Jy).

If a is a limit point of Lm the conclusion is trivial. ~ QED (Lemma 2.3.1)

To make our notation simpler, define

Definition 2.3.2. Lm* = the limit points of Lm.

It is sometimes useful to break the passage from J, to J,t, into w many
steps. Any way of doing this will be rather arbitrary, but we can at least do
it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s: V — V such that for all U:

(a) U C s(U)
(b) rud(U) = ngws”(U)

(c) If U is transitive, so is s(U).

Proof: Define rud functions G;(i = 0,1, 2, 3) by:

Go(SU Y,z ) - (.T,y)
Gl(x Y,z ) (x,y,z)
GQ(SU Y,z ) - {‘T7 (y) Z)}
G3(x Y,z ) ="y

Set: o ;
s(U)=Uu| JF'U*ulJGYU?.
1=0 1=0

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a € s(U). We claim: a C s(U). There are 14 cases: a € U, a = F;(z,y)
for an i = 0,...,8, where z,y € U, and a = G;(z,y,2) where z,y,z € U
and 7 = 0,...,3. Each of the cases is quite straightforward. We give some
example cases:

e a=F(z,y) =z®y. If 2 € a, then z = (2/,y') where 2/ € z, ¢/ € y.
But then 2/, 4y’ € U by transitivity and z = Go(2/,y/, 2") € s(U).

o o =F3(z,y) ={(w,z,v)|z€xA(u,v) € y}. If d = (w,z,v) € a, then
w, z,v € U by transitivity and o' = G1(w, z,v) € s(U)
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e a = Fy(x,y). If d’ € a, then a’ = 2*z where z € y. Hence z € U by
transitivity and o' = G3(z, z,2) € s(U).
o a=Go(r,y,2) = {{z},{z,y}}. Then a C FJU? C s(U).
¢ a= Gl(x,y,z) = (:c,y,z) = {{x}, {.’B, (yvz>}} Then {.%'} = F()(J?,.’B) €
s(U) and {z, (y,2)} = Ga(z,y,2) € s(U). QED (Lemma 2.3.2)
If we then set:
Definition 2.3.3. S(U) = s(UU{U}) we get:

Corollary 2.3.3. S is a rud function such that

(a) UU{UY C S(U)
b) U S™"(U) =Rud(U)

n<w

(c) If U is transitive, so is S(U).

We can then define:

Definition 2.3.4.

So=10

Su+1 = S(Su)

Sy = U S, for limit A.
v<A

Obviously then: J, = S, for v € Lm. (It would be tempting to simply
define J, = S, for all v € On. We avoid this, however, since it could lead to
confusion: At successors v the models S, do not have very nice properties.
Hence we retain the convention that whenever we write J, we mean « to be
a limit ordinal.)

Fach J, has »; knowledge of its own genesis:

Lemma 2.3.4. (S,|v < «) is uniformly ¥1(Jy).
Proof: y =5, <\ f(e(f) ANy = f(v)), where p(f) is the ¢ formula:

f is a function Adom(f) € OnAf(0) =0

ANE € dom(f)(§+1€dom(f) = f(E+1)=2S5(f(&)))
AAX € dom(f|(Xis a limit — F(A) = U f7\).
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Thus it suffices to show that the existence quantifier can be restricted to J,
— i.e.

Claim (S,|v < 1) € J, for 7 < a.

Case 1 o = w is trivial.

Case 2 a=f+w, 8 € Lm.

Then (S,|v < ) € Def(Jg) C Jo. Hence Sz = |J S, € Jo. By rud
v<p
closure it follows that Sgi, € J, for n C w. Hence S [v € J, for

v<a. QED (Case 2)

Case 3 a € Lm™.
This case is trivial since if v < 8 € aNLm. Then S[v € Jg C J,.
QED (Lemma 2.3.4)

We now use our methods to show that each J, has a uniformly ¥ (J,) well
ordering. We first prove:
Lemma 2.3.5. There is a rud function w : V. — V such that whenever r
is a well ordering of wu, then w(u,r) is a well ordering of s(u) which end
extends r.
Proof: Let 73 be the r—lexicographic ordering of u?:
(x,y)ra(z,w) <> (xrz V (x = 2 A yrw)).
Let r3 be the r—lexicographic ordering of u?. Set:
wy = u, upy; = F'u? for i =0,...,8, uigy; = Glud for i =0,...,3.

Define a well ordering w; of u; as follows: wg =r, For i =0,...,9 set

rwiry < Va,b € v (z = Fi(a) Ny = Fi(b)A

Aargb A N\ a' € u?(a'roa — x # Fi(d'))A

ANY € u2(breb — y # F(V)))

For ¢ = 0,...,3 let wigy; have the same definitions with G; in place of F;
and 3,73 in place of u2, 7.

We then set:
w=w(w) = {(e) € s V (o nay ¢ Yu)v

V(e € Upciun Ny & Uun))}

n<i
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(where |J u, = 0). QED (Lemma 2.3.5)
h<0
If r is a well ordering of w, then
roe = {z,y)[(x,y) €TV (€ uhy =u)}
is a well ordering of u U {u} which end extends r. Hence if we set:

Definition 2.3.5. W(u,r) = w(uU {u},ry).

We have:

Corollary 2.3.6. W is a rud function such that whenever r is a well order-
ing of u, then W(u,r) is a well ordering of S(u) which end extends r.

If we then set:

Definition 2.3.6.

<8p= 0

<S,41= W(SW <Sy)

<s,= U <g, for limit A,
<A

it follows that <g, is a well ordering of S, which end extends <g, for all
v<a.

Definition 2.3.7. <,=<;,=:<g, for a € Lm.

Then <, is a well ordering of J, for o € Lm.

By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. (<g, |v < ) is uniformly 31(Jy).

Proof:
y=<s, \ I\ 9le(H) Ao(f,9) ny=g(v)

where ¢ is as in the proof of Lemma 2.3.4 and ¢ is the ¥g formula:

g is a function A dom(g) = dom(f)
Ag(0=0DAANE € dom(g)l€ +1 € dom(g) —

= 9§+ 1) = W(f(£),9(6))
ANX € dom(g) (Ais alimit — g(A) = Jg"N).

Just as before, we show that the existence quantifiers can be restricted to
Ja. QED (Lemma 2.3.7)

But then:
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Corollary 2.3.8. <,= | <s, is a well ordering of J,, which is uniformly

v<a

¥1(Ja). Moreover <, end extends <, for v € Lm, v < a.

Corollary 2.3.9. u, is uniformly 31(Jy), where uy(x) ~ {z|z <, x}.

Proof:
Y = uq(z) < \/1/(:1: eS,Ny={z€8,|z <g, z})

QED (Corollary 2.3.9)

Note. We shall often write <, for <,. We also write <, or <j or <y, for

U <a. Then <y, well orders L and is an end extension of <.
acOn

We obtain a particularly strong form of Gédel’s condensation lemma;

Lemma 2.3.10. Let X <x, Jo. Then there are &, m such that 7 : Jx X,

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive
and 7 : U <~ X. Note that the condition

S(f,v) o [ =(Sel§ <v)
is X, since:

S(f,v)«> (f is a function A
ANdom(f)=v A f(0)=01if 0 < vA
A€ € dom(f)(€ + 1 € dom(f) -
S+ 1) = S(O))).

Let @ = OnNU and let 7 < @. Let n(¥) = v. Then f = (S¢|l¢ <v) € X
since X <y, Jo. Let 7(f) = f. Then f = (S¢|¢ < 7), since S(f,7). But
then Jz = |J S¢ C U. But since 7 is ¥ preserving we know that

¢<a

xeU—=\fveUS(f,v)hzeUf'v)
—x € Jg.

QED (Lemma 2.3.10)

Corollary 2.3.11. Let 7 | Jg: Jg =%, Jo. Then:

(a) v <1< m(v) <n(r) forv,7 < @.

(b) z <py < m(x) <p7(y) for z,y € Ja.
Hence:
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(c) v<m(v) forv <a.

(d) x <p, w(x) for z € Jg.

Proof: (a), (b) follow by the fact that < NJ2 and <; NJ2 =<, are uni-
formly 31 (J,). Butif 7(v) < v, then v, 7(v), 72(v), . . . would form an infinite
decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)

2.3.1 The J/-hierarchy

Given classes Ai1,..., A, one can generalize the previous construction by
forming the constructible hierarchy (J& "o € Lim) relativized to Ay, ..., Ap.
We have this far dealt only with the case n = 0. We now develop the case

n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n = 1 is sufficient for most applications.)

Definition 2.3.8. Let A C V. (J2|a € Lm) is defined by:

J(;? = <Ja[AL €7A N Ja[A]>
Jo|A] = Ruda(0) = H,
Jg+wl[A] = Ruda(Jp) for € Lm

I[A] = U J[A] for A € Lm*

<A

Note. AN Jy[A] is treated as an unary predicate.
Thus every J2 is rud closed. We set
Definition 2.3.9.
L[A] = J[A] = % JalA;
acOn
LA = JA = (L[A], €, AN L[A]).

Note. that J,[0] = J, for all @ € Lm.

Repeating the proof of Lemma 1.1.1 we get:

Lemma 2.3.12. m(J2) = OnnJZ = a.

We wish to break J4

o into w smaller steps, as we did with J,1. To this
end we define:

Definition 2.3.10. S4(u) = S(u) U {ANu}.
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Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. S4 is a function rud in A such that whenever u is transi-
tive, then:

(a) uU{u}U{ANu} C S(u)

(b) U (84)"(u) = Rud(u)

n<w

(¢) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a C S(u) and
ANwu C u. (b) holds since S(u) D u is transitive and A Nwu C u. But if we
set: U = Uy, (S4)™(u), then U is rud closed and (U, AN U) is amenable.
QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.
S =0

Si = S4(S8)
S = |J S for limit .

|20

We again have: J,[A] = S4 for @ € Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. (S3v < a) is uniformly $1(J2).
Proof: This is exactly as before except that in the formula o(f) we replace
S(f(v)) by SA(f(v)). But this is ¥o(J4), since:
zeShu) & (zeSu)Ve=ANu),

hence:

y =S4(u) < Nz €yze S4(u)

ANNzeSu)zeyAnVzeyz=ANu.
QED (Lemma 2.3.14)

We now show that JZ' has a uniformly ¥(JZ) well ordering, which we call
<g or <J&4.

Set:
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Definition 2.3.12.

WA (u, ) ={{z, y)l{x,y) € W (u,r)V
(reSu)ANy=Anu¢g S(u))}

If u is transitive and r well orders u, then W4 (u,r) is a well ordering of
S4(u) which end extends 7.
We set:
Definition 2.3.13.
<{=10
<ljjl+1: WA(SLI/LX? <§)
<{= U <4 for limit <.

<A

Then <7 is a well ordering of S/ which end extends <? for { < v. In
particular <Z well orders J4 for o € T'. We also write: <J£::<§. We set:
<pa=<ga=<i= U <

v<oo

Just as before we get;:

Lemma 2.3.15. (<2 |v < a) is uniformly ¥1(J2).

The proof is left to the reader. Just as before we get:
Lemma 2.3.16. <2 and f(u) = {z|z <2 u} are uniformly %1(J2).

Up until now almost everything we proved for the J, hierarchy could be
shown to hold for the JC‘:‘ hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X <y, J2. Then there are @, , A such that
7 JA S X

Proof: By Lemma 2.2.19 there is (U, A) such that 7 : (U, A) <~ X and
(U, A) is rud closed. As before, the condition
SA(f.v) o f = (Siv <€)

si ¥ in A. Now let 7 < @, m(V) = v. As before f = (5¢[{ <v) € X. Let

7(f) = f. Then f = <Sé4\§ < ), since SA(f,7). Then J24 C | SEA cU.
£<a

U C J2 then follows as before. QED (Lemma 2.3.17)

A sometimes useful feature of the J4 hierarchy is:
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Lemma 2.3.18. z € J! — TC(x) € JZ.

(Hence (TC(x)|x € JZ) is T (J2) since u = TC(x) is defined by:
w is transitive Az C u A \v((v is transitive Nx Cv) - u Cv)
Proof: By induction on a.

Case 1 a = w (trivial)

Case 2 a =+ w, [ € Lim.
Then every x € JZ has the form f(2) where z1,...,2, € Jg[A] U
{Js[A]} and f is rud in A. By Lemma 2.2.2 we have

pr C U TC(z) C Jg[A] for some p < w
i=1

Hence TC(z) = Cp(x) UTC (UL, TC(2)), where (T'C(z)|z € Jg[A])
is J é‘lfdeﬁnable, hence an element of JZ'.

Case 3 o € Lm™ (trivial). QED (Lemma 2.3.18)

Corollary 2.3.19. If o € Lm*, then (TC(x)|z € J2) is uniformly Ai(J2).

Proof: We have seen that it is ITy (J2). But TC [Jg‘ € JZ for all f € Lm N
Hence u = TC(x) is definable in JZ' by:

V f(f is a function A dom(f) is transitive Au = f(z)
ANz € dom(f)f(z) =xUU [ )

QED (Corollary 2.3.19)

2.4 J—models

We can add further unary predicates to the structure Jo‘?. We call the struc-
ture:
M = (JhAn B B

a J-model if it is amenable in the sense that x N B; € Jf whenever x € JC’:Y
and i = 1,...,m. The B; are again taken as unary predicates. The type of
M is (n,m). (Thus e.g. J, has type (0,0), J2 has type (1,0), and (J,, B)
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has type (0,1).) By an abuse of notation we shall often fail to distinguish
between M and the associated structure:

—.

M = (J A, A,,... A By,...,By)

where A} = A;NJ,[A] (i=1,...,n).

We may for instance write X (M) for ©1 (M) or 7 : N —x, M for7: N —y,

M . (However, we cannot unamblgnously identify M with M, since e. g. for
= (JA, B) we might have: M = JoLB )

In practice we shall usually deal with J models of type (1,1), (1,0), or (0, 0).
In any case, following the precedent in earlier section, when we prove general
theorem about J—models, we shall often display only the proof for type (1,1)
or (1,0), since the general case is then straightforward.

Definition 2.4.1. If M = <J“Y, B) is a J-model and 3 < a in Lm, we set:

«

M|B=:(J§,BiNJ§,...,B. N J4).

In this section we consider X1 (M) definability over an arbitrary M = <J§ ,B).
If the context permits, we write simply 3 instead of X1 (M). We first list
some properties which follow by rud closure alone:

) )zf/[l is uniformly X1, by corollary 2.2.18 (Note 'Uniformly’ here means
that the 3, definition is the same for any two M having the same type.)

o If R(y,z1,...,x,) is a ¥ relation, then so is \/ yR(y, x1, ..., zy) (since

\/y\/zP(y,z Z) < VVu\vy,z € uP(y,z, &) where R(y, %) <+ \/ zP(y, 2, %)
and P is Xp).

By an n—ary 31 (M) function we mean a partial function on M™ which
is ¥1(M) as an n + l-ary relation.

e If R, R’ are n—ary X relations, then so are RN R/, RUR’. (Since e.g.

(VyP(y, )AVP’(y, T)) <
Vyy'(P(y, @) A P'(y', 7)).)

o If R(y1,...,ym) is an n—ary > relation and f;(¥) is an n—ary ¥; func-
tion for ¢ = 1,...,m, then so is the n—ary relation

R(f(f))(—}:\/ylj,..,ym /\yz—fz ( ))



2.4. J-MODELS 79

e If g(y1,...,ym) is an m—ary ¥; function and f;(Z) is an n-ary %
function for i = 1,...,m then h(¥) ~ g(f(¥)) is an n—ary ¥; function.

(Since 2 = h(&) ¢ Vool A s = £@) Az = 9())
Since f(z1,...,x,) = x; is X1 function, we have:

o If R(z1,...,2,) is X1 and 0 : n — m, then

P(z1,.. . 2m) < R(25(1), -+ -5 Zo(n))

is X1.
o If f(z1,...,zy,) is a 31 function and o : n — m, then the function:
9(z1, -5 2m) = f(20(1)5 - - - » Zon)
is Y.

J-models have the further property that every binary 3; relation is uni-
formizable by a ¥ function. We define

Definition 2.4.2. A relation R(y,¥) is uniformized by the function F(Z)
iff the following hold:

e \/yR(y,¥) — F(Z) is defined
o If F(Z) is defined, then R(F(Z), %)

We shall, in fact, prove that M has a uniformly ¥ definable Skolem function.
We define:

Definition 2.4.3. h(i,x) is a ¥ -Skolem function for M iff h is a X1 (M)
partial map from w x M to M and, whenever R(y,z) is a ¥1(M) relation,
there is i < w such that h; uniformizes R, where h;(z) ~ h(i, ).

Lemma 2.4.1. M has a X1 -Skolem function which is uniformly 31 (M).

Proof: |:§41 is uniformly ¥;. Let (p;|i < w) be a recursive enumeration of
the 31 formulae in which at most the two variables vy, v1 occur free. Then
the relation:

T(i,y,x) <=yt @ily ]

is uniformly ¥;. But then for any ¥; relation R there is ¢ < w such that

R(y,z) < T(i,y,x).
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Since T is X1, it has the form:
\/ 2T (2,4, y, )
where T is ¥g. Writing <, for <§, we define:
y=h(i,x) < \/ 2((z,y) is the <js —least
pair (2, y) such that T"(2',i,y/, x)).
Recalling that the function f(z) = {z|z <as z} is X1, we have:
y=h(i,x) <\ 2V u(T'(z,i,y,2)A

Nu = {wl|w <pr (z,y) }A
AN Y)Y € u=T'(2,4,y,2))

QED 2.4.1
We call the function h defined above the canonical 31 Skolem function for M

and denote it by hjps. The existence of h implies that every X1 (M) relation
is uniformizable by a ¥; (M) function:

Corollary 2.4.2. Let R(y,x1,...,x,) be X1. R is uniformizable by a 31
function.

Proof: Let h; uniformize the binary relation

{w. )|\ 21 2n(R(y, B) A 2 = (1, ,20)) }.
Then f(&) ~: h;((Z)) uniformizes R. QED

We say that a X1(M) function has a functionally absolute definition if it
has a 37 definition which defines a function over every J—model of the same

type.

Corollary 2.4.3. Every ¥X1(M) function g has functionally absolute defini-
tion.

Proof: Apply the construction in Corollary 2.4.2 to R(y, %) « y = g(Z).
Then f(z) ~: h;((Z)) is functionally absolute since h; is.
QED (Corollary 2.4.2)

Lemma 2.4.4. Every x € M is ¥1(M) in parameters from OnNM.

Proof: We must show: x = f(&1,...,&,) where fis ¥1(M). If M = <J§, B),
it obviously suffices to show it for the model M’ = Jag. For the sake of
simplicity we display the proof for J4. (i.e. M has type (1,0)). We proceed
by induction on « € Lm.
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Case 1 a=w.
Then J2 = Rud(@) and = = f({0}) where f is rudimentary.

Case 2 a=f+w, f € Lm.
Then x = f(zl,...,zn,Jg‘) where z1,...,2, € Jf;‘ and f is rud in A.
(This is meant to include the case: n = 0 and =z = f(Jg‘)) By the
induction hypothesis there are £ € 3 such that z; = g;(§) (i = 1,...,n)
and g; is 31 (/] /"34) For each i pick a functionally absolute 3 definition
for g; and let g/ be ¥1(JZ) by the same definition. Then z; = g;(g)
since the condition is ¥1. Hence z = f/(€, 8) = f(7(£), JE‘)) where f’
is 3. QED (Case 2)

Case 3 a € Lm".
Then z € Jg‘ for a f < a. Hence x = f(f) where f is El(JE‘). Pick
a functionally absolute ¥y definition of f and let f’ be ¥1(J4) by the
same definition. Then z = f/(€). QED (Lemma 2.4.4)

But being Y1 in parameters from OnNM is the same as being ¥ in a finite
subset of OnNM:

Lemma 2.4.5. Let & = f(£) where f is ©1(M). Let a € OnNM be finite
such that &1,...,&, € a. Then x = g(a) for a X1(M) function g.

Proof: Set:

the i—th element of ¢ in order
of size if @ C On is finite

and card(a) > 1,

undefined if not.

ki (a) =

Then k; is X1 (M) since:

y=rki(a) > VfVn<w(f:neanNij<n(f(i) <f()<i<j)
Aa C On Ay = f(1))

Thus = = f(ki, (a), ..., ki, (a)) where & = k;,(a) for I =1,...,n.
QED (Lemma 2.4.5)

We now show that for every J-model M there is a X,(M) partial map of
OnNM onto M. As a preliminary we prove:
Lemma 2.4.6. There is a partial X1 (M) map of OnNM onto (OnNM)2.

Proof: Order the class of pairs On? by setting: (a, 3) <* (v, 6) iff
(max(a, ), a, ) is lexicographically less than (max(y,d),~,d). This order-
ing has the property that the collection of predecessors of any pair form a
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set. Hence there is a function p : On — On? which enumerates the pairs in
order <*.

Claim 1 p[Onjy is X1 (M).

Proof: If M = <J§, E}, it suffices to prove it for Jf. To simplify
notation, we assume: M = J4 for an A C M (i.e. M is of type (1,0).)
We know:

y=p(v) &\ fle(f) ny=f@)

where ¢ is the Yo formula:

f is a function A dom(f) € OnA

ANw e mg(f)V B,y € Cn(u)u = (B,7)A

ANAv, 7 € dom(f)(v <7< f(v) <* f(1))

AN werng(f) \p, & <max(u)((p, §) <" u— (p,§) €rng(f)).

Thus it suffices to show that the existence quantifier can be restricted
to J4 — i.e. that p[€& € JA for £ < a. This follows by induction on o
in the usual way (cf. the proof of Lemma 2.3.14). QED (Claim 1)

We now proceed by induction on @ = Onyy, considering three cases:

Case 1 p(a) = (0,a).
Then p|a maps a onto

{ulu <. (0,0)} = o”
and we are done, since p[a is £1(J2). (Note that w satisfies Case 1.)

Case 2 a =+ w,f € Lm and Case 1 fails.
There is a 21(JA) bijection of 8 onto a defined by:

f(2n)=p+nforn<w
f@Cn+1)=nforn<w
fw)y=viorw<v<g

Let g be a 21(J5A) partial map of 3 onto 2. Set ((y0,71))i = i for
i=0,1.

9i(v) = (9())i(i = 0,1).
Then f(v) ~ (fgo(v, fg1(v))) maps 8 onto a?. QED (Case 2)

Case 3 The above cases fail.
Then p(a) = (v, 7), where v,7 < a. Let v € Lm such that max(v, 7) <
v < a. Let g be a partial ¥, (J2) map of v onto v2. Then g € M,p~*
is a partial map of v onto «; hence f = p~! o g is a partial map of

v onto a.. Set: f((§,0)) ~ (f(§), f(9)) for £, 0,7. Then fg is a partial
map of y onto a?. QED (Lemma 2.4.6)
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We can now prove:

Lemma 2.4.7. There is a partial X,(M) map of Onys onto M.

Proof: We again simplify things by taking M = J4. Let g be a partial map
of o onto a? which is ¥1(J4) in the parameters p € J2. Define "ordered
pairs" of ordinals < «a by:

(v,7) =g~ ({v 7).

We can then, for each n > 1, define "ordered n—tuples" by:

(v) =v,(v1,...,vn) = (v1, (12,...,vp))(n > 2).

We know by Lemma 2.4.4 that every y € JZ has the form: y = f(v1,...,vp)
where v1,...,v, <« and f is $1(J2). Define a function f* by:

y=f"(1)Vvi,...,vn(t = (V1,..., V)N
ANy = f(viy...,vp)).

Then f* is $1(J4) in p and y € f*a. If we set: h*(i,z) ~ h(i, (z,p)),
then each binary relation which is ¥1(J4) in p is uniformized by one of the
functions hf(z) ~ h*(i,z). Hence y = h*(i,7) for some v < «. Hence
J4 = h*"(w x a). But, setting:

y = h(u <—>\/zu (i,v) Ny = h*(i,v))

we see that h is $1(JA) in p and y € h”a. Hence JA = h”a, where h is
¥1(JA) in p. QED (Lemma 2.4.7)

Corollary 2.4.8. Let x € M. There are f,y € J2 such that f maps v onto
x.

Proof: We again prove it for M = J4. If a = w it is trivial since J2 = H,,.
If « € Lm* then x € Jg‘ for a 8 < « and there is f € JC‘? mapping S onto

Jé‘ by Lemma 2.4.7. There remains only the case a« = 8 + w where 3 is a
limit ordinal. By induction on n < w we prove:

Claim There is f € Jof‘ mapping S onto Sg‘Jrn. If n = 0 this follows by
Lemma 2.4.7.

Now let n =m + 1.
Let f: 8 =3 54 and define f' by f/(0) = 54, f/(n+1) = f(n) for
n<w, f' (&) = f(§) for £ > w. Then f’ maps 5 onto U = Sé4+m {Sg‘er}

8 3
and S, = U F/U*U UG/UPUu{AnSE, }.
5=p i=0
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Set:

gi = {{Fi(f'(€), 1'(€)), (1, (€, ONIE, € < B}
fori=0,...,8

g8+i+1 = {(Gz‘f,(é)vf/(4)>f,(u))v <8 +i+ 17 <§7CaM>>‘§7C:M < B}
fori=0,...,3

g3 ={(AN S5, (13,0))}

13

Then g = ‘UOg,; € J(‘;‘ is a partial map of JE‘ onto Sg&rn and gh € J(‘f is a
1=

partial map of 3 onto SE‘er where h is a partial Zl(ng) map of 5 onto J[";‘

where h is a partial El(Jé) map of 3 onto Jg‘.
QED (Corollary 2.4.8)

Define the cardinal of x in M by:

Definition 2.4.4. T = 77

onto x.

=: the least v such that some f € M maps ~

Note. this is a non standard definition of cardinal numbers. If M is e.g. pr
closed, we get that there is f € M bijecting T onto x.

Definition 2.4.5. Let X C M. h(X) = hy(X) =: The set of all y € M
such that y = f(x1,...,2y), wherexy,...,z, € X and f isa ¥1(M) function
Since ¥ (M) functions are closed under composition, it follows easily that
Y = h(X) is closed under 31 (M) functions.

By Corollary 2.4.2 we then have:

Lemma 2.4.9. Let Y = h(X). Then M|Y <x, M where

MY = (YA NnY,....,A,nY,B1NY,...,B,NY).

Note. We shall often ignore the distinction between Y and M|Y, writing
simply: Y <y, M.

l

If fisa X;(M) function, there is ¢ < w such that h(i, (¥)) ~ f(Z). Hence:

Corollary 2.4.10. h(X) = | A" (w x X™).

n<w

There are many cases in which h(X) = h’(w x X), for instance:

Corollary 2.4.11. h({z}) = h"(w x {x}).
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Gédel’s pair function on ordinals is defined by:

Definition 2.4.6. <, ==: p~1(< v, =), where p is the function defined
in the proof of Lemma 2.4.6.

We can then define Gddel n—tuples by iterating the pair function:
Definition 2.4.7. <y ==:v; <Y1, .., Y0 === V1, < V2, -+, V0 == (n >
2).

Hence any X which is closed under Gdédel pairs is closed under the tuple—
function. Imitating the proof of Lemma 2.4.7 we get:

Corollary 2.4.12. IfY C Onyy is closed under Gédel pairs, then:

(a) h(Y)=h"(wxY)

(b) MY U{p}) = h"(w x (Y x {p})) for p € M.
Proof: We display the proof of (b). Let y € h(Y U{p}). Then y =
f(717 s 77n7p)7 where Y5---5Mn € Y and f is ZI(M)

Hence y = f*({0,p)) where 6 =< 71,...,7, > and

y=f"z) <V, m Ve =(=7,. s = DA
ANy = f(7,p)).

Hence y = h(i, (0, p)) for some i. QED (Corollary 2.4.12)
Similarly we of course get:

Corollary 2.4.13. If Y C M is closed under ordered pairs, then:

(a) h(Y)=h'(wxY)

(b) h(Y U{p}) = h"(w x (Y x {p})) for p € M.

By Lemma 2.4.5 we easily get:
Corollary 2.4.14. Let Y C Onyps. Then h(Y) = b (w x P,(Y)).

In fact:

Corollary 2.4.15. Let A C P,(Onys) be directed (i.e. a,b € A — \/c €
AabCc). Let Y =JA. Then h(Y) = h"(w x A).



86 CHAPTER 2. BASIC FINE STRUCTURE THEORY

By the condensation lemma we get:

Lemma 2.4.16. Let 7 : M —x, M where M is a J-model and M is
transitive. Then M is a J-model.

Proof: M is amenable by ¥ preservation. But then it is a J-model by the
condensation lemma. QED (Lemma 2.4.16)

We can get a theorem in the other direction as well. We first define:

Definition 2.4.8. Let M, M be transitive structures. o : Miﬁ M cofinally
iff o is a structural embedding of M into M and M = Jo" M.

Then:

Lemma 2.4.17. If o0 : M —x, M cofinally. Then o is ¥1 preserving.

Proof: Let R(y,Z) be Xo(M) and let R(y, Z) be $o(M) by the same defini-

tion. We claim: -
\/ yR(y,o(%)) = \/ yR(y, )

for x1,...,2, € M. To see this, let R(y,o(Z)). Then y € o(u) for a u € M.
Hence \/y € o(u)R(y,o(Z)), which is a ¥y statement about o(u),o(Z).
Hence \/ y € uR(y, T). QED (Lemma 2.4.17)

Lemma 2.4.18. Let 0 : M —x, M cofinally, where M is a J-model. Then
M s a J-model.

Proof: Let e.g. M = (J2), M = (U, A, B).
Claim 1 U = J where o = Onyy.

Proof: y = S [v is a ¥y condition, so J(SZ[ ) =S84 To(v). But o
takes @ cofinally to o, so if € < o, & < o(v), then SA(SA fo(v))(€) €

Hence J2 ¢ U. Tosee U C J&, let z € U. Then z € o(u) Where
u € JA Hence u C S and z € O'(SA) SA(V) Cc J4. QED (Claim 1)

Claim 2 M is amenable.
Let x € Sf(y). Then o(BNSA) = BﬁSf(V) and zNB = (BNSA) Nz €
U, since S4 is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M, M be J-models. Then o : M —x, M cofinally iff
o: M —s, M and o takes Ony; to Onyy cofinally.
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Proof: (—) is obvious. We prove (). The proof of J(S,/Z) = S?(y) goes

through as before. Thus if x € M, we have z € Sg‘ for some . Let &€ < o(v).
Then « € 57, = o(S}). QED (Lemma 2.4.19)

2.5 The X projectum

2.5.1 Acceptability

We begin by defining a class of J-models which we call acceptable. Every
Jo 18 acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to 3 at some later stage v of the construction, then
v is, in fact, collapsed to S at that stage:

Definition 2.5.1. J§ is acceptable iff for all 5 < v < o in Lm we have:

IfaCpandaeJi, \JA then? < Bin JA

vtw:*

In the following we shall always suppose M to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x € M has a cardinal T = 7
We call v a cardinal in M iff v =7 (i.e. no smaller ordinal is mappable onto
v in M).

Lemma 2.5.1. Let M = (JZ', B) be acceptable. Let v > w be a cardinal in
M. Then:

(a) v € Lm*

(b) z € J - MNP(x) C J2

Proof: We first prove (a). Suppose not. Then v = 4w, where 5 € Lm, 8 >
w. Then f € M maps 8 onto v where: f(2i) =14, f(2i+1) =841, f(§) =¢
for £ > w.

Contradiction! QED (a)

To prove (b) suppose not. Then z is not finite. Let 8 = 7 in Jf. Then
B > w,B € Lm by (a). Let f € J;‘ map [ onto z. Let u C x such that
u ¢ if Then v = f~u ¢ Jf. Let v > v such that v € Jz, \ J/'. Then
Y<P<B

Contradiction! QED (Lemma 2.5.1)
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Remark We have stated and proven this lemma for M of type (1, 1), since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(z) exists and T > w, then

P(z) =7 (where " is the least cardinal > a).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M, be as above. Let a € M,a C J,f‘. Then:

(a) (Jf,a) models the axiom of subsets and GCH.

(b) If v is a successor cardinal in M, then <ny47 a) models ZFC™.

(¢) If v is a limit cardinal in M, then (Jf, a) models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (b). (c) follows from (a) and
rud closure of J:;‘. We prove (b). We know that Jf is rud closed and that
the axiom of choice holds in the strong form: Az\/v\/ f f maps v onto
x. We must prove the axiom of collection. Let R(x,y) be Zw(Jf) and let
u € JWA such that Az € u\/ yR(x,y).

Claim \/v < yAz €u\/y € J}R(x,y). Suppose not.

Let v = 8% in M. For each v < v there is a partial map f € M of 3 onto v.
But then f € Jj‘ since f Cvx € Jf. Set f, — the <ja — least such f.
For z € w set:

h(z) = the least p such that \/y € J;?R(y,x).

Then sup h”’u = ~ by our assumption. Define a partial map k on u x 3 by:
k(x,€) = fr(z)(&). Then k is onto v. But k € M, since k is Zl(eff). Clearly

uxfB=pFin M,soy<f<~vyin M.
Contradiction! QED (Corollary 2.5.2)

Corollary 2.5.3. Let M, be as above. Then
|J§‘] = Héw =: U{u € Mlu is transitive N T <y in M}.
Proof: Let u € M be transitive and u < v in M. It suffices to show that

uEJf. Let v=u <~ in M. Let f € M map v onto u. Set:

r={(¢,08) € V2| f(€) € f(O)}.
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Then r € Jj‘ by Lemma 2.5.1 (c), since v? € Jf. Let 3 = U = the
least cardinal > v in M. then J[’? models ZFC™ and r,v € Jg‘. But then

e Jg‘ C J#, since f is defined by recursion on r : f(x) = f"r"{z} for
x € v. Hence u =rng(f) € J:;‘. QED (Corollary 2.5.3)

Lemma 2.5.4. If 7 : M —x, M and M is acceptable, then so is M.

Proof: M is a J-model by §4. Let e.g. M = J2, M = Jg. Then M has a
counterexample — i.e. there are 7 < @, 8 < 7,a such that card(¥) > 3 in
Jriw and @ C B and @ € J§+w \ J2. But then letting 7(3,7,a) = B,v,a it
follows easily that 8, v, a is a counterexample in M.

Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If 7 : M —x, M cofinally and M is acceptable, then so is
M.

Proof: M is a J-model by §4. Let M = JA, M = JA.

Casel a=w.
Then M = M = J4 7 =id.

Case 2 @ € Lm™.
Then “M is acceptable” is a II; (M) condition. But then o« € Lm* and
M must satisfy the same I1; condition.

Case 3 @ = +w,B € Lm.

Then a = 8+ w,B8 € Lm and 8 = 7(B). Then Jg‘ = W(JBZ) is

acceptable, so there can be no counterexample (d,v,a) € J E;4~

We show that there can be no counterexample of the form (0, 3,a). Let
7 = card(3) in M. The statement card(f) < 7 is £1(M). Hence card(8) <
v = m(¥) in M. Hence there is no counterexample (d,,a) with § > ~.
But since M is acceptable and ¥ < B is a cardinal in M, the following II;
statement holds in M by Lemma 2.5.1

A6 <FNaCdac 2

But then the corresponding statement holds in M. Hence (6, 3, a) cannot be
a counterexample for § < . QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.
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Definition 2.5.2. Let M be acceptable. The 31 -projectum of M (in sym-
bols par) is the least p < Onyy, such that there is a X, (M) set a C p with
a¢ M.

Lemma 2.5.6. Let M = (J, B),p = pyr. Then

(a) If p € M, then p is cardinal in M.

15 2 an C J2', then , 15 amenable.
b) If D is $,(M) and D C J3', then (J2', D bl
(¢c) If u € J;;l, there is no X, (M) partial map of u onto J;;‘.

(d) p € Lim*

Proof:

(a) Suppose not. Then there are f € M, v < p such that f maps ~ onto p.
Let a C p be X;(M) such that a ¢ M. Set @ = f~'”a. Then a is X1(M)
and a C 7. Hence a € M. But then a = f”a € M by rud closure.

Contradiction! QED (a)

(b) Suppose not. Let u € JpA such that D Nwu ¢ JpA. We first note:

Claim DNu ¢ M.
If p = « this is trivial, so let p < . Then p is a cardinal by (a) and
by Lemma 2.5.1 we know that P(u) N M C J;‘. QED (Claim)

By Corollary 2.5.2 there is f € J;:‘ mapping a v < p onto u. Then d =
' (DNu)is (M) and d C v < p. Henced € M. Hence DNu = f’'d € M
by rud closure. QED (b)

(c) Suppose not. Let f ba a counterexample. Set a = {x € u|x € dom(f) A
x ¢ f(x)}. Then ais X;(M), a C u € M. Hence a € Jf by (b). Let
a= f(z). Then z € f(z) <>z ¢ f(x).

Contradiction! QED (c)

(d) If not, then p = 4w where 8 € Lim. But then there is a 3, (M) partial
map of 3 onto p, violating (c). QED (Lemma 2.5.6)

Remark We have again stated and proven the theorem for the special case
M = (JZ, B), since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p € M which
witnesses that p = pps is the projectum — i.e. there is B C M which is
¥1(M) in p with BN H)' ¢ M. But by §3 any p € M has the form p = f(a)
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where fis a X1 (M) function and a is a finite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which are finite sets of ordinals:

Definition 2.5.3. P = Py; =: The set of p € [Ony|<* which are good
parameters.

Lemma 2.5.7. Ifp € P, thenp\ pp € P.

Proof: It suffices to show that if v = min(p) and v < p, then p’ = p\(v+1) €
P. Let B be X1(M) in p such that BN H) ¢ M. Let B(z) < B'(z,p)
where B’ is ¥1(M).

Set:
B*(z) \/z\/y(aj = (z,v) A B'(z,p' U {v})).
Then B* N H, ¢ M, since otherwise

BNH,={z|{x,v) e B*NH,} € M.
Contradiction! QED (Lemma 2.5.7)

For any p € [Ony,|<¥ we define the standard code TP determined by p as:

Definition 2.5.4.

TP =Ty = {{i,2)| Ear il pl} N HpY Y
where (p;]|i < w) is a fixed recursive enumeration of the ¥;-fomulae.

Lemma 2.5.8. pec P+~ TP ¢ M.
Proof:

(+-) TP =T n H) for a T which is $1(M) in p.
(—) Let B be ¥1(M) in p such that BN Hé” ¢ M. Then for some i:
B(x) <> (i,x) € TP
for z € H}'. Hence TP ¢ M. QED (Lemma 2.5.8)
A parameter p is very good if every element of M is ¥; definable from

parameters in ppr U {p}. R is the set of very good parameters lying in
[Onps| <.



92 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Definition 2.5.5. R = Ry, =: the set of r € [Ony]<* such that M =
hoar(pa UA{r}).

Note. This is the same as saying M = hps(py UT), since
h(pUr) =h"(w x [pUr]<¥).

But pUr =pU(r\ p). Hence:

Lemma 2.5.9. If r € R, then r\ p € R. We also note:

Lemma 2.5.10. R C P.

Proof: Let r € R. We must find B C M such that B is ¥;(M) in r and
BNH) ¢ M. Set:

B = {(i,a)| \/ v = hi, (2.19) A (i) & v}

Ifb=1B ﬂHé‘/l € M, then b = h(i,(x,r)) for some i. Then (i,z) € b <>

(i,x) ¢ b.
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.

Lemma 2.5.11. There is a function h™ uniformly 31(M) in r such that
whenever r € Ryy, then M = h™" pyy.

Proof: Let z € M. Since x € h(p U {r}) there is an f which is 3(M)
in r such that x = f(&,...,&,). But p is closed under Goédel pairs, so
x=f(<&,...,& =), where

r=f(&) e &, =< r=f(Q)
f'is (M) in 7. Hence z = h(i, (< € =, 7)) for some i < w. Set
v =1(0) ¢ \[ €\ i <w(d=<i,& = Az = h(i, (1))
Then = = h' (< i,< £ =>). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called T? a code: If r € R, then T" gives com-
plete information about M. Thus the relation €'= {(z,7)|h"(v) € h"(7)}
is rud in 77, since v € 7 > (i, (v, 7)) € T" for some ¢ < w. Similarly, if
M = (JA, B), then A, = {v|h"(v) € A;} and B = {v|h"(v) € B;} are rud
in T7 (as is, indeed, R’ whenever R is a relation which is 31 (M) in p). Note,
too, that if B C Hé\/l is ¥, (M), then B is rud in T". However, if p € P1\ R!,
then TP does not completely code M.
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[0}

Definition 2.5.6. Let p € [Ony]<¢. Let M = (J4, B).

The reduct of M by p is defined to be
MP = (J2 TV,

Thus MP is an acceptable model which — if p € Rj; — incorporates complete
information about M.

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let # : N —y, MP where N is a J-model and p €
[Onp]<v.

(a) There are unique M,p such that M is acceptable, p € Ry, N = Wi
(b) There is a unique @ D 7 such that @ : M —x, M and m(p) = p.
(C) T M - M.

Proof: We first prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = (J2, B), MP = (JA,T),N = (JAT). Set: p=supn”p, M =
MP|p = (J&,T) where T =T N J2'. Set X = ng(n), Y = hy(X U {p}).
Then 7 : N —y, M cofinally.

(1) YNM=X i
Proof: Let y € YNM. Since X is closed under ordered pairs, we have
y = f(z,p) where x € X and f is ¥1(M). Then

Yy = f(iU,p) <_>>:M <p,~[<y,x>,p]
& (i, (y,z)) e T.

Since X <y, M, there is y € X such that (i,(y,z)) € T. Hence
y=[f(z,p) € X. QED (1)
Now let @ : M&Y, where M is transitive. Clearly p € Y, so let
7(p) = p. Then:

(2) @: M —s, M, #|N =, 7(p) = p.
But then:

(3) M = hyp(NU{p}).
Proof: Let y € M. Then 7(y) € Y = hy"(wz(Xx{p})), since X
is closed under ordered pairs. Hence 7(y) = has(i, (w(x),p)) for an
x € M. Hence y = hyz(i, (z,D). QED (3)
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p > pg; where p = OnNN.
Proof It suffices to find a X1 (M) set b such that b C N and b ¢ M.

Set
b={(i,z) cwx NIVy (y=hy(i(z,p))
A x) ¢ y)}
If b€ M, then b = hyz(i, (x,p)) for some z € N. Hence
(i,z) € b<> (i,z) ¢ D.
Contradiction! QED (4)

T = {{i,z) € w x N| |=57 ili, (=, p)]}-
Proof: T C wx N, since T'C w x M. But for (i,z) € w x N we have:
(i,2) eT < (i,m(x))eT
& M E ¢il{(z),p)]
“ M |= @il (z,p)] by (2)

QED (5)

P = Par

Proof: By (4) we need only prove p < pz7. It suffices to show that if
b C N is ¥,(M), then <JA b) is amenable. By (3) bis ¥1(M) in z,p
where z € N.

Hence o B
b={zIM |= ¢il(z,z),p]} =
={z|(i,z,z) € T}
Hence b is rud in T where N = <J§, T) is amenable. QED (6)

But then M = hy;(p U {p}) by (3) and the fact that th(ﬁ) = Jﬁz.

Hence

(7) P € Ry

(8)

By (6) we then conclude:

N =M.
This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M? = N where p € Ry,

We claim: M = M, p =
Since the Skolem function is uniformly ¥ there is a j < w such that
hyy (i, (@, D)) € hy (i, (y, p) <
& M| gl y),p) & (G (@,9) €T
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Similarly:
cA (7,, (x,p)) € A
) € B ¢ hyr(i, (z,p)) € B

where M = (J&, A B), M = (J2,B). Then there is an isomorphism o :
M & M defined by o(h ( ﬁ>) ~ hy;(i, (z,p)) for x € N. Clearly

o(p) = p. Hence o = id, M, M, p = p, since M, M are transitive.

We now prove (b). Let # D 7 such that # : M —x, M and #(p) = p.
If x € N and hy; (4, (x,p)) is defined, it follows that:

bz (s (2, D)) = haa (i, (w(2), p)) = 7(har (i, (x, )))-

Hence 7 = 7. QED (Lemma 2.5.12)

If we make the further assumption that p € Rj; we get a stronger result:

Lemma 2.5.13. Let M,N,M,w,7,p,p be as above where p € Ry and 7 :
N —x, MP for anl < w. Thenﬁ':ﬂ—@l+1 M.

Proof: For [ = 0 it is proven, so let [ > 1 and let it hold at [. Let R be
Y141 (M) if lis even and II;1 (M) if [ is odd. Let R have the same definition
over M. It suffices to show:

R(Z) < R(7(¥)) for x1,...,2, € M.
But:
R(@) <> Quy1 € M ...Quy € MR'(y, )

and
R(f) — Q1y1 (S M .. Qlyl (S MR,<37, f)

where Q1 ... Q) is a string of alternating quantifiers, R’ is X1 (M), and R is
31 (M) by the same definition. Set

D =:{(i,z) € w x J,;“\hM(i, (x,p)) is defined}
D =: {{i,x) € w x JA|hg;(i, (,P)) is defined}.

Then D is £1(M) in p and D is ¥1(M) in p by the same definition. Then
D is rud in T%; and D is rud in T% by the same definition, since for some
J < w we have:

(i,x) € D ¢ (j,x) € Thy, v € D 4 (j,x) € TV
Define k£ on D

k((i,2) = haa (i, (2, p)); k((i,2)) = hyz(i, (2, D).
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Set:
P(wW,2) < (W,Z € D A R (k(W), k(%))

P(ii,2) > (0,7 € D AR (k(@), k(%))
Then: as before, P is rud in T}, and Dis rud in T2 by the same definition.
Now let x; = k(z;) for i = 1,...,n. Then 7(x;) = k(m(z;)). But since 7 is
>—preserving, we have:
E(f) ~ Qrwy € D... Quwy € D F(U?, 27)
< Qrwy € D...Quuy € DP(iIf,ﬂ'(Z))
© R(7 (7))

QED (Lemma 2.5.13)

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
(pyyIn < w). this is the classical method of doing fine structure theory,
which was used to analyse the constructible hierarchy, yielding such results
as the U principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of fine structure theory,
which is developed in §2.6.

It is easily seen that:
Lemma 2.5.14. Let p € Ryr. Let B be X,(M). Then BN J;,“ is rud in

parameters over MP.

Proof: Let B be ¥ in 7, where r = hps (i, (v,p)) and v < p. Then B is ¥
in v,p. Let:

B(x) <+ M = ¢i[{z,v),p]

where (p;|i < w) is our canonical enumeration of ¥; formulae. Then:
x € B (i,(z,v)) € TP
QED(Lemma 2.5.14)

It follows easily that:
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Corollary 2.5.15. Let p,q € Ry Let D C JpA. Then D is X, (MP) iff it is
(M1).

Assuming that Rj; # 0, there is then a uniquely defined second projectum
defined by:

Definition 2.5.7. p3, ~: pyp for p € Ryy.

We can then define:

R%, =: The set of a € [Onp/]<* such that
a€ Ry and aNp € Rypa\p)-

If R%, # () we can define the second reduct:
M?>® =: (M*)*" for a € R3,.
But then we can define the third projectum.:
p° = ppsza for a € R?w.

Carrying this on, we get R%,, M™% for a € R}, and p"*1, aslong as RY, # 0.
We shall call M weakly n-sound if R, # 0.

The formal definitions are as follows:

Definition 2.5.8. Let M = (J2, B) be acceptable.
By induction on n we define:

e The set R}, of very good n—parameters.
o If R, # (), we define the n + 1st projectum p?fl.

e For all a € RY; the n-th reduct M™*.
We inductively verify:

*If D C Jin and a,b € R™, then D is X) (M™?) iff it is X, (M™).
Case 1 n=0. Then R? =: [Ony|<¥, p° = Onyy, MO = M.

Case 2 n=m+ 1. If R™ = (), then R"™ = () and p" is undefined. Now let
R™ # (). Since (*) holds at m, we can define
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e p" =: ppyma whenever a € R™.
e R" =: the set of a € [a]<¥ such that a € R™ and a N p™ € Rym.a.
o M =: (M™*)2P" for a € R".

Note. It follows inductively that a \ p™ € R™ whenever a € R".

We now verify (*). It suffices to prove the direction (—). We first note that
M™ has the form <J£w T), where T is the restriction of a X, (M™*) set T"
to Jp“}l. But then 7" is X, (M™") by the induction hypothesis. Hence T is

rudimentary in parameters over M™? = (M™")"?" by Lemma 2.5.14.
Hence, if D C J4, is X, (M™?), it is also X, (M™?). QED

This concludes the definition and the verification of (*). Note that R}, =
Ry, pt = p}w, and M1 = M for a € Ryy.

We say that M is weakly n—sound iff R}, # 0. It is weakly sound iff it is
weakly n—sound for n < w. A stronger notion is that of full soundness:

Definition 2.5.9. M is n—sound (or fully n— sound) iff it is weakly n—sound
and for all i < n we have: If a € R?, then Pyria = Ryjiva.

Thus Ry = Py, Ryjie = Pypia for a € Py ete. If M is n—sound we write
P, for Ri,(i < n), since then: a € P*! < (a~p’' € PPAanp' € R
for i < n).

Mi,af‘lpi

There is an alternative, but equivalent, definition of soundness in terms of
standard parameters. in order to formulate this we first define:

Definition 2.5.10. Let a,b € [On]<¥.

a<*bH:vM(a\u:b\uAu€b\a).

Lemma 2.5.16. <, is a well ordering of [On]<¥.

Proof: It suffices to show that every non empty A C [On]<“ has a unique
<,—minimal element. Suppose not. We derive a contradiction by defining
an infinite descending chain of ordinals (p;|i < w) with the properties:

o {1, ...,pun} <, bforallbe A

e There is b € A such that b\ p, = {po, ..., tn}-
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() ¢ A, since otherwise () would be the unique minimal element, so set:
po = min{max(b)|b € A}. Given p, we know that {po,...,un} ¢ A, since
it would otherwise be the <,—minimal element. Set:

P+l = min{max(b N ,Un)’b cAND \ Hn = {MO» cee ,/J/n}}
QED (Lemma 2.5.16)

Definition 2.5.11. The first standard parameter pys is defined by:
py =: The <,—least element of Pyy.

Lemma 2.5.17. Py = Ry iff pa € Ryg-

Proof: (—) is trivial. We prove («). Suppose not. Then there is r € P\ R.
Hence p <, r, where p = pps. Hence in M the statement:

(1) Vg <«rr=h(i,(v.q)
holds for some i < w, v < pp;. Form M" and let M,7,m be such that
M =M"7T¢ Ryp, m: M —x, M, and 7(F) = r. The statement (1)
then holds of 7 in M.

Let ¢ € M, T = hyz(i,q) where ¢ <, 7. Set ¢ = w(q). Then r = h(i,q) in
M, where g <, r. Hence ¢ € Py;. But then ¢ € Rj; by the minimality of r.
This impossible however, since

qec 7'M = hM(pM UT) 7& M.
Contradiction! QED (Lemma 2.5.17)

Definition 2.5.12. The n—th standard parameter p'y, is defined by induction
on n as follows:

Case 1 n=0. p’ = 0.

Case 2 n=m+1. If p € R™
P =p" Upppmem

Note. that we always have: p” N p"t! = () by <,-minimality and Lemma
2.5.7.

If p™ ¢ R™, then p" is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n-sound iff pi; is defined and ph; € R},.



100 CHAPTER 2. BASIC FINE STRUCTURE THEORY

This is the definition of soundness usually found in the literature.

Note. That the sequences of projecta p™ will stabilize at some n, since it
is monotony non increasing. If it stabilizes at n, we have R"*" = R™ and
Pth — pnfor h < w.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a € R}, and let 7 : N —x, M™. Then there are M.a

and © O 7 such that M = M, @ € Ry, m: M =y, ., M and w(a) = a.

We also have:

Lemma 2.5.20. Let a € RYy;. There is an M —definable partial map of p"
onto M which is M—definable in the parameter a.

Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of p™ onto M which is definable in a \ p™. Let
N = M™\" b =anp™ Then N = hy(p" U {b}) = hn"(w x (p" x {b})).
Set:

g(<i,v =)~ hyx(i, (v,b)) for v < p".

Then N = ¢"p". Hence M = fg"p", where fg is M—definable in a. QED

We have now developend the "classical" fine structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every J, is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1-sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If J, is acceptable, then it is sound.

Proof: By induction on n we show that J, is n—sound. The case n =0
is trivial. Now let n = m + 1. Let p = pY;. Let ¢ = pymp» = The
<,—least g € Pymp.
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Claim q € Rymop.

Suppose not. Let X = hyms(p"Uq). Let # : N <— X, where N is
transitive. Then 7 : N —x, M"? and there are M,p,m D 7 such that

=M

M p:Mmp,T?GR%, 7:M —x, M, and 7(p) = p. Then M = J5
for some @ < « by the condensation lemma for L.

Let A be £1(M™P) in g such that ANpl, ¢ M™P Then ANp}, ¢ M.

Let A be X1(N) in ¢ = 77 1(q) by the same definition. Then AN p" =
AN p"is Jy definable in g. Hence @ = o, M = M, since otherwise
ANp™ € M. But then 7 = id and N = M"" = M™. But by definition:
N = hpymp(p™ Uq). Hence g € Rpyno. QED

By induction on o we then prove:

(B) J, is acceptable.

Proof: The case @ = w is trivial. The case a € Lim* is also trivial.
There remains the case @ = 8 + w, where  is a limit ordinal. By the
induction hypothesis .J3 is acceptable, hence sound.

We know that X (Jo) = X"(J,) by soundeness. But we also know:
P(Ja) N Jatw C Ey(Ja). Let p = p4 . Clearly, no ¢ > p is a cardinal
in Joy1. But if a € Joyo, and a C v < p, then a € J,, since this
a € ¥*(Jo) and (J,, AN J,) is amenable for all A € ¥*(Jy). QED
(Lemma 2.5.21)

The fact that P(Jo) N Jog1 C X, (Jo) was derived from Corollary 2.2.14,
which says that if U # () is any traisntive set, then:
Z,((U,€)) =PU) Nrud(U U{U}),

where rud(X) =:the closure of X under rudimentary functions. However, a
slight modification of the proof of Corollary 2.2.14 yields the stronger result:

Lemma 2.5.22. Let U # () be transitive. Let Ay,..., A, CU. Then:
2, ((U,€ A)) = P(U) Nrud(U U{U, A4})
(We leave this to the reader. )

This is especially interesting if U is rudimentary closed and (U, A1, ..., Ap)
is amenable.

Definition 2.5.13. N = Jg‘ is a constructible extension of M = J2 if and
only if A C J,[A] and a < 8.

By Lemma 2.5.22 we get:
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Lemma 2.5.23. Let Jg‘ be a constructible extension of J2'. Then EW(JE‘) =
P(J4) N TE,

Using this we can repeat the proof of Lemma 2.5.21 to get:

Lemma 2.5.24. Let JE‘ be a constructible extension of J&“ such that p5, > «
vy

fora <~y < B. Then J/g‘ s sound and acceptable.

Suppose now that <Jgj‘, B) is a J-model. It is natural to define an extension
A x B of the predicate A by: Ax B= AU (B x {a}). Then:

(AxB)NJA=A,Be JkB

oatw

Clearly J24B = rud(J,[A] U {J,]A], A, B}). Hence by Lemma 2.5.22:

o+w

Lemma 2.5.25. ¥,((J4, B)) = P(J3) nJAB

oa+w -

We can the repeat the last part of the proof of Lemma 2.5.21 to get:

Lemma 2.5.26. Let (J2, B) be sound and acceptable. Then J;;‘jff s accept-
able.

(However, it does not follow that JZ45 is sound. )

2.6 Y*—theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = (J2, B) which — at first sight — seems more natural. ¥, we
recall, consists of the relation on M which are ¥ definable in the predicates
of M. ¥; then consists of relations of the form \/ yR(y,Z) where R is .
Call these levels Z(()O) and 2(10). Our next level in the new hierarchy, call it
E(()l), consists of relations which are "¥g in Ego)” — ie. Bo((M, A)) where

Ay, .. A, are Ego)_ Egl) then consists of relations of the form \/ yR(y, ¥)
where R is E(()l). 282) then consists of relations which are Y in 2(11) ... etc.

By a Zgn) relation we of course mean a relation of the form
R(%) + R'(Z,p),

where p1,...,pm € M and R’ is Zgn) (m). Tt is clear that there is natural

class of Egn)fformulae such that R is a Egn)frelation iff it is defined by a
Eg")fformula. Thus e.g. we can define the E(()l) formula to be the smallest

set ¥ of formulae such that
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All primitive formulae are in X.

All Zgo) formulae are in 3.

> is closed under the sentential operations V, —, <>, —.

If pisin X, then so are Av € up, \/v € uy (where v # u).

By a Zgl) formula we then mean a formula of the form \/ vy, where ¢ is Z(()l).

How does this hierarchy compare with the Levy hierarchy? If no projectum
drops, it turns out to be a useful refinement of the Levy hierarchy:

If pt; = «, then E((]n) C Apy1 and Egn) = Yp+1. If, however, a projectum
drops, it trivializes and becomes useless. Suppose e.g. that M = J, and
p = p}w < «a. Then every M—definable relation becomes Z[()l)(M ). To see
this let R(Z) be defined by the formula ¢(¥), which we may suppose to be
in prenex normal form:

@(V) = Qus - .. Quumy' (¥, @),
where ¢’ is quantifier free (hence Xy). Then:
R(f) <~ Q1y1 eM... mem € MR/({E, 37)

where R’ is 3. By soundness we know that there is a 3, (M) partial map f
of p onto M. But then:

R(Z) ¢ Q& € dom(f)...Qmém € dom(f)R'(Z, f(£)).

—

Since f is ¥, the relation R'(Z, f(§)) is ;. But dom(f) is ¥; and dom(f) C
p, hence by induction on m:

R(Z) < Q161 € p... Qumbm € pR"(Z,6),

where R” is a sentential combination of X; relations. Hence R is ;él)(M )
and so is R.

The problem is that, in passing from 2(10) to Z(()l) our variables continued to
range over the whole of M, despite the fact that M had grown "soft" with
respect to X; sets. Thus we were able to reduce unbounded quantification
over M to quantification bounded by p, which lies in the "soft" part of M. in
section 2.5 we acknowledged softness by reducing to the part H = H é” which
remained "hard" wrt X, sets. We then formed a reduct MP containing just
the sets in H. If M is sound, we can choose p such that MP contains complete
information about M. In the general case, however, this may not be possible.
It can happen that every reduct entails a loss of information. Thus we want
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to hold on to the original structure M. In passing to E[()l), however, we want

to restrict our variables to H. We resolve this conundrum by introducing
new varibles which range only over H. We call these variables of Type 1,

the old ones being of Type 0. Using u",v"(h = 0,1) as metavariables for
)

variables of Type h, we can then reformulate the definition of Z(()l formula,

replacing the last clause by:

e If © is in X, then so are Av* € ulyp, \/v' € u'p where i = 0,1 and
vl £ ul

A 2(11) formula is then a formula of the form \/v'¢p, where ¢ is E(()l). We

cal AC M a Zgl) set if it is definable in parameters by a Zgl) formula. The
second projectum p* is then the least p such that p N B ¢ M for some Zgl)
set B. We then introduce type 2 variables v, u?, ... ranging over |JpA2\ (\Jﬂ
being the set of elements of the structure J;‘, where e.g. M = (J4, B).)
Proceeding in this way, we arrive at a many sorted language with variables
of type n for each n < w. The resulting hierarchy of Z;Ln) formulae (h =0,1)
offers a much finer analysis of M—definabilty than was possible with the Levy
hierarchy alone. This analysis is known as ¥* theory. In this section we shall
develop X* theory systematically and ab ovo.

Before beginning, however, we address a remark to the reader: Most people
react negatively on their first encounter with ¥* theory. The introduction
of a many sorted language seems awkward and cumbersome. It is especially
annoying that the variable domains diminish as the types increase. The
author confesses to having felt these doubts himself. After developing >*—
theory and making its first applications, we spent a couple of months trying
vainly to redo the proofs without it. The result was messier proofs and a
pronounced loss of perspicuity. It has, in fact, been our consistent experience
that ¥* theory facilitates the fine structural analysis which lies at the heart
of inner model theory. We therefore urge the reader to bear with us.

Definition 2.6.1. Let M = <J§, B) be acceptable.
The ¥* M -language .* = L}, has

e a binary predicate €

e unary predicates Ay,..., A, B1,...,Bn
e variables vf (1,7 <w)

Definition 2.6.2. By induction on n < w we define sets Z;Ln)(h =0,1) of
formulae
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Eén) = the smallest set of formulae such that

all primitive formulae are in 3.

° Eém) UEgm) C Y for m < n.

> is closed under sentential operations A, V, —, <>, .

If  isin ¥,5 < n, and v/ # u", then Av/ € u"p, \/v/ € u"p are in
3.
We then set:
Egn) =: The set of formulae \/ V", where ¢ € E(()").
We also generalize the last part of this definition by setting:

Definition 2.6.3. Let n <w, 1 < h < w. E,g") is the set of formulae

\/v’f/\v?...@v,’fg@,

where ¢ is E(()n) (and @ is \/ if h is odd and A if A is even).

We now turn to the interpretation of the formualae in M.
Definition 2.6.4. Let Fml” be the set of formulae in which only variables
of type < n occur.

By recursion on n we define:

e The n-th projectum p" = pf,.
e The n-th variable domain H" = H,.

e The satisfaction relation =" for formulae in Fml".

=" is defined by interpreting variables of type i as ranging over H® for i < n.
We set: p° = a, H® = |M| = |J4|, when M = (JA, B).

Now let p™, H™ be given (hence =" is given). Call aset D € H" a Zgn) set.

)

if it is definable from parameters by a E(ln formula ¢:

Dz & M E" ¢z, a1,...,ap),
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where ¢ = @(v™,u™,... uim) is Zg"). p" 1 is then the least p such that
there is a Zgn) set D C p with D ¢ M. We then set:

HY = |74,
This then defines "1,

It is obvious that |=! is contained in |=/ for i < j, so we can define the full
>* satisfaction relation for M by:

- Uk

nw

Satisfaction is defined in the usual way. We employ v*, u?, w’ etc. as metavari-
ables for variables of type i. We also employ z%,", 2% etc. as metavariables
for elements of H’. We call vil, ..., vl a good sequence for the formula ¢ iff
it is a sequence of distinct variables containing all the variables which occur
free in . If vil, ..., vl is good we write:

Eu ap[vil,...,v;”/xil,...,a:;"]

to mean that ¢ becomes true if v;l” is interpreted by xﬁl"(h =1,...,n). We
shall follow normal usage in suppressing the sequence v?, ..., vl writing
only: _ ‘

Eu 90[x1117 g
(However, it is often important for our understanding to retain the upper
indices 4y, . . .,i,.) We often write ¢ = @(v%, . ..,vir) to indicate that these
are the suppressed variables. ¢ (together with v, ..., vin) defines a relation:

R(mzf, . ,x;”) =M go[xill, .. ,xf{l]

Since we are using a many sorted language, however, we must also employ
many sorted relations.

The number of argument places of an ordinary one sorted relation is often
called its "arity". In the case of a many sorted relation, however, we must
know not only the number of argument places, but also the type of each
argument place. We refer to this information as its "arity". Thus the arity
of the above relation is not n but (i1,...,i,). An ordinary 1-sorted relation
is usually identified with its field. We shall identify a many sorted relation
with the pair consisting of its field and its arity:

Definition 2.6.5. A many sorted relation R on M is a pair (|R|,r) such
that for some n:

(a) |R| Cc M™
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(b) r=(ry,...,r,) where r; <w

(¢) R(xy,...,xp) > 2, CH"ifori=1,...,n.

|R| is called the field of R and r is called the arity of R.
In practice we adopt a rough and ready notation, writing R(xlf, .o, to
indicate that R is a many sorted relation of arity (i1, ..., ).

Note. Let I = LLj; be the ordinary first order language of M (i.e. it has
only variables of type 0.

Since H" € M or H" = M for all n < w, it follows that every L*-definable
many sorted relation has a field which is L-definable in parameters from M)

Note. If R is a relation of arity (i1,...,i,), then its complement is I' \ R,
where: '
I'={(x1,...,2n)|zn € H™ for h=1,...,n},

the arity remaining unchanged.

Definition 2.6.6. R(z!',...,2im)is a Egn)(M) relation iff it is defined by a

»Ym
Z;Ln) formula. R is Egn)(M) in the parameters py,...,p, ifft R(Z) < R'(Z,p),
where R’ is E,gn)(M). R is a El(ln)(M) relation iff it is Z,gn)(M) in some
parameters.
It is easily checked that:
Lemma 2.6.1. e If R(y", X) is EYL), so is | y"R(y", %)

o If R(Z),P(Z) are X\, then so are R(Z)V P(%), R(Z) A P(F).

Moreover, if R(z,...,x, ") is Egn), so is any relation R/ (y)’,...,y."7") ob-

tained from R by permutation of arguments, insertion of dummy arguments
and fusion of arguments having the same type — i.e.

1 ‘7‘7 .](7' JO’ m—
Ry, ...,y 7) « R(ya(g;), .. ya((m_lli)
where o : m — r such that j,q) =1 for I <m.

Using this we get the analogue of Lemma 2.5.6

Lemma 2.6.2. Let M = (JZ', B) be acceptable. Let p= p", H = H". Then

(a) If p € M, then p is a cardinal in M. (Hence H = HIJ,V[)
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(b) If D is S (M) and D C H, then (H, D) is amenable.
(c) If u € H, there is no Egn)(M) partial map of u onto H.

(d) p € Lm* if n > 0.

Proof: By induction on n. The induction step is a virtual repetition of the

proof of Lemma 2.5.6. QED (Lemma 2.6.2)
Definition 2.6.7. Let R(m?, ...,xim) be a many sorted relation. By an
n-specialization of R we mean a relation R'(z]',...,z7") such that

e >y forl=1,...,m

o =g ifl<n

o If 21,..., 2, are such that z; € H7 for [ = 1,...,m, then:
R(Z) < R'(2).

Given a formula ¢ in which all bound quantifiers are of type < n, we can
easily devise a formula ¢’ which defines a specialization of the relation defined

by ¢:

Fact Let ¢ = (v, ..., vim) be a formula in which all bound variables are
of type < m. Let uf',...,uly" be a sequence of distinct variables such that

Ji =g and j; = i if 4y < n(l = 1,...,m). Suppose that ¢ = ¢/(@) is
obtained by replacing each free occurence of v;' by a free occurence of ufl for
I=1,...,m. Then for all z1,...,x,, such that ; € H for [ =1,...,m we
have:

Eu ()] < ¢ (@)[7]).

The proof is by induction on ¢. We leave it to the reader. Using this, we
get:

Lemma 2.6.3. Let R(z%',... xim) be Zl(n). Then every n-specialization of
R s El(n),

Proof: R’(@’f, e ,xfgy) be an n-spezialization. Let R be defined by @ (vi, ... vim).
Suppose (u]',...,vi") is a sequence of distinct variables which are new —

i.e. none of them occur free or bound in ¢. Let ¢’ be obtained by replacing

every free occurence of v}’ by uw]'(l = 1,...,m). Then ¢'(u}',...,v{7") de-

fines R’ by the above fact. QED (Lemma

2.6.3)
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Corollary 2.6.4. Let R be Egn) in the parameter p. Then every n—spezialization
) .
of R is X7 in p.

Lemma 2.6.5. Let R’(m{l, ) be Zgn). Then R’ is an n—specialization
of a Zgn) relation R(xill, oy xim) such that ip <n forl=1,...,m.

Proof: Let R be defined by go’(ujf, .., vdm), when ¢ is Eg”). Let vi", ... vim

be a sequence of distinct new variables, where i = min(n,j;) for [ =
1,...,m. Replace each free occurence of u{l by vl” forl =1,...,m to get
gp(uzf, ...,vim). Let R be defined by . Then R’ is a specialization of R by
the above fact. QED (Lemma 2.6.5)
Corollary 2.6.6. Let R’(m{l,...,x%”) be Zgn) in p. Then R’ is a spe-
cialization of a relation R(z™, ..., x'm) which is Egn) in p with iy < n for
[=1,...,m.

Every Egm) formula can appear as a "primitive" component of a E(()mH

formula. We utilize this fact in proving:

)

Lemma 2.6.7. Letn = m+1. Let Q;(z}y, ..., z;pj,q;gl, i) be XM (G =
1,...,7r).

Set: Q;z = {(])|Q;(Z}, )}

Set: Hy =: (H", Q1 z,---,Qrz)-

Let o = @(v1,...,v4) be 3 in the language of Hz. Then

{(@", )| Hz b= pla]} is 2.
Proof: We first prove it for [ = 0, showing by induction on ¢ that the
conclusion holds for any sequence vy, ..., v; of variables which is good for ¢.

We describe some typical cases of the induction.

Case 1 ¢ is primitive.
Let e.g. ¢ = Q;j(vny, - - -, Vp,, ), where Q; is the predicate for Q;z. Then
(m)

Hz = ¢[7"] is equivalent to: Qj(z} ;... ,:UZP_,JE'), which is 77 (hence
J
E(()")). QED (Case 1)

Case 2 ¢ arises from a sentential operation.
Let e.g. ¢ = (¢o A p1). Then Hz = ¢[Z"] is equivalent to:

Hz |= o7 A Hg |= ¢1[7"]

which, by the induction hypothesis is E(()n). QED (Case 2)
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Case 3 ¢ arises from a quantification.
Let e.g. ¢ = Aw € v;¥. By bound relettering we can assume w.l.0.g.
that w is not among v1,...,v,. We apply the induction hypothesis to
U(w,v1,...,vp). Then Hz = ¢[2"] is equivalent to:

/\z € ziHz = V[w, "]

which is E(()n) by the induction hypothesis. QED (Case 3)

This proves the case [ = 0. We then prove it for [ > 0 by induction on [,
essentially repeating the proof in case 3. QED (Lemma 2.6.7)

Note. It is clear from the proof that the set {(zZ", Z)|Hz = ¢[2"]} is uni-

formly El(n) — i.e. its defining formula x depends only on ¢ and the defining
formula ¥; for Q;(i = 1,...,p). In fact, the proof implicitly describes an
algorithm for the function ¢, ¥Uq,..., ¥, — x.

We can invert the argument of Lemma 2.6.7 to get a weak converse:

Lemma 2.6.8. Letn=m+1. Let R(f",xlf, .. ,xé") be Zl(n) where i <m
forl=1,...,q9. Then there are Egn) relations Q;(Z]',Z)(i =1,...,p) and a
3 formula ¢ such that

where Hg is defined as above.

Note. This is weaker, since we now require 4; < m.

Proof: We first prove it for [ = 0. By induction on x we prove:

Claim Let y be Z(()n). Let o™, vil, ce ,vé" be good for x, where iy, ... ,i; < m.
Let x (™, ¥) define the relation R(Z", ). Then the conclusion of Lemma 2.6.8
holds for this R (with [ = 0).

Case 1 y is (™. _
Let x (2", %) define Q(2™,Z). Then R(", %) <» Hz = QU™ [Z"].
QED (Case 1)

Case 2 y arises from a sentential operation.
Let eg. x = (VW A V). Appliyng the induction hypothesis we get
Qi(Z7?,7)(i =1,...,p) and ¢ such that

M |= V[T", 7] < Hz |= o[T"]
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where Hz = (H", Q1z, - . ., Qpz). Similarly we get Q% (7", Z)(i =1,...,¢)
and ¢’
M E W, o HY )

Let QZ be the predicate for @);z in the language of Hz. Let Q; be the
predicate for @ in the language of Hj. Assume w.l.0.q. that @Q; # Q)
for all ¢, 5. Putting the two languages together we get a language for

Clearly:
M= (x AX)[E" @] < HE |= (9 A ¢)[E"].
QED (Case 2)

Case 3 y arises from the application of a bounded quantifier.
Lete.g. x = Aw" € v?x’. By bound relettering we can assume w.l.0.g.
that w™ is not among ¢™. Then w"¢", v is a good sequence for x’ and
by the induction hypothesis we have for x' = x/(w™, o™, ¥):

M | X'[2", 3", x] < Hz | p[z", 3", 7.
But then:
M E x[z", & < N\2"€a?M = X'[2", 2", T

+~ Hz ): /\w S ngo[f”].
QED (Lemma 2.6.8)

Note. Our proof again establishes uniformity. In fact, if x is the El(n)f

definition of R, the proof implicitely describes an algorithm for the function
xX— o, V,..., ¥,

where U, is a Egm) definition of @;.

Remark. Lemma 2.6.7 and 2.6.8 taken together give an inductive definition

of ”Zl(n) relation" which avoids the many sorted language. It would, however,
be difficult to work directly from this definition.

By a function of arity (i1, ...,i,) to H’ we mean a relation F(y’,z",..., x')
such that for all 2™, ..., z" there is at most one such y’. If this y exists, we
denote it by F(z,... 2'). Of particular interest are the Egz) functions to

Lemma 2.6.9. R(y", %) be a Egn) relation. Then R has a Zgn) uniformizing
function F(Z).
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Proof: We can assume w.l.0.g that the arguments of R are all of type < n.
(Otherwise let R be a specialization of R/, where the arguments of R’ are of
type < n. Let F’ uniformize R’. Then the appropriate specialization F of
F’ uniformizes R.)

Case 1 n=0.
Set:

F(Z) ~: y where (z,y) is <js —least such that R/(z,y, 7).
By section 2.3 we know that ups(x) is 31, where ups(z) = {yly <as =}
Thus for sufficient r we have:
y=F(Z) < \/z2(R(z,y, )\
Aw € up({(z,y)) N2,y € Cr(w)
(w = <z',y'> - ﬂR(Zlﬂ Y, f))?
which is uniformly ¥ (M).

Case 2 n>0. Let n=m+ 1.
Rearranging the arguments of R if necessary, we can assume that R
has the form R(y", 2", ), where the & are of type < m. Then there

are QZ(EZL’:E%’J_‘:)(Z =1,... ,p) such that Ql 18 Egm) and
R(y",a",7) < Hz = oly", 7],
where ¢ is ¥ and

H:E' = <Hn7Q1fa oo 7an>

If e.g. M = (JA, B), we can assume w.l.0.g. that Q(2", ) < A(z").
Then <pz, uggz are uniformly 31 (Hjz) and by the argument of Case 1
there is a 37 formula ¢’ such that F' uniformies R where

y = F(i", %) « Hz | /[7", 7).
QED (2.6.9)

Note. The proof shows that F(Z) is uniformly Egn) —i.e. its Egn) definition
depends only on the Egn) definition of R(y", ¥), regardless of M.
Note. It is clear from the proof that the Egn) definition of F'is functionally

absolute — i.e. it defines a function over every acceptable M of the same
type. Thus:

Corollary 2.6.10. Every Zgn) function F(Z) to H" has a functionally ab-
solute Egn) definition.
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Note. The Zgn) functions are closed under permutation of arguments, in-
sertion of dummy arguments, and fusion of arguments of same type. Thus
if F(xf,...2in) is Egn), sois F'(y]',...,yh") where

j ] jo— jo n
Fl(yl', ... ylm) ~ I*”(yo(%)7 .. ,yg(;f)
and o : n — m such that j,q) =4 for I <n.

If R(m{l, e ,xép) is a relation and Fj(Z) is a function to H’ for i = 1,...,n,
we sometimes use the abbreviation:

R(F(2)) : \[ 2], o ( )\ o) = Fi(2) A R(2)).
=1

Note that R(F(Z)) is then false if some Fj(Z) does not exist. Egn) relations
)

are not, in general, closed under substitution of Egn
get:

functions, but we do

Lemma 2.6.11. Let R(:Ujf, e xg,p) be Egn) such that j; <n fori=1,...,p.
Let Fy(%) be a Egji) map to HY% for i = 1,...,p. Then R(F(Z)) is Zgn)
(uniformly in the Egn) definitions of R, F1, ..., F},)

Before proving Lemma 2.6.11 we show that it has the following corollary:

Corollary 2.6.12. Let R(f,y{l,...,ygp) be Egn) where j; < n for i =
1,...,p. Let Fi(Z) be a Egﬁ) map to HY fori=1,...,p. Then R(Z, 13(2’))
is (uniformly) Zg”).

Proof: We can assume w.l.0.g. that each of & has type < n, since otherwise
R is a specialization of an R’ with this property. But then R(Z,F(z)) is
a specialization of R'(Z, F(z)). Let ¥ = L ,x?q with h; < n for ¢ =
1,...,q. Fori=1,... p set:

Fori=1,...,q set:

—

By Lemma 2.6.11, R(G(Z, %), F'(%, 7)) is =\ But

QED (Corollary 2.6.12)

We now prove Lemma 2.6.11 by induction on n.
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Case 1 n =0.
The conclusion is immediate by the definition of R(F(Z)):
. P
R(F(2)) < \/ 20 ...a)( )\ 2§ = Fi(2) A R(Z)).
i=1

Case 2 n=m+ 1.
Then Lemma 2.6.11 holds at m and it is clear from the above proof
that Corollary 2.6.12 does, too.

Rearranging the arguments of R if necessary, we can bring R into the form:
R(fn,zvlf,...,:né") where ; <mfori=1,...,q.

We first show:

Claim R(7", F(2)) is 2.
Proof: Let Q;(Z]", %) be ng) (i =1,...,r) such that
R(a", T) < Hz |= o[2"]
where @ is ¥; and:
Hz =(H",Qiz -, Qrz)

Set: o
o VENL, 2k = F(2) A R(D))

FE = <Hn7@1,57 B r,5>'
If zlt = Fy(2) for i = 1,...,¢q, then Q;(Z/, 2) <> Qi(?",7) and Hy =
Hz. Hence: o
Hz = ¢li"] < Hz = o[7"]

<~ R(Z", %)

& R(Z", F(2)).
If, on the other hand, F(Z) does not exist for some i, then R(Z", F(Z))
is false. Hence:

R@F(Z) < (N Vay (@ = Fi(2)
NH ; = [7"]).

q

But A \/:ril (xi’ = F;(7)) is Z(()n), so the result follows by applying
i=1

Lemma 2.6.7 to . QED (Claim)
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But then, setting: R'(¥", %) +> R(Z", F (%)), we have:

R(F(%)) «» va"( )\ 2} = Fi(2) AR(3", 7).

i=1
QED (Lemma 2.6.11)

Note that if, in the last claim, we took R(Z" xl,...,xf{’) as being Z(()")

instead of Zg ), then in the proof of the claim we could take ¢ as being g
instead of 31. But then the application of Lemma 2.6.7 to H > = ¢[7"] yields

a Eén) formula. Then we have, in effect, also proven:

Corollary 2.6.13. Let R(:E’"7yl11, e ,y(lf) be Z((Jn) where l1,...,l, <n. Let

Fi(Z) be a Egli) map to HY fori=1,...,r. Then R(z™, F (%)) is (uniformly)
(n)
2.

As corollaries of Lemma, 2.6.11 we then get:

Corollary 2.6.14. Let G(ac1 b ,xg,”) be a ng) map to H", where ji,...,jp <

n. LetFl-()beaZ(l)maptonifori:I,...,p Then H(Z) ~ G(F (%))

18 uniformly Eg").

Proof:
(2) & \/ Z( /\x]‘: ) Ay = G(T)).
QED (Corollary 2.6.14)
Corollary 2.6.15. Let R(w1 Yo jp) be Z(n) where j; <n fori=1,...,p.
There is a Eg ") relation R(2Y,...,20) with the same field

Proof: Set: ,
R(Z) +: \[ #( )\ zI = 20 A R(2)).
i=1
QED (Corollary 2.6.15)

Thus in theory we can always get by with relations that have only arguments
of type 0. (Lest one make too much of this, however, we remark that the
defining formula of R’ will still have bounded many sorted variables.)

Generalizing this, we see that if R is a relation with arguments of type < n,
then the property of being Egn) depends only on the field of R. Let us define:
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Definition 2.6.8. R/(z]',..., zI") is a reindexing of the relation R(z,. .., 2r)
iff both relations have the same field i.e.

R'(§) + R(¥) for y1, ...,y € M.

Then:

Corollary 2.6.16. Let R(a:’f,...,:z:?) be Zgn) where i1,...,1, < n. Let
R'(z]',...,2]") be a reindexing of R, where ji,...,jr <n. Then R is Egn).

Proof:
R'(?Z) < R(Fi(z1),...,F-(2))
& VE(\j_, 2t = 2]' A R(Z))
where ' . 4 '
' = F(2) < a = 2L

QED (Corollary 2.6.16)

We now consider the relationship between ¥* theory and the theory devel-
oped in §2.5. Ego) is of course the same as ¥ and p; is the same as the 3
projectum p which we defined in §2.5.2. In §2.5.2 we also defined the set P
of good parameters and the set R of very good parameters. We then defined
the reduct M of Mp for any p € [Onps]<*. We now generalize these notions

to Egn). We have already defined the Egn) projectum p”. In analogy with
the above we now define the sets P*, R™ of Egn) —-good parameters. We also
define the S\ reduct M"™ of M by p € [Ony]<“.

Under the special assumption of soundness, these will turn out to be the
same as the concepts defined in §2.5.3.

Definition 2.6.9. Let M = (J2, B) be acceptable. We define sets M7,

voy0
and predicates T"(z",...,2") as follows:

M° = M T =: B (i.e. M} = M for n =0)
M;LH ::<J5}L+1, %LH) for & =z, ..., 2%

T+l (xn-i-l’f) o \/ Lt \/Z < w(xn-i-l — <i, z"+1>

/\Mnn717._.7$0 = Soi[zn+la z"])

T

(where (p;]i < w) is our fixed canonical enumeration of ¥; formulae.)
(Then T+ ((i,a™*h), ™, ... a0 & M, o | pila™th 2")).

Clearly T"*! is uniformly Egn) (M).
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Lemma 2.6.17.
(a) T s Zgn)
(b) Let ¢ be ;. Then {(Z"1, @) MM = [t} is =Y.

Proof: We first note that M2 ™! can be written as Hz = (H"1, AT 7o),
where A" (2" 7) <31 A(z"1). Hence by Lemma 2.6.7:

(1) If (a) holds at n, so does (b). But (a) then follows by induction on n:

Case 1 n = 0 is trivial since IFJE\,l is X1 (V) for all rud closed N.

Case 2 n =m+ 1. Then T("*1D g Egn) by (1) applied to m.
QED (Lemma 2.6.17)

We now prove a converse to Lemma 2.6.17.

Lemma 2.6.18. (a) Let R(z"*, ... 2%) be Egn). Then there is i < w
such that
R(z™ &) < T (4, 2™ 1), 7).
(b) Let R(z"*, ... 2%) be Egnﬂ). Then there is a X1 formula ¢ such that
R, %) +» MIT = [z,
Proof:
(1) Let (a) hold at n. Then so does (b).
Proof: We know that

R@E,E) « \/ 2" P 2"t E)

for a Z(()n+1) formula P. Hence it suffices to show:

Claim Let P(7"! %) be Z(()n+1). Then there is a ¥; formula ¢ such that

P@E*, 7)< M2 = plEmt].

Proof: We know that there are Qi(éfﬂ,f)(i = 1,...,p) such that Q; is
2™ and
1
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(2) P, %) «» HI'' = W[z where U is ¥ and
Hg = <Hn+17@f>'
Applying (a) to the relation:

\/un+1(un+1 — <Z—n+1> A Qi(Z?Jrlaf))

i
we see that for each ¢ there is j; < w such that

Qi(Z_ﬂ+1,f) o <]“ <Zn+1>> c Tn+1

7 vecx

Thus Q;, ¥ is uniformly rud in Tg“ fori=1,...,p. Py is the restric-

tion of a relation rud in Q;z(i = 1,...,p) to H", by (2). By §2
Corollary 2.2.8 it follows that Pz is the restriction of a relation rud in
2+ to H™! uniformly. Since MZ*! = (J24 |, T2+ is rud closed,
it follows by §2 Corollary 2.2.8 that:
PE"1,3) ¢ MIH b ol

for a ¥; formula . QED (1)
Given (1) we can now prove (a) by induction on n.

Case 1 n=0.
Since X1 = Ego), there is ¢; such that
R(xl’:L,O) HM)ZSOi[zla:L‘O]
o Tl "), a0)
Case 2 n=m+ 1.
Let R(z"*1,... 2%) be Egn). By the induction hypothesis and (1) we
know that (b) holds at n. Hence:
Rzt gmtt am . 20) «

& My oo Eeile™ ]
for some ¢. But then
R(z", . 20 < TP (G, Y, 2™ 20).
QED (Lemma 2.6.18)

Note. The reductions in (a) and (b) are both uniform. We have in fact im-

plicitly defined algorithms which in case (a) takes us from the Zgn) definition

of R to the integer ¢, and in case (b) takes us from the Egnﬂ) definition of

R to the ¥ formula .
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We now generalize the definition of reduct given in §2.5.2 as follows:

Definition 2.6.10. Let a € [Ony|<*. M%¢ =: M; M™+he = M

a(o)’,,,7a(n)
where oV = an Py
Thus M"thae = <Jﬁz+1,T”+1’“> where T7H1a —. T;l(g')f“’aw.
Thus by Lemma 2.6.18
Corollary 2.6.19. Set () = anp’ for a € [Onp|<¥.
(a) If D c H"" is Zgn) in a®, ..., a™, there is (uniformly) an i < w
such that
D(:L,n+1) o <i7xn+1> c TnJrl,a
(b) If D(Z"1) is Zgnﬂ) in a(®, ... a(™ there is (uniformly) a ¥; formula
@ such that D(z"!) & M™H1e = o[z H].
Note. Being Egn) in a is the same as being Zgn) ina®, ..., a™ butIdonot
see how this is uniformly so. To see that a Egn) relation R in a(®, ... a(™ ig

Zgn) in a we note that for each n there is k such that y =anp” < \/ f (f
is the monotone enumeration of a and y = f”k), which is ¥; in a. However,

)

k cannot be inferred from the E(ln definition of R, so the reduction is not

uniform.

We can generalize the good parameter sets P, R of §2.5.2 as follows:

Definition 2.6.11. P, =: [On]<*.

Pt =: the set of a € P}, such that there is D which is Zgn)(M) in a with
DNHY, ¢ M.

(Thus we obviously have P! = P.)

Similarly:

Definition 2.6.12. R?w =: P](\}.

Rg{jl =: The set of a € R}, such that
Mnﬂ = th,u (pn+1 U (CL N pn))

Comparing these definitions with those in §2.5.6 it is apparent that RY,
has the same meaning and that, whenever a € R, then M™“ is the same
structure.

By a virtual repetition of the proof of Lemma 2.5.8 we get:
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Lemma 2.6.20. a € P" < T"* ¢ M.

We also note the following fact:

Lemma 2.6.21. Let a € R™. Let D be Zg"). Then D is Egn) i parameters
from p"t U {a®), ... 0™}, where ') =: a N pt. (Hence D is Z(ln)(M) in
parameters from p"t1 U {a}.)

Proof: We use induction on n. Let it hold below n. Then:

—

D(Z) ¢ D'(7a?, ... a"V &),

where &1,...,& < p". (If n =0 the sequence a9, ... a1 is vacuous and
pn = ODM)

Let & = hpynt1 (Ji, (pi, ™)), where pi, ..., ur < p*t1. The functions:
Fy(x) = hagma(ji, (z,al™))
are Egn) to H™ in the parameters a(?), ... (™. But D(Z) then has the form:
D'(z,a9, . . a" Y Fi(w),...,F (),

which is Zgn) ina®,...,a"™ pu, ..., pu by Corollary 2.6.12.
QED (Lemma 2.6.21)

Definition 2.6.13. 7 is a Egn) preserving map of M to M (in symbols
T M —gm M) iff the following hold:
h

e M, M are acceptable structures of the same type.
. w”HiM C H}w for 1 < n.

o Let p = @(v{l, ., vl be a EEL") formula with a good sequence v of
variables such that ji,...,jm < n. Let x; € H]HZ fori=1,...,m.
Then:

M E ¢[z] & M = ¢[n(2)].

m is then a structure preserving injection. If it is Z;L")fpreserving, it is

Egm)fpreserving for m < n and Ez(n)fpreserving for i < h. If h > 1 then

—1rgn n no-
m "Hy C Hi7, as can be seen using:

r€ Hy & M= \/u"u" =%z].
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We say that 7 is strictly E%n)

preserving (in symbols 7 : M —(m) M strictly)
h

iff it is Z‘Eln) preserving and 7" HY, C HZ.. (Only if h =0 can the embed-
ding fail to be strict.)

We say that 7 is X* preserving (7 : M —x« M) iff it is Zgn) preserving for

alln <w. Wecall 7 Zb(un) preserving iff it is Zgn) preserving for all h < w.

Good functions

Let n < w. Consider the class T of all Zgn) functions F(z%,...,2') to H7,
where j,i1,...,%,; < n. This class is not necessarily closed under compo-
sition. If, however, G° is the class of Egj) functions G(z%,...,2'm) to HJ
where j,i1,...,im < n, then G° C F and, as we have seen, elements of G°
can be composed into elements of F — i.e. if F(z%,...,2") is in F and
Gy(Z) is in GO for [ = 1,...,m, then F(G(Z)) lies in F. The class G of good
Egn) functions is the result of closing G under composition. The elements

of G are all Zgn) functions and G is closed under composition. The precise
definition is:

Definition 2.6.14. Fix acceptable M. We define sets G¥ = GF of Zgn)
functions by:

G = The set of partial Zgi) maps F(x{l, .. ,x%”‘) to H', where i < n and
Tly s Jm <N

G*1 = The set of H(Z) ~ G(F(Z)), such that G(y,...,ylr) isin G* and
FyeG%isamaptojforl=1,...,m.

It follows easily that G* C Gﬁﬂ (since G(¥) ~ G(h(i)) where h(y{l, iy =
yzjl for i = 1,...,m). G = G, =: |JG* is then the set of all good Zgn)
k

Junctions G* = | JG,, is the set of all good ¥* functions. All good Zgn) func-
n

tions have a functionally absolute Egn) definition. Moreover, the good Egn)

functions are closed under permutation of arguments, insertion of dummy

arguments, and fusion of arguments of same type (i.e. if F(xél, . ,xfr’;_l)

is good, then so is F'(y) ~ F(y
jg(l) =q; for I < m.

jf" jo‘ m
o-(<11)>7 . ,ya(;n))) where o : m — p such that

To see this, one proves by a simple induction on k that:

Lemma 2.6.22. Each G has the above properties.
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The proof is quite straightforward. We then get:

Lemma 2.6.23. The good Egn) functions are closed under composition:
Let G(yl',...,yh) be good and let F)(Z) be a good function to H7 for
I=1,...,m. Then the function G(F(Z)) is good.

Proof: By induction in & < w we prove:

Claim The above holds for F; € G*(I =1,...,m).

Case 1 £ =0.
This is trivial by the definition of "good function".

Case 2 k=h+1.
Let:
F(Z) = Hi(F11(Z), ..., Fip, (7))

for I = 1,...,m, where Hi(21,...,2,,) is in G" and F,eGisa
map to Hi forl=1,...,m,i=1,...,p;.

Let ((l¢,i¢)|¢ = 1,...,p) enumerate
{@,d1=1,....m;i=1,....p}
Define oy : {1,...,p;} — {1,...,p} by:
oy(i) = that & such that ([,7) = (l¢, i¢).

Set:

Hl'(zl, ceey Zp) >~ Hl(zgl(l), ‘e ,Zgl(pl))
forl=1,...,m. Fé:Flévif foré=1,...,p.
Clearly we have:

Fy(&) = H|(F{(Z), ..., F(Z))

where H] € G" for [ =1,...,m. Set:

G'(z1,. . 2| =~ G(H1(2),..., Hp(2)).
Then G’ is a good Egn) function by the induction hypothesis. But:

G(F (%)) = G'(F{(Z),..., F)()).

The conclusion then follows by Case 1, since F! € GY fori = 1,...,p.
QED (Lemma 2.6.23)
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An entirely similar proof yields:

Lemma 2.6.24. Let R(z%, ... xr) be Egn) where i1, ...,i, <n. Let Fi(2)

T

be a good Egn) map to H'(L =1,...,m). Then R(F(%)) is Zgn),

—

Recall that R(F(Z)) means:

v\ v = Fi(Z) A R().)
=1

Applying Corollary 2.6.13 we also get:

Lemma 2.6.25. Let n = m + 1. Lel R(aﬁ“,x?,...,xff) be E[()n) where

i1yt < m. Let Fi(2) be a good E(ln) map to H" for 1 =1,...,r. Then
R(z", F(2)) is £V,

, o) we mean any function G’ which
is a reindexing of G as a relation. (In other words G, G’ have the same field,
le.

By a reindexing of a function G(xill, Tl

G(%) ~ G'() for all x1,...,2, € M.)
Then:

Corollary 2.6.26. Let Gz, ..., zir) be a good Egm) map to H'. Let

G'(yl*,...,y") be a map to HI, where j, j1,...,5» < n. If G' is a rein-
dexing of G, then G' is a good ng) function.

Proof: G'(y) ~ F(G(Fl(y{_l), ..., F(yIr))) where F is defined by z! = 4

and Fj is defined by z;' = y/'. (Then e.g.

. min{é,j}
yifye H ,
F(y) = M
undefined if not.

where F' is a map to ¢ with arity j.)
But F,Fy ..., F, are \") good. QED (Corollary 2.6.26)

)

The statement made earlier that every good Egn function has a functionally

absolute Zgn) definition can be improved. We define:

Definition 2.6.15. ¢ is a good Zgn) definition iff p is a Egn) formula which

defines a good Egn) function over any acceptable M of the given type.

Lemma 2.6.27. Every good Zgn) function has a good Egn) definition.
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Proof: By induction on k we show that it is true for all elements of G*.
If F € G° then F is a Egz) map to H’ for an i < n. Hence any func-

tionally absolute E(li) definition will do. Now let F' € G¥*!. Then F(F) ~
G(H1(%),...,Hy(%)) where G € G* and H; € G° for i = 1,...,p. Then

G has a good definition ¢ and every H; has a good definition ¥;. By the

uniformity expressed in Corollary 2.6.14 there is a Eg") formula x such that,

given any acceptable M of the given type, if ¢ defines G’ and ¥; defines
H!(i =1,...,p), then x defines F'(Z) ~ G'(H'(Z)). Thus x is a good Eg")
definition of F. QED (Lemma 2.6.27)

Definition 2.6.16. Let a € [Ony|<“. We define partial maps h, from
w x H™ to H™ by:
R (i, ) ~: hagne (i, (z,a™)).

Then A7 is uniformly Egn) in a™, ..., a®. We then define maps iLZ from

wx H™ to H° by:

R, ) ~ S (i, )

hitt (i, ) 2= i ((i)o, b T (D1, 2)).
Then Bg is a good Egn) function uniformly in a™, ..., a(©.
Clearly, if a € R™!, then

Y (w x p" T = H™,

Hence:
Lemma 2.6.28. Ifa € R""!, then h"(w x p"t1) = M.

Corollary 2.6.29. If R" # 0, then £, C S\ for 1 > 1.

Proof: Trivial for n = 0, since EZ(O) = %;. Now let n = m + 1. Set:

D = H" N dom(h?), where a € R". Then D is £\ by Lemma 2.6.24, since:

2" €D < hl(z") = hl(z")

= V2220 = h2(a™) A 20 = 20).
Let R(Z) be X;(M). Let
R(f) — lel R QZ[P(Z, f)

where P is Y. Set: B
P'(a@", %) <»: P(h™(a"), T).
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Then P’ is Egn) in a. But for uf,...,u} € D, =P'(d", Z) can also be written

(

as a Eln) formula. Hence
R(Z) < QuY € D...Qu}' € DP'(@", %)

is Zl(n) in a. QED (Corollary 2.6.29)

We have seen that every Za(un) relation is X ,. Hence:

Corollary 2.6.30. Let R" # 0. Then 3" =%

Hw

An obvious corollary of Lemma 2.6.28 is:

Corollary 2.6.31. Let a € RY;. Then every element of M has the form
F(£,a9, ... a™) where F is a good Zgn) function and & < p™.

Using this we now prove a downward extension of embeddings lemma which
strengthens and generalizes Lemma 2.5.12

Lemma 2.6.32. Let n =m+ 1. Let a € [Onpy|<% and let N = M"™*. Let
TN —y; N, where N is a J-model. Then:

(a) There are unique M,a such that @ € R and M =N.

(b) There is a unique ® D T such that m : M —rsm) M strictly and
0

m(a) = a.

(c) W:M_>2<n) M.
J

Proof: We first prove existence, then uniqueness. The existence assertion
in (a) follows by:

Claim 1 There are M,a,# D 7 such that M “ =N, a € R"M,
ﬁ':M—>21 M, w(a) = a.
Proof: We proceed by induction on m. For m = 0 this immediate
by Lemma 2.5.12. Now let m = h + 1. We first apply Lemma 2.5.12
to M™®. Tt is clear from our definition that pyrm.ae > ph,. Set N/ =
(M™)@5; . Then N’ = <J;},T/>, where p' = ppmae. But it is clear
from our definition that 77 = T" N J;%u' Hence:

(1) f:N—)ZO N'. ~ ~
By Lemma 2.5.12 there are then M, a,7 D 7 such that M® = N,
a€ Ry, 71 M —y, M™® and 7(a) = an piy = a(™.
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(Note: Throughout this proof we use the notation:
a® = anp fori=0,...,m.)

By the induction hypothesis there are then M, @, 7 D 7 such that
M™ =M, #: M —y, M, and 7(a) = a.
We observe that:

(2) a=anp.
Proof:

(C) Let p =: p = OnNM. Then @ C 4. But #(a) = #(a) =

anpiy Ca=7(a). Hence a C a.

(D) w(@anp) = a"(@np) C piyNa = @(a), since 7”p C piy. Hence
anp=a. QED (2)

Since a € R we conclude that a € RY- and N = (M™®)en? —
M QED (Claim 1)

We now turn to the existence assertion in (b).

Claim 2 Let M = N and @ € R"M. There is m O 7 such that 7 : M —(m)
1

M and 7(a) = a.

Proof: Let 21,...,2, € M with x; = Fy(2;)(i = 1,...,7), where F} is
a ng) (M) good function in the parameters a®, ..., @™ and z; € N.
Let F; have the same E(m) (M)-good definition in a(®, ... a(™. Let

R(uy,...,u,) bea E(n)( M) relation and let R be E(n)( M) by the same

deﬁnitlon

Then R(Fy1(z1), ..., Fr(z)) is ™ (31) in a®,...,a™ and
R(Fi(z1),...,Fr(z)) is Egm)(M) in ..., a(™ by the same defini-
tion. Hence there is 4 < w such that

R(F() o (i, (2) e T
R(F(%)) < (i,(2)) € T
where N = (J4,T),N = (J2,T). Thus R(F(2)) is rud in N and
R(F(?)) is rud in N by the same rud definition. But 7 : N —y, N.
Hence:
R(F1(z0),- . Fol()) & ROFL(R(1)s- ., Fo(T(21))).
Thus there is 7 : M —gm M defined by 7(F(&)) =: F(7(£)) whenever

¢ € OnnN, Fis ™ (M)- good in a®, ..., a™ and F is =™ (M)~
good in a@, ..., al™ by the same definition. But then

7(z) = 7(id(z)) = 7(z) for z € N.
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Hence m O 7. But clearly

QED (Claim 2)

We now verify (c):

Claim 3 Let M,a,r be as in Claim 2. Then 7 : M —rsm) M.
J

Proof: We first note that 7, being Egn)fpreserving, is strictly so —

ie. piM =a1pl, for i =0,...,m. It follows easily that:

r(@") = 7"a® = a" for i = 0,...,m.

We now proceed the cases.

Case 1 j=0.
It suffices to show that if ¢ is Egn) and z1,...,2, € N, then

M = oz, ..., 2] = M = olr(z1), ..., m(z,)].

Let x1,...,2, € M. Then z; = Fy(2)(i =1,...,r) where z; € N
and F; is ng) (M)-good in a®,...,a™). Let F; be E(lm) (M)-
good in a®, ..., a(™ by the same good definition.
By Corollary 2.6.19, we know that M = ¢[F1(21),..., Fr(2)] is
equivalent to

N E Uz, .., 2]

for a certain X1 formula V. The same reduction on the M side
shows that M = ¢[Fi(z1),...,F-(2)] is equivalent to: N |
Ulz1,..., 2] for z1,...,2, € N, where U is the same formula.

Since 7 is Xg—preserving we then get:

M ¢lf]er M | o
~ N E
— N E
oMEgp
oMEyp

|

(2)]
7

3

vl
Wm(2)]
((2))]
(7).

!

[
[

QED (Case 1)
Case 2 j > 0.

This is entirely similar. Let ¢ be (. By Corollary 2.6.19 it
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follows easily that there is a ¥; formula ¥ such that: M |

©lF1(21), ..., Fr(z)] is equivalent to:
N EYz,..., 2]
Since the corresponding reduction holds on the M—side, we get
Mk old] & M E olr(@),
since 7(x;) = 7(Fi(2)) = F;(7(2))- QED (Claim 3)
This proves existence. We now prove uniqueness.

Claim 4 The uniqueness assertion of (a) holds.

Proof: Let M,a be such that M™% =N and € Rﬁ\vz.
Claim M = M, a = a.

Proof: By a virtual repetition of the proof in Claim 2 there is a

T M =g om) M defined by:
1

(3) 7(F(2)) = F(z) whenever z € N, F is a good ng)(M) function
in a©,...,a™ and F is the X\ (M) function in a®, ... a™
with the same good definition.

But 7 is then onto. Hence 7 is an isomorphism of M with M. Since
M, M are transitive, we conclude that M = M,a = a.
QED (Claim 4)

Finally we prove the uniqueness assertion of (b):

Claim 5 Let 7' : M —rgom) M strictly, such that 7'(a@) = a. Then ©’ = 7.
0

Proof: By strictness we can again conclude that 7/(@?) = a® for
i=0,...,m. Let x € M, z = F(z), where z € N and F is a ng)(ﬂ)
good function in the parameters @a®,... @™, Let F be Egm)(M) in
a9, ..., al™ by the same good definition.

The statement: z = F(2) is Eém)(ﬂ) in a®,...,a"™. Since 7’ is

Z(()m)fpreserving, the corresponding statement must hold in M — i.e.

' (x) = F(7(z)) = (x).
QED (Lemma 2.6.32)
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2.7 Liftups

2.7.1 The X, liftup

A concept which, under a variety of names, is frequently used in set theory
is the liftup (or as we shall call it here, the X liftup). We can define it as
follows:

Definition 2.7.1. Let M be a J-model. Let 7 > w be a cardinal in M. Let
H=HM ¢ M and let 7 : H —y, H' cofinally. We say that (M', ') is a ¥
liftup of (M, ) iff M’ is transitive and:

(a) 7’ Dmand 7' : M —y, M’

(b) Every element of M’ has the form 7/(f)(z) for an x € H’ and an
f €T° where I'° = I'%(7, M) is the set of functions f € M such that
dom(f) € H.

Note. The condition of being a J—model can be relaxed considerably, but
that is uninteresting for our purposes.

Until further notice we shall use the word ’liftup’ to mean X liftup’.

If (M',7') is a liftup of (M, 7) it follows easily that:
Lemma 2.7.1. ' : M —y, M’ cofinally.

Proof: Let y € M', y = 7'(f)(z) where x € H' and f € T, then y €
7' (rng(f)). QED (Lemma 2.7.1)

Lemma 2.7.2. (M’ «') is the only liftup of (M, ).

Proof: Suppose not. Let (M*,7*) be another liftup. Let ¢(vi,...,v,) be
>0. Then
M = o[n'(fi)(@1), ..., 7 (fa)(@n)] <
(1, 20) € T({DIM | o[f(D)}) ©
M* = o™ (fi)(@1), .. 7 (fo)(@n)]-
Hence there is an isomorphism o of M’ onto M* defined by:
o(r'(f)(x)) = 7*(f)(z)
for f €%, 2 € n(dom(f)).
But M', M* are transitive. Hence o0 =id, M’ = M*, ' = 7*.
QED (Lemma 2.7.2)
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Note. M = o[f(Z)] means the same as
Voui.y /\yz—fz %) A M = oli).

Hence if e = {(2)|M = ¢[f(2)]}, then e C >< dom(fl) € H. Hencee e M

by rud closure, since e is Xy(M). But then e 6 H, since P(u) N M C H for
uec H.

But when does the liftup exist? In answering this question it is useful to
devise a 'term model’ for the putative liftup rather like the ultrapower con-
struction:

Deﬁnition 2.7.2. Let M,7,7 : H —yx, H' be as above. The term model
D(M, ) is defined as follows. Let e.g. M = (J4 B). D =: (D,

é fl , B) where

= the set of pairs (f, z) such that f € Ty and € H’

(fz) = (g,y) < (2,9) € 7({{z,w)|f(z) = 9(y)})
(f,2)€lg,y) < (z,y) € 7({{z,w0)|f(2) € g(¥)})
A(f,x) oz € n({2|Af(2)})
B(f,z) ¢ x € n({z|Bf (2)})
Note. D is an ’equality model’, since the identity predicate = is interpreted
by = rather than the identity.
t.os theorem for D then reads:

Lemma 2.7.3. Let ¢ = o(v1,...,v,) be Xo. Then
Dk ¢[{fi,a1), - (fas@n)] © (21, 20) € T({DIM E o[f(D]))-

Proof: (Sketch)

We prove this by induction on the formula . We display a typical case of the
induction. Let ¢ = \/u € v1¥. By bound relettering we can assume w.l.0.g.
that u is not among vy, ..., v,. Hence u, vy, ..., v, is a good sequence for W.
We first prove (—). Assume:

D ‘: @[<f17x1>7 R <fn,$n>]

Claim (z1,...,x,) € 7(e) where

e = {(z1,- o 2)|M = @lfa(21) . fulza)]}-
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Proof: By our assumption there is (g,y) € D such that (g,y)€(f1,z1) and:

D 'Z \I/[<g,y>, <f1,1‘1>, R <f"7w”>]

By the induction hypothesis we conclude that (y, Z) € 7(€) where:

& ={(w, 2)|g(w) € fi(z1) A M = Tlg(w), f(2)}.

Clearly e,é € H and

HiE A\w Z(w,2) €é— (2) €e).

Hence
H = \w,Z(w,2) € m(e) — (2) € n(e)).
Hence (Z) € 7(e). QED (=)

We now prove (<)
We assume that (z1,...,z,) € 7(e) and must prove:

Claim D = o[(f1,2z1), ..., (fn, Tn)]-

Proof: Let r € M be a well ordering of rng(f1). For () € e set:

g({(2)) = the r-least w such that
M EYw, fi(z1),..., falzn)].

Then g € M and dom(g) = e € H. Now let € be defined as above with this
g. Then:

HE Nz, om((2) e ((3),2) €6).
But then the corresponding statement holds of 7(e), 7(€) in H'. Hence
((7), ) € m(e).

By the induction hypothesis we conclude:

D ): \Ij[<g’ <f>>7 <f]_,ﬂf]_>, RN <fna33n>]
The conclusion is immediate. QED (Lemma 2.7.3)
The liftup of (M, ) can only exist if the relation € is well founded:

Lemma 2.7.4. Let € be ill founded. Then there is no (M’ ') such that
' M =y, M'. M’ is transitive, and 7' D .
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Proof: Suppose not. Let (fit1,zit1)€(fi, ;) for i < w. Then
(Tit1, i) € T{(2, w)|fi+1(2) € fi(w)}.

Hence m'(fit1)(@it1) € 7'(fi) (@) (i < w).
Contradiction! QED (Lemma 2.7.4)

Conversely we have:

Lemma 2.7.5. Let € be well founded. Then the liftup of (M, ) exists.

Proof: We shall explicitly construct a liftup from the term model . The
proof will stretch over several subclaims.

Definition 2.7.3. z* = 7*(z) =: (const,,0), where const, =: {(z,0)} =
the constant function x defined on {0}.

Then:

(1) #*: M —yx, D.
Proof: Let ¢(v1,...,v,) be Xy. Set:

e={(z1,...,2n)|M |= p[consty, (21),...,consty, (z,)]}.

Obviously:

{ {(0,...,0)} it M | plz1,... 2]

() if not.
Hence by t.0z theorem:

D olz},...,xk] < (0,...,0) € w(e)
o ME oz, ...,z

(2) D = Extensionality.
Proof: Let p(u,v) == Awecuwev NAwevw e u.

Claim D | ¢la,b] — a 2 b for a,b € D. This reduces to the Claim:
Let a = (f,z),b = (g,y). Then

D= el(f,2), (g, 9] < (x,y) € n(e)

where

(z,0)|M [= o[z, wl}
(z,0)|f(2) = g(w)}

)
Il

{
{
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QED (2)

Since 22 is a congruence relation for D we can factor D by 2, getting:

where:

s=:{tlt = s} forse D
5Et <»: sEt
A§ As,Bé & Bs.
Then D is a well founded identity model satisfying extensionalitAy. By

Mostowski’s isomorphism theorem there is an isomorphism & of D onto
M’ where M' = (|M'|, e, A’, B") is transitive.

Set:

[s] =: k(8) for s € D

7' (z) =: [2*] for x € M.
Then by (1):
M —y, M.

Lemma 2.7.5 will then follow by:
Lemma 2.7.6. (M’ «') is the liftup of (M, 7).

We shall often write [f, x| for [(f,z)]. Clearly every s € M’ has the
form [f,z] where f € M; dom(f) € H, z € H'.

Definition 2.7.4. H =: the set of [f,z] such that (f,z) € D and
feH.

We intend to show that [f,z] = n(f)(z) for z € H. As a first step we
show:

H is transitive.
Proof: Let s € [f,x] where f € H.
Claim s = [g,y]| for a g € H.
Proof: Let s = [¢/,y]. Then (y,z) € w(e) where: e = {{u,v)|g' (u) €
f(v)} set:

¢ = {ulg'(u) € rg(f)}, g=g'1¢"
Then g C rng(f) x dom(¢’) € H. Hence g € H. Then [¢',y] = [g, ]
since 7(¢")(y) = 7(¢)(y) and hence
(y,9) € 7({{u,v)|g'(u) = g(v)}). But e = {(u,v)|g(u) € f(v)}. Hence
l9.y] € [, =]. QED (4)
But then:
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(5) [f,z] =7 (f)(x) for f € H,{f x) € D.
Proof: Let f,g € H,(f,x),(g,y) € D. Then:

[f.x] € [g,y] < (z,y) € 7(e)
< m(f)(z) € m(9)(y)

where e = {(u,v)|f(u) € g(v)}. Hence there is an €-isomorphism o of
H onto H defined by:

o(r(f)(x)) = [f,].

But then o = id, since H, H are transitive. (5)
But then:

(6) © D
Proof: Let x € H. Then #'(x) = [const,, 0] = 7(const,)(0) = 7(z)
by (5).

(1) [f,z] = 7'(f)(2) for (f,z) € D.
Proof: Let a = dom(f). Then [ida, 7] = id () (7) = by (5). Hence
it suffices to show:

[f,x] = [consty, 0]([idg, z]).
But this says that (z,0) € w(e) where:

(2,u)|f(2) = consty(u)(ida(2))}
f

(2,0)|f(2) = f(2)} = a < {0}.

e

{
{
QED (7)

Lemma 2.7.6 is then immediate by (3), (6) and (7). QED (Lemma 2.7.6)

Lemma 2.7.7. Let 7 D 7 such that 7" : M —x, M*. Then the liftup
(M, 7"y of (M,x) exists. Moreover there is a o : M' —s, M* uniquely
defined by the condition:

! . /
oclH =id, on’ = 7*.

Proof: (M’ 7'} exists, since € is well founded, since (f, z)E(g,y) +> 7*(f)(x) €
7™(g)(y). But then:

M" ol (f) (@), 7 (fr) ()]

— (r1,...,2,) € w(e)

o M = elr(fi)(x), - m(fr) ()]
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where e = {(z1,...,2.)|M E ¢[f(2)]}. Hence there is o : M’ —5, M*
defined by:
o(w'(f)(x)) = =*(f) (@) for {f,z) € D.
Now let 6 : M" —x, M* such that ¢ | H' =id and o7’ = 7".
Claim ¢ = 0.

Let s € M', s = 7#'(f)(x). Then &(7'(f)) = 7*(f), 6(z) = x. Hence
a(s)=7*(f)(z) =o(s). QED (Lemma 2.7.7)

2.7.2 The X" liftup

From now on suppose M to be acceptable. We now attempt to generalize
the notion of Xy liftup. We suppose as before that 7 > w is a cardinal in
M and H = HM. As before we suppose that 7' : H —x, H' cofinally. Now
let p™ > 7. The Xg-liftup was the "minimal" (M’ 7’) such that 7’ D 7 and
7' M —x, M'. We shall now consider pairs (M’, ) such that 7/ O 7 and
7'+ M —sn M'. Among such pairs (M', 7’) we want to define a "minimal"
one and show, if possible, that it exists. The minimality of the g liftup was
expressed by the condition that every element of M’ have the form 7'(f)(z),
where x € H' and f € T%(7, M). As a first step to generalizing this definition
we replace I'°(7, M) by a larger class of functions I'™(r, M).

Definition 2.7.5. Let n > 0 such that 7 < p}t,. I'™" = I'"(7, M) is the set
of maps f such that

(a) dom(f) € H
(b) For some i < n there is a good Egi)(M) function G and a parameter
p € M such that f(z) = G(x,p) for all x € dom(f).

Note. Good Zgz) functions are many sorted, hence any such function can be
identified with a pair consisting of its field and its arity. An element of I'",
on the other hand, is 1-sorted in the classical sense, and can be identified
with its field.

Note. This definition makes sense for the case n = w, and we will not

exclude this case. A Eéw) formula (or relation) then means any formula (or

relation) which is E(()i) for an i < w — i.e. Eg‘)) =¥

We note:

Lemma 2.7.8. Let f € T™ such that tng(f) C H*, where i < n. Then

f(z) = G(z,p) for x € dom(f) where G is a good Egh) function to H* for
some h < n.
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Proof: Let f(z) = G'(z,p) for x € dom(f) where G’ is a good Egh) function

to H7 where h, j < n. Since every good Egh) function is a good ¥ function
for k > h, we can assume w.l.0.g. that ¢, 7 < h. Let F be the identity function
defined by v’ =/ (i.e. y' = F(27) < y* = 27). Set: G(z,y) ~: F(G'(z,y)).
Then F' is a good Egh) function and so is G, where f(z) = G(z,p) for
x € dom(f).

QED (Lemma 2.7.8)

Lemma 2.7.9. T%(7, M) C T(r, M) fori <n.

Proof: For 0 < ¢ this is immediat by the definition. Now let ¢ = 0. If
f €TY then f(x) = G(x, f) for € dom(f) where G is the Z(()O) function
defined by
y=G(x, f) +: (fis a function A
Ny, z) € f).
QED (Lemma 2.7.9)

The "natural" minimality condition for the 2(()”) liftup would then read: Each
element of M has the form #/(f)(x) where 2 € H' and f € I'™. But what
sense can we make of the expression "7/(f)(x)" when f is not an element of
M? The following lemma rushes to our aid:

Lemma 2.7.10. Let ' : M —5y(m) M'" where n > 0 and " D 7. There is a
0
unique map 7' on T™(1, M) with the following property:

« Let f € I'"™(1, M) such that f(x) = G(z,p) for x € dom(f) where G
s a good Egi) function for an i < n and x is a good Egi) definition of
G. Let G’ be the function defined on M’ by x. Let f' = n"(f). Then
dom(f") = w(dom(f)) and f'(x) = G'(z, 7' (p)) for x € dom(f’).

Proof: As a first approximation, we simply pick G, x with the above prop-
erties. Let G’ then be as above. Let d = dom(f). The statement

ANz ed\yy=G(z,p)is E(()n) is d, p, so we have:

Nz end\/yy=_G,x@p).

Define fo by dom(fy) = 7(d) and fo(z) = G'(z,7(p)) for € w(d). The
problem is, of course, that GG, x were picked arbitrarily. We might also have:

f(x) = H(x,q) for x € d,

where H is Egj)(M) for a j < mnand ¥ is a good Egj) definition of H. Let
H' be the good function on M’ defined by W. As before we can define f;
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by dom(f1) = n(d) and fi(x) = H'(z,7'(q)) for x € m(d). We must show:
fo = f1. We note that:

/\ € dG(x,p) = H(z,q).
But this is a E((Jn) statement. Hence

N\ €n(d) (z,p) = H'(z,q).
Then fy = fi. QED (Lemma 2.7.10)

Moreover, we get:

Lemma 2.7.11. Let n,7,7, 7', 7" be as above. Then «"(f) = «'(f) for
feTr(r, M).

Proof: We know f(z) = G(z, f) for x € d = dom(f), where:
y =Gz, f) <: (f is a function Ay = f(x)).

Then 7 (f)(z) = G'(z,7'(f)) = ©'(f)(x) for z € 7(d), where G’ has the
same definition over M’. QED (Lemma 2.7.11)

Thus there is no ambiguity in writing #’(f) instead of #”(f) for f € I'™.
Doing so, we define:

Definition 2.7.6. Let w < 7 < p'j; where n < w and 7 is a cardinal in M.
Let H = HM and let 7 : H —yx, H' cofinally. We call (M', ') a Eén) liftup
of (M, 7) iff the following hold:

(a) 7' D mand 7' : M—>2(<)n> M.

(b) Each element of M’ has the form #'(f)(z), where f € I'"(7, M) and
x e H.

(Thus the old X liftup is simply the special case: n = 0.)

Definition 2.7.7. I'?(7, M) =: the set of f € I'"(r, M) such that either
i <nandrg(f) C Hi,ori=n<wand f € H},.

(Here, as usual, H' = Jpi, [A] where M = (J4, B).)

Lemma 2.7.12. Let f € T}(7,M). Let 7' : M —yw) M’ where 7’ O m.
0

Then 7' (f) € T (x' (1), M").
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Proof:

- M / M’
Case 1 i =n. Then f € Hj: . Hence n'(f) € Hpn -

Case 2 71 < n.

By Lemma 2.7.9 for some h < n there is a good Egn) (M) function G(u,v)
to H* and a parameter p such that

f(z) = G(z,p) for x € dom(f).

Hence:
m'(f)(z) = G'(z,7'(p)) for = € dom((f)),

where G’ is defined over M’ by the same good Egn) definition. Hence

mg(7'(f)) C H,. QED (Lemma 2.7.12)

)

The following lemma will become our main tool in understanding E((]n liftups.

Lemma 2.7.13. Let R(a:ill,...,a:ﬁ’“) be Eén) where i1, ...,0, < n. Let f; €
il=1,...,r). Then:

(a) The relation P is E(()n) in a parameter p where:
P(2) <: R(f1(z1), ..., fr(2))-

(b) Let 7' > 7 such that ©' : M — ) M'. Let R’ be Z(()n) (M) by the same
0

definition as R. Then P’ is E(()n)(M/) in 7' (p) by the same definition
as P in p, where:

P'(2) <: R(7'(f1)(21), .- 7 (fr)(20)).

Before proving this lemma we note some corollaries:

Corollary 2.7.14. Lete = {(2)|P(2)}. Thene € H and(e) = {(2)|P'(2)}.

Proof: Clearly e C d = X dom(f;) € H. But then d € Hyn and e € Hjn
=1

since (Hpn, PNH,n) is amenable. Hence e € H, since H = HM and therefore
P(u)NM C H foru € H.

dom(7(f;)) since ©’ D 7 and

Now set €/ = {(2)|P'(2)}. Then ¢’ C 7(d) = X

hence m(dom(f;)) = dom(w(f;)). But l
A ed(@) € e o P()

X =
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which is a E(()n) statement about e,p. Hence the same statement holds of
7(e),m(p) in M'. Hence

AE € m(@)((2) € m(e) » P'(2)).
Hence w(e) = €. QED (Corollary 2.7.14)
Corollary 2.7.15. (M, w) has at most one E((]n) liftup (M’ 7).
Proof: Let (M* ) be a second such. Let o(v!',...,v¥) be a E(()n) for-

mula. (In fact, we could take it here as being Z(()O).) Let e = {(?)|M =
elfi(z1),--., fr(z)]} where fy e T2 (1 =1,...,7). Then:

M ): @[W,(fl)(l'l)’ tr ﬂ-/(fr)(‘rr)] A

“ (r1,...,2) € w(e)

< M~ ’: SO[W*(fl)(xl)v s aw*(fr)(xr)}
for ; € m(dom(f;)(I=1,...,r).

Hence there is an isomorphism o : M’ M* defined by:

for f eI, z € m(dom(f)). But M’', M* are transitive. Hence o = id, M’ =
M* 7' =7*. QED (Corollary 2.7.15)

We now prove Lemina 2.7.13 by induction on n.

Case 1 n=0.
Then fi,...,fr € M and Pis Xo in p = (f1,..., fr), since f; is rudi-
mentary in p and for sufficiently large h we have:

T
P(Z) & \ i, € Ch®)(N\ i = filZ) A RB(3))
=1
where R is Y. If P’ has the same X definition over M’ in 7/(p), then

P(z) <V, € Culm(p) ;\lyi = m(fi)(z:) A R(Y))
& R(r(f)(2)

QED
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Case 2 n =w. '
Then 3¢ = U ™. Let R(z%,... 2%) be =" Since every £\
h<w

(

relation is Elk) for k > h, we can assume h taken large enough that
i1,...,%r < h. We can also choose it large enough that:

f1(z) 2 Gi(z,p) for Il =1,...,v

where G is a good Egh) map to H%. (We assume w.l.0.g. that p is the
same for [ = 1,...,r and that d; = dom(f;) is rudimentary in p.) Set:

P(Z,y) ¢: R(Gi21,y),...,G(xr,y)).

By §6 Lemma 2.6.24, P is Zgh) (uniformly in the Zgh) definition of R
and G1,...,G,). Moreover:

P(2) + P(Z,p).

Thus P is uniformly Egh) in p, which proves (a). But letting P’ have

the same Egh) definition in 7'(p) over M’, we have:

P(Z) < P'(Z,7(p))
A R/(T‘J(fl)(zl)v ce 777/(fr)(27’))7
which proves (b). QED (Case 2)

Case 3 0 <n <w.
Let n = m+ 1. Rearranging arguments as necessary, we can take R as
given in the form:

n n .01 i
R(yY, ...,y ot ... x))

where 41,...,5, <m. Let fi €I for [ =1,...,r and let g1,...,q1 €
re.
Claim

(a) P is E(()”) in a parameter p where

b) If n/, M’ are as above and P’ is 2 (M7 in 7 p) by the same
0
definition, then

—

P'(w,Z) +» R(n'(§)(@), 7' (f)(2))

where R’ has the same E(()n) definition over M'.
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—

We prove this by first substituting f(2) and then g(&), using two different
arguments. The claim then follows from the pair of claims:

Claim 1 Let:
Py(y",2) <= R(y", fi(z1), ..., fr(2)).
Then:

(a) Py is E[()n)(M) in a parameter pg.

(b) Let 7/, M', R’ be as above. Let P} have the same Z(()n)(M’) defi-
nition in 7/(pg). Then:

—

Py, 2) < R'(y", 7' (f)(2)).
Claim 2 Let
P(u_jv Z) g Po(gl(w1>7 cee 7gs(w8)> Z)
Then:
(a) P is E(()n) (M) in a parameter p.

(b) Let 7/, M’', P} be as above. Let P’ have the same Egn)(M’) defi-
nition in 7/(p). Then

P'(w, 2) < Fy(n'(§) (), 2).
We prove Claim 1 by imitating the argument in Case 2, taking h = m and
using §6 Lemma 2.6.11. The details are left to the reader. We then prove

Claim 2 by imitating the argument in Case 1: We know that g1,...,gs € H".
Set: p={(g1,..-,9n,p). Then P is Zé")(M) in p, since:

P(@,2) ¢ \/y1-.ys € Cu(®)(\ i = gi(wi) A Po(3, 7))
=1

where g;, po are rud in P, for a sufficiently large h. But if P’ is Z(()n) (M) in
IT'(P) by the same definition, we obviously have:

P’(U_;’,Z) < \/yl yr(
Po(7'(9) (@), 2).

1>

yi = (9)(wi) A Fy(7, %))

QED (Lemma 2.7.13)

We can repeat the proof in Case 3 with "extra" arguments @". Thus, after re-
arranging arguments we would have R(a™, §", x{}, ..., z!") where i1, ... i, <
n. We would then define

—

P(u",w,2) <+ R(u", g(w), f(2)).

This gives us:
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Corollary 2.7.16. Letn < w. Let R(u", x’f, o, be 2(()”) where iy,. .., iy <
n. Let fy eI}y forl=1,...,r. Set:

P(a",Z) < R(T", f1(z1), ..., fr(2r)).
Then:

(a) P(u", Z2) is Zén) in a parameter p.
(b) Let 7' D 7 such that ©' : M — ) M. Let R’ be E(()n) (M) by the same
0
definition. Let P’ be Z(()")(M’) in 7 (p) by the same definition. Then

P/, 2) & R 7 (f)(21), o 7 (£ (20))-

By Corollary 2.7.15 (M, ) can have at most one Eén) liftup. But when does

it have a liftup? In order to answer this — as before — define a term model
D = D™ for the supposed liftup, which will then exist whenever D is well
founded.

Definition 2.7.8. Let M, 7, H, H',m be as above where p%, > 7,n < w.

The E(()n) term model D = JD)(") is defined as follows: (Let e.g. M = (JZ, B).)
We set: D = (D, =, €, A, B) where:

D = D™ =: the set of pairs (f,z)
such that f € I'(7, M) and
z € w(dom(f))

(f,x) = (9,y) <> (z,y) € w(e), where
e ={(z,w)|f(2) = g(w)}.

(9,y) <> (z,y) € m(e), where

e={{z,w)[f(2) € g(w)}

me

(f,z)

(similarly for A, B).

We shall interpret the model D in a many sorted language with variables of
type i < w if n = w and otherwise of type i < n. The variables v’ will range
over the domain D; defined by:

Definition 2.7.9. D; = D\") =: {(f,z) € D|f € T"}.

Under this interpretation we obtain Los theorem in the form:
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Lemma 2.7.17. Let p(vi', ... vir) be 2(()"). Then:
D= o[(fi,x1), ..., {fr,z)] < (21, ..., 2,) € 7(e)

where e = {(2)|M = p[fi(z1),..., fr(zr)]} and {fi, ;) € D;, forl=1,...,r.
Proof: By induction on ¢ we show:

(

Claim If i < n or i = n < w, then the assertion holds for Eoi) formulae.
Proof: Let it hold for j < i. We proceed by induction on the formula (.

Case 1 ¢ is primitive (i.e. ¢ is Uiévj,viivj,/lvi or Bu; (for M = (JA, B)).
This is immediate by the definition of D.

Case 2 ¢ is E;Lj) where j < i and h = 0 or 1. If h = 0 this is immediate
by the induction hypothesis. Let » = 1. Then ¢ = \/ /¥, where ¥

is Z(()i). By bound relettering we can assume w.l.0.g. that u' is not in
our good sequence vy, ..., vy . We prove both directions, starting with
(—=):

Let D = ¢[(fi,z1), ..., (fr,zr)]. Then there is (g,y) € D; such that

D =Yg, y), (f1,21), .., (fr )]

(u?, ¥ being the good sequence for ¥). Set ¢/ = {(w, 2)|M = ¥[g(w), Z(F
Then (y,#) € m(e’) by the induction hypothesis on i. But in M we
have:

Nw Z(w,2) €€ — () €e).

This is a II; statement about €’,e. Since m : H —y, H' we can
conclude:

N w, 2w, 2) € 7(e') = (Z € m(e)).

But (y, %) € 7(e’) by the induction hypothesis. Hence (& € m(e). This
proves (—). We now prove («). Let (Z) € w(e). Let R be the E(()j)
relation

R(w,z1,...,2) <=M = plw, 21, ..., 2.

Let G be a Zéj)(M) map to H’ which uniformizes R. Then G is a
spezialization of a function G’(z{”, ..., 2") such that h; < j for I < j.

Thus G’ is a good E(()j) function. But

fi(z) = Fi(z,p) for z € dom(f;) for L =1,...,r

)}
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where Fj is a good E(()k) map to H" for I =1,...,rand j < k <i. (We
assume w.l.0.g. that the parameter p is the same for all [ = 1,...,7,.)
Define G”(u*, w) by:

G (u,w) = G'(w)y ™, ..., (w)' "1, w)

then G” is a good Egk) function. Define g by: dom(g) = ‘;1 dom( f;)

and: g((2)) = G"({2),p) for (Z) € dom(g). Then g € I'™ and g({(2)) =
G(fi(z1),..., fr(z)). Hence, letting:

—

' = {{w,2)|M [ V[g(w), f(2)]},
we have:
N\Z(2) e ((2),5) ).

This is a IT; statement about e, e’ in H. Hence in H' we have:

AZ((E) € nle) & ((2),2) € n(e).
But then ((2),Z) € w(e’). By the induction hypothesis we conclude:

D (g, (2)), (fr,21)s -5 (frs )]

Hence:

D E ol(fi,21), .., (fryzr)]-
QED (Case 2)

Case 3 pis Yg AU, VgAY, Uy — Uy, Uy <> Uy, or 0.

This is straightforward and we leave it to the reader.

Case 4 ¢ = \/u’ € vy or Au® € vy, where v; has type > i. We display
the proof for the case ¢ = \/u’ € v;x. We again assume w.l.0.g. that
u' #wvj for j =1,...,7. Set: ¥ = (u' € v; A x). Then ¢ is equivalent
to \/ u'¥. Using the induction hypothesis for x we easily get:

% DE Y[{g,y), (fi, 7). .., (fr,2zr)] &
) /
<y7x17'--7xn>eﬂ_(€)

—

where ¢ = {{(w,2)|M = ¥[g(w), f(Z)]}. Using (*), we consider two
subcases:

Case 4.1 i < n.
We simply repeat the proof in Case 2, using (x) and with ¢ in place of

VE
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Case 4.2 i =n < w.
(Hence v; has type n.) For the direction (—) we can again repeat the
proof in Case 2. For the other direction we essentially revert to the
proof used initially for ¥y liftups.

éNe know that e € H and (Z) € w(e), where e = {(2)|M = ¢[f1(21),-.., fr(z)]}
et:

R(wnwg) o M ): \Ij[wnafl(zl)a R fr(zr)]'

Then R is E(()n) by Corollary 2.7.16. Moreover \/ w"R(w", 2) <+ (%) € e.
Clearly f; € Hj; since f; € I'. Let s € Hj; be a well odering of
Urng(f;). Clearly:

R(w™, 2) —w™ e fi(z)
— w™ € Jrng(f).

We define a function g with domain e by:
g9((2)) = the s-least w such that R(w, 2).

Since R is Z(()n), it follows easily that g € H%. Hence g € I'}. But
then

/\Z((Z') €e+ ((2),2) € ), where ¢ is defined as above, using this g.
Hence in H' we have:

NZ(2) € mle) & (2).2) € ().
Since (Z) € w(e) we conclude that ((Z),Z) € m(e’). Hence:

D ): \I/[<g, <f>>7 <f17x1>7 SRR <f7“7$7“>}'
Hence:
D = @[(f1,21), - (fro @)
QED (Lemma 2.7.17)
Exactly as before we get:

Lemma 2.7.18. If € is ill founded, then the E[()n) liftup of (M, ) does not
exist.

We leave it to the reader and prove the converse:

Lemma 2.7.19. If € is well founded, then the Z(()n) liftup of (M, ) exists.
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Proof: We shall again use the term model I to define an explicit Z[()") liftup.

We again define:

Definition 2.7.10. z* = 7*(z) =: (consts, 0), where const, =: {(z,0)} =
the constant function z defined on {0}.

Using Los theorem Lemma 2.7.17 we get:

(1) . M —>Z(n) D
0 .
(where the variables v' range over D; on the D side).

The proof is exactly like the corresponding proof for Xo-liftups ((1) in
Lemma 2.7.5). In particular we have: 7* : M —yx, D. Repeating the
proof of (2) in Lemma 2.7.5 we get:

(2) D | Extensionality.
Hence 22 is again a congruence relation and we can factor D, getting:

~

D= (D\ =) = (D, &, A,B)
where R
D =:{s|se D}, s=:{t|t = s} forse D
3EL <: sEt
As As, B§ +»: Bs
Then D is a well founded identity model satisfying extensionality. By
Mostowski’s isomorphism theorem there is an isomorphism k of D onto
M’ where M' = (|M'|, €, A’, B") is transitive. Set:
[s] =: k(8) for s € D
m'(x) =: [2*] for z € M
Hi={8|seDi}(i<nori=n<uw).
We shall initially interpret the variables v* on the M’ side as ranging
over H;. We call this the pseudo interpretation. Later we shall show
that it (almost) coincides with the intended interpretation. By (1) we
have
3) «" : M — g M’ in the pseudo interpretation. (Hence 7’ : M — ()
0 0
M')
Lemma 2.7.19 then follows from:

Lemma 2.7.20. (M’ ') is the E(()n) liftup of (M, ).
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For n = 0 this was proven in Lemma 2.7.6, so assume n > 0. We again
use the abbreviation:

[f,z] =: [(f,x)] for (f,x) € D.

Defining H exactly as in the proof of Lemma 2.7.6, we can literally
repeat our previous proofs to get:

H is transitive.
[f,2] = n(f)(x) if f € H and (f,z) € D. (Hence H = H'))

' D
(However (7) in Lemma 2.7.6 will have to be proven later.)

In order to see that m: M —5m) M’ in the intended interpretation we
must show that H; = H]iw, for ¢ < m and that H, C Hj;. As a first
step we show:

H; is transitive for i < n.

Proof: Let s € H;,t € s. Let s = [f, ] where f € I'?. We must show
that ¢t = [g,y] for g € T}. Let ¢t = [¢,y]. Then (y,z) € m(e) where

e = {(u,v)|g'(u) € f(v)}.

Set:
a=:{ulg'(u) € mg(f)},9 =4 la.

Claim 1 g I7.
Proof: a C dom(q’) is 2(()"). Hence a € H and g € I'". If i < m,
then rng(g) C rng(f) C Hi,;. Hence g € I'". Now let i = n. Then
rng(f) € I'? and the relation z = g(y) is Z(()n). Hence g € Hy;.
QED (Claim 1)
Claim 2 ¢t = [g, y]
Proof:
N\ wo((u,v) € e = (u,u) € ¢)

where ¢ = {(u,w)|g(u) = ¢’(w)}. Hence the same II; statement
holds of 7(e),m(e’) in H'. Hence (y,y) € w(e’). Hence [g,y] =
lg',y] =t QED (7)

We can improve (3) to:

Let U = \/vil ... virp, where ¢ is Zén) and i <nor i =n < w for

U1
l=1,...,7. Then 7’ is "WU—elementary" in the sense that:

M | ¥[#] <+ M' = ¥[r'(Z)] in the pseudo interpretation.
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Proof: We first prove (—). Let M = [z, Z]. Then M’ = o[’ (2), 7' (Z)]

by (3).
We now prove (). Let:
M ): @Hfl, Zl]v AR [frv Z?“]vﬂ-/(f)]
where f; € I'} for [ =1,...,r. Since 7'(z) = [consty, 0], we then have:

(z1,...,2r,0...0) € m(e), where:

-

e={(ui,...,u,0...0) : M |= ¢[f(1),Z]}.

Hence e # (). Hence

—

\ovi...0M = o[f(7),7)

where rng(f;) C H% for [ =1,...,r. Hence M = U[Z]. QED (8)

If i < n, then every Hgi) formula is E(()n). Hence by (8):

If i < n then

7'« M —_u M’ in the pseudo interpretation.

n{’
We also get:

Let n < w. Then:

7' | Hyy : Hyy —s, Hy cofinally.

Proof: Let x € H,. We must show that « € 7'(a) for an a € H},;. Let
x = [f,y], where f € I']'. Let d = dom(f),a = rng(f). Then y € m(d)

and:
/\zed(z,0> €e

where

e = {(u,v)|f(u) € consty(v)}
= {{u,0)|f(u) € a}.

This is a X statement about d,e. Hence the same statement holds of
m(d),m(e) in Hy,. Hence (z,0) € w(e). Hence [f,y] € 7’'(a). QED (10)

(Note: (10) and (3) imply that 7' : M — ) M’ is the pseudo inter-
1
pretation, but this also follows directly from (8).)
Letting M = (J4, B) and M’ = (|M'|, A’, B') we define:
M; = (Hy;, AN H};, BN Hy), M} = (H;, A'0 H;, B' N H;)

for ¢ <nori=n < w. Then each M; is acceptable. It follows that:
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(11)

(12)

M! is acceptable.

Proof: If i = n, then ©' | M,, : M,, —x, M}, cofinally by (3) and (10).
Hence M), is acceptable by §5 Lemma 2.5.5. If i < n, then «' | M; :
M; 50 M/ by (9). Hence M/ is acceptable since acceptability is a
IIy condition. QED (11)
We now examine the "correctness" of the pseudo interpretation. As a
first step we show:

Let i+ 1 <mn. Let A C H;11 be zgi) in the pseudo interpretation.
Then (H;41,A) is amenable.

Proof: Suppose not. Then there is A’ C H; 1 such that A’ is Zgi) in
the pseudo interpretation, but (H;, A’) is not amenable. Let:

Al(x) «+ B'(z,p)
where B’ is Egi) in the pseudo interpretation. For p € M’ we set:
A, = {z|B'(z,p)}-
Let B be Zgi)(M) by the same definition. For p € M we set:

Ap =:{z|B(z,p)}.

Casel i+1<n.
Then \/p\/ a™ AbF16H £ a1 0 A) holds in the pseudo in-
terpretation. This has the form: \/p\/ a'™lo(p,a’*™!) where ¢
is Hg“l), hence E(()n) in the pseudo interpretation. By (8) we
conclude that M | ¢(p,a’*!) for some p,a’™t € M. Hence
(HiF', Ap) is not amenable, where A, is Zgl)(M).
Contradiction! QED (Case 1)
Case 2 Case 1 fails.
Then ¢ + 1 = n. Since 7’ takes Hj; cofinally to H,. There
must be a € H}, such that m(a) N A" ¢ H,. From this we
derive a contradiction. Let A" = A}, where p = [f,2]. Set:
B = {{z,w)|B(w, f())}. Then Bis 2\ (M). Set: b = (dxa)NB,
where d = dom(f). Then b € H};. Define g : d — HJ}; by:

g(z) =: Agxy Na = {z € al(z,z) € b}.

Then g € H};, since it is rudimentary in a, b € H};. Let p(u", v"™, w)

be the E((]n) statement expressing

u=A,Nv" in M.
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Then setting:
e={(v,0,w)|M = ¢[g(v),a, f(2)]}

we have:

/\v €d (v,0,v) € e.

But then the same holds of w(d),n(e) in H,. Hence (z,0,z) €
m(e). Hence: [g,2] = Ajp N 7(a) € Hy.
Contradiction! QED (12)

On the other hand we have:

Let i +1<n. Let AC Hil' be Zgi)(M) in the parameter p such that
A¢ M. Let A' be (M) in 7'(p) by the same 3" (M’) definition
in the pseudo interpretation. Then A’ N H,; 11 ¢ M.

Proof: Suppose not. Then in M’ we have:
\/ a/\v”l(viJrl € a A'(v').

This has the form \/ a¢(a, 7(p)) where ¢ is Hg”l) hence E(()n). By (8)
it then follows that \/ ap(a,p) holds in M. Hence A € M.
Contradiction! QED (13)

Recall that for any acceptable M = (J4, B) we can define pi,, H:, by:
=«
p't1 = the least p such that there is A which is
s(M) with Anp ¢ M
H'= J,[A].
Hence by (11), (12), (13) we can prove by induction on 4 that:

Let 7 < n. Then
(a) phy = pis Hyp = H;

(b) The pseudo interpretation is correct for formulae ¢, all of whose
variables are of type < 1.

By (9) we then have:

T M = e M for i <n.

2
This means that if n = w, then 7’ is automatically ¥*—preserving. If
n < w, however, it is not necessarily the case that H, = Hjy,, — i.e.

the pseudo interpretation is not always correct. By (12), however we
do have:
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(16)

(17)

(18)

(19)

pn < phy, (hence H, C H};).
Using this we shall prove that 7’ is Z(()”)fpreserving. As a preliminary
we show:

Let n < w. Let ¢ be a Zén) formula containing only variables of type
i <n. Let v}},...,v% be a good sequence for ¢. Let z1,..., 2, € M’
such that x; € H;, for l = 1,...,r. Then M [ ¢[z1,...,2,] holds in
the correct sense iff it holds in the pseudo interpretation.

Proof: (sketch)

Let Cg be the set of all such ¢ with: ¢ is Z‘gz) for an i < n. Let C be the
closure of Cj under sentential operation and bounded quantifications
of the form Av™ € w"p, \/v"™ € w"p. The claim holds for ¢ € Cy
by (15). We then show by induction on ¢ that it holds for ¢ € C. In
passing from ¢ to A\ v"™ € w"p we use the fact that w" is interpreted
by an element of H,. QED (17)

Since " Hi, C H; for i < n, we then conclude:

7 M — oy M.
EO

It now remains only to show:

[f, 2] = 7' (f)(=).
Proof: Let f(z) = G(z,p) for x € dom(f), where G is Egj) good for

aj <n. Let a =dom(f). Let U(u,v,w) be a good Zgj) definition of
G. Set:

e={(z,y,w)|M = V[f(2),ida(y), const,(w)]}.

Then z € a — (z,2,0) € e. Hence the same holds of 7(a),w(e). But
x € m(a). Hence:

M' = Y[[f, 2], [ida, 2], [consty, z]],
where [idg, 2] = z, [consty, 0] = 7’(p). Hence:
[f, 2] = G'(z, 7 (p)) = 7'(f) (=),

where G’ has the same Egj) definition. QED (19)

Lemma 2.7.20 is then immediate from (6), (18) and (19).

QED (Lemma 2.7.19)

As a corollary of the proof we have:

Lemma 2.7.21. Let (M’ x') be the Zén) liftup of (M, m). Let i <n. Then
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(a) 7 M —>E§i) M’

(b) If plyy € M, then @ (phy) = ply.

(¢) If p'y = Onypy, then phy; = Onypyr.
Proof:

(a) follows by (9) and (14).
(b) In M we have:
NN €& <phy 0 =8
This has the form A £°W(£Y, pi,) where W is Eén). But then the same
holds of 7/(pY,) in M’ by (8) and (14) — i.e.
NV € <rlphy) & =¢).

c) In M we have A\ €0\ €60 = ¢ hence the same holds in M’ just as
() : ]
above.
QED (Lemma 2.7.21)

n)

The interpolation lemma for E((] liftups reads:

Lemma 2.7.22. Let 0 : H' —y, [M*| and 7" : M — m) M* such that
0

m* D on. Then the E lzftup (M'", 7"y of (M,7) exists. Moreover there is a
unique map o’ : M' — —sm M such that o' |H =0 and o'n’ = n*.
0

Proof: € is well founded since:

(f,x)€lg,y) < 7 (f)(o(2)) € 7*(g)(0(y))-
Thus (M', 7'} exists. But for E((]n) formulae o = p(v!, ..., vir) we have:
M = olr'(f1) (@), ., 7' (fr)or)]
“ (T1,...,xn) € m(e)
& (o(21),- .5 0(2n)) € a(m(e)) = 7" (e)
o M* | o[ (fi)(o(z1), ..., 7 (fr) (o ()]

where:

e={{z1,...,2r)|M = olfi(21), ..., fr(zr)]}
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and (fy,x;) € I for ¢ =1,...,r. Hence there is a Eén)fpreserving embed-
ding o : M’ — M* defined by:

o' (x'(f)(z)) = 7*(f)(o(x)) for (f,z) € T".

Clearly ¢/ | H = o and o'n’ = 7*. But ¢’ is the unique such embedding,
since if ¢ were another one, we have

o(n'(f) (@) = 7" (f)(o(x)) = o' (7' (f)(2)).
QED (Lemma 2.7.22)

We can improve this result by making stronger assumptions on the map m,
for instance:

Lemma 2.7.23. Let (M*, 1) be the Z lzftup of (M, 7). Let 7 [ phft =id
and P(p ”H) NM*C M. Then p};. =supr* pM

(Hence the pseudo interpretation is correct and 7* is Egn)

preserving.)
Proof: Suppose not. Let p = sup 7T*”p7](/[ < ply«- Set:
An. 77 1A
H" = Hjy = J) H =T,
Then H € M*. Let A be Zgn)(M) in p such that AN pift ¢ M. Let:
Az < \/y"B(y", ),
where B is Eén) in p. Let B* be Eén)(M*) in 7*(p) by the same definition.
Then ) )
o |H": (H",BNH") -y, (H,B*NH).
Then AN phft = AN P!, where:
A={z|\/y" € H B (y,2)}.
But A is Egn)(M*) in 7*(p) and H. Hence
Anpift = Anpit e P N M* C M.

Contradiction! QED (Lemma 2.7.23)
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Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine struc-
tural inner models which go beyond L. The concept of "mouse" is central
to this endeavor. We begin with a historical introduction which traces the
genesis of that notion. This history, and the concepts which it involves, are
familiar to many students of set theory, but the thread may grow fainter
as the history proceeds. If you, the present reader, find the introduction
confusing, we advise you to skim over it lightly and proceed to the formal
development in §3.2. The introduction should then make more sense later
on.

Fine structure theory was originally developed as a tool for understanding
the constructible hierarchy. It was used for instance in showing that V' =L
implies [g for all infinite cardinals 3, and that every non weakly compact
regular cardinal carries a Souslin tree. It was then used to prove the covering
lemma for L, a result which pointed in a different direction. It says that,
if there is no non trivial elementary embedding of L into itself, then every
uncountable set of ordinals is contained in a constructible set having the
same cardinality. This implies that if any a > ws is regular in L, then its
cofinality is the same as its cardinality. In particular, successors of singular
cardinals are absolute in L. Any cardinal a@ > wy which is regular in L
remains regular in V. In general, the covering lemma says that despite
possible local irregularities and cofinalities in L is retained in V.

If, however, L can be imbedded non trivially into itself, then the structure
of cardinalities and cofinalities in L is virtually wiped out in V. There is

155
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then a countable object known as 07 which encodes complete information
about the class L and a non trivial embedding of L. 0% has many concrete
representations, one of the most common being a structure LY = (L,[U], €
,U), where v is the successor of an inaccessible cardinal x in L and U is
a normal ultrafilter on P(k) N L. (Later, however, we shall find it more
convenient to work with extenders than with ultrafilters.) This structure,
call it My, is iterable , giving rise to iterates M;(i < oo) and embedding
mij « My =y, M; (i < j < 00). The iteration points k; (i < co) are called
the indiscernables for L and form a closed proper class of ordinals. Each k.
is inaccessible in L. Thus there are unboundedly many inaccessibles of L
which become w—cofinal cardinals in V. It can also be shown that all infinite
successor cardinals in L are collapsed and become w—cofinal in V. If we chose
ko minimally, then My = 0% is unique. We briefly sketch the argument for
this, since it involves a principle which will be of great importance later on.
By the minimal choice of k¢ it can be shown that hag (0) = My (i.e. p}wo =w

and ) € P}, ). Now let M} = LY be another such structure. Tterate My, M,
Mo 2 0

out to wy, getting iteration (M;|i < wy), (M]|i < wq) with iteration points
ki, K. Then Ky, = k[, = wi. Moreover the sets:

C={rili <wi},C" = {kl)i <wi}

are club in wy. Hence C'NC" is club in wy. But the ultrafilters U, , U, are
uniquely determined by C'N C’. Hence M,,, = M/, . But then:

Mo = hay,, 0) = hMLI (0) ~ M.

Hence My = M. This comparision iteration of two iterable structures will
play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which sig-
nificantly differed from L was made by Solovay in the early 1970’s. Solo-
vay developed this fine structure of LY (where U is a normal measure on
P(x) N LY). He showed that each level M = J{ had a viable fine structure,
with p%, Py, R} (n < w) defined in the usual way, although M might be
neither acceptable nor sound. If e.g. a > k and p}; < k (a case which cer-
tainly occurs), the we clearly have R}, = 0. However, M has a standard
parameter p = pys € lew and if we transitivize hps(P), we get a structure

M = Jg which iterates up to M in x many steps. M is then called the core
of M. (M itself might still not be acceptable, since a proper initial segment
of M might not be sound.) (If n < 1 and p%, < k, we can do essentially
the same analysis, but when iterating M to M we must use E(()n)fpreserving
ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay’s analysis on its head by defining a
mouse (or Solovay mouse) to be (roughly) any J,, or iterable structure of the
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form M = J{ where U is a normal measure at some x on M and p%; < .
They then defined the core model K to be the union of all Solvay mice. They
showed that, if there is no non trivial elementary embedding of K into K,
then the covering lemma for K holds. If, on the other hand, there is such
an embedding 7 with critical point x, then U is a normal measure on x in
LY = (L[u], €, u), where:

U ={z € P(r) N K|x € n(X)},

(This showed, in contrast to the prevailing ideology, that an inner model with
a measurable cardinal can indeed be "reached from below".) The simplest
Solovay mouse is 0% as described above. What K is depends on what there
is. If 07 does not exist, then K = L. If 0% exists but 07# does not, then
K = L(0%) etc. In order to define the general notion of Solovay mouse, one
must employ the full paraphanalia of fine stucture theory.

Thus we have reached the situation that fine structure theory is needed not
only to analyze a previously defined inner model, but to define the model
itself.

If we have reached LU with U a normal ultrafilter on x and 7 = k¥ in LY,
then we can regard LU as the "next mouse" and continue the process. If
(L%)# does not exist, however, this will mean that LY is the core model. The
full covering lemma will then not necessarily hold, since V' could contain a
Prikry sequence for k.

However, we still get the weak covering lemma:
cf(B) = card(B) if B > wsq is a cardinal in K.
We also have generic absoluteness:

The definition of K is absolute
in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discov-
ered. For instance the "core model below two measurables" defined a unique
model with the above properties under the assumption that there is no inner
model with two measurable cardinals. Similarly with the "core model up
to a measurable limit of measurables” etc. Initially this work was pursued
by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other.
Mitchell got further, introducing several important innovations. He divided
the construction of K into two stages: In the first he constructed an inner
model K¢, which may lack the two properties stated above. He then "ex-
tracted" K from K¢, in the process defining an elementary embedding of K
into K¢. This approach has been basic to everything done since. Mitchell
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also introduced the concept of eztenders, having realized that the normal
ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a
mouse is regarded as a structure M = JE where E describes an indexed
sequence of ultrafilters or extenders. A major requirement is that M be
iterable , which entails that any of the indexed extenders or ultrafilters can
be employed in the iteration. But this would seem to imply that eny F' lying
on the indeved sequence must be total — i.e. an ultrafilter or extender on
the whole of P(k) N M (k being the critical point). Unfortunately the most
natural representations of mice involve "allowing extenders (or ultrafilters)
to die". Letting M = JU be the representation of 07 described above, it is
known that p}, = w. Hence JU ; contains new subsets of x which are not
"measured" by the ultrafilter U. The natural representation of 0## would
be M’ = Jg’U/ where:
U' = {X|x" € m(x)},

and 7 is an embedding of LY into itself with critical point ' > k. But

U is not total. How can one iterate such a structure? Because of this

conundrum, researchers for many years followed Solovay’s lead in allowing

only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay’s

representation of 077% was J,f],/ This structre is not acceptable, however, since

there is a v < 1/ set. k' < v and leU = w < K'. Such representation of
Y

mice were unnatural and unwieldy. The conundrum was finally resolved by
Mitchell and Stewart Baldwin, who observed that the structures in which
extenders are "allowed to die" are in fact, iterable in a very good sense. We
shall deal with this in §3.4. All of the innovations mentioned here were then
incorporated into [MS| and [CMI]. They where also employed in [MS| and
[NFS].

It was originally hoped that one could define the core model below virtually
any large cardinal — i.e. on the assumption that no inner model with the
cardinal exists one could define a unique inner model K satisfying weak
covering and generic absoluteness. It was then noticed, however, that if we
assume the existence of a Woodin cardinal, then the existence of a definable
K with the above properties is provably false. (This is because Woodin’s
“stationary tower” forcing would enable us to change the successor of w,, while
retaining w,, as a singular cardinal. Hence, by the covering lemma, K would
have to change.) This precludes e.g. the existence of a core model below "an
inaccessible above a Woodin", but it does not preclude constructing a core
model below one Woodin cardinal. That is, in fact, the main theorem of
this book: Assuming that no inner model with a Woodin cardinal exists, we
define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
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proving the following theorem: Let s be a measurable cardinal. Assume that
V.. has no inner model with a Woodin cardinal. Then there is V—definable
inner model K of V, which, relativized to Vi, has he above two properties.
This result, which was exposited in [CMI| was an enormous breakthrough,
which laid the foundation for all that has been done in inner model theory
since then. There remained, however, the pesky problem of doing without
the measurable — i.e. constructing K and proving its properties assuming
only "ZFC+ there is no inner model with a Woodin". The first step was to
construct the model K¢ from this assumption. This was almost achieved
by Mitchell and Schindler in 2001, except that they needed the additional
hypothesis: GCH. Steel then showed that this hypothesis was superfluous.
These results were obtained by directly weakening the "background condi-
tion" originally used by Steel in constructing K¢. The result of Mitchell
and Schindler were published in [UEM]. Independently, Jensen found a con-
struction of K¢ using a different background condition called "robustness".
This is exposited in [RE]. There reamained the problem of extracting a core
model K from K¢. Jensen and Steel finally achieved this result in 2007. It
was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential
to the rest of the book. (We shall, however, deal only with so called "short
extenders", whose length is less than or equal to the image of the critical
point.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter
at x can be described by a two valued function on P(x). An extender, on
the other hand, is characterized by a map of P(x) to P()\), where A > k. \is
then called the length of the extender. Like a normal ultrafilter an extender
Finduces a canonical elementary embedding of the universe V into an inner
model W. We express this in symbols by: 7 : V —p W. W is then called
the wltrapower of V' by F and 7 is called the canonical embedding induced
by F. The pair (W, ) is called the extension of V by F. We will always
have: A < mw(k). However, just as with ultrafilters, we shall also want to
apply extenders to transitive models M which may be smaller than V. F
might then not be an element of M. Moreover P(x) might not be a subset
of M, in which case F' is defined on the smaller set U = P(x) N M. Thus we
must generalize the notion of extenders, countenancing "suitable" subsets of
P(k) as extender domains. (However, the ultrapower of M by F may not
exist.)
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We first define:

Definition 3.2.1. S is a base for x iff S is transitive and (S, €) models:
ZFC™ + k is the largest cardinal.

By a suitable subset of P(k) we mean P(k) N S, where S is a base for k.

We note:

Lemma 3.2.1. Let S be a base for k. Then S is uniquely determined by
P(k)NS.

Proof: For a,e € P(k) NS set:

u(a, e) ~: that transitive u such that
(u, €) is isomorphic to (a, é),
where ¢ = {(v,7)| < v, T -€ e}.

Claim S = the union of all u(a,e) such that a,e € P(x) NS and u(a,e) is
defined.

Proof: To prove (C), note that if w € S is transitive, then there exist
a < kK, f € S such that f: a <> u. Hence u = u(a, e) where e = {< v, 7 >
| f(v) € f(7)}. Conversely, if u = u(a,e) and a,e € P(k) NS, then u € S,
since the isomorphism can be constructed in S. QED (Lemma 3.2.1)

Definition 3.2.2. An ordinal )\ is called Géddel closed iff it is closed under
Godel’s pair function <, > as defined in §2.4. (It follows that X is closed
under Godel n—tuples < z1,...,z, >=.)

We now define

Definition 3.2.3. Let S be a base for k. Let A be Gddel closed. F'is an
extender at k with length X\, base S and domain P(k) N S iff the following
hold:

e F'is a function defined on P(k) NS

e There exists a pair (S, ) such that

(a) m:S < S’ where S’ is transitive

(b) k=crit(m),m(k) > A >k
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(c) Every element of S’ has the form 7(f)(a) where « < Aand f € S
is a function defined on k.

(d) F(X)=nm(X)NnAfor X e P(k)NS.
Note. If F'is an extender at k, then x is its critical point in the sense that
F Ik =1id, F(k) is defined, and k < F(k). Thus we set: crit(F) =: k.
Note. (c) can be equivalenly replaced by:

7m:8 < S cofinally.

We leave this to the reader.

Note. P(k) NS C S since X = n(X) Nk € 5. But the proof of Lemma
3.2.1 then shows that S C S’. (We leave this to the reader.)

Note. As an immediate consequence of this definition we get a form of fos
Theorem for the base:

S’ ':(,0[71'(]01)(041)7 ) (fn)(an)] <

—

< a =€ F({{§)IS E olfi(&1), -, fu(&a)]})

where aq,...,a, < A and f; € S is a function defined on « for i =1,...,n.

Note. (S, 7) is uniquely determined by F since if (S, %) were a second such
pair, we would have:

m(f)(a) e m(g)(B) <o, f =€ F({< &6 - [f(§) € 9(§)})
< 7(f)(a) € 7(g)(B)-

Thus there is an isomorphism i : S¢S defined by i(7(f)(a)) = 7(f)().

Since S, S are transitive, we conclude that i = id, S’ = S.

But then we can define:

Definition 3.2.4. Let S, F, S’, 7 be as above. We call (S’, 7) the extension
of S by F (in symbols: 7: S —p 7).

Note. It is easily seen that:

e 5 is a base for m(k)
e The embedding 7 : S — S’ is cofinal (since 7(f)(c) € w(rng(f))).

Note. The concept of extender was first introduced by Bill Mitchell. He
regarded it as a sequence of ultrafilters (or measures) (Fq|la < A), where
F, = {X|a € F(X)}. For this reason he called it a hypermeasure. We shall
retain this name and call (F,|a < A) the hypermeasure representation of F.
We can recover F by: F(X) ={«a|X € F,}.
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Definition 3.2.5. We call an extender I’ on s with base S and extension
(S’,7) full iff w(k) is the length of F.

In later sections we shall work almost entirely with full extenders. We leave
it to the reader to show that if S is a ZFC™ model with largest cardinal x
and 7 : S < S’ cofinally. Then 7 [P(x) is a full extender with base S and
extension (S', ).

!/

Lemma 3.2.2. Let F be an extender with base S and extension (S’ 7).

Then:
(a) (S',7) is amenable
(b) If F is full, then (S, F) is amenable.
(c) If ¢ is Xo, then {(Z) : (S,7) = ¢[Z]} is uniformly X,((S,F)) in
LlyeeeyTp.
Proof: (b) follows from (a), since then:
Fnu={Y,X)ernulX CkAY C A}

We prove (a). Since 7 takes S to S’ cofinally, it suffices to show: 7N7(u) € S’
for u € S. We can assume w.l.o.g. that w is transitive and non empty. If
(m(X),X) € mNm(u), then 7(X) € m(u) by transitivity, hence X € u. Thus
7N7(u) = (7 ]u) N7(u) and it suffices to show:

Claim 7 lu € 5.
Let f = (f(i)|i < k) enumerate u. Then 7 [u = {(7(f)(?), f(2))]i < k}.

This proves (a). We now prove (c). It suffices to show:

Claim. (v # @ is transitive and y = 7 [ v) is uniformly 3, ((S, F)) in v, y,
since then (S, 7) = ¢[7] is expressed by:

\/w\/u(u,w are transitive AZ € uA7lu CwA (w,m[u)) | ¢[7]

We prove the Claim. Let u # @ be transitive. Then:
y=mlu <= \[f(f:k —uny={{x()E),f()):i<r})
{k},{m(k)} are uniformly ¥;((S, F')), since

(m(k), k) = the unique < f,a € F.
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Hence it suffices to show that {m(f)} is uniformly 3 ((S, F')) in f. Let:
X =A{=jii-enr:fi)ef)}
Then f is the unique function ¢ such that
dom(g) =k A g(j) ={9(i) :< j,i =€ X} for i < k.

Since F(X) = m(X) we conclude that w(f) is the unique function g such
that

dom(g) = w(k) A g(j) = {g(i) :< j,i =€ F(X)} for i < 7(k).
The conclusion is immediate. QED (Lemma 3.2.2)

Definition 3.2.6. Let F' be an extender at x with base S, length A, and
extension (S’, 7). The expansion of F is the function F* on [J P(k™) NS

n<w
defined by:
FY(X)=n(X)n A" for X € P(k")N S.
We also expand the hypermeasure by setting:
Foy o = {X (@) € F*(X)}
for aq,...,a, < A. By an abuse of notation we shall usually not distinguish
between F' and F*, writing F'(X) for F*(X) and Fy for FZ.
Using this notation we get another version of Los Lemma:
S’ E oplr(f)@),. .., 7(fu)(@)] <
{EIS E elfi(@).. falE)} € Fa
for aq,...,mym < X and f; € M a function with domain k™ fori=1,...,n.

Note. Most authors permit extenders to have length which are not Gédel
closed. We chose not to for a very technical reason: If A is not Gddel closed,
the expanded extender F™* is not necessarily determined by F' = F* [P(k).

Hence if we drop the requirement of Gédel completeness, we must work with
expanded extenders from the beginning. We shall, in fact, have little reason
to consider extenders whose length is not Godel closed, but for the sake of
completeness we give the general definition:

Definition 3.2.7. Let S be a base for k. Let A > k. F is an ezpanded
extender at k with base S, length X\, and extension (S’ m) iff the following
hold:
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e F'is a function defined on |J, _ P(k") NS

n<w

e 7:5 <S5 where S’ is transitive

o k= crit(m), 7(k) > A

Every element of S’ has the form 7(f)(au,...,a,) where ay, ..., ap, <
Aand f € S is a function defined on k"

o F(X)=n(X)Nk"for X € P(k") N S.

This makes sense for any A > «. If, indeed, A is Gdédel closed and F' is an
extender of length A\ as defined previously, then F* is the unique expanded
extender with F' = F* [P(k).

Definition 3.2.8. Let F' be an extender at s of length A with base S and
extension (S’, 7). X C \is a set of generators for F iff every 5 < X has the
form 8 = n(f)(d) where ay,...,a, € X and f € S.

If X is a set of generators, then every x € S’ will have the form 7(f)(d)
where a1,...,a, € X and f € S. Thus only the generators are relevant. In
some cases {k} will be a set of generators. (This will happen for instance
if X\ is the first admissible above x or if A = k + 1 and F is the expanded
extender.) This means that every element of S’ has the form 7(f)(x) and
that:

S ln(£)(R)] < {€1S E ¢lf(©)]} € Fr.
Thus, in this case, S’ is the ultrapower of S by the normal ultrafilter Fj.

In §2.7 we used a "term model" construction to analyze the conditions under
which the liftup of a given embedding exists. This construction emulated
the well known construction of the ultrapower by a normal ultrafilter. We
could use a similar construction to determine wheter a given F is, in fact,
an extender with base S — i.e. whether the extension (S’,7) by F' exists.
However, the only existence theorem for extenders which we shall actually
need is:

Lemma 3.2.3. Let S be a base for k. Let m* : S < S* such that k = crit(n™)
and k < A < 7*(k) where X\ is Gédel closed. Set

F(X)=7"(X)NAX for X e P(k) N S.

Then

(a) F is an extender of length A.
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(b) Let (S',m) be the extension by F. Then there is a unique o : S’ < S*
such that omr = 7 and 7 X = id.

Proof: We first prove (a). Let Z be the set of 7*(f)(«) such that o < A
and f € S is a function on k.

(1) Z < S*

Proof: Let S* = \/ vp[Z] where x1,...,2, € Z. We must show:

Claim Vy € ZS* = ¢[y, 7).

We know that there are functions f; € S and «; < X such that z; =
7 (fi)(ou) for i = 1,...,n. By replacement there is a g € S such that
dom(g) = x and in S:

/\51...§n <K (\/y@(y; fl(fl)? o 7fn(§n)) -
90(g(< 517 s 7§'ﬂ ~ fl(fl), B fn(gn))))

But then the corresponding statement holds of 7* (), 7*(¢), 7*(f1), . . ., 7" (fn)
in S*. Hence, setting 8 =< aq,...,q, > we have:

S*E el (9)(B), 7 (fi) (), -, 7 (fn) (on)]-
QED (1)

Now let o : S" <& Z where S’ is transitive. Set: m = o~ !7*. Then S < S’
o:58 < 5% and o(n(f)(«)) = 7*(f) () for a < A\. It follows easily that F'
is an extender and (S’, ) is the extension by F.

This proves (a). It also proves the existence part of (b), since o [ A = id and
om = 7*. But if ¢’ also has the properties, then o'(7(f)(«)) = 7*(f)(a) =
o(n(f)(«)). Then ¢/ = o and o is unique. QED (Lemma 3.2.3)

Definition 3.2.9. Let F' be an extender at £ with extension (S’, 7). Let
k < XA < 7m(k) where \ is Godel closed. F|\ is the function F’ defined by:
dom(F’) = dom(F') and

F'(X)=n(X)N X for X € dom(F).

It follows immediately from Lemma 3.2.3 that F'|\ is an extender at x with
length A.

The main use of an extender F' with base S is to embed a larger model M
with P(k) N M =P(k) NS € M into another transitive model M’, which we
then call the ultrapower of M by F. Ther is a wide class of models to which
F' can be so applied, but we shall confine ourselves to J-models.
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Definition 3.2.10. Let M be a J-model. F'is an eztender at k on M iff F
is an extender with base S and P(x) " M = P(k) NS € M, where « is the
largest cardinal in S. (In other words S = HM € M where 7 = k™.)

Making use of the notion of liftups developed in §2.7.1 we define:

Definition 3.2.11. Let F be an extender at x on M. Let H = HM be the
base of F' and let (H',7") be the extension of H by F. We call (N,7) the
extension of M by F (in symbols 7 : M —p N) iff (N, ) is the liftup of
(M,7").

We then call N the wltrapower of M by F'. We call 7w the canonical embedding
given by F.

Note. that m is ¥ preserving but not necessarily elementary.

Lemma 3.2.4. Let F be an extender at k on M of length A. Let (N, ) be

the extension of M by F. Then every element of N has the form 7(f)(«)
where a« < X and f € M is a function with domain k.

Proof: Let H = HM and let (H',7') be the extension of H by F, where
7 =r*M. Each x € N has the form z = 7(f)(z), where f € M is a function,
dom(f) € H and z € w(dom(f)). But then z = n(g)(a) where « < \,g € H
and dom(g) = k. We may assume w.l.o.g. that rng(g) C dom(f). (Otherwise
redefine g slightly.) Thus z = 7(f o g)(«). QED (Lemma 3.2.4)

Using the expanded extenders we then get F.os Theorem in the form:

Lemma 3.2.5. Let M, F, A\, N, m be as above. Let aq,...,an < A and let
fi € M be such that f; : k™ — M fori=1,...,n. Let p be Xg. Then

— — - —

N elr(f(@)] < {{IM = ¢[f(§)]} € Fa.
Proof: Asin §2.7.1 we set:
%= T9%7, M) = the set of f € M such that
f is a function and dom(f) € HM.

Then f; € TV, dom(f;) = x™. By Los Theorem for liftups we get:

—

N = plr(f)(@)] < (@) € m(e) NA™ = F(e)

where

— —

e = {{E)IM = ¢[f()]}-
QED (Lemma 3.2.5)

The following lemma is often useful:
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Lemma 3.2.6. Let F,k, M, be as above. Let T be regular in M such that
7 # k. Then w(t) = supn’7.

Proof: If 7 < k this is trivial. Now let 7 > k. Let £ = 7(f)(a) < 7(7),
where o < A\. Set 8 = sup f”k. Then 8 < 7 by regularity. Hence:

£ =m(f)(@) < supm(f)'n(x) =m(B) < m(r).
QED (Lemma 3.2.6)

3.2.1 Extendability

Definition 3.2.12. Let F' be an extender at x on M. M is extendible by F
iff the extension (N, 7) of M by F' exists.

Note. This requires that N be a transitive model.

(N,7), if it exists, is the liftup of (M, n’) where H = HM 7 = k™™ and
(H',7') is the extension of its base H by F. In §2.7.1 we formed a term
model I in order to investigate when this liftup exists. The points of D
consisted of pairs (f, z) where

f €%, M) := the set of functions f € M such that dom(f) € H.
The equality and set membership relation were defined by
(f,2) = (g, w) ©: (z,w) € 7' ({{z,9)|f(x) = 9(y)})
(f,2)€(g,w) < (z,w) € 7' ({(z,y)[f(x) = 9(y)})
Now set:

Definition 3.2.13. T =TY(k, M) =: {f € I'’| dom(f) = x}.

Set D* = D*(k, M) =: the restriction of D to terms (¢, a) such that ¢t € I'0
and a < A. The proof of Lemma 3.2.4 implicitly contains a barely disguised
proof that:

/\xGD\/yED*x:y.

The set membership relation of D* is:

(f,o) € (g, 8) &= a,B =€ ' ({£,C}Hf(E) € g(O)}).

In §2.7.1. we used the term model to show that the liftup (N, 7) exists if and
only if € is well founded. In this case D* contains all the points of interest,
so we may conclude:
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Lemma 3.2.7. M is extendible iff €* is well founded.

Note. In the future, when dealing with extenders, we shall often fail to
distinguish notationally between I'Y, D*, €* and I'O, D, €.

Using this principle we develop a further criterion of extendability. We define:

Definition 3.2.14. Let F be an extender on M at & of length . Let F be
an extender on M at x of length A.

(m.g): (M, F) = (M, F)

(a) m: M —x, M and 7(R) =k

(b) g: A=A
(¢c) Let X C R, 7(X) = X, a1,...,a, < X\ Let B = g(a;) for i =
1,...,n. Then

<@ =€ F(X) = =€ F(X).

Lemma 3.2.8. Let (m,q) : (M, F) — (M, F), where M is extendible by F.
Then M is extendible by F. Moreover, if (N,o), (N,5) are the extensions
of M, N respectively, then there is a unique 7' such that

7N =y, N, ©'d=om, and 7' | X = g.

7' is defined by:
' (@(f)()) = om(f)(9(a))
for feT% and o < .

Proof: We first show that M is extendible by F. Let o : M —p N. The
relation € on the term model D = D(&, M) is well founded, since:

(f,a)€(h, B) <=<a,B - F{<&¢>[f(€) € h(()})
&= g(a),g(B) =€ F{=< & ¢ = [m(f)(€) € m(R)(()})
& on(f)(g(e) € om(h)(g(8))

Now let : M — N. Let ¢ be a ¥y formula.

Then:
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Hence there is 7’ : N —5, N defined by:

™' (@(f)(a)) = on(f)(g(a)).

But any 7’ fulfilling the above conditions will satisfy this definition.
QED (Lemma 3.2.8)

3.2.2 Fine Structural Extensions

These lemmas show that IV is the ultrapower of M in the usual sense. How-
ever, the canonical embedding can only be shown to be ¥p—preserving. If,
however, M is acceptable and x < pfi;, the methods of §2.7.8 suggest another

type of ultrapower with a E(()")fpreserving map. We define:

Definition 3.2.15. Let M be acceptable. Let F' be an extender at x on M.
Let H = HM be the base of F and let (H', 7') be the extension of H by F.
Let pft; > K (hence ph, > 7). We call (N, 7) the E(()n) —eztension of M by F
(in symbols: 7w : M —>§§L> N) iff (N, ) is the E(()n) liftup of (M, «').

The extension we originally defined is then the ¢ ultrapower (or Z(()O) ultra-

power). The Z(()n) analogues of Lemma 3.2.4 and Lemma 3.2.5 are obtained
by a virtual repetition of our proofs, which we leave to the reader.

Letting I'" = I'"(7, M) be defined as in §2.7.2 we get the analogue of Lemma
3.2.4.

Lemma 3.2.9. Let F' be an extender at k on M of length X\. Let p%; > K
and let (N, ) be the E(()n) extension of M by F. Then every element of N
has the form w(f)(«) where o < X and f € I'™ such that dom(f) = k.

Lemma 3.2.10. Let M, F, )\, N, 7 be as above. Let aq,...,am < A and let
fi € T™ such that dom(f;) = k™ fori=1,...,p. Let ¢ be a Eén) formula.
Then:

— - —

Nk oln(/)(@)] < {EIM | ol f(E)]} € Fa.
Note. We remind the reader that an element f of I' is not, in general, an
element of M. The meaning of 7(f) is explained in §2.7.2.
Using Lemma 2.7.22 we get:

Lemma 3.2.11. Let * : M — ) M* where £ = crit(n*) and 7*(k) > A,
0
where X\ is Godel closed. Assume: P(k) N M € M. Set:

F(X)=7"(X)NAX for X € P(k) N M.
Then:
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(a) F is an extender at k of length A on M.
(b) The Z(()n) extension (M',w) of M by F exists.

(¢) There is a unique o : M" =) M* such that o' [ A =id and om = 7*.
0

Proof: Let H = HM, H* = n*(H). Then H is a base for x and 7* |

H : H < H*. Hence by Lemma 3.2.3 F' is an extender at x with base H
and extension (H', 7). Moreover, there is a unique ¢’ : H' < H* such that

o' X=1id and o'’ = 7* | H. But by Lemma 2.7.22 the E(()n) liftup (M’ )
of (M, n') exists. Moreover, there is a unique o : M’ —rom M* such that
0

o | H =o' and o’ = 7*. In particular, ¢ [ A = id. But o is then unique
with these properties, since if 6 had them, we would have:

o(m(f)(a)) =7 (f)(e) = o(x(f)(a))
for f € I'",dom(f) = Kk, < A. QED (Lemma 3.2.11)

By Lemma 2.7.21 we get:

Lemma 3.2.12. Let 7 : M —>¥f) N. Let i <n. Then:

(a) T is Eg) preserving.
(b) w(phy) = Py if Py € M.
(c) phy =OnnM' if pi, = OnnM.

The following definition expresses an important property of extenders:

Definition 3.2.16. Let F be an extender at k of length A with base S. F'is
weakly amenable iff whenever X € P(k?)N S, then {v < k|{v,a) € F(X)} €
S for a < A

Lemma 3.2.13. Let F' be an extender at k with base S and extension (S', 7).
Then F is weakly amenable iff P(k) NS C S.

Proof:

(=) Let Y e P(k) NS, Y = 7(f)(a),a < X\ Set X = {{1,&) € K?|v €
f(&)}. Then n(f)(a) = {v < k|(r,a) € F(X)} € S, since F(X) =
m(X) N A

(+) Let X € P(k?)NS, a < A. Then {v < |(v,a) € T1(X)} € P(k) NS C
S.
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QED (Lemma 3.2.13)

Corollary 3.2.14. Let M be acceptable. Let F be a weakly amenable ex-

tender at k on M. Let (N,7) be the Z((]n) extension of M by F. Then
P(k)NN C M.

Proof: Let H=HM H = Uwen 7(u), @ =m[H. Then H is the base for
F and (H,7) is the extension of H by F. Hence P(k)NH C H C M. Hence
it suffices to show:

Claim P(x) NN C H.

Proof: Since (k) > k is a cardinal in N and N is acceptable, we have:
P(k) NN C HY,y =n(HY) € H.
QED (Corollary 3.2.14)

Corollary 3.2.15. Let M, F, N, be as above. Then k is inaccessible in M
(hence in N by Corollary 3.2.1/).

Proof:

(1) kis regular in M.
Proof: If not there is f € M mapping a v < k cofinally to x. But

then 7(f) maps «y cofinally to 7(x). But n(f)(&) = 7n(f(€)) = f(&§) <k
for £ < 7. Hence sup{n(f)(¢)|{ <~} C k. Contradiction!

(2) k#~T in M for v < k.
Proof: Suppose not. Then 7(x) = " in N where 7(x) > x. Hence
K =+1in N and N has a new subset of k. Contradiction!

QED (Corollary 3.2.15)
By Corollary 3.2.14 and Lemma 2.7.23 we get:

Lemma 3.2.16. Let m : M ng) N where F is weakly amenable. Let n

be mazimal such that pi; > k. Then p¥ = sup7n”ply;. (Hence 7 is Zgn)

preserving. )

With further conditions on F’ and n we can considerably improve this result.
We define:
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Definition 3.2.17. Let F be an extender at x on M of length A. F is close
to M if F' is weakly amenable and Fy, is X;(M) for all o < A.

This very important notion is due to John Steel. Using it we get the following
remarkable result:

Theorem 3.2.17. Let M be acceptable. Let F' be an extender at k on M
which s close to M. Let n < w be maximal such that p™ > x in M. Let
(N, 7) be the E(()n) extension of M by F'. Then m is X* preserving.

Proof: If n = w this is immediate, so let n < w. Then p"t! C k < p" in
M. By the previous lemma 7 is 3¥;—preserving. Hence 7(k) is regular in N.
Set: H = HM. Then H = HY by Corollary 3.2.14.

(1) Let D ¢ H be 2" (N). Then D is 2" (M).
Proof: Let:
D(z) ¢+ \/2"D'(a", z,7(f)(c))

where v < A\, f € I'™ such that dom(f) = k, and D’ is Eén). Then by
Lemma 3.2.16:

D(z) < VueHYy\Vzen(uD (z,zm(f)(a))
< \Vue Hjja e n(e)
< \Vue HyjeeF,

where e = {£|\/ 2 € uD(x, z, f(£))} where D is E(()n)(M) by the same
definition as D’ over N. QED (1)

By induction on m > n we then prove:

(2) (a) Hj; = Hy
(b) =™ (M) NP(H) = =™ (N) N P(H)
(¢) 7is Egm)fpreserving.
Proof:

Caselm=n+1

(a) Let M = (JA,B), N = (J&,B). Then: H = J/ = J/. But

P(p)N M =P(p) NN =P(p) N H for p < k.
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But then in M and N we have:

P = the least p < k such that DN J[f‘ ¢ H for D € ;Y‘)
and H™ = J;;‘m.
Hence pfy = p, Hyp = HY. QED (a)
Let A(Z™, x;,,...,x;,) be ng)(M), where i1,...,7, < n. Let A be

Egm)(N) by the same definition. Then there are Egm)(M) relations
B (#™, Z)(j=1,...,q) and a %, formula ¢ such that

A@™,T) & Hy F ol7™]

where Hy = <Hm,§913, ...,BL) and

T

Bl = (@B E™ D =1,...,q).

Let B/(z™, %) have the same Egn) definition over N. Define HZ* the
same way, using B',..., B? in place of El, ...,BY. Then

A@E™, @) & HY o).

But Hy; = Hp;. Hence, since 7 is Egn)

BJ - Hence H = HIZ. But then:

: . Bl
preserving, we have: By =

since (™) = 2. QED (c)

The direction C follows straightforwardly from (c). We prove the di-
rection D. Let A(Z™, x;,,- - ,x;,) be ng) (N) such that A C H. Then
there are B/ (j = 1,...,q) such that B7 is Zgn)(N) and

Az(z") <> HZ |= ¢[Z, 5]

where s € H™ and ¢ is a ¥ formula and HI' = (H™, BL, ..., BY). By
(1) there are B’ (j = 1,...,q) such that B’ is Zgn)(M) and BL = B%
whenever z;,,...,z; € H. The conclusion is immediate.

QED (Case 1)
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Case 2 m = h + 1 where h > n.
This is virtually identical to Case 1 except that we use:

s np(Hl) =2 nP(HY)

in place of (1). QED (Theorem 3.2.17)

Theorem 3.2.17 justifies us in defining:

Definition 3.2.18. Let I be an extender at k on M. Let n < w be maximal
such that ph; > k. We call (N, x) the ¥*-extension of M by F (in symbols

m: M —% N)iff F is close to M and (N, ) is the E(()") extension by F.

As a corollary of the proof of Lemma 3.2.16 we have:

Corollary 3.2.18. Let m: M —% N. Let H = HM and p' < x. Then:

e H=HY
o M NP(H) =N NP(H).
o (M) NPH) = 2 (N) N P(H).

n+1 __ n+1
. HM —HN .

3.2.3 n—extendibility

Definition 3.2.19. Let F' be an extender of length A\ at xk on M. M is
n—estendible by F iff k < p}, and the Z((]n) extension (N,7) of M by F
exists.

(N, ), if it exists, is the E[()n) liftup of (M, ') where H = HM is the base
of F, 7 = k™™ and (M’ ,7') is the extension of H by F. To analyse this
situation we use the term model D = D™ (x/, M) defined in §2.7.2. The
points of D are pairs (f, z) such that f € I =TI (7, M) as defined in §2.7.2.
and z € 7'(dom(f)). The equality and set membership relation of D are
again defined by:

(f,2) = (g, w) & (z,w) € 7' ({{z,9)|f(x) = 9(y)})
(f,2)€{g,w) & (z,w) € 7' ({{z,y)|f () = 9(1)})
Set: I'? = I'P(k, M) =: the set of f € I'" such that dom(f) = k. Let

D, = D™ (F, M) be the restriction of D to points (f,d) such that f € '}
and a < A. The proof of Lemma 3.2.7 tells us that

/\a:GID)\/yGD*a::y.
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Hence M is E(()n) extendable iff the restriction €* of the relation € to D, is
well founded.

We have:
(f,a) € (g,8) ¢ (o, 8) € F{(£, O1f(&) € 9(O})-

Note. When dealing with extenders, we shall again sometimes fail to dis-
tinguish notationally between '}, ]D)Sk”)7 e* and ', D™ &

We now prove:

Lemma 3.2.19. Let (m,g) : (M, F) — (M, F), where M is m—extendible
by F. Let n < m and let m be Z(()n) preserving with & < p™ in M, where
% = crit(F). Then M is n—extendible by F. Moreover, if (N, o) is the E(()m)
extension of M by F and (N,T) is the E(()n) extension of M by F, then there
is a unique w such that

N ) N, 76 =0N,7'[A=yg
0
7' is defined by:

' (@(f)(a)) = on(f)(g(
for f € TR, M), a < B.

~—

)

ol
Il
=]
Bl
g

Proof: Let €* be the set membership relation of

Then:

(f,a) € (h,B) < (a,B) € F({(£,¢)
(9(a),9(B)) € F{(E,
& on(f)(a) € am(f)(B)-

Hence there is 7’ : N —m) IV defined by:
0

' (@(f) (@) = on(f)(9(c)).

But any 7’ fulfilling the above conditions satisfies this definition.
QED (Lemma 3.2.19)

Taking 7, g as id, we get:

Corollary 3.2.20. Let M be Eém) extendible by F'. Let n <m. Then M is
Z((]n) extendible by F'. Moreover, if o : M —>§;m) Nando: M —>§;m) N, there
ism: N —om N defined by:

0

m(@(f)(a) = o(f)(a) for feT™ a <A



176 CHAPTER 3. MICE

Lemma 3.2.19 is normally applied to the case n = m. The condition k < pnﬁ
)

will be satisfied if the map m is strictly Z(()n -preserving. However, it does not

follows that 7’ is strictly Z(()n) -preserving. Similarly, even if we assume that

m is fully Z(ln) -preserving, we get no corresponding strengthening of /. We
can remedy this situation by strengthening our basic premiss:

<7r,g> : <M7F> — <M7F>
We define:
Definition 3.2.20. (7, g): (M,F) —* (M, F) iff the following hold:

o (m.g): (M,F) — (M,F)
e F.F are weakly amenable

e Let @ < A\ = length (F). Then F, is ¥;(M) in a parameter p and
Fy(a) is £1(M) in p = 7(p) by the same definition.

(Hence F is close to M.) Taking n = m in Lemma 3.2.19 we prove:

Lemma 3.2.21. Let (m,g) : (M,F) —* (M,F). Let o : M —>g}) N where
T s Egn) preserving. Let @ : M _>;f‘) N, 7 : N = N be given by Lemma

3.2.19. Then 7' is Egn) preserving.

We derive this from a stronger lemma:
Lemma 3.2.22. Let (m,g) : (M,F) —* (M,F). Let n,N,N,n" be as
above, where m is Egn) preserving. Let D(y,z1,...,1z,) be Egn)(ﬁ) and
D(y,z1,...,x,) be Egn)(N) by the same definition. Let n'(%;) = x;(i =
1,...,7). Then B

{7 e B |D(G, 71, ..., 7))}

is Egn) (M) in a parameter D

and:

{<?7> S H,i\/[|D(17,x1’ s 7$T)}
is Egn)(M) in p=m(p) by the same definition.

Before proving Lemma 3.2.22 we show that it implies Lemma 3.2.21. Let

D(zy,...,x,) be EYL)(N) and let D(zq,...,x,) be Egn)(N) by the same
definition. Set:

D' (y, &) <y =@ AD@); D'(y,&) ¢y = @ A D(Z).
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Let ©'(z;) = 2; (i =1,...,7). Applying Lemma 3.2.22 and the Egn) preser-
vation of m we have:

D(Z,...,7,) < oe{yecHYD (y,71,...,7,)}
o oe{ye HM|D' (y,x1,...,2.)}
< D(xy1,...,x,).
QED
We now prove Lemma 3.2.22. For the sake of simplicity we display the proof

for the case r = 1. Let D(i,z) be Egn) (N) and D(,x) be Egn)(N) by the
same definition. We may assume:

(—)\/ZnB ,y, , <_>\/an 7y7

where B is Zé") (N) and B is Zén)(N) by the same definition. Let A have the
same definition over M and A the same definition over M. Let x = /(7).
Then 7 = o(f)(a) for an f € I'" and o < A. Hence z = o7(f)(g(c)). Then
for 7 € HM:
D(7,7) <+ \/2"B(z",¥,7)
© Vue HyV 2 €5(u)B(2",7,7(f)(a))
“ Vue Hyp V{E <RIV zeud(z ()} € Fa.

Similarly for ¥ € H we get:
D7) & \/u e Hy{s < 5| \/ 2 € uA(2,5,7(f)())} € Fy(a)-

Fq is ¥1(M) in a parameter p and Fy(,) is £1(M) in a parameter p = 7(p).
But by the definition of I'™ we know that there are g, g such that either:

f=q€ Hjj and ¢ =7(f)

or:
f(€) =~ G(£,q) where G is a good Egl) (M) map
and:
7(f)(€) ~ G(&q) where G has the same good definition over M.
Hence

{(7) € HY|D(7,7)}

{(7 €)1 |D(7.x)}

is ©") (M) in k,q,p by the same definition. QED (Lemma 3.2.22)
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3.2.4 x—extendability

Definition 3.2.21. Let F' be an extender of length A at Kk on M. M is
x—extendible by F iff F' is close to M and M is n—extendible by F', where
n < w is maximal such that x < pfy,.

(Hence 7 : M —7%, N where (N, ) is the Eén)fextension.)

Lemma 3.2.23. Assume (7, g) : (M, F) —* (M, F) where M is x—eztendible
by F'. Assume that w is X* preserving. Then M is x—extendible by E. More-
over, if ¢ : M _>*F N and o : M —% N, there is a unique 7’ : N —s« N

such that 7' = om and 7' [ X = g.

Proof: Let n be maximal such that x < p%,. Let ¢ : M —>§f) N. By
Lemma 3.2.21 we have £ < p3; and there is 7 : M —>(fn) M. Moreover there
is7': N —rgm N such that e =crand 7' [\ =g.

1

Claim 1 n is maximal such that ® < P57

Proof: If not, then n < w and pl}j' < k < p¥,. Hence

/\,2"““1,2"+1 # k holds in M.

Thus A z"t1z"* #£ & in M, since 7 is Eénﬂ) preserving. Hence
Pl <E < L (QED Claim 1)

Note. In the case n < w we needed only the Z(()nH) preservation of 7 to
establish Claim 1.

By Claim 1 we then have:

(1) W:M—)%N.

Hence M is *—extendible by F. It remains only to show:

Claim 2 7’ is ¥* preserving.
Proof: If n = w, there is nothing to prove, so assume n < w. We

must show that 7’ is Z(()m) preserving for n < m < w. Let n < m < w.

Since o : M —7% N, we know that:

(2) py = pR and o [ pf; = id.
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By Claim 1 an (1) we similarly conclude:

(3) Py = P and T [ p = id.

Using (2), (3) and Lemma 3.2.22 we can then show:
(4) Let D(7™, ) be £ (N). Let D(7™, ) be £ (N) by the same
definition. Let

W’(Ti) = .I‘Z(Z =1,... ,’l“).

Then:

Efly--wff‘ =: {<gm> Fﬁ(gmvfh oo 757")}
is Egm) (M) in a parameter p and:
D:rl,...,:r:r = {<gm>‘D(gma xlv e >xr)}

is ng) (M) in p = 7(p) by the same definition.

Proof: By induction on m.

Casel m=n+1

We know:

where ¢ is X; and

where B = {(z™)|B'(#™,2)} and B' is S7"(N) for i = 1,...,q. Since

D(y™, Z) has the same Eg-m definition, we can assume

D(ym, ¥) < HE' = plym]

where:

™ = (H}},BL,...,BY)

where BL = {(z™)|B'(Z™,z)} and B is Zgn) (N) by the same definition
as B' over N. Letting ©'(Z;) = x; (i =¢q,...,r), we know by Lemma
3.2.22 that each of E;h--

is Zgn)(M) in p = 7(p) by the same definition. (We can without loss
of generality assume that p is the same for ¢ = 1,...,7r.) But then

Lz, 18 Zg") (M) in a parameter p and Bl

77777

same definition. QED (Case 1)
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Case 2 m = h+ 1 where h > n.

We repeat the same argument using the induction hypothesis in place
of Lemma 3.2.22. QED (4)

But Claim 2 follows easily from Claim 4 and the fact that = is »*
preserving. Let D(¥) be Eém) (N) and D(Z) be Eém) (N) by the same
definition. Set: B B

D (y, %) <>y =0A D(Z)

D'(y,Z) +»:y = 0A D(Z)

By (4) we have:
D(Z) <+ 0€ Dz + 0 € Dyz) > D(n'(Z))

for xq,...,x, € M, using the Z(()m) preservation of 7 and w(0) = 0.

QED (Lemma 3.2.23)
(m)

Note. The last part of the proof also shows that 7’ is X

1S.

preserving if 7

As a corollary of the proof we also get:

Lemma 3.2.24. Let (r,g) : (M,F) — (M, F). Let M be *-extendible by
F. Let n be the mazimal n such that k = crit(F') < plt;. Let n <r < w and

suppose that m is Zy) preserving, where 7 < w. Then:

(a) n is mazimal such that & = crit(F) < piz.
(b) M is x-extendible by F.

(c) Let 7 be the unique 7' : N —»x, N such that 7'c = om and 7’ |\ = g.
Then 7 is Egﬂ preserving.

Proof. (a) follows by the proof of Claim 1 in Lemma 3.2.23, since that
only need that 7 is Xj ! -preserving. (1) then follows as before. Hence M

is *-extendible by F. (2) and (3) follows for » > m > n, using the E(()r)
preservation of 7. Hence (4) follows as before and we can conclude that =’

is Eg.n) preserving as before.
QED(Lemma 3.2.24)

Notation. I'?(k,M) = {f € I"(r,M) : dom(f) = s} and I'™*(k, M) =
I'?(k, M) where n < w is maximal such that x < p;.
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3.2.5 Good Parameters

We now recall some concepts which were developed in §2.5. Let M = (JE B)
be acceptable. The set P]&[‘H of n + 1-good parameters can be defined by:

a € Pyt iff a € [Onp]<* and there is an A C HY, which is
£ (M) in parameters from p"*! Ua such that AN H™ ¢ M.

We then say that A confirms a € P, We also set: PY, = [Onp]<%. It is
not hard to prove:

Fact 1. Let a € P™. Then:

e aCbec [Ony|<¥ —bec PM,

e a~ pte P

The definition of PX}“ is equivalent to that given in §2.5. However, we thus
required a € P}, in place of a € [Onps|<¥. To show the equivalence of these
definitions, we must prove: Pﬁ[l C P (n < w). With a view to proving
this we recall the following definition, which was stated in an equivalent form
in §2.5.

With a view to proving this we recall the following definition, which was
stated in an equivalent form in §2.5.

Definition 3.2.22. Let M = (J2 B) be acceptable. Let a € [a]<“. For
n < w we define the n-th reduct M™% and the n-th standard predicate T]\Tﬁ[’a
with respect to a:

T° = B,M™ = (J4,, T"),

P
T = {(i,z) 10 <wAM" = @[z, a™]}

where a{n) = a N p™ and (p; : i < w) enumerates recursively all ¥ formulae

1 = (v, v1) with at most the free variables vy, v1 in the language of M.

By induction on n we get:

Fact 2. Let a € [Onp/]<¥. Then:

o T is £\ (M) in a.
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o Let AC H" be Egn) (M) in a. There is an i < w such that
Ax — (i,x) € T™"
From this it follows that:
Fact 3. a € P"*! &3 T™¢ confirms a € P*tL. But then:
Fact 4. P+l c pm.

Proof. For n = 0 this is trivial. Now let n = m + 1. Let a € P"t!. Then
Tra gL ¢ M.

Claim. T™* N H™ ¢ M.
Suppose not. If p"™ € M, then:
(H", T™*NH") e M

Hence T™% € M and H"*' NT™* € M. Contradiction! Now let p" = pP.
Then for each x € M, there is i < w such that (i,z) € 7™ If T"™*NH" =
T™% ¢ M, then (i, 7™%) € T"™*. Contradiction!

QED(Fact 4.)
We also mention:
Fact 5. a € P""! iff there is A which is Zgn)(M) in a such that ANp"*t ¢ M.

Proof. (Sketch) If p"t! = p0 take A = p’. Now let p"t! < p% Then
Hnl = \J£+1| is a ZFC™ model. Note that for any N = JZ the function
fn is uniformly ¥, (N), where

fn(a) = the a-th element of N in the ordering <p .

Let A be Zgn)(M) such that A C H™ and AN H" ¢ M. Set:
A ={a<p": fla) € A}

where f = f;z. Then f|p"" = f,;s maps p"*! onto H"*1. Hence, if
p™ p™
AN pntt e M, we have f7(A' N p"t) = An H*™! € M. Contradiction!

QED(Fact 5)

Thus AN H™*! could have been replaced by AN p™ in the original definition
of P™.

We now define:
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Definition 3.2.23. 7 is a strongly X*-preserving map of M to N (in sym-
bols: m: M — s+ N strongly) iff the following hold:
o m: M —s« N
o If p"*t1 = p* in M, then p"*t! = p¥in N.
o If p"™!1 = p* in M, A confirms a € P"™! in M, and A’ is E(ln)(N) in
7(a) by the same definition, then A’ confirms 7(a) € P"*! in N.
By Fact 3 and Fact 4 we conclude:

Lemma 3.2.25. Let 7 : M —s+ N strongly. Let p"tt = p¥ in M. Let
a € PP in M. Then T confirms a € Pt in M and T"™%) confirms
m(a) € P in N for i < n.

We now prove:

Lemma 3.2.26. Let m: M —7% N. Then m: M — s+ N strongly.

Proof. Let x = crit(F). We consider two cases.
Case 1. o5, < k.
The conclusion is immediate by Corollary 3.2.18.
Case 2. k < py.

We show that for any n < w, if A confirms a € P**! in M, then A’ confirms
m(a) € P"*! in N. Suppose not. Let A'NH™ € N. Let y = A'n Hyt
Then y € HY, and in N we have:

/\Zn+1(zn+1 €y +— o € A,),

which is a Hgnﬂ) statement in m(a),y. Let y = 7n(f)(«), where o < A = Ap
and f € I'"(k, M). Thus dom(f) = k and:

f(§) = G(&:q)

where ¢q € H% and G is a good Egm) function to H™ for an m < w. Assume

without lose of generality m > n + 1.

The statement:
AL € f(€) «— 2T € A)
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is then ng)(M) in q,a,&. Hence it is E’O”H(M) in ¢q,a,&. Set:

X={<k: /\Z”H(Z”'H € f(&) «— 2"t € A)}.

Then X € M. But a € 7(X). This is a contradiction, since X = 7(X) = @
by the fact that AN Hy ™ ¢ M.

Finally we note that for all n < w we have k < pR}H. Hence: p%t, = w(p},)

if pt; € M and otherwise py, = Ony. Thus:

n+l _ w n+l _ w
Py =PM — PN = PN-

QED(Lemma 3.2.26)
Obviously we have:
Lemma 3.2.27. If mg : My —x+ My strongly and w1 : My —s+ My
strongly, then mimy is a strong X*-preserving map from My to M.
We now prove:

Lemma 3.2.28. Let m;; : M; —s« M; strongly (i < j < \) where the m;;
commute. Suppose that:

<Mi:i<)\>, <7Tl'j2i§j<)\>
has a transitivized direct limit:

M, (m; i< A).
Then m; : M; —s+ M strongly for i < A.

Proof. m; is $1-preserving, since each 7;; is. Hence M = (J¥| B) is accept-
able. If we set:

Pn = U 7Ti’7p§\L/[i7 Hy, = U ;" Hp,

<A i<A
it follows that H, = Hé\f{ = \inl. By induction on n we prove:

Claim. p, = p}; and m; : M; —_(n) M.

Egn
Proof.

Case 1. n =0 is trivial.
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Case 2. n=m+1.

Let r > n such that py, = pf;. Let a € Py . Then Ty, * verifies a; € Pay,
for i < X where mp;i(ag) = a;. Let a = m;(a;) (i < A). By the induction
hypothesis ; is Egm)—preserving. Hence

x € Ty" «— mi(z) € Tyy"
Claim. T, N H, ¢ M.

Proof. Suppose not. Let y = Ty;" N Hy,. Let ¢ < X such that n(y;) = y.
For x € Hy, we have:

xeTy™ «— mi(z) € Tyy* N Hy,
> m(z) € m(y)
X €Y.

Hence Tﬁi’ai N Hy, =y N Hyy € M;. Contradiction!
QED(Claim 1)
Claim 2. Let A C H,, be ng)(M). Then (Hp, A) is amenable.

Proof. Let A be Egm)(M) in g. For i such that ¢ € rng(m;), let ¢; = m; (q)

and let A; be ng)(M) in ¢g; by the same definition. Now let x € H,.
We claim that x N A € H,. Let i be large enough that ¢ € rng(m;). Set
T; = 7TZ»_1({E). Let z; = A;Nw;. Then z; € H}; where (H]@[i,AZ-) is amenable.
Hence z; € H}; where 2z = mi(z;) = AN x. Hence z € Hy, .

QED(Claim 2)

Hence p%; = p, and HY; = Hy. It follows straightforwardly that m; :
M; g (n) M for ¢ < A.
1

QED(Case 2)
It remains to show:

Claim 3. The embedding ; is strong.

Proof. Let p"™! = p¥ in M;. Let A C H" confirm a € P"™! in M;. Let A;
be Egn)(Mj) in aj =: m;j(a) for i < j < A\. Then p"* = p* in M; and A;
confirms a; € p" in M;. Let a’ = m;(a), and let A’ be Eg") (M) in @' by the
same definition. We repeat the proof of Claim 1 to show that A’ confirms
a' € Prtlin M (ie. AN Hyq & M).
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QED(Lemma 3.2.28)

3.3 Premice

A major focus of modern set theory is the subject of "strong axioms of
infinity". These are principles which posit the existence of a large set or class,
not provable in ZFC. Among these principles are the embedding azioms,
which posit the existence of a non trivial elementary embedding of one inner
model into another. The best known example of this is the measurability
aziom, which posits the existence of a non trivial elementary embedding 7
of V into an inner model. ("Non trivial" here means simply that 7 # id.
Hence there is a unique critical point k = crit(m) such that 7 [ x = id and
m(k) > k.) The critical point x of 7 is then called a measurable cardinal,
since the existence of such an embedding is equivalent to the existence of an
ultrafilter (or two valued measure) on k.

This is a typical example of the recursing case that an axiom positing the
existence of a proper class (hence not formulable in ZFC) reduces to a state-
ment about set existence. The weakest embedding axiom posits the existence
of a non trivial embedding of L into itself. This is equivalent to the existence
of a countable transitive set called 07, which can be coded by a real number.
(There are many representations of 0%, but all have the same degree of con-
structability.) The "small" object 07 in fact contains complete information
about both the proper class L and an embedding of L into itself. We can
then form L(0%), the smallest universe containing the set 0%. If L(0%) is
embeddable into itself we get 07# which gives complete information about
L(07) and its embedding ... etc. This process can be continued very far.
Each stage in this progression of embeddings, leading to larger and larger
universes, is coded by a specific set, called a mouse. 0% and 0## are the
first two examples of mice. It is not yet known how far this process goes, but
it is conjectured that all stages can be represented by mice, as long as the
embeddings are representable by extenders. (Extenders in our sense are also
called short extenders, since one must modify the notion in order to go still
further.) The concept of mouse, however hard it is to explicate, will play a
central role in this book.

We begin, therefore, with an informal discussion of the sharp operation which
takes a set a to a”, since applications of this operation give us the smallest
mice 0%, 07# etc.

Let a be a set such that a € L[a]. Suppose moreover that there is an
elementary embedding 7 of L® = (L[a], €, a) into itself such that a € L%,
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where k = crit(m). We also assume without loss of generality, that ~ is
minimal for 7 with this property. Let 7 = 71" and v = sup#”r. Then
7 L% < LY cofinally, where 7 = w [ L%. Set F = w [P(k). F is then an
extender at x with base L;[a] and extension (L, [a], 7).

(LS, F) = (Lylal,a, F) is then amenable by Lemma 3.2.2. It can be shown,
moreover, that F' is uniquely defined by the above condition. We then define:

Definition 3.3.1. a” is the structure (L,[a], a, F).

Note. In the literature a” has many different representations, all of which
have the same constructibility degree as (L,[a], a, F').

a” has a number of interesting properties, which we state here without
proof. F'is clearly an extender at x on (L%, F'). Moreover, we can form the
extension:

70 - <L,CJL,F> —F <La

V)

).

We then have my D 7, mo(k) = v. (In fact 7o = «' [ L%.) But we can then
apply Fy to (L% , F1) ... etc. This can be repeated indefinitely, showing that

vy
a” is iterable in the following sense:

There are sequences k;, 7, v, F;(i < 00) and 7;;(i < j < 00) such that

® Ko =K, Tg=T,Vg =V, Fy=F.

/ / +Lzz
o fit1 =T i1 (Ki)s Vi = 1 (i), Ti = K

o [ is afull extender at x; with base L, [a] and extension (Ly,[a], 7} ;|
L[a}>
T ).
o i1 (L, Fi) = (LY, Fiy1)-

e The maps ng commute — i.e.

i = id; 7T;j7T;n = 7T;Lj.
e For limit A, (L% , Fy), (m}\|¢ < A) is the transitivized direct limit of

vy

(L, Fi)li < ), (mijli < j < A).

vy?
It turns out that a” = (L%, F) is uniquely defined by the conditions:

e (L% F') is iterable in the above sense

e v is minimal for such (L%, F).
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If a = () we write: 07. 0% = (L,, F) is then acceptable. By a Lowenheim—
Skolem type argument it follows that 0% is sound and p(l)# = w. (To see
this let M = 0%, X = hy(w). Let 0 : M & X be the transitivization of
X, where M = (L,,,F). Using the fact that o : M — M is ¥1—preserving
and M is iterable, it can be shown that M is iterable. Hence M = M, since
7 < v and v is minimal.) But then 07 is countable and can be coded by a
real number. But this is real giving complete information about the proper
class L, since we can recover the satisfaction relation for L by:

L= ¢lZ] < Li, = ¢l7]

where i is chosen large enough that z1,...,7, € L.,. But from 0% we also
recover a nontrivial elementary embedding of L into itself, namely:

7: L —p L where 0% = (L, F).

0% is our first example of a mouse. All of its iterates, however, are not
sound, since if i > 0, then rng(mo;) = hay,(w), where py, = pp, = w. But
Ko & rng(mo;).

We can iterate the operation #, getting 0,07, (07)7, ... etc. This notation
is not literally correct, however, since a is defined only when a € L[al.
Thus, setting:

n

——
o o B

9

we need to set: 0%t = (em)# where e codes 0, ...,0%#( If we do this
in a uniform way, we can in fact define 0% for all £ < occ.

Definition 3.3.2. Define ¢, ;, 0#() = (Liz, E,)(i < o0) as follows:

et {(z I/Z>| <iAz € E,} (hence e = ()
) =: (0, 0) (hence vy = 0)
0#(”1) =: (e")# (hence v;y1 > 1)

For limit A\ we set:

A

v =:supy;, 07N = (Ly,,0), (hence § = E,,).

1<

By induction on ¢ < oo it can be shown that each 0%() is acceptable and
sound, although we skip the details here. Each 0#() ig also iterable in a
sense which we have yet to explicate. As before, it will turn out that the
iterates are acceptable but not necessarily sound. Set:

FE = U et
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Then L[E] is the smallest inner model which is closed under the # operation.
(For this reason it is also called L#.) We of course set: LF =: (L[E], €, E).

L¥ is a very L-like model, so much so in fact, that we can obtain the next
mouse after all the 07()(i < oo) by repeating the construction of 0% with
L¥ in place of L: Suppose that 7 : L¥ < L¥ is a nontrivial elementary
embedding. Without loss of generality assume the critical point x of 7 to be
minimal for all such 7. Let 7 = x*2" and v = sup”r. Then # = 7 ILE.
Set: ' = 7w [P(k). Then F is an extender with base L.[E] and extension
(L,|E],%). The new mouse is then (LY F).

As before, we can recover full information about L from (L”, F) and we can
recover a nontrivial embedding of L” by: 7 : LF —p L¥. e = EU{(x,v)|x €
F} then codes all the mice up to and including (LZ, F), so the next mouse
is e#

1s e ... etc.

Note. that LF||v = (LE,0) since, if k; = crit(E,,,,), then the sequence
(Kili < oo) of all critical points of previous mice is discrete, whereas x =
crit(F) is a fixed point of this sequence.

This process can be continued indefinitely. At each stage it yields a set
which encodes full information about an inner model. We call these sets
mice. Each mouse will be an acceptable structure of the form M = (JZ E,)
where E = {{(z,v)|[v < a Az € E,} codes the set of ’previous’ mice. For
v = a we have: Either E, = () or v is a limit ordinal and E, is a full extender
at a k < v with extension (J,[E],n) and base J,[E], where 7 = kM.

For limit £ < o we set: M||§ =: <J&E,E§>. A class model LZ is called a
weasel iff B = {{z,v)|lv < co Az € E,} and L¥||a =: (JE E,) is a mouse
of all limit .

When dealing with such structures M satisfying, we shall often use the fol-
lowing notation: If E, # {), then s, = the critical point of E,, 7, = kT JF,

and \, = the length of E, = 7(k,), where (JF ) is the extension of Jf; by
E,.

In the above examples, the extenders E, were so small that 7, eventually
got collapsed in L[F,]. Thus E, was no longer an extender in L[E,], since
it was not defined on all subsets of k. However, if we push the construction
far enough, we will eventually reach an E), which does not have this defect.
L[E,] will then be the smallest inner model with a measurable cardinal.

In the above examples the extender E, is always generated by {x, } Hence we
could just as wel have worked with ultrafilters as with extenders. Eventually,
however, we shall reach a point where genuine extenders are needed. In the
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examples we also chose A\, = m(k,) minimally — i.e. we imposed an initial
segment condition which says that F, |\ is not a full extender for any A\ < \,.
This condition can become unduly restrictive, however: It might happen that
we wish to add a new extender E, and that F,|) is an extender which we
added at an earlier stage. In that case we will have: E,|\ € JE. In order to
allow for this situation we modify the initial segment condition to read:

Definition 3.3.3. Let F' be a full extender at x with base S and extension
(S’, ). F satisfies the initial segment condition iff whenever A < (k) such
that F|\ is a full extender, then F|\ € S'.

As indicated above, we expect our mice to be iterable. The example of
an iteration given above is quite straightforward, but the general notion of
iterability which we shall use is quite complex. We shall, therefore, defer it
until later. We mention, however, that, since mice are fine structural etities,
we shall iterate by ¥*—extensions rather than the usual ¥y—extensions. In the
above examples, the minimal choice we made in our construction guaranteed
that the mice we constructed were sound. However, in general we want the
iterates of mice to themselves be mice. Thus we cannot require all mice
to be sound: Suppose e.g. that M = (JE F) is a mouse and we form:
7 M —% M'. Then M’ is no longer sound. (To see this, let p € P},. It
follows easily that m(p) € Pi,. But k ¢ rng(r); hence & is not ¥1(M’) in

m(p).)

As we said, however, our initial construction is designed to produce sound
structures. Hence we can require that if M = (JF| F) is a mouse and \ < v,
then M]|\ is sound, since this property will not be changed by iteration.

By a premouse we mean a structure which has the salient properties of a
mouse, but is not necessarily iterable. Putting our above remarks together,
we arrive at the following definition:

Definition 3.3.4. M = (JF F) is a premouse iff it is acceptable and:

(a) Either F' =0 or F is a full extender at a x < v with base J.[E], where
7 = kT and extension (J,[E], w). Moreover F is weakly amenable
and satisfies the initial segment condition. (Recall that J = (J,[E], EN
JuE]))-

(b) Set By = E"{y} for v < v. If v < v is a limit ordinal, then M||y =:
(Jf, E,) is sound and satisfies (a).

() E={(z,n)|x € E,Nn <visalimit ordinal}.

By Lemma 2.5.26 we then have:
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Lemma 3.3.1. Let (JZ E,) be a sound premouse. (JE,0) is a premouse,
where E' = EU (E, x {a}).

However, it does not follow that (JZ . 0) is sound.

We call a premouse M = (JF F) active iff F' ¢ (). If F is inactive we often
write JZ for (JF (). We classify active premice into three types:

Definition 3.3.5. Let F be an extender on sk with base S and extension
(S’ 7). We set:

e C=Cp={Nrk<<m(k)AF|\is full}
Fisof type 1if C =)

F is of type 2 iff C' # () but is bounded in 7 (k)

F is of type 3 iff C is unbounded in 7 (k)

Let M = (JF F) be a premouse. The type of M is the type of F. We
also set: Cyy =: CF.

It is evident that F satisfies the initial segment condition iff F|\ € S” when-
ever A € Cp.

Premice of differing type will very often require different treatment in our
proofs. In much of this book we will assume that there is no inner model
with a Woodin cardinal, which implies that all mice are of type 1. For now,
however, we continue to work in greater generality.

Lemma 3.3.2. Let F be an extender at k with base S and extension (S', 7).
Let k < A < m(k). Then X\ € Cr iff 7(f)(a1,...,an) < X for all f € M
such that f: K™ — Kk and all aq,...,an < .

Proof: We first prove the direction (—). Let F* = F|X be full with ex-
tension (S*,7*). Let f,ai,...,a, be as above. Let 8 = 7*(f)(d). Set

=

e={{&1,...,&,0)|f(&) =¢6}. Then f < X and:
(@,8) € F*(e) = A" n F(e).
Hence 7(f)(a@) = 5 < A QED (=)

We now prove («). Let f,aq,...,a, be as above. Then 7(f)(ad) = 8 < A.
Hence
(@,B) € Fle) N A" = F*(e).
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Hence 7*(f)(@) = B < A. But each v < 7*(k) has the form 7*(f)(&) for
some such f,aq,...,an < A. Hence 7*(k) = A = length (F*).
QED (Lemma 3.3.2)

Corollary 3.3.3. Cr is closed in w(k).

Corollary 3.3.4. Let F,S,S", 7 be as above and let F be weakly amenable.
Then Cr is uniformly 1 ((S’, F)) in k.

Proof: S’ is admissible and the Godel function <, > is uniformly ¥, over
admissible structures. By weak amenability we know that P(k2) N S =
P(k?) N S’. S’ is admissible and Godel’s pair function <, > is ¥1(S’) and
defined on (Ong)2. Then "\ is Godel-closed" is A1(S'), since it is expressed
by AN&d < A <& 6 =< A By Lemma 3.3.2, "\ € Cp" is equivalent in S’

to:
Kk <A Cm(k)AXis Godel-closed

ANfn=rNa<AVB<A<a,B >~ Fley)
where ey = {< §,£ =< k| f(§) = ¢}. The function f — ey is ¥1(S’) in £ and
defined on {f € S|f : K — x}. Note that u = 7 (k) is expressible over (S’ F)
by (u,k) € F and €' = F(e) is expressible by (¢/,e) € F. Thus A € Cp is
equivalent to the conjunction of ’A is Godel-closed’ and:
Ne. e, f(((€,e) e FA(u,k) EFAf:k—KNe=eyp)
(k< A<pANa<A\B<A<a,pB=€¢))

QED (Lemma 3.3.4)

We now turn to the task of analyzing the complexity of the property of being
a premouse and the circumstances under which this property is preserved by
an embedding 0 : M — M'. If M = (JE F) is an active premouse, the
answer to these question can vary with the type of F.

We shall be particularly interested in the case that, for some weakly amenable
extender G on M at a & < pf,, M’ is the Z((]n) extension (M’ o) of M by G

(ie.o: M —>(Gn) M’"). In this case we shall prove:

e )M’ is a premouse

e If M is active, then M’ is active and of the same type

o If M is of type 2, then o(max Cys) = max Cyyr.
This will be the content of Theorem 3.3.24 below. Note that if G is close to
M in the sense of §3.2, and n is maximal with & < p7,, then M’ is a fully

Y*—preserving ultrapower of M (i.e. o : M —¢ M’). In later sections we
shall consider mainly iterations of premice by X *—ultrapowers.



3.3. PREMICE 193

Note. In later sections we shall mainly restrict ourselves to premice of type
1. For the sake of completeness, however, we here prove the above result in
full generality. The proof will be arduous.

We first define:
Definition 3.3.6. M = (JF F) is a mouse precursor (or precursor for
short) at k iff the following hold:

e M is acceptable

evcMandT =M ec M

e Fis a full extender at xk on JZ with extension (JF, 7).

Note. F then has base J.[E] and extension (J,[E], ).
Note. F is weakly amenable, since P(k) N M C J;[E] by acceptability.

Lemma 3.3.5. M = (JF F) is a precursor at x iff the following hold:

(a) M is acceptable
(b) F is a function defined on P(k) N M
(¢) Flr=id, k < F(k) = \, where X is the largest cardinal in M.
(d) Let ay,...,a, € P(k) N M. Let ¢ be a Xy forumla. Then:
JE E eld & ) e[F(a)]
(e) Let & <wv. There is X € P(k) N M such thal

F(X) ¢ JE.

Proof: The direction (—) then follows easily. We prove ().
We first note that F' injects P(x) N M into P(\) N M. F is injective by (d).
But if X C &, then F(X) C F(k) = A by (d).

(1) JE < JE.

Proof: We first recall that by §2.4 each € JE has the form f(a) for some
first a C K, where f is ¥1(JF). By §2.4 we can choose the Y1 definition of
f as being functionally absolute in J-models. Now let x1,...,z, € JE.
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Let ¢ be a first order formula. We claim:
I Eeld] = IV E eldl.

Let x; = fi(a;), where a; C k is finite and f; has a functionally absolute
definition 'z = f;(a)’. Then J¥ & 'x; = fi(a;) fori = 1,...,n. Let ¥ be
the formula:

V 21z (\ 2 = fila) A o(E)).
i=1

Then:

Ji Eeld] o J7 F v
and:

JY E eld] < JY E vla).
But JE = ¥[d] is £1(M) in x,d@ and JE = ¥[a] is $1(M) in A\, @ by the
same definition. Moreover F'(a;) =a; (i =1,...,n) and F (k) = \.

Hence by (d):

—

JYEeldl © J7 v
< JE = V[a
<« J{ [ old].

QED (1)

It follows easily, using acceptability, that J¥ and Jf are ZFC™ models.
Godel’s pair function <, > then has a uniform definition on JF and Jf .
Hence (< o, = |a, B € JE) is £1(M) in £ and (< o, B = |a, B € JF) is
Y1(M) in A by the same definition.

For any X C & there is at most one function I' = I'x defined on & such that
I(a) = {T'(B)[(B,a) € X} for o < k. For X € P(k) N M the statement
f =Tx is uniformly ¥; (M) in X, f, k. Moreover the statement \/ f f ='x
(T'x is defined’) is uniformly ¥;(M) in X, k. The same is true at A: For
Y C Athe statement f = I'y is uniformly ¥; (M) in Y, f, A and the statement
V f f =Ty is uniformly ¥;(M) in Y, X by the same definition.

We must define a 7 such that (J,[E], 7) is the extension of F'. The above
remarks suggest a way of doing so:

Definition 3.3.7. Let 2 € JZ, x € u, where u € JEF is transitive. Let
f € JE map « onto u. Set:

X ={=a,f>|[f(a) € f(B)},
then f =T'x. Let f' =: T'p(x). Let x = f(£) where § < x. Set:
m(x) = mre(z) = ().
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We must first show that 7 is independent of the choice of f,£. Suppose that
x € v, where v € J¥ is transitive, and ¢ € J maps s onto v. Then, letting
Y ={<a,8>|9(a) € g(B)}, we have: Let x = ¢g(¢). Then by (d):

f€) =Tx(&) =Ty(¢) = mre(z) = Tpx) (&) = Trr)(C) = mg ().
Similarly we get:
(2) 7:JF =y, jE.

Proof: Let z1,...,z, € Jf. Let xq,...,xy € u, where u € J;E is transitive.
Let f; € JE map x onto u(i = 1,...,n). Set: X; = {< o, B = |fi(a) €
fi(B)}. Let x; = fi(&). Let ¢ be ¥g. By (d) we conclude:

—

JEEeld] & JF el g(©))
Axd qu—E = ‘P(PF()Z)(_j)

where F(X;)(&) = m(&). QED (2)
(3) F(X)=n(X) for X e P(k) N M.

Proof: Let X = f(u) where p < s, f € J¥, and f : Kk — u, where u

is transitive. Set: Y =: {< a,f > |f(a) ET f(B)}. Then f = I'y and
X =Ty(u). By (d) we conclude:
F(X) = Dy () = 7(X).
QED (3)

It remains only to show:
(4) 7: JF — JE cofinally.

Proof: Let y € JE. If y € JgE, ¢ < v, there is an X € P(k) N M such that
F(X) ¢ JE. Let X € J7, p < 7. Then:
_ E

™

Hence m(p) > € and:

QED (Lemma 3.3.5)
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Corollary 3.3.6. Let M = (JE F). The statement ‘M is a precursor’ is
uniformly Ta(M).

Proof: The conjunction of (a) — (e) is uniformly Ils(M) in the parameters
K, A. Let it have the form R(k, \), where R is IIs. It is evident that if R(k, A)
holds, then (k, A) is the unique pair of ordinals which is an element of F.
Hence the conjunction (a) — (e) is expressible by:

\ kA5, A) € FA N\ KA, A) € F = R(k, N)).
QED (Corollary 3.3.6)

Definition 3.3.8. M = (JF F) is a good precursor iff M is a precursor and
F satisfies the initial segment condition.

Corollary 3.3.7. Let M = (JF F). The statement "M is a good precursor
at Kk’ is uniformly I3(M).

Proof: Let M be a precursor. Then F satisfies the initial segment condition
iff in M we have, letting C' =: CF:

Ane€CV F'(F'is afunction A dom(F) =P(k))
ANY, XY, X)e F—-(YnnX)eF)
This is II3 since C' is Ils. QED (Lemma 3.3.7)

Lemma 3.3.8. Let M = (J,, F) be a precursor at k. Let 7 = ™ and
let (JE 7) be the estension of JE by F. Then m and dom(w) are uniformly

Ay(M).

Proof: 7 is uniformly 3, (M) in &, A since by the definition of 7 in the proof
of Lemma 3.3.5 we have:

y =7(x) < VIiVuVXVEVY(uis transitive A

frrRune=fEAX={<ap>]|f(a) € f(B)}
NY = F(X) ANy =Ty(£)).

Let ¢(k, A, y,x) be the uniform ¥; definition of 7 from k, A\. Then (k, \) is
the unique pair of ordinals such that (k,A\) € F'. Hence:

y = (@) & \/ 5 A5, N) € FAM | pli, Ay, 2]).
Then 7 is uniformly 31(M). But dom(w) = JF; hence:

yedomm <\ k& A((K,\) € FAye (JE)R)
Ar (5, X) € F =y € (JE)IY),
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Thus dom(r) is uniformly A;(M). But then
y= w(x) <+ (y € dom(m)A
Ny € My #y —y #n(x))).
Thus 7 is Ay (M). QED (Lemma 3.3.8)
But then:

Corollary 3.3.9. Leto : M —x, M’ where M = (JF, F) and M’ = (JE'F')
are precursors. Let (JF, m) be the extension of JE by F and (J5 7' be the
extension of ng by F. Then:

on(z) ~7n'o(x) for x € M.
The satisfaction relation for an amenable structure (JE. B) is uniformly

A1(M) in the parameter (JF B) whenever M > (JF, B) is transitive and
rudimentarily closed.

(To see this note that, letting £ = E N JF, the structure (M, E, B) is rud
closed. Hence its Yo—satisfaction is A;((M, E, B)) or in other words A (M)
in E, B. But if ¢ is any formula in the language of (JF, B), we can convert
it to a Xo formula ¥ in the language of (M, E, B) simply by bounding all
quantifiers by a new variable v. Then:

(Ji/, B) E ¢[7] < (M, E, B) | plJ,[E], 7]
for all o1,...,2, € JF)
It is apparent from §2.5 that for each n there is a statement ¢, such that
(JE B) is n-sound « (JZ B) = ¢,.
Moreover the sequence (pp|n < w) is recursive. Thus
Lemma 3.3.10. "(JF B) is sound” is uniformly 11y (M) in (JE, B) for all
transitive rud closed M > (J,, B).
Using this we get:
Lemma 3.3.11. Let J¥ be acceptable. The statement (J¥ () is a premouse’
is uniformly Ty (JEF).

Proof: (JF, () is a premouse iff the following hold in JZ:

e Nx € E\ v,z € TC(x)(z = (z,v) A\v € Lm Az € JF)
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e Av(veLm— (JE E"{v}) is sound)
e Nv(E"{v} # 0 — (JF E"{v}) is a good precursor).
QED (Lemma 3.3.11)

An immediate corollary is:

Corollary 3.3.12. Let M, M be acceptable. Then:

o Ifm: M —x, M and M is a passive premouse, then so is M.
e Ifm: M —x, M and M is a passive premouse, then so is M.
The property of being an active premouse will be harder to preserve. (JF, F)

is an active premouse iff (JF, () is a passive premouse and (JF, F) is a good
precursor. Hence:

Lemma 3.3.13. (JE F) is an active premouse’ is uniformly I3 ((JE, F)).
Note. This uses that being acceptable is uniformly II;((J¥, F)) when v €
Lm™.

An immediate, but not overly useful, corollary is:

Corollary 3.3.14. Let M, M, be J-models.

o Ifm: M —yx, M and M is an active premouse, then so is M.

o Ifm: M —x, M and M is an active premouse, then so is M.

In order to get better preservation lemmas, we must think about the type of
Fin (JE F). Fis of type 1 iff Cp = (). By Corollary 3.3.4 the condition
Cp =0 is Iy ((J,, F)) uniformly. Hence

Lemma 3.3.15. The statement ‘M is an active premouse of type 17 is uni-

formly Ha (M) for M = (JE, F).

Hence

Corollary 3.3.16. Let M, M be J-models.

e Ifm: M —x, M and M is an active premouse of type 1, then so is M.

o Ifm: M —x, M and M is an active premouse of type 1, then so is M.
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A more important theorem is this:

Lemma 3.3.17. Let M be an active premouse of type 1. Let M = (J¥ F)
where k = crit(F'). Let G be a weakly amenable extender on M at &, where

K < phy. Let (M’ o) be the E[()n) extension of M by G. Then M’ is an active
premouse of type 1.

Proof: We consider two cases:

Case 1 n=0.

Claim 1 M’ = (JE' F') is a precursor.

(1) F'is a function and dom(F’) C P(k), since these statements are
II; and o is ¥; preserving
For ¢ <7 =xT™ get: 7[¢] =7 [Jg,w’[g] = o(r[£]), then

. 7E E
(2) 7 Taie) < Joney

since 7[¢] : JéE = Jf(g).

Set: ' = |Jn'[€]. Since sup 7”7 = v and supo”’v =/, we have
3

(3) o: (M, ) =5, (M',7’) cofinally.
(4) dom(r’) = U r(JE) = JE,

&<t

M and K = o(r). Hence

where 7/ = o(1) = K’
(5) ' JE —w, JE cofinally.
(6) F = [B(+)

by (3) and:

N\ X(X € 5 NP(R) = ('(X),X) € F'),

g
since the corresponding II; statement holds of £ in M.

It follows easily that (J,/[E'],7’) is the extension of J& by F’.
QED (Claim 1)
Claim 2 F” is of type 1 (hence F’ satisfies the initial segment condition).
Proof: Let £ < X = 7/(k). Using Lemma 3.3.2 we show:
Claim 5 ¢ CF’-
Let ¢ € M be least such that o(¢) > (. Since ¢ ¢ Cp, there is
> ¢

f K" = Kk in M such that 7(f)(d) for some ajq,...,a, < (. But
then o(aq),...,0(ay) < & and

' (o(/)(e(@) = o(7(f))(@)) > o(() = €.
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Hence ¢ ¢ Cpr. QED (Claim 2)
Thus JVE,/ is a premouse by Corollary 3.3.12 and M’ is a good precursor
of type 1. Hence M’ is a premouse of type 1. QED (Case 1)

Case 2 n > 1.
Then o is Xo—preserving by Lemma 3.2.12. Hence M’ is a premouse
of type 1 by Corollary 3.3.16 QED (Corollary 3.3.17)

We now consider premice of type 2. M = (JE, F) is a premouse of
type 2 iff JE is a premouse, M is a precursor and F|n € JE where
n = maxCp. (It then follows that F|u = (F|n)|p € JE whenever
u € Cp.) The statement e = F|u is uniformly Iy (M) in e, u, u, since
it says:

e is a function A /\x eP(k)NMe(X)=F(X)N pu.
But then the statement:
e=F|nAn=maxCp

is IIo (M) in e, n, k uniformly, since it says: e = FInACr\n = 0, where
Cr is uniformly IIo(M). It then follows easily that:

Lemma 3.3.18. Let M = (JE F), M = (J5|F).

e If 7: M —x, M and M is a premouse of type 2, then so is M.
Moreover, m(max Cg) = max CF.

o If 7: M —x, M, M isapremouse of type 2 and e = F|max(Cr) €
rng(7), then M is a premouse of type 2 and m(max C%) = max Cp.

We also get:

Lemma 3.3.19. Let M be a premouse of type 2. Let G be a weakly
amenable extender on M at K, where & < ply;. Let (M’ o) be the Z(()n)
extension of M by G. Then M’ is a premouse of type 2. Moreover,

o(max Cys) = max Cpyp.

Proof: If n > 0, then o is Yo—preserving and the result follows by
Lemma 3.3.18. Now let n = 0. Let M = (J¥ F) where F is an
extender at x on JZ (where 7 = wtM. Tet M’ = (JE F')). Tt

follows exactly as in Lemma 3.3.17 that Jfl is a premouse and M’ is
a precursor. We must prove:

Claim F’ is of type 2. Moreover, 7(max Cr) = max Cp.
Proof: Let n = maxCp, e = F|n. Then o(e) = F'|), since this is
a II; condition. But then Cp \ 7' = () follows exactly as in Lemma
3.3.17, since Cp \ n = 0 and o takes A = F'(k) cofinally to X = F'(x).
QED (Lemma 3.3.19)
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We now turn to premice of type 3. One very important property of these
structures is:

Lemma 3.3.20. Let M = (J¥ F) be a premouse of type 3. Let A\ = F(k)
where F' is at k. Then p}w = A

Proof:

(1) ha(X) = M. Hence p}; < A

Proof: Note that if X € P(k) N M, then X € J¥ C hy (7). Hence
F(X) € hp(7), since F is X1(M). Hence € € hy(7) for a £ such that
F(X) e Jf. Hence OnnNhp(7) is cofinal in v. Let x € M such that

x € JéE for a € € hys(7). Then there is f € hps(7) such that f: A 253
JgE. But them z = f(«) for an o < A\. Hence x € f”\ C hp(N). QED
(1)

(2) Let D C A be £;(M). Then (JE, D) is amenable. (Hence p; > \.)
Proof: By (1) D is ¥;(M) in a parameter @ < A. Let n € C such
that n > . Then E = F|n € M. Since JAE is a ZFC™ model, we have:

<J§,F> € JE, where 7: JF =+ J?.

We then observe that there is a unique o : JUE < JE defined by

o(m(f)(B)) = n(f)(B) for
fedl fin—JE B<n
Moreover, o [ = id and o is cofinal.

(To see that this definition works, let 81,...,8, <1, fi,...,fn € T
such that f;: x — JF fori =1,...,n. Set:

X ={<&, ... = I Eelfi&), .., ful&)]}-

Then:
1P Eelm(f(B)] & < B e F(X) =nnF(X)
& I8 Eelr(f)(B).)
But c((F(2),2)) = (F(Z),Z) for Z € P(k) N M. Hence
o(FNU)=0¢"(FNU)=FNU.

By this we get:
o: (JUE,F> —s, (JE, F) cofinally.

Thus D = DN is 21(<J§, F)) in a by the same definition as D over
(JE,F). Hence D € JF, since (JE, F) € JE.  QED (Lemma 3.3.20)
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Note that the argument of (1) holds for arbitrary premice. Hence:

Lemma 3.3.21. Let M(JE F) be an active premouse. Then hpr(\) = M
(hence pi; < \).

If M = (JE F) is a precursor, then "F is of type 3" is uniformly II3(M) in
K, since it is the conjunction:

/\£</\\/17<)\-77€C’F/\/\£<77€CF\/66er:Fm.
Hence:

Lemma 3.3.22. (a) Let 7 : M —x, M where M is a premouse of type
3. Then so is M.

(b) Let m: M —sx, M where M is a premouse of type 3. Then so is M.

We also get:

Lemma 3.3.23. Let M = (JF F) be a premouse of type 3. Let G be a
weakly amenable extender at & on M. Let & < pl; and let (M’ o) be the

Eén) extension of M by G. Then M’ is a premouse of type 3.
Proof: Let M’ = (JE' F'). We consider three cases:

Case 1 n=0.

. . /.
Exactly as in the previous lemmas we get: Jf is a premouse and M’
is a precursor. We must show:

Claim F is of type 3.
We know that o takes A cofinally to N. Let n < \,n € Cp. Let
e = Flnp € M. Then o(n) € Cp and o(e) = F'|o(n), since these
statements are IIy. Hence if p < X there is € Cp such that p < o(n)
and

F'lp = (F'lo(n)|n € J5

QED (Case 1)

Case 2 n=1.

Then o is ¥9—preserving. Hence Jfl is a premouse and M’ is a precur-
sor. Let (M, ) be the extension of J¥ by F and (M’, ') the extension
of JE by F', where 7 = kM 1/ = o(7) = KM
We know that:

U[Jf : Jf —G Jg,
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where A = (k) = p}; and p’ = supo” X = pl,,. Since 7T is a successor
cardinal in J¥, we have 7 # crit(G). But then 7/ = sup 0”7 by Lemma
3.2.6 of §3.2. 7 takes 7 cofinally to v and 7’ takes 7' cofinally to /.
Using this we see:

(1) v/ =supo’v.

Proof: Let £ < v/. Let ¢ < 7/ such that 7/({) > £. Let n < 7 such
that o(n) > ¢. By Corollary 3.3.9 we have:

om(n) =n'o(n) > ¢
QED (1)
But then it suffices to show:
Claim o : M —¢g M/,
since then we can argue as in Case 1.

Let x € M'. Let & = crit(m). We must show that = o(f)(¢) for an

f € M such that f : kK — M. Since M’ is the E((]l)fultrapower, we
know:

x=0(f)(&), where f:x — M is X;(M).
Choosing a functionally absolute definition for f we have:
v=f(w) < \/yAy,v,w,p)

where A is ¥o(M) and p € M. By functional absoluteness we have:

v = O'(f)(w) A \/yA/(U,U»w»U(p))

where A" is ¥o(M’) by the same definition. Let A'(y,z, &, o(p)). Since
o takes M cofinally to M’ there is a € M such that y,x € o(a) and

Kk C a. Set:
zifxean\y € aAly,z, u,p)
g(n) = . :
0 if no such x exists.
Then g e M, g: k — M and = = o(g)(§). QED (Case 2)

Case 3 n > 1.

Then pl, = 7(p};) = N and o is Egl)fpreserving by Lemma 3.2.12.
But CF is now Eél)(M) and e = F|n is Z(()l)(M) for e,n € JE. The

statements:
/\§< )\\/7]< AN <neCp, /\nE C’F(\/e e JFe=Fln)

are now Hgl)(M ). Hence the corresponding statements hold in M.
Hence Cpr is unbounded in X and F'|n € Jf;l for n € Cpr. Then M’
is of type 3. QED (Lemma 3.3.23)
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Combining lemmas 3.3.12, 3.3.14, 3.3.19 and 3.3.23 we have:

Theorem 3.3.24. Let M be a premouse. Let G be an extender at k& on M
where plt, > k. Let (M’ o) be the Z(()”) extension of M by G. Then:

e M’ is a premouse
e If M is active then M’ is active and of the same type
o If M is of type 2, then
o(max Cys) = max Cyy.
In order to show that premousehood is preserved under iteration we shall
also need:

Theorem 3.3.25. Let My be a premouse. Let m;j : M; —s, M; fori < j <
n, where:

o i1 M; —>g?) M1, where G; is an extender at k; on G;(i <n)

o M; 1s transitive and the m;; commate

o If X <nisalimit ordinal, then My, (m;|i < \) is the transitivized direct
limit of <M1|7, < )\>, <7T¢j|i <i< )\>

Then:

e M, is a premouse
o If My is active, then M, is active and of the same type as My
o If My is of type 2, then mo,(Cu,) = Cuy -
Proof: We proceed by induction on 1. Thus the assertion holds at every

1 < n. The case n = 0 is trivial, as is 7 = g + 1 by Theorem 3.3.24. Hence
we assume that 7 is a limit ordinal. We make the following observation:

(1) Let ¢ be a II3 formula. Let i < n,x1,...,2, € M; such that M; =
o[mi;(Z)] for i < j <n. Then M, = plmy(Z)).

Proof: Let y € M,. Pick j such that i < j < n and y = 7;,(y). Then
M; = Vy, mi;(Z)], where ¢ = A vVW. Hence M; = x|z, T, m;;(£)] for some Z,
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where ¥ = \/ uy. Hence M, = x[z,y, min(Z)] where z = m;,(2), since 7y, is
Y1 —preserving. QED (1)

Each M; is a premouse for ¢ < 7. But this condition is uniformly II3(M;) by
Lemma 3.3.13. Hence M, is a premouse. If My is of type 1, then Cyy, = 0
for i < n. But this condition is uniformly II>(A;); Hence M, is of type 1.

Now let My be of type 2 and let o = maxCpy,. Then M; is of type 2
and p; = maxCyy, for i < n, where pu; = Ilp;j(pp). Let e = Fpluo where
My = (JEo, Fy). Then e; = Fy|u; for i < n, since e = F|u is a I1; condition.

12Vl

Thus for ¢ < p each M; satisfies the IIs condition in e;, u;:

eo = Fi|lpi ANCp, \ i = 0.

Hence M, satisfies the corresponding condition. Hence M, is of type 2
and p, = max(C,). Clearly Cy;, = Cp, U {maxCyy,} for i« < n. Hence
mi5(Cn;) = O

Now assume that M is of type 3. Then each M;(i < n) satisfies the II3

condition:
ANE< NV <N < el
ACECy Vee Jiie=FC.

But then M, satisfies the corresponding conditions. Hence M, is of type 3.
QED (Theorem 3.3.25)

We also note:

Lemma 3.3.26. Let N be a premouse. Lel v € N such that F = EY # (.
Let k = crit(F), A\ = AN(F). If X is regular in N, then N||v is of type 3.

Proof. Let 7 : J¥ —p JE, where 7 = 7(F). Define (a; | i < \) by:

Qg = K,

aip1 = the set of T(f)(<E=) < A where &,...,& < a;, and f € HY.

It is easily verified that F|a,, is a full extender for all limit < .
QED (Theorem 3.3.26)

If, however, we merely assume A to be a cardinal in N, the situation is quite
different. To see this, let N/ = <J5,, F’) be the shortest possible premouse
of type 2. Let £ = crit /. Then F' = F'|v is full for a v € N'. It is easily
seen that A\ = A(F') is a cardinal in N’ although N = N’||v is of type 1.
Moreover, k is superstrong in J f/, although no proper segment of J f/ is of

type > 1.
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3.4 Iterating premice

3.4.1 Introduction

We have stated that a mouse will be an iterable premouse, but left the mean-
ing of the term "iterable” and "iteration” vague. Iteration turns out, indeed,
to be a rather complex notion. Let us begin with the simplest example. most
logicians are familiar with the iteration of a structure (M, U), where M is,
say, a transitive ZFC™ model and U € M is a normal ultrafilter on P(U)NM.
Set: My = M,Uy = U. Applying Uy to My gives the ultraproduct (M, Uy)
and the extension Ilg; : (Mo, Uy) — (My,Ur) by Up. We then repeat the
process at (M, U;) to get (Ma,Us) etc. After 1 + p repetitions we get an
iteration of length p, consisting of a sequence ((M;,U;)|i < u) of models and
a commutative sequence (m;;|i < j < p) of iteration maps m;; : M; — M;.
These sequences are characterized by the conditions:

o i1 (M;,Us) — (M;41,U;) is the extension by U;.
e The m;; commute — i.e. m;; = id and m;jmp; = mp; for h <@ < j < p.
e If A < is a limit ordinal, then M, (m;\|i < A) is the direct limit of:

(Mili < A), (Mijli < j < A).

Now suppose we are given a structure (M, S) where S = {(X,k)|X € Uy}
and for each Kk € M, eiter U, = () or else x is a measurable cardinal in M
and U, € M is a normal ultrafilter on P(k) AM. An iteration of (M, S) then
consists of sequences ((M;, Si)|i < p), (Mi;li <j < p) and (ki +1 < p).

The first condition above is then replaced by:

Tiit1 © (M, Si) = (Miy1, Siy1) is the extension by the ultrafilter
Ui = {X|<X, Iiz‘> S SZ}

The other conditions remain unchanged. ;| +1 < u) is called the sequence
of indices. k; must always be so chosen that U; is an ultrafilter.

Note. Since we are allowed considerable leeway in the choice of the index
ki, the purist may question whether the word "iteration" is still appropriate.
In fact, the mathematical meaning of this word has rapidly changed as the
structures to which it is applied have grown more complex.

An iteration is called normal iff the indices are increasing — i.e. x; < k; for
1< g <.
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We now attempt to apply these ideas to premice. Let M be a premouse. An
iteration of length p will yield a sequence (M;|i < u) of premice. In passing
from M; to M;y; we apply any of the extenders EM such that M;|jv =
(JE E,) is active. v = 1; is then the i—th index. (It would be ambiguous
to regard k; = crit(F,,) as the index, since M; might have many extenders
with this critical point.) In a normal iteration we have that, whenever i < j,
then:

J,fMi = Jlf M and v; is a cardinal in Mj.
(In fact, v; = /\ij, where \; = E,,(k;) is inaccessible in M;.) This follows
easily by induction on j. It was originally envisaged that E,, would be
applied directly to M; to get M; 1. It turns out, however, that such iterations
are unsuitable for may purposes. (In particular, they are unsuited to use in
comparison iteration, which we shall describe below.) The problem is that
ki = crit(E,,) could be much smaller than \;, where \; = E,,(k;) is the
largest cardinal in the model JlfM". In particular, we might have k; < Ap, for
an h < 1. Since Ay is an inaccessible cardinal in M;, it follows by acceptability
that: ’

P(k) N M; = P(r) N JE " C My,

Hence it should be possible to apply E,, to M}, rather than M;. It turns out
that it is most effective to apply E,, to the smalles place possible: we apply
it to Mrp(i41), where

T(i+ 1) =: the least h such that either h =i
or h <1 and k; < Ap.

This should give us
Thyit1 @ Mp — M.

Here, however, we must deal with a second problem, which can arise even
when T(i + 1) = i. We know that E,, is an extender at x; on JJ. Then

P(r;) N JEY = P(r;) 0 JEY = P(k;) N JE™, where 7; = /ﬁ;leE. But M,
might contain subsets of k; which do not lie in Jff (hence 7; is not a cardinal
in My, by acceptability). FE,, is then only a partial function on M}, and
cannot be applied to M},. The resolution of this difficulty is to apply E,, to
the largest possible segment of M. We set:

M} = Myl|ny, where n; < Onyy, is maximal such that

7

T, is a cardinal in Mp||n.
By acceptability, P(x;) N M = P(k;) N Jg and p4p < ki if 7 < Onyy, .

We then say that Mj, drops (or truncates) to M, if My # M7. i+ 1is
then called a drop point (or truncation point). ;41 @ M} — M;1; is then
a partial map of My to M1
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This means that iteration is no longer a linear process. Previously m;; was
defined whenever ¢ < j < p, u being the length of the iteration. Now it is
defined only when i is less than or equal to j in a tree T on p. (We write
i <p jfori=jViT};.) 0is the unique minimal point of 7. T'( + 1) is the
unique T—predecessor of 7 + 1. The 7;; are partial maps and we again have:

7-‘-” CThi :’]Thj fOr h ST’LST ]

We will always have: i1} — ¢ < j, but the converse may not hold. If 1 = w,

these conditions completely define 7' C w?. But how do we then extend

the iteration to an iteration of length w + 17 Previously we simply took a
transitivized direct limit of (M;|i < w), (m;;]i < j < w). Now we must first
find a branch b in T which is cofinal in w (i.e. supb = w). We also require
that b have at most finitely may drop points. Pick any ¢ € b such that b\ has

no drop point. Then my; : M), — M; is a total map on Mj, for i<ph < € b.
T .
Form the direct limit: '

My, <7Thi|i <he b)

of:
<Mh‘i <he b>, (7rhj|i <rh<je b>

If My is well founded, we call b a well founded branch and take M, are being
transitive. We can then continue the iteration by setting:

M, =: My; hT,, <>: h € bfor h < w.
Tjw is then defined for ¢ <7 j <7 w. If AT, we set Ty, =: Tjy - Th;-

The same procedure is applied at all limit points A. We then have:

e ) is a limit point of T
e T"{\} is cofinal in A

e T"{\} contains at most finitely many truncation points.

By now we have almost given a virtual definition of what is meant by a
"normal iteration of a premouse". The only point left vague is what we
mean by "applying" the extender E,, to M. We shall, in fact, take the

Eé")fultrapower:

T ]\Jg|< _>(En) Mi+1,

Vi

where n < w is maximal such that x; < plj«.
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3.4.2 Normal iteration

We are now ready to write out the formal definition of "normal iteration".
We shall employ the following notational devices:

Definition 3.4.1. Let T be a tree. We set:

o | <7 j < 0olj

o i <rjeii=jVily

[i, 4] =: {h|i <7 h <7 j} (similarly for [i, j]r, [1, jl7, [¢, j]T)

e T(i) =: The immediate T—predecessor of i (if it exists).

We can now define:

Definition 3.4.2. Let M be a premouse. By a normal iteration of M of
length p we mean:

((Mili < p), il + 1 < ), (mili <7 ), T)

where.

(a)
(b)
()

T is a tree on p such that iT; — j <j
M; is a premouse for i < p

v; <wvjif i < j. Moreover M;||v; = (JF with E,, # 0. (We set:
ki =: crit(Ey,), n =: /{;“J;Ei, Ai =: E,,(k;) = the largest cardinal in

JE ) Z

3

Let h be least such that h =i or h < i and k; < Ap. Then h =T(i+1)
and JET = JP.

s
m;; is a partial map of M; to M;. Moreover m;; o mp; = mp; for h <p
i <Tj.

Let h =T(i+1). Set: M} = Mjy||n;, where n; is maximal such that 7;
is a cardinal in Mjy||n;. Then 7y ;49 : M —>g§3{i M1, where n < w is

maximal such that x; < pf,.. (Wecalli+1a Zirop point or truncation
point iff M} # Mp)

If k <; and (4, j]7 has no drop point, then m;; : M; — M; is a total
function on M;.
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(h) Let A be alimit ordinal. Then T”{\} is club in A and contains at most
finitely many drop points. Moreover, if ¢\ and (i, A)7 is free of drops,
then:

My, <7Tj)\|i <rj<r )\>

is the transitivized direct limit of:

(Mjli <1 j <1 A),(mhjli <7 h <77 <7 A).

This completes the definition.
Lemma 3.4.1. Let I = ((M;), (vi), (mi;),T) be a normal iteration. Then

() B =

(b) In M1, N\; is inaccessible and v; = )\j,

. . . . .. . . M; .
Proof: 7; is a cardinal in M;". Since k; is inaccessible in Jf * and is the

largest cardinal in JgMi, it follows by acceptability that:

+

7; = K; and k; is inaccessible in M}

F = EMi, is a full extender of length \; with base H = \JgMi | and extension
(m, H'), where H' = \JEMi |. By acceptability we have:

P(r;) N M = P(;) 0 JEZ

Hence F' is an extender on M} (and the condition (f) makes sense). But
then (Mjy1,m;i4+1) is the Egn)—liftup of (M}, ), where n is maximal such
that x; < ply;«. Hence:

7Ti,i+1(7'i) = Sup 7T”Ti =V and 71'1‘71'_:,_1(/%) = )\i

Hence (b) holds, since the corresponding statement is function of k;,7; in
M.

To see that (a) holds, note that each element of H' has the form 7(f)(«),
where a < A\g and f € H is a function on . But then:

m(f)(a) € EM «— 7(f)(a) € EMH +— a € w(X)
where X = {€ < i f(€) € BM}. Hence
EMi A g — Mt A H and JEMi _ J,,EMiﬂ

QED(Lemma 3.4.1)

Using these facts we prove:
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Lemma 3.4.2. Let I = ((M;),(vs),(mij),T) be a normal iteration. Let
h <. Then
M M;
(a) th b= th
(b) A is inaccessible in M; and vy, = A} in M;
(c) Let h < j <7 i. Then A\, < crit(m;;) < A;.

(d) Let h <pi. m; is a total function on My, iff [H,i]r is drop free.

The proof is by induction on ¢. We leave the details to the reader.

Note. h < i implies vy < A, since v, < v; is a successor cardinal in M;;
hence Vp, ¢ [)\27 Vi).

Definition 3.4.3. Let I = ((M;), (1), (mij),T) be a normal iteration.

e [h(I) denotes the length of I
o If n <Ih(I) we set:

Il =: ((M;li <n),(vili +1 <), (m;li <pi< n),Tﬂn2>.

Definition 3.4.4. Let I = ((M;),...,T) be a normal iteration of limit
length n. By a well founded cofinal branch in I we mean a branch b in T
such that

e supb=rn

e b has at most finitely many truncation points

e Let i € b such that b\ 7 is truncation free. Then
(Mjlj € ), (mali < h < j in b)

has a well founded direct limit.

We leave it to the reader to prove:

Lemma 3.4.3. Let I = ((M;), (v3), (mi5),T) be a normal iteration of limit
length n. Let b be a well founded cofinal branch in I. I has a unique extension
I' of length n+1 such that I'\n =1 and T"{\} =b. (Moreover, if i € b and
b\ i is drop free then:

M, <7T;w7|h €b\i)

15 the transitivized direct limit of

(Mp|h € b\ i), (7 |h € b\ 3).
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Note. We use Theorem 3.3.25 to show that ]\4,’7 is a premouse.

Note. It will be easier to talk about such limits if we have a notion of direct
limit which can be applied to directed systems of partial maps. This could be
defined quite generally, but the following version suffices for our purposes:
Let S = (S, <) be a linear ordering. Let A; be a model and let m;; be a
partial injection of A; to A; for ¢ < j in . Assume that the maps commute
(i.e. mjme; = ) and that for sufficiently large ¢ € S we have:

m;j is a total map on Ag for all j > ¢ in 1.

Let S’ be the set of such 7. We call:
A, (mli € S)

a direct limit of:
(Agli € §), (mi;li < jin S)
iff:
A (mli € §')
in a direct limit of:
<Al|l S Sl>, <7r7;j|i <jin Sl>
and 7, is defined by: 7, = mmp; for h ¢ Sii € S.

In §3.2 we defined N to be a X*—ultrapower of M by F with X*—extension
7 (in symbols 7 : M —}, N) iff F'is close to M and 7 : M —>§;l) N where
n < w is maximal such that crit(F") < p},;. Theorem 3.2.17 said that in this
case 7 is X*—preserving. We shall now show that in a normal iteration Elj,\z/fz
is always close to M. In order to utilize the full strength of this fact, we
shall formulate it not only for normal iteration, but also for potential normal
iteration in the following sense:

Let I = ((M;), (vi), (mij),T) be a normal iteration of length i + 1. If we
attempt to extend I to an I’ of length ¢ + 2 by appointing the next v;, we
call this attempt a potential normal iteration. The formal definition is:

Definition 3.4.5. A potential normal iteration of length i+ 2 is a structure
T = <<MJ|J < 7‘>7 <Vj|j < Z>a <7TZ]|Z <j< Z>>T,>
where:

o I = ((My),{vlj <)

,(mij),T) is a normal iteration of length ¢ + 1,
where T' = T' N (i + 1)?
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o EMi £ and v; > v for j <i
e hWT'j < (WTjV (h <p &N j=1i)) where:
E=T'(i+1)=: the least ¢ such that r; < A¢.

If I’ is a potential iteration and & = T"(i + 1), we define M = MU is in
the usual way, (but we do not yet know whether M} is extendable by Eﬂf%)

Note. (a)-(d) in the definition of normal iteration continue to hold. ((d) is
trivial if € = . T € < i, then 73 < A¢ and J{ © = JE™). But then M; is

defined and 7 € M is a cardinal in M. Let n < w be maximal such that

Ki < pri*' It is easily seen that, if the Zé") extension:

7 M —>g24i% M’
exists, we can turn I’ into a normal iteration of length i + 2 by setting:

/ /
Miy1 =M, eip1=m

We now prove a basic fact about normal iteration:

Theorem 3.4.4. Let I be a potential normal iteration of length i + 2. Let
§=T(i+1). Then E)% is close to M;.

Before proving this we note the obvious corollary:

Corollary 3.4.5. Let I be a normal iteration. If h =T(i+ 1) in I, then:
Thyi+l - ]\4;k —>*Eui Mz

Lemma 3.4.6. Let I be a normal iteration. Let h =T(i+1),i+1 <p j,
where (i + 1, j]7 has no truncation point. Then:

Th,j + M —s« M; strongly.

In particular m, ;" Py C Py for Pt = p¥ in M.

Proof. By induction on j using Lemma 3.2.26, Lemma 3.2.27 and Lemma
3.2.28.
QED(Lemma 3.4.6)

We shall derive Theorem 3.4.4 from an even stronger statement:
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Lemma 3.4.7. Let I be a potential normal iteration of length i + 2. Then
P(7;) N E1 (Mil|vi) € 2y (M]).

We first show that Lemma 3.4.7 implies theorem 3.4.4. Since F' = F,, is
weakly amenable, we need only show that F,, € X;(M;") for a < \;, where:

Fy ={z C Rrilr € M;||vi N € F(x)}.

Let k € M;||v; map 7; onto Jf. Then k € M}, since either i = T'(i + 1) and
M* D> M;||v;, or else h =T(i+ 1) < i, whence follows: k € JﬁM’i = J)\}jwi* C
M. Set: .
Fo ={¢§ <ilk(§) € Fa}-
Then F,, C P(r;) is $;(M}) by Lemma 3.4.7. Hence F,, = k"F, € X,(M}).
QED

We now prove Lemma 3.4.7. Suppose not. Let I be a counterexample of
length ¢ + 2, where ¢ is chosen minimally. Let h = T'( +1). Then:

(1) h<i
Proof: Suppose not. Then M} = M;||pp where p > v. Hence
21 (M;l||lv;) € 2q(M]). Contradiction!

(2) v; = Onyy, and p}\/[i <.
Proof: Suppose not. Let A C 7; be ¥, (M;||v;). Then A € P(1;)AM; C
Jﬂkli, since A, > 7; is inaccessible in 777. But JﬁMi = J)IEnMi C M.
Contradiction!

(3) i is not a limit ordinal.
Proof: Suppose not. Then sup{crit(mﬂ(; i} = supl;, so we can pick

I<i

L ; i such that crit(m;) > A\, > 7 and m; is a total function on
M;. Then m; : M; —x, M;, where M; = (JfﬂF), where F' # ().
Hence M; = (JEZ F) where F # (. Let A C 7 be X,(M;) such
that A ¢ X,(M7). We can assume [ to be chosen large enough that
p € mg(m;), where A is 31 (M;) in the parameter p. Thus A € Xy (M).
Clearly 7 > v; for all j < I, since v; € M; = (JL | F).
Extend I]l + 1 to a potential iteration I’ of cf length | 4+ 2 by setting
v = 7. Since crit(m;) > I;, it follows easily that 7/ = 7, k] = Ky,
where 7, k) are defined in the usual way. But then M = (M])* and
A € ¥,(M7) by the minimality of 4. Contradiction! QED (3)
Now let i = j+1,& = T(i). Since mg; : MY —x, M; = (J, E,) where
E,, # (; we have:
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(4)
()

M; = <JE, E5) where Ey # (.

v

Ti < Kj

Proof: 7, < Aj since 7; = H;FMZ' and k; < Ap < A, where )\;
is inaccessible in M;. But obviously s, 7; € rng(me;) by (4) where
[/ﬁj, )\j) N rng(ﬂgi) = (. QED (5)
Tei M;‘ —E,, M; is a ¥ ultrapower.

Proof: Suppose not. Then k; < p}m. Hence ¢ ; is E(()l)fpreserving.
J

Hence m¢i”"pyy C piy,- Hence 73 = mei(75) < pjy, contradicting (2).
QED (6)

But then:

P(m) N Z(M;) C P(mi) N E, (M7).

Proof: Let A C 7; be ¥1(M;) in the parameter p. Let p = 7 (f) (),
where f:x; — M}, f € M, and A < Aj. Then

A+ \/24'(¢,z,p)

where A’ is So(M;). Let A be Yo(M;) by the same ¥y definition.
Then, since mg; takes M cofinally to M; by (6), we have

AQ) = \Jue My \/ 2 € mei(w)A' (¢, z,p).

By the minimality of i we know that (E,)a € Xq(M]) for a < \;.
But then:

AQ) & \Juemi{y < w4 w, f()} € (By)a-

Hence A is Xy (M7). QED (7)

Now extend I|€ + 1 to a potential iteration I’ of length & + 2 by setting
vi = U, where M7 = M||[7 = (JE E5). Then k; = kg and 7; = 7, since
mei [ kj = id. Hence h = T(i +1) = T"({ + 1) and M = (M{)". By the

minimal choice of i we conclude

P(7i) N X, (M) C Xy (M),

Hence P(7;) N X; (M;) C X(M]") by (7). Contradiction! QED (Lemma 3.4.7)
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3.4.3 Padded iterations

Normal iterations are often used to "compare" two premice M and M’. The
comparison iteration or coiteration consists of a pair (I, I’) of iteration I of M
and I’ of M'. When we have reached M;, M/, we proceed as follows: We look
for the least point of difference — i.e. the least v such that M;||v # M/||v.
Then JE" = JVEMZ{ and EMi £ EY. Then at least one of E,]j\/[i,E,iw{ is
an extender. If both are extenders, we continue on the [-side with the
index v; = v. However, if, say, EM: is an extender and EZJ,W = 0, we
iterate by v; = v on the I-side and on the I’—side do nothing. We then
call i an inactive point on the I'-side and set: M, ; = M, 7}, = id with
i =T'(i+1)in I. Thus i is active on one or the other side and we have
achieved: Miy1|lv = M [|v = 0. (This is called "iterating away the least
point of difference".) At a limit A we choose on either side a well founded
branch and continue with that.

If all goes well, we eventually reach a point ¢ such that M; = M/ or one of
M;, M is a proper segment of the other.

In order to carry this out we need a slightly more flexible definition of "normal
iteration", which admits inactive points. We therefore define:

Definition 3.4.6. A padded normal iteration of length p is a sequence:
I = ((M;|i < p),(vili € A),(mli<rj), T)

such that:

(1) AC{i:j+ 1< pu}is called the set of active points in I.

(2) (a)-(h) of the previous definition hold, where (¢) requires the assump-
tion: 4,j € A and (d), (f) require : i € A.

(3) Let h < j < p such that [h,j) N A= @. Then:
o h<pj,My= M =id.
It follows easily that if ¢ < j, then I; = I; if and only if [i,j) N A = 0. (To
see this, let h = min[é, j) N A. Then v, is a cardinal in M; but not in M;. )

Note. This gives a new way of potentially extending I of length ¢ + 1.
Instead of appointing v;, we could set: i ¢ A, M; 1 = M,;.

All previous results go through mutatis mutandis. We shall often use the
term "normal iteration" so as to include padded normal iteration. We then
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call normal iterations in the sense of our previous definition strict. We can
turn a padded iteration into a strict iteration simply by omitting the inactive
points.

Conversely, we can turn a strict iteration into a padded iteration simply by
inserting inactive points. The relevant lemmas are:

Lemma 3.4.8. Let I = ((M;), (v;), (mi;),T) be a (possibly padded) normal
iteration of length . Let A be the set of active points in I. Set:

Al={iie AVi+1=yp}

Let B C p such that A" C B. Let f be the monotone enumeration of B.
Then:

I'= (Mg vrp)s (mra o)) T
is a normal iteration , where T' = {(i,j) : f())Tf(j)}. (Moreover I' is strict

if B=A').
Proof. (a)-(i) are satisfied by I'.
Conversely:

Lemma 3.4.9. Let I, u be as above. Let f:p— i be monotone such that
lub f7?pu = u' if p is a limit ordinal. Set: f(i) =1lub i fori < p. Fori <y
set:

& = that € such that either f(€) <i < f(£), or else £ +1 = p and f(€) <.

Define:
I' = ((Mj), (v), (i), T')
by:
M] = Mg, mj; =g, ¢, T' = {(i,§) : &T¢;}
and:

o {Vsi if i = (&)

otherwise undefined

Then I' is a normal iteration.

Proof: I’ satisfies (a)-(i).
Note. Lemma 3.4.9 enables to recover I form the I’ in Lemma 3.4.8.

We leave the proof to the reader.
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3.4.4 n—iteration

In a normal iteration we always take X* ultrapowers. For technical reasons,
however, we may sometimes want to bound the degree of preservation of our
ultraproducts. In a O—iteration for instance, we would use the ordinary X
ultrapower to pass from M; to M;11, as long asno h <7 741 is a truncation
point. If, on the other hand, we have reached a truncation point A <p i+ 1,
we then revert to the full ¥X*—ultrapowers. More generally:

Definition 3.4.7. Let n < w. By a normal n—iteration of M of length p we
mean

(Mili < ), (uili + 1 < ), (migli<p), T),

where (a) — (e) and (g) ,(h) in the definition of "normal iteration" hold, and
in addition:

(f) Let h =T(i+1). If 7; is a cardinal in M}, and 7}, is a total map on
M; for jTh, then 7y, ;41 @ Mj —>ng) M;41, where m < n is maximal
such that r; < piyj .

(m

Otherwise mp, ;41 : M =5 ) M; 1, where M is defined as before and m < w

Vi

is maximal such that x; < pﬁ:.

Note. An w-iteration is then the same as a normal iteration n the sense
of our previous definition. We also call such iterations x—iterations, since
we then always take the X* ultrapowers. *—iterations are the ones we are
interested in.

It is easily seen that the conclusions of Lemma 3.4.2 hold for normal n—
iterations. Lemma 3.4.3 also holds for these iterations and Lemma 3.4.7
holds mutatis mutandis. We leave this to the reader. More suprising is:

Theorem 3.4.10. Theoem 5.4.4 holds for normal n—iterations.

Before proving this, we again note some consequences. It follows easily that:

Corollary 3.4.11. Let I be a normal n—iteration. Let h =T(i+1). Let m
be maziomal such that k; < pY}.. Assume either that m < n or that there is
aj <t i+ 1 which is a drop polmt. Then:

Thi+l - Mi* —>*Eui Mi+1-
In all other cases we have:

LA n)
i1 s MF =8 Mgy
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But then by induction on ¢ we get:

Corollary 3.4.12. Let I be as above. Let m;; be a total map on M;. If there
is a drop point j such that jT'i, then m;; is X*—preserving. Otherwise it is

Z(()n) —preserving.

As before, we derive Lemma 3.4.10 from:

Lemma 3.4.13. Let I = ((M;), (v3), (mi5),T) be a potential n—iteration of
length i +2. Then P(1;) N X;(M;||v;) C X, (M]).

The derivation of Lemma 3.4.10 from Lemma 3.4.13 is exactly as before.
We prove Lemma 3.4.13. Almost all steps in the proof of Lemma 3.4.7 go
through as before. The only difficulty occurs in the proof of (6), where
we derived that mg; is E(()l)fpreserving from: w; < p}w. If n > 1, this is
unproblematical. Now assume n = 0. If there is a drop]) point [ <7 i, then
e, is X*-preserving and there is nothing to prove. Now suppose there is no
such drop point.

By the definition of "O-iteration" we then have: m¢; : M; —>%V_ M;, which
J

was to be proven.
All other steps in the proof go through. QED (Lemma 3.4.13)
This proves Theorem 3.4.10.

The concept "padded n—iteration" is defined exactly as before. As before,
every padded iteration can be converted into a strict iteration by omitting
the inactive points, and every strict iteration can be expanded to a padded
iteration by inserting inactive points. We leave this to the reader.

3.4.5 Copying an iteration

Suppose that I is a normal iteration of a premouse M and o : M —y+ M/,
where M’ is a premouse. We can attempt to "copy" I onto an iteration I’
of M’ by repeating the same steps modulo o. We define:

Definition 3.4.8. Let I = ((M;),(v), (mi;),T) be a strict normal iter-
ation of M. TLet 0 : M —s+ M, where M’ is a premouse. We call
I' = ((M}),(v}),(m3;), T") a copy of I induced by (o, M') with copying map
(o;]i < Ih(I)) iff the following hold:

(a) Ih(I') = Ih(I) and T = T
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(b) 0i: M; —s+ M/ and 09 = 0

(c) oymy =m0 for 1 <pi

(d) os[A =0y A forl <i

(e) v = oi(v;) for v; € M;. Otherwise v, = OnNM].

Note. This definition can easily be extended to padded normal iterations.
(b) — (e) are then stipulated for active points, and for inactive points we
stipulate:

(f) If 4 is inactive in [, it is inactive in I’ and 0,41 = 05.

We shall often formulate our definitions and theorems for strict iteration,
leaving it to the reader to discover — mutatis mutandis — the correct version
for padded iterations. In particular, the remaining theorems in this section
will assume strictness.

We also define:

Definition 3.4.9. (I,I',(o;|i < Ih(I))) is a duplication iff I,I' are normal
iterations and I’ is a copy of I with copying maps (o).

Lemma 3.4.14. Let I’ be a copy of I with copying maps (o;). Let h =
T(i+1).

(i) If i + 1 is a drop point in I, then it is a drop point in I' and M'; =
on(M).

(1) If i + 1 is not a drop point in I, it is not a drop point in I'. (Hence
M = ]\4}1,]\4';k = M;L)

(iii) Let F = EM: ' — Ef . Then:
(on I M7 00T \i) + (M}, F) — (M}, F')
as defined in §3.2.
(i) ois1(mhis1(£)(@)) = 7 10n(£)(0:(@) for f € T* (s, MF)a < i

(v) 0j(v;) =] fori <j.

Proof:
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Let h =T(i +1). Then M} = My||p, where p € M), is maximal such
that 7 is a cardinal in My||p. But 7/ = oi(7;) = on(m) by (d), (e).
Hence oy (p) = ¢/, where i/ is maximal such that 7] is a cardinal in
My, and op(Mp||p) = My ||’

If 7 is a cardinal in Mj, then 7/ = 73,(7) is a cardinal in M, since oy,
is 3 —preserving.

Clearly o, | M} : M} —s« M[* by (i) and (ii). Now let = € P(k;) N M}
and aq,...,q, < Xg. Since o; : M; — MZ’ is X*-preserving we have:

(@) € F(z) < (0i(@)) € F'(0i(2)).
But o;(z) = op(x), since by (d) we have: o; [J)iMi = oy [JﬁMh.
If f € M, then by (c):
Oip1Thir1(f) = T 100 (f).

Otherwise f(£) ~ G(&,q) where ¢ € M} and G is a good Egn)(Mi*)
function for an n such that k; < p%l. But then:

Oit1Thit1 (f)(€) = G'(§, oit1mhit1(q))
= G,(éa ﬂ-;l,H_lO-h(Q))
= W;L,i+1o-h(f)

where G’ is Eg")(Mz’*) by the same good definition.

If j > i+1, then v; < A\iyq1 and 0(v;) = 0i41(v;). But letting h =
T(i+ 1), we have:

oir1(vi) = oig1mh i1 (i) = T, i1 0n(T),

where
on(1;) = oi(m;) = 7/, since 7; < Ap,.

Hence 0;41(v;) = W;L,Hl(Tf/L) = .

QED (Lemma 3.4.14)

It is apparent from Lemma 3.4.14 that there is only one way to extend a
copy of I]i+ 1 to a copy of I|i+ 2. Moreover, the copying map o; is unique.
Similarly, if 7 is a limit ordinal and I’ is a copy of I|u with copying maps
(o;]i <), ther is only one way to extend I’ to a copy of I|n+ 1, for then:

M, (mi liT)
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is the direct limit of:
(Mjli < n), (mili <7 j <T 1),
and oy, is defined by:
OnTin = ﬂgnai for i <p 7.
Hence, by induction on [h(I) we get:

Lemma 3.4.15. Let I be a normal iteration of M. Let o : M —ss« M.
Then there is at most one copy I' of I induced by o. Moreover, the copying
maps o; are unique.

Now suppose that I is a normal iteration of length 7+ 1 and I’ is a copy of 1
with copying maps (o, | h < ). Extend I to a potential iteration I of length
1+ 2 by appointing v;. Extend I’ to a potential iteration I’ by appointing:

, oi(v;) if v; € M;
"7 ] On NM] if v; = OnNM,;.

We call (I, 1", (0;]| < i)) a potential duplication of length i + 2. The formal
definition is:

Definition 3.4.10. Let I, I’ be potential iteration of length i4+2. (I, T', (o;]j <
i)) is a potential duplication of length ¢ + 2 iff

o (I, T, (017 <)) is a duplication of length i 41, where T = i+ 1,7 =
I'li+1.
e 0;(v;) = v if v; € M;. Otherwise v, = On AM].
Note. It is then easily seen that T'(i +1) = T7"(i + 1). We also know that
E%i is close to M* and Eiv,jl is clost to M/. The following theorem is an

3

analogue of theorem 3.4.7

Lemma 3.4.16. Let (I,1I',{0;)) be a potential duplication of length i + 2.
Let h=T(i+1). Then:

<O’h fMZ-*, 0; f)\l> : <Mi*7 F> —* <MI:, FI>
. ) M
(as defined in §3.2) where F = E}i F' = EVQZ'
Before proving the theorem, we note some of its consequences. It gives us

exact criteria for determining whether the copying process can be continued
one step further.
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Lemma 3.4.17. Let I be a normal iteration of M of length i + 2. Let
o: M — M induce a copy I' of 1|0 + 1 with copying maps (o;|j <1i). Set:

;o Ui(Vi) Zf v; € Ml
OnNM if v; = OnNM;

‘ . . . M
Then o induces a copy of 1 iff M’} is X*—extendible by EVQ .

Proof: If M’} is not extendible, then no such copy can exist. Now let
M'; be extendible. Let 7, ;. : M’} —* . M'},,. By theorem 3.4.16 and

) E , 7
Lemma 3.2.23 it follows that there is a unizque o My —x- MZ-’Jrl such that
OThit1 = Ty i - (on [ M), where h = T(i 4 1). Set: ¢;41 =: 0. This gives
us the copy I” of I with copying maps (o;|j < 0+ 1).

QED (Lemma 3.4.17)

We also have:

Lemma 3.4.18. Let I be a normal iteration of M of length n+ 1, where n is
a limit ordinal. Let o : M —p« M’ induce a copy I' of I|n. We can extend
I' to a copy of I induced by o iff b =T"{n} is a well founded branch in I'.

The proof is left to the reader.

We also note:

Lemma 3.4.19. Let I be a normal iteration of limit length. Let I' be a
copy of I. If b is a cofinal well founded branch in I', then it is a cofinal well
founded branch in I.

The proof is left to the reader.

We now turn to the proof of theorem 3.4.16. As with theorem 3.4.7 we derive
it from an even stronger lemma:

Lemma 3.4.20. Let (I,I',{0;)) be a potential duplication of length i + 2.
Let A C 7; be X1(M;||v;) in a parameter p. Let A" C 7] be X1(M;||v;) in
oi(p) by the same definition. Then A is ¥1(M]) in a parameter g and A’ is
Y1(M'}) in on(q) by the same definition, where h = T'(i + 1).

The derivation of theorem 3.4.16 from lemma 3.4.20 is a virtual repetition
of the proof of theorem 3.4.4 from lemma 3.4.7. We leave it to the reader.

Lemma 3.4.20 is proven by a virtual repetition of the proof of lemma 3.4.7,
making changes as necessary. We give a brief sketch of the proof:
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Suppose not. Let I, I’,v;, v} be counterexamples of length ¢ + 1, where ¢ is
chosen minimally. Let h =T(i +1) = T'(i + 1). Then:

(1)

(7)

h <.

Suppose not. Then M;||ly; C M} and M/||v, C M’'; as before. If
v; € M}, then o;(M||lv;) = M/||v.. Hence A € M} and o;(A) = A’
Contradiction!

v; = Onyy, and pﬁwl <.
Otherwise, as before A € P(r;) N M}, A" € P(r;) N M’} and op,(A) =
0i(A) = A’. Contradiction!

7 is not a limit cardinal.
The proof of this is a virtual repetition of the argument given in the
proof of lemma 3.4.7. We leave it to the reader.

Now let i = j + 1,£ = T'(i). Exactly as before we have:
M: = (JF E,), M’} = (JE' E|,) where E,, E], # .
Ti < Kj.

i+ M —p, M;isa X ultrapower (and therefore cofinal). Similarly

for m; + M'; —p, M. By the minimality of ¢ we know that for
k) l/].

all v < Aj, (EMij), is ¥1(M;) in a parameter r and (EMiy;)Ui(a) is

¥1(MJ*) in o¢(r) by the same definition. Using this we can repeat the

argument in the proof of Lemma 3.4.7 to get:

Ais X (M7) in a g and A" is ¥1(M'}) in 0¢(q) by the same definition.

Now extend 7§ + 1 to a potential iteration I of length & + 2 by setting
Ve = v, where v is as in (4). Extend I'| + 1 to I’ by setting 7g = v/ where
V' is as in (4). Then k; = R¢, 7y = Te, K, = Re, T, = 7:5’ as before. Hence

h=T(E+1)=T(+1) and My = M}, M'; = M’;. By this minimality

of i we conclude that A is X1(M}) ia a ¢ and A’ is X1(M'}) in o1,(q) by the
same definition. Contradiction! QED (Lemma 3.4.20)

3.4.6 Copying an n—iteration

Definition 3.4.11. Let I = ((M;), (1), (mij),T) be a normal n-iteration
(n<w). Leto: M —>E{W,M’. We call:



3.5. ITERABILITY 225

a copy (or n—copy) of I induced by (o, M') iff I is an n-iteration satisfying
(a), (c), (d), (e) of the previous definition together with

(b’) op =0 and o : M; — () M. Moreover, if some h <7 i is a truncation
1

point, then o; is X*—preserving.

The notion "n—duplication" and "potential n—duplication" are defined as
before. Lemma 3.4.14 goes through as before exept (iv) must be reformulated
as:

(iv’) Ifno I <7 i+ 1is a truncation point and r; < pjy, , then:

oit1(Thi+1(f)) (@) =, i110i(f)(0i(a))
for f € I'?(ki, Mp,), 0 < A;. In all other cases the equation holds for

fel™(ki, M), a0 < N\

Lemma 3.4.15 then holds as before. Theorem 3.4.16 and lemma 3.4.17 —
3.4.19 then go through as before. By theorem 3.4.16 we also get:

Lemma 3.4.21. Let (I,I',{(0;)) be an n—duplication. Let i <p j in I such
that m;; is total on M;.

(a) If no |l <7 i is a truncation point and k; < Phy,s then mij « M; —

M;.

=
(b) In all other cases m;j is X* —preserving.

These lemmas and theorems hold mutatis mutandis for padded n—iterations.
The details are left to the reader.

3.5 Iterability

A mouse is a premouse which is iterable. Iterability is, however, as complex
a notion as that of iterating itself. We begin with normal iterability which
says that any normal iteration of M constructed accordig to an appropriate
strategy, can be continued.
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3.5.1 Normal iterability

Definition 3.5.1. A premouse M has the normal uniqueness property (NUP)
iff every normal iteration of M of limit length has at most one cofinal well
founded branch. The simplest mice, such as 0%,0%# etc. are easily seen to
have this property. Unfortunately, however, there are mice which do not. If
a premouse M does satisfy NUP, then normal iterability can be defined by:

Definition 3.5.2. Let M satisfy NUP, M is normally iterable iff every nor-
mal iteration of M can be continued — i.e.

e If [ is a normal iteration of M of limit length, then it has a cofinal well
founded branch.

e If ] is a potential iteration of length i + 2, then M is *—extendible by
EM:

If M does not satisfy NUP, we say that it is normally iterable if there exists
a strategy for picking cofinal well founded branches such that any iteration
executed in accordance with that strategy could be continued. We first
define:

Definition 3.5.3. A normal iteration strategy is a partial function S on
normal iterations of limit length such that S(I), if defined, is a well founded
cofinal branch in I. We call it a strategy for M if its domain is restricted to
iterations of M.

Definition 3.5.4. A normal iteration I = ((M;), (), (xi;, T) conforms to
the iteration strategy S iff, whenever, n < 1lh[I is a limit ordinal, then

T"{n} = S(In).

Definition 3.5.5. A normal iteration strategy S is a—successful for a pre-
mouse M iff every S—conforming iteration of M of length < a can be con-
tinued in an S—conforming way. In other words:

e If I is of limit length < «, then S(I) is defined

e If I is a potential normal iteration length i + 2 < «, then M is *—
extendible by E)".

Definition 3.5.6. M is normally a—iterable iff there exists an a—successful
strategy for M.

Definition 3.5.7. M is normally iterable iff it is normally a—iterable for all
a.
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Note. It might seem more natural to take "normal iterable" as meaning
that M is oo—iterable, but that is a second order property, which we cannot
express in ZFC.

Note. If M has NUP, then any two iteration strategies for M must coin-
cide on their common domain. Hence, in this case, our initial definition of
"normally iterable" is equivalent to the definition just given. It is then also
equivalent to the second order statement that M is oco—iterable.

Definition 3.5.8. M is uniquely normally iterable iff it is normally iterable
and satisfies NUP.

Proving iterability is a central problem of inner model theory. There are
large classes of premice for which it is unsolved. The success we have had
to date depends strongly on NUP. Whenever we have been able to prove the
iterability M, it is either because M satisfies NUP, or because we derive its
iterability from that of another premouse which satisfies NUP.

Note. In the above definition we take "normal iteration" as meaning "padded
normal iteration". One can, of course, define strict iteration strategy, strictly
a—successful and strictly a—iterable in the obvious way. But in fact ev-
ery strictly a—iterable premouse is a—iterable, since every strictly successful
strategy S can be expanded to an a—successful S* as follows. Let:

I = (M), (v]i € A), (mij, T)

be padded iteration of limit length n. If A is cofinal in 7, let (oy|i < u) be
the monotone enumeration of A and set:

I' = <<Mai>7 <Va0>v <7T01i,aj>7 {<i7j>‘aiTaj}>'
Then I’ is strict and we set:
S*(I) ~ {i| \/ j € S(I')iTw,}.

If A is not cofinal in n, let j < n such that [j,n] N A = 0. S*(I) is then
defined to be the unique cofinal well founded branch:

(iliTy v j < i < ).

3.5.2 The comparison iteration

As mentioned earlier, we can "compare" two normally iterable premice via
a pair of padded normal iterations known as the coiteration or comparison
iteration. We define:
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Definition 3.5.9. Let M, N be premice. M is a segment of N (in symbols:
M < N) iff M = N||n for an n < Ony.

If neither of M9 M! is a segment of the other, there is a first point of
0
difference v defined as the least v such that M°||v # M!||v. Then JfOM =

JEM and EMo, £ EM, . Set : wlt, : MM —p, MPif EM', £ o
Otherwise set: M = M" zfl| =id. Then M{|lvy = M;||vo. If M7, M|
have a point 14 of difference, then 11 > 1y and we can repeat the process to
get M} etc. Suppose that card(M") < © for h = 0,1 where © + 1 is regular
and each M" is © 41 iterable. The comparison process then continues until
we have a pair of iterations of length ¢ 4+ 1, where either i = © of ¢ < © and
MP?, M} have no point of difference. (Hence one is a segment of the other.)
Using the initial segment condition we shall show that the comparison must
terminate at an ¢ + 1 < ©. The formal definition is:

Definition 3.5.10. Let © > w be a regular cardinal. Let M% M?! be
premice of height < © which are normally © + 1-iterable. Let S™ be a
successful ©th normal iteration strategy for M™ (n = 0,1). The coiteration
of M, M" given by (S° S1) is a pair (I°,I') of padded normal iterations
of common length u+ 1 < © + 1 with coindices (v; | i < p) such that

I" = {(M7), (i | i € A™), (x2), T

and:
o MJ=M"
o If M?, M} are given and i < ©, then
v; ~ the first point of difference v such that M?||v # M}||v.
e If v; exists and E], # 0, then i € A" and:
Thit1: M; —>*E,’}i 1
e If v; exists and E}; = (), then i ¢ A™ and M}, = M.
e If 1; does not exist, then u = 1.

Then the coiteration is uniquely determined by M°, M*!, S° S'. We prove
the Comparison Lemma:

Lemma 3.5.1. The comparison iteration terminates below ©.



3.5. ITERABILITY 229

Proof: Suppose not. Then M}, ﬂﬁfj are defined for all i < © and i <;n j <
©. By induction we have: M} 7!, € Hg for i <;u» j < ©. Hence I" € Hg+.

10 %4,

Set: @ = Hg+. By a Lowenheim—Skolem argument, there is X < @ such
that:
card(X) < ©, X N O is transitive , I°, ' € X.

Let 0: Q «— X where Q is transitive. Then 0: Q < Q. Let o(I") = I"
(h=0,1). Let:
I" = (M), (7 | i € AY), (7)., T")

for h = 0,1. Clearly Theta = © N X and ¢ [© = id. Hence:

(1) (a) i<gnj—i<pnjfori,j<®©
(b) Z’<ThéHZ'<Th@f0ri<(:).
Hence:
(1)(c) © <pn O,
since © is a limit point of the club set T"”©.
Set: H =: (Hg)%. Then:
(2) o H =id.

Proof. Since o IO = id, we have: o(a) = a for a C< a < _(:) such that
a € H. Similarly o(r) = r for r C o? such that o < Theta, r € H.
Let x € H. Let u=TC(x). Then u € H and thereis « < H, f € H

such that f: « o9 . Hence:
o(r) =r where r = {(i,j) | i,j < an f(i) € f(5)}-
Hence f = o(f), since both are defined by the recursion:
fG@) ={F(G) [ gri} for i < a.

Hence o(a) = a where a = f~1”x. Hence v = o(x) = f"a. QED (2)

Hence:

(3) M} = M}, ﬁﬁj = Wffj for i <pn j < ©.
But then:

(4) Mg, <ﬁzhé | i <7n ©) is the direct limit of:
(M} | i <pn ©), <7T£fj | <gn j <pn ©).

Hence:
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(5)

(6)

(8)

(9)
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Mg _ Mga ﬁ?é — th(:) for i < ©.

Using this we get:
Ao h
Tee =0 [M@

Proof. Let = € Mg, x = WZ(:)(Z) where i <7» ©. Then;

@
—~
N
~—
I
N
q®|
@
-2

0(z) = o(ng(2)) = mlio(2) = 7 o}
QED (6)

There is i € [0, 0)n such that Mg # M;.

Proof. Suppose not. Then M; = Mg and hence [0,7) N A" = () for
i <rn ©. Hence Mg = Mg. But then [0,0) C A" Let j € [0,0)
such that v; > ht(Mg). v; is a point of difference. Hence v; < ht(Mg).
Contradiction! QED (7)

Now let ij be least such that © <;u i <pn © and M; # Mg. By
minimality, i = ji + 1 for some jj,. But then j, € A", since otherwise
M; = M; and i was not minimal. Let ¢, = T"(is). Then © <pn t; <
tp,. Hence Mt}; = Mg and 7g 4, =1id. Set:

h

Fy,=F In Kp =: crit(Fh).

I/jh )

We kn.owz 6.0 = Tr-@,thﬂ-th,ihﬂ-ihyeﬁ where W%Vth =id [Mg and 772‘}2,@ i
Aj, = id. From this it follows easily that:

Kp, = crit(w&wih) = crit(ﬂ%#h)
and:
Fip(X) =o(X)N A, for h=0,1, X € P(©) N M.
But then:
jO 7é j17
since otherwise Eﬂfo = El],\;[l " and vj, is not a point of difference.

Now suppose e.g. that jo < ji. v}, is then a cardinal in M]Ql. But
E;-)O = Ejlll)\jo € Mj11||1/j1. Hence v}, is not a cardinal in Mjol, since:
Mjo1 v, = MjllHyjl. Contradiction!

QED (Lemma 3.5.1)
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3.5.3 n—mormaliterability

By an n—normal iteration strategy we mean a partial function s on normal n—
iterations of limit length such that S(I), if defined, is a well founded cofinal
branch in I. The concepts a—successful n—normal strategy and n—-normally
a—iterable are then defined in the obvious way. M is called n—normally
iterable iff it is n—normally a-iterable for all . If M°, M! are premice of
cardinals 1 < ©, where © is regular, and S" is a © + 1-successful n,-normal
iteration strategy for M"(h = 0,1), we can define the (ng,n;)-coiteration
of M? M*' given by (S°,S1) exactly as before. But then the comparison
lemma holds for this coiteration by exactly the same proof as before.

3.5.4 Iteration strategy and copying

Lemma 3.5.2. Let M be normally a—iterable. Let o : M —sy« M. Then M
15 normally a—iterable.

Proof: Let S be an a—successful strict normal iteration strategy for M.
We use the copying procedure and Lemma 3.4.19 to define an a—successful
strategy S for M. S is defined on the set of strict iterations I of M having
limit length such that o induces a copy I of I onto M with copying maps
(ogli < 1h(I)) which conforms to S. We then set: S(I) = S(I). S(I) is
then a cofinal well founded branch in I by Lemma 3.4.19. By induction
on g = lh(I) it then follows that, if T is S—conforming, then o induces an
S—conforming copy I with copying maps (o;|i < p). For g = 1 or limit
this is trivial. For g = n+ 1 where 7 is a limit, we use the definition of S. If
pw=n+1, we use Lemma 3.4.18 By a virtual repitition of this proof:

Lemma 3.5.3. Let M be n—normally a—iterable. Let o : M ) M. Then
1

M is n—normally a—iterable.

The details are left to the reader.

3.5.5 Full iterability

Normal iterability is too weak a property for many purposes. For instance, we
do not kknow, in general, that a normal iterate IV of a normally iterable M is
itself normally iterable. We therefore introduce the notion of full iterability,
which is often more useful but, unfortunately, harder to verify.
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The process of taking a normal iteration of M can itself be iterated, as can
the process of taking a segment of a normal iterate of M. This suggests
an expande notion of iteration: Not only normal iterations are allowed, but
also (finite or infinite) successions of normal iteration, where the i + 1 set
iteration is applied to a segment of the iterate given by stage i. The formal
definition is:

Definition 3.5.11. Let M be a premouse. By a full iteration I of M of
length 1 we mean a sequence (I|i < u) of normal iteration:

I' = si{(My), (vh), (m ;). T°)

inducing a sequence M; = M -M’I(i < p) of premice and a commutative

(2
sequence of partial maps mp; = W}(L]j\/[’l)(h < j < p) such that the following

hold:

(a) M() =M.
(b) M¢ < M; for i < p.
(¢) If i +1 < p, then I’ has length I; + 1 for some /; and:

My = M, miip1 =7,

sv

Call i < p a drop point in I iff either M§ # M; or i +1 < p and I’ has a
truncation on its main branch.

(d) Let ov < p. Then the set of drop points i < « is finite. Moreover, 7;
is a total function on M; whenever [i,«) has no drop point. If « is a
limit ordinal then:

Mg, <7Tm|i < ,u>

is the transitivized direct limit of:
(Mili < o), (misli < j < ).
It is clear that the sequence (M;li < p), (m;;li < j < p) are uniquely deter-
mined by the pair (M, I).

Definition 3.5.12. I = (I|i < p) is a full iteration iff it is a full iteration
of some M.

Note. We have not excluded the case p = 0. In this case I = () is a full
iteration of every premouse. We then have: M0 = N, 7(N:0) — iq | N.
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Definition 3.5.13. Let I = (I'li < pu) be a full iteration. The total length
of I is X<, 1h(I%).

Definition 3.5.14. Let I be a full iteration of M. i < p is a truncation
point (or drop point) v with M, I, iff either I7 is of length [; + 1 and has a
truncation on its main branch T%{l;}, or else M{ # M;.

By (d) the set of truncation points ¢ < « is always finite if o < p is a limit
ordinal.

Definition 3.5.15. [ is a full iteration of M to M’ iff I is a full iteration of
M and one of the following holds:
(i) I=0and M = M
(ii) I has length p=mn+ 1 and I” has length v + 1, where M’ = M.
(iii) I has limit length mu, the set of truncation points i < p is finite, and:
(M < < p), (mili <J < )
is as the transitive direct limit:
M’ (mili < ).

Definition 3.5.16. Let M, M, I be as above. The iteration map = = 71

from M to M’ given by the pair (M, T) is defined as follows:

(i) 7 =id[Mif [ =
(ii) If I,1¢ are as in (ii) we set m = ﬂ-gvln o W((){\g’j)

(iii) If case (iii) holds, we set: m = my.

Definition 3.5.17. Let I = (I'|li < p),I' = <I/i\z'~< p')y be full iterations.
the concatenation 11" of I,1' is the sequence (I'|i < p+ p') such that
I' =T for i < pand I* = 1" for i < p'.

I I’ is not necessarily a full iteration. However, it is easily seen that

Lemma 3.5.4. If I is a full iteration from M to M’ and I' is a full iteration
of M', then

(a) 171" is a full iteration of M.

(b) If I' # 0, then 7M1 = Wéﬁ[’lﬁ]/), where p = 1h(I).
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(¢) If I' is an iteration of M' to M", then I™I' is an iteration of M to
M and 7MI7T) — (M'.1) o (M.I)

Definition 3.5.18. Let I be a full iteration of M. By a lenthening of I we
mean any I I’ which is a full iteration.

(Hence we cannot lengthen (I'|i <) by extending its last normal iteration
I, but only by starting a new normal iteration.)

Note. Lemma 3.5.4 (b) then says that, if I is an iteration from M to M’
and I’ is a proper lenghtening of I (i.e. p = Ih(I) < g/ = lh(I’), then
oM — (ML)

=7, -

We now define the concept of full iterability:

Definition 3.5.19. A full iteration strategy is a partial function on full
iterations I of length n + 1 such that I" is of limit length. S(I), if defined
is then a cofinal well founded branch in I" (we refer such full iterations I as
critical).

Definition 3.5.20. A full iteration I = (I'|i < p) conforms to the strategy
S iff whenever i < p and v < 1h(I?) is a limit ordinal, then T%{~} is the
branch S((I i)™ (I']y)) given by S.

Definition 3.5.21. A strategy S is a—successful for M iff whenever I =
(I'|i < p) is an S—conforming full iteration of M of total length ¥, 1h(I?) <
«, then I can be extended one step further in an S—conforming way:

(a) If 4 =i+ 1 and I’ is of limit length, then S(I) exists.

(b) Let p = i+ 1 and 1h(I*) = h + 1. Extend I’ to a potential normal
iteration by appointing vy,. This gives F,, and M. Then M is *-
extendible by F,, .

(¢) If w is a limit ordinal, then there are at most finitely many truncation
points below p. Moreover:

<M~(M’I

. MI),. _ .
DN <y (750D < < o)
has a well founded limit.

Definition 3.5.22. M is fully a—iterable iff it has an a—successful full iter-
ation strategy.

Definition 3.5.23. M is fully iterable iff it is fully a—iterable for every a.
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3.5.6 The Dodd—Jensen Lemma

We now prove a theorem about normal iteration of premice which are fully
iterable and have the normal unique new property.

Theorem 3.5.5. (The Dodd-Jensen Lemma)
Suppose that M has the normal uniqueness property and is fully ©—iterable,
where © > w is regular. Let:

1" = (M), (), (my), T°)

be a normal iteration of M with length n + 1. Let 0 : M —s+ N where
N < M,). Then:

(a) N = M.
(b) There is no truncation point on the main branch T*"{n} of I°.
(c) o(&§) > mo, (&) for all £ € OnNM.

Note. Let M’ = M,?,ﬂ = 7o,y- Then 7 is the unique X*-preserving map
of M to M’ such that 7(£) = the least & such that & = o(&) for some
o : M — M’ which is X*—preserving. Thus 7 depends only on the models
M, M’ and not on the iteration I°.

We now prove the theorem. Fix a ©-successful strategy S for M. By
induction on i < w we construct I*, N%, o* such that

o I'=((M}),(v)), <7T;Lj,Ti> is a normal iteration.

e NV <1M7§ and o' : M —y= N

e (I ... I') is S—conforming.

e If i = h+ 1, then I’ is the copy of I° onto N" by o".

Casel i=0
I is given. Set: N* = N, o' = 0.

Case 2 i=h+1
We first construct I*. We construct I*|y + 1 and copying maps

Ulh : MY —se MP(1< )

by induction on +, ensuring at each stage that (1°,..., I" I|y +1) is
S—conforming.
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For v = 0 set I'|y+1 = ((N"),2,(id),@). We set ol = ol. If
v =1+ 1, we follow the usual procedure.

Now let v be a limit ordinal. We are given I‘|y and copying maps
(alh]l < ), where I|y is the copy of I°]y onto M = N" by o”*. Then
I' = (I°...,I" I'|y) is S—conforming. Hence S gives us a cofinal
well founded branch b = S(I') in I'|y and we extend I'|y to I'|y + 1
by setting T7""{v} = B. But by Lemma 3.4.19, b is a well founded
cofinal branch in I°|y. Hence b = T%"{~} by uniqueness. But then
afﬁl : MS — M}/ can be defined as usual. This gives (I°,..., %),
which is S—conforming. But 07}7‘ : M,? —y+ Mé, where N0 < M,?. If
NY = M,?, set N = Mé Otherwise set: N = UZ(NO). In either case
h

oy 0% : M —x+ N, and we set: o' = 07}7‘ oY QED (Case 2)

Thus (I'|i < w) is an S—conforming full iteration of M. Using this we prove

(a) = (c):

(a) Suppose not. Then N’ # M for i < w. But My = M, M, 11 = M’
and MSLH = N" % M,4+1. Hence every n+1 < w is a truncation point
in I =({I"n<w).

Contradiction!

(b) Suppose not. Let i+1 be a truncation point on the main branch 7°”{n}
of I°. By our construction i + 1 is a truncation point in 7'{n} for
n < w. Hence each n 4 1 is a truncation point in I.
Contradiction!

(¢) By (a), (b), Tpm : My, — M, is a total function on M, forn < m < w.
Suppose () to be false. Let 6°(&) < 70(€). Then o™1(¢) = 0! (6¥(€) <

n
o (18,(6)) =y (07(6)) = mirey (07(€))- Hence w1 w0+ (€) < mi o (€)
for 7 < w.
Contradiction! QED (Theorem 3.5.5)

Lemma 3.5.6. Let w < © < o where © is a reqular cardinal. Let S be an
a—successful strategy for M. Let I be an S—conforming iteration from M to
M’ with total length < ©. Define an iteration strategy S’ for M’ by

S'(I'y~ ST

for full iteration I' of M'. Then S’ is an a—successful strateqy for M’.

The proof is left to the reader. Similarly, we obtain a normal iteration
strategy S” for M by setting S” for M by setting S”(I) ~ S'((I)) where I is
a normal iteration of limit length < « and (I) is the full iteration I of length
1 such that 10 = 1.
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3.5.7 Copying a full iteration

Definition 3.5.24. Let 0 : M —x« M’ where M, M’ are premice. Let
I = (I'|i < p) be a full iteration of M. I' = (I"'|i < p) is the copy of I onto
M' by o with copying maps (0% < i < p) iff

(a) I’ is a full iteration of M’ inducing

(Mji < ), (mizli < j < p)

(b) i : My —x+ M| such that oym;; = ngal-
(c) oo =0

(d) I'" is the copy of I' induced by o; | M¢ with copying maps (o} |h <
Ih(I7))

e ;= A,t en M, = ! and of = ot
If M; = M, then M! = M'} and o' = o)
(f) If M; # M, then My = o;(M{) and of) = o; | M},

(g) If i +1 < p, then 0,41 = of; where Ih(I*) =1,.

Clearly I and the copying maps (o;]i < ), (o}]i < p, h < 1h(I%)) are unique,
if they exist. (Note that if n < p is alimit ordinal, then oy, is uniquely defined
by: opmi, = ﬂ'gnai for i <n.)

Lemma 3.5.7. Let 0 : M —x« M', where M’ is fully a—iterable. Then M
15 fully a—iterable.

Let S” be an a—successful strategy for M’. We define a strategy S for M
as follows: If I = (I*|i < n) is a full iteration of M such that I" is of limit
length, we ask whether o induces a copy I’ of I onto M'. If so we set:
S(I) ~ S'(I'). Tf not, S(I) is undefined. (S(I), if defined, is a cofinal well
founded branch in I by Lemma 3.4.19.) It follows that if I is S—conforming,
then o induces a copy I’ which is S’—conforming. (We prove this by induction
on u, where I = (I'|i < p) and for = n + 1 by induction on the length of
I") Using Lemma 3.4.18 and 3.4.19 it then follows that I can be extended
in an S—conforming way, since I’ can be extended in an S’—conforming way.

QED (Lemma 3.5.7)
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3.5.8 The Neeman—Steel lemma

The usefulness of the Dodd—-Jensen Lemma is limited by the fact that it
applies only to premice with the normal uniqueness property. In the absence
of normal uniqueness we have the following subtleties:

Theorem 3.5.8 (The Neeman—Steel Lemma). Let M be a countable
premouse which is fully w + 1 iterable. Let ({,|n < w) be an enumeration of
OnNM. There is an wi-successful full iteration strateqy S for M such that
whenever I = ((M;), (vi), (m; 5),T) is an S-conforming normal iteration of
M of length n+1 < wy and o : M —s« M', where M’ < M, then:

(a) M' = M,.
(b) There is no truncation point on the main branch {i : iTn}.

(c) If 0(&) = mon(&) fori <n <w, then 0(&,) > 70,(&n).

Then 7, is the unique 7 : M —x+« M’ such that 7(&,) = the least & such
that o(&,) = ¢ for a o such that o : M —y+« M’ and o(§;) = 7(&) for
i < n. Then m depends only on M, M’ and the enumeration (§; : i < w),
rather than on the iteration I.

Note. When we say that a normal iteration is S-conforming, we mean that
the full iteration (I) of length 1 is S-conforming.

We shall derive Theorem 3.5.8 from a stronger statement;:

Lemma 3.5.9. Let M, (&; : i < w) be as above. There is a wy + 1-successful
full iteration strategy S for M such that whenever I is an S-conforming full
iteration from M to M' and o : M — s« M’, then:

(a) No i < 1h(I) is a drop point in I (hence the iteration map © from M
to M' is a total function on M ).

(b) If o(&) = mw(§) fori <mn, then (&) > w(&n)-

This clearly implies Theorem 3.5.8 since if I = ((M;), m), M’ are as in the
theorem, then (7, (M’)) is an S-conforming full iteration from M to M’ of
length 2. (Here (M) denotes the minimal normal iteration of M of length 1:
(M), {id | M), 5).)

Proof. We prove Lemma 3.5.9. In the following we use the term “iteration”
to mean a full iteration of total length < wy. By a lengthening of an iteration
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I we mean an iteration of the form I I’. Fix an w; + 1-successful iteration
strategy for M. We write “S-iteration” to mean “S-conforming iteration”.

(1)

There is an iteration Iy from M to an Ny such that:

e Thereis o9 : M —x+ Np.

e Let I be any lengthening of Iy which is an S-iteration from M to
M'. Let ¢/ : M —y« M’. Then I has no truncation point in

A

Ih(I)~Ih(f).

Proof. Suppose not. Recall that @ is an S-iteration of M to M.
There is then a sequence of (I;, N;, 0;)(0 < w) such that:

e [p =9, No=M,o0=1id M.

e [; + 1 is an S-iteration of M to N; + 1 which lengthen I3.

e [; + 1 has a truncation point in 1h(Z; + 1)~ 1h(Z;).

e 0, : M —s« N;.
Set I =J,; I;- Then I is an S-iteration with infinitely many truncation
points below 1h(7). Contradiction!

QED (1)

Fix Io, NQ, ago.
We can extend (Iy, No,00) to an infinite sequence (I;, N;, 0;) (i < w)
such that:

e I; = I; I} ; is an S-iteration which lengthen I}, for h <.

e [, ; is an iteration from N}, to INV; with iteration map m,; =
a7 (Nnodhi)

o mjTp = mp; for h <i < j < w.

® 0, M — Ni

° Wijgi(gh) = fh for h <i< 7.

o Let j =i+ 1andlet I;"I be any S-iteration, where I is from Nj
to N. Let 0 : M —x+ N such that (&) = mo;(&,) for h < j,
where 7 = 7(Ni-D) is the iteration map. Then o(&;) > mo;(&)-

Proof. Suppose not. Consider the tree of finite sequences ((I;, N;, 0p) :
i < m) such that the above holds for all h,7,j < n. This tree has no
infinite branch. Hence there is a finite sequence ((I;, N;,0;) : i < n)
which has no successor in the tree. Nut then we can form a sequence

(I;, N;, 63), i < w

with the properties:
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o Iy = In, No = Ny, 50 = &n.
I~i+1 = NZANIZ is an S-iteration from M to Ni+1 which properly
lengthens N;.

N7

1:1, is an iteration from ]\7- to Ni—l—l with iteration map m; = 7

ngrl M —>E* Nz+1 is such that £z+1(£h) = Wgz(éh) = 77151<§h)
for h < n but £z+1(€n) < ﬂ,(fz(ﬁn))

Set p; = lh(I;), I = UJ; li- Then p; < p41 and Iis of limit length
W = sup; p; since I; lengthens Iy and 6; : M —y« N;. Let M; =

Ml(M’I), T = WZ(M’I) for I <i < p, it follows easily that m; = Ty, 4,4

and N; = M;. Moreover 7 ;.5 18 a total function on M; for pu; < j < p.
Since I is S-conforming we can form the transitive limit M, (T 11 < )
of:

(M ci < ), (mij:i<j<p.

But then 7,,416:41(&n) < Ti0i(&n), % < w. Contradiction!
QED(2)
Now let (I;, N;,04),i < w be as in (2). Let py; =: 1h(l;). We assume
without lose of generality that p; < p; for ¢ < j. If I/ is an S-iteration
from M to M’, then so if I'™(M'). Set I* =, I;. I* is an S-iteration
of length p* = sup; p;. We know by (1) that I* has no truncation point
(M, 17)

M,I* ,
in u*\po. Letting M* = M; ,7r;"j =T, , we have:

N; = M and m;; = ﬂ-ﬂz ”

where N;, 7;; are as in (2). Since I* is an S-iteration, we can form the
limit:
M (i < )

of (M} : i < p*),(mj; : i < j <p”). But le(am(ﬁh)) T (0541(En))
for h <i < j <w, where ;41 : M — M and WMH s My, — M* are

> *—preserving. But then we can define a ¢* : M —y« M™ by:

U*(En) = Tpita (UiJrl(éh)) for h <i<w.
Let S* be the wy + 1-successful strategy for M* defined by:
S*(I)~ S(I*1)

where [ is any full iteration of M*. Following the prescription in the
proof of Lemma ?? we can then define a strategy S for M by: If I is
an iteration of M, we first ask wheter o* induces a copy I of I onto
M*. Tf so we set;:

S(I) ~ S*(I) ~ S(I*"1I).
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If T is S—conforming, it follows that I is S*-conforming, hence that
I*71 is S—conforming. Using this, we show that S satisfies (a), (b).
Let I be an iteration from M to M and let @ : M —s« M. o* induces
an iteration I from M* to M’ with copying map ¢’ : M — M’. Thus
o' : M —s« M. Let @ = 7™M be the iteration map from M to
M. Let 7 = #®M"D be the iteration map from M* to M’. Then
o'T = wo*, since o’ is a copying map.

(3) There is no truncation point i < 1h(T).

Proof. Suppose not. Then ¢ is a truncation point in I and p* +17is a
truncation point in I*71, contradicting (1), since ¢'G : M —y+ M'.

QED (3)

(4) Let a(&,) =7m(&p,) for h < i. Then 5(&) > 7(&).
Proof. Suppose not. Note that

Ulf(gh) = 70" (fh) = TTur  Oitl (Eh)

for h <4. But I*1 = Ii+1“f where I is an iteration from Niq1 to

N with iteration map © = g (Nig1,])

hence

- It is easily seen that T = 7m,x |

O’lf(fh) = ﬁ'O'i_H(fh) for h <.

Hence '3 (&) = Toi41(&r) for h < i, but
0'a(&) < o'T(&) = Toip1(&)-

This contradicts (2).
QED(4)

This proves Lemma 3.5.9 and with it Theorem 3.5.8.
QED(Lemma 3.5.9)
QED(Theorem 3.5.8)

The fact that the Neeman-Steel lemma holds only for countable mice is a
less serious limitation than one might suppose. In practice, both the Dodd-
Jensen lemma and the Newman-—Steel lemma are used primarily to establish
properties of mice which - by a Lowenheim-Skolem argument - hold generally
if they hold for countable mice.
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3.5.9 Smooth iterability

Definition 3.5.25. By a smooth iteration of M we mean a full iteration
of M such that M; = M{ for i < Ih([).

The concepts "smooth iteration strategy", "i—successful smooth iteration
strategy" and "smooth a-iterable" are defined accordingly. We shall even-
tually prove that every smoothly iterable premouse is fully iterable. The
proof will depend on enhanced copying procedures.

3.5.10 n—full iterability

We said at the outset that a "mouse" will be defined to be a premouse
which is iterable. But what is the right notion of iterability? full iterability
feels right. An, indeed, we shall ultimately show that, if there is no inner
model with a Woodin cardinal, then every normally iterable premouse is fully
iterable. However, it will take a long time to reach that point, and in the
meantime we must make do with weaker forms of iterability which are easier
to verify. The main problem will be this. Our procedure for verifying that
a premouse M is normally iterable will not show that normal iterates of M
are themselves iterable. What it will show is weaker: If, by an appropriate
strategy, I is a normal iteration of M to M’ of length n+ 6 and if pl,, > \;
for i < n, then M’ ia n—normally iterable. For this reason we will often
be forced to work with n—iteration rather than x—iterations, and we must
employ a sharply restricted notion of "full iteration". We define:

Definition 3.5.26. Let I be an m-normal iteration of length n+ 1 for some
m <w. Let n <w. I'is n-bounded iff \; < pfy;, for all ¢ <.

Definition 3.5.27. I is an m to n—normal iteration iff I is an n—bounded
m~-normal iteration.

We shall be mainly interested in n to n iterations.

Definition 3.5.28. Let M be a premouse. Let n < w by an n—full iteration
i of length p we mean a sequence (I'|i < p) of n-normal iterations such that

I' is n to n normal for i + 1 < y, inducing a sequence M; = Mi(M’I) (i < )
. . (M,I) .
of premice and a commutative sequence m;; = T of partial maps from

M; to M;(i < j < p) satisfying (a) — (d) of our previous definition.
Note. If I = (I'|i < n) is an n-full iteration of length n + 1, then the final
n—normal iteration " is not neccessarily n to n, though the previous ones

are. However, if I" is not n to n, then there is no possibility of lengthening
the sequence I, thouch I" itself could be lengthened.
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We can take over our previous definitions — in particular the definition of
"n—full iteration from M to N" and "n-full iteration map" 7.

Definition 3.5.29. [ = (I'|i <) is an n to n full iteration if I is n—full
and each I’ is an n to n-normal iteration.

The definition of "concatenation" is as before. It is cler that if I is an n to
n—full iteration from M to M’ and I’ is an n—full iteration of M’ then I ™1’
is an n—full iteration of M.

Lemma 3.5.4 holds as before, on the assumption that I is an n to n—full
iteration from M to M’ and I is an n—full iteration of M. THe concepts n—full
iteration strategy is defined as before, as is the concept of an S—conforming
n—full iteration, a—successful n—full strategy, and n—full a—iterability.

The Dodd—Jensen lemma then holds in the form:

Theorem 3.5.10. Suppose that M has the n—normal uniqueness property
and is n—fully ©—iterable, where © > w s reqular. Let:

I = <<Mz>v <Vi>v <7Tij>7T>

be an n to n—normal iteration of M with length n+ 1. Let 0 : M —y« N
where N < M,,. Then:

(a) N = M,.
(b) There is no truncation point on the main branch T"{n} of I.
(c) 0(§) > mon(&) for all € € OnNM.

The proof is a virtual repetition of the previous proof.

Lemma 3.5.6 holds mutatis mutandis just as before. We define what it means
for 0 : M =,y M’ to induce a copy I' of I onto M' with copying maps (co*)
just as before, writing (") instead of ©* everywhere.

Theorem 3.5.11. Let M be a countable premouse which is n—fully wi +
1 iterable. Let ({uln < w) be an enumeration of OnNM. There is an
w1 + 1-successful n—full iteration strategy S for M such that whenever I =
((M;), (vi), (miz), T) is an S—conforming n to n-normal iteration of M of
length n+1 < wi and 0 : M —5n) M where M’ < M,,, then:

(a) M' = M,.

(b) There is no truncation point on the main branch {i|iT;}.
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(¢c) If 0(&) = mon(&) fori <n <w, then 0(&,) > m0,.5(&n).

As before, this follows from:

Lemma 3.5.12. Let M, (&;|i < w) be as above. There is an wy+1-successful
n—full iteration strategy S to M such that whenever I is an S—conforming n
to n—full iteration from M to M’ and o : M —s ) M', then:

(a) No i < Ih(I) is a truncation point. (Hence the map © = 7M1D s q
total function on M.)

(b) If 0(&) = 7(&) for i <n, then o(&n) = m(&n).

The proofs are virtually unchanged.

3.6 Verifying full iterability

3.6.1 Introduction

As we said, full iterability is a difficult property to verify. A theorem that
every normally iterable mouse is fully iterable would be useful, if true, but
seems unlikely. We can, however, prove the following pair of theorems:

Theorem 3.6.1. If M is smoothly a—iterable, then it is fully a—iterable.

Theorem 3.6.2. Let k > w be reqular and let M be uniquely normally k+1
sterable. Then M is smoothly k + 1—iterable.

The proofs of these theorems are quite complex. To prove theorem 3.6.1, we
redo much of chapter 2, developing a theory of embeddings which are >*—
preserving modulo pseudo projecta, which may not be the real projecta, but
behave simiarly. The proof of theorem 3.6.2 requires us, in addition, to delve
rather deeply into the combinatorics of normal iteration, using technique
which, essentially, were developed by John Steel and Farmer Schlutzenberg.

This section (§3.6) is devoted to the proof of theorem 3.6.1. The following
section brings the proof of theorem 3.6.2. In later chapters we shall make
frequent use of both these theorems, but will seldom, if ever, refer to their
proofs. Hence it would be justifiable for a first time reader of this this book
to skip §3.6 and §3.7, taking the above theorems for granted and deferring
their proofs until later.
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3.6.2 Pseudo projecta

In order to prove theorem 3.6.1, we must redo §2.6, allowing “pseudo pro-
jecta” to play the role of the real projecta.

Definition 3.6.1. Let M = (J2, B) be acceptable. Then p = (p;]i < w) is
a good sequence of pseudo projecta for M iff the following hold:

(a) p; is p.r. closed if ¢ > 0.
(b) w < pit1 < pi < plYyy fori < w.

(c) Jé is cardinally absolute in M (i.e. if v € J;: is a cardinal in Jff:, then
it is a cardinal in M).

Note. py < p%; = Onyy is not excluded. Moreover, p; itself need not be a
cardinal in M.

We shall generally write “p is good for M” instead of “p is a good sequence
of pseudo projecta for M.

Definition 3.6.2. Let p be good for M = J2'. H; = H;(M,p) =: ]J£| for
1< w.

We adopt the same language with typed variables v'(i < w) as before. The

formula classes Z;Ln) (h,n < w) are defined exactly as before. The satisfaction
relation:
M):(,O[ZL‘l,...,,fL'n} mOdIO

is defined as before except that the variables v now range over H; = H;(M, p)

instead of H* = Hi,. A relation R(z%,... xin) is E}n) (M, p) (or Zgn)(M)

rr'n

mod p) iff it is M-definable mod p by a Eg.n) formula.
Similarly for Zg-n), 3*, 2%, We then define:

Definition 3.6.3. 0 : M —m) M’ mod (p, p) iff the following hold:
j

(a) pis good for M and p’ is good for M.

(b) ¢"H; C H] for i < w, where H; = H;(M, p), H = H;(M', p').
(c) Let ¢ be Zgn),go = gp(v?, ... ,vff) where i1,...,1, <n. Then:
M = ¢[z] mod p <> M' | ¢[o(Z)] mod pf

for all 1,...,x, € M such that z; € H;(I=1,...,p).
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We also define:
Definition 3.6.4. o : M —y« M’ mod (p,p') iff

o is Z(()n)fpreserving mod (p, p') for n < w.

As before, this is equivalent to:

ois Egn)fpreserving mod (p, p') for n < w.

We also write:
o: M — () M’ mod p
j

to mean

Zj

oM = m M mod (p,p'),
where p; = pi, for i < w.
(Similarly for o : M —x+« M’ mod p'.)
Lemma 3.6.3. Let o : M — ) M'. Let p be good for M and define p' by:
J
- {U(Pz‘) if pi < Py
Pir if not.

Then o : M —om M' mod (p,p').
i

(Hence, if o is fully Y*—preserving, it is also YX*—preserving modulo (p, p').)

Proof: Clearly g’ is good for M’. Now let R(z¥, ... ,:rff) be Zg-n)(M, p),
where i1,...,%, < n. By an induction on n, R is uniformly E§n)(M) in the
parameter u = {p; : L < n A p; < ph,). (We leave the detail to the reader.)

But then, if R is Zl(-n)(M’, p') by the same definition, it is Eg-n)(M’) in o(u)
by the same definition. QED (Lemma 3.6.3)

Lemma 3.6.4. Let 0 : M —s« M’ and let p,p’ be as in lemma 3.6.5. Let
k = crit(o), where pi11 < k < p;. Define p” by:

P =: 0} for j #i, pfl = supa”p;.

Then:
o: M —s« M mod (p,p").
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Proof: p” is still good for M’. By induction on n it then follows that o is
Zgn)fpreserving modulo (p, p"). QED (Lemma 3.6.4)

One might expect that most of §2.6 will not go through with pseudo projecta
in place of projecta, since (H;, B) is not necessarily amenable when B is

E((]Z)(M, p)- As it turns out, however, a great many proofs in §2.6 do not use
this property (in contrast to the treatment in §2.5). In particular, lemmas
2.6.3 — 2.6.16 go through without change. Similarly, the definition of a good
function can be relativized to a good p in place of (p};|n < w). We define

Gn = Gnr(M, p); G* =G*(M, p)

exactly as before with p in place of (p%,|i < w). Lemma 2.6.22 — 2.6.25 then

go through exactly as before. Leaving the definition of good Z‘gn) definition
unchanged, we get the following version of Lemma 2.6.27: Let F' be a good
Zg”) function mod p. There is a good Z(ln) definition which defines F'
mod p.

Even some of §2.7 remains valid for pseudo projecta. In §2.7.1 we define
I'%(r, M) (7 being a cardinal in M) as the set of maps f € M such that
dom(f) € H= HM. In §2.7.2 we then introduce I'" = I'"(r, M) for the case
that n > 0 and 7 < pf,, defining I to be the set of f such that:

(a) dom(f) € H=HM.
(b) For some i < n there is a good Egi)(M) function G and a parameter
p € M such that:

f(x) = G(z,p) for all z € dom(f).

Lemma 2.7.10 then told us that, whenever m : M —(n) M’ there is a
0

canonical way of assigning to each f € I'™ a definable partial map 7'(f)
on M’. This continues to hold if 7 : M —5y(m) M’ mod p. The extended
0

version of 2.7.10 reads:

Lemma 3.6.5. Let 7 : M —,w) M’ mod p. There is a unique map 7'

0
which assigns to each f € T™ (1, M) a function 7' (f) with the following prop-
erty:

(*) ©'(f) : w(dom(f)) — M’'. Moreover, if f(x) = G(x,p) for all x €
dom(f), where G is a good Zgi)(M) function for ani <n andp € M,
then

' (f)(z) = G'(z,7(p)) for x € m(dom(f)),

where G’ is a good Egi)(M’,p) function by the same good definition.
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The proof is exactly as before. As before we get:

Lemma 3.6.6. Let u,7, 7,7 be as above. Then ©'(f) = n(f) for f €
oz, M).

Thus, again, we could unambiguously write 7(f) instead of 7'(f) for f.
However, this is only unambiguous if we have previously specified the good
sequence p. m depends not only on 7 but also on the good sequence p. For
this reason we shall write: 7,(f) for #'(f). We can omit the subscript p if
the good sequence is clear from the context.

+M

In §3.2 we then considered the special case that 7 = & where k is a

cardinal inM. (This is mainly of interest when there is an extender F on M
at £.) We then set:

I (0, M) =: {f € T"(k, M)| dom(f) = x}.
We also set:
I'(k, M) =:T7%(k, M) where n < w is maximal such that x < pf;.
Let us call p a defining parameter for f € I'*(k, M) iff either p = f or else:
F(6) = G(&,p) for all € < 5
(4)

where G is a good X7’ (M) function for an ¢ < n. By lemma 2.6.25 we can
then conclude:

Fact 1 Let R(Z,y1,...,yr) be a E(()n)(M) relation. Let f; € I'}(k, M) have
a defining parameter p; for ¢ = 1,...,7r. Then the relation:

—

Q(f7 f) — R(fv f1> (51)7 T fr(g)

is Egn)(M) in the parameters s, p1,...,pr.
Moreover, if:
o: M —F o) M’ mod p.
0

and R’ has the same E(()n)(M, p) definition, then the relation:

—

Q'(%,8) © RI(Z,05(f1)(&1);- -, 00(fr)(&))

is Egn) (M, p) in k,0(p1),...,0(pr) by the same definition as Q.

Now let aq,...,a, € M and set:

— —

X ={(&IR(@, £(£))}
Then X € H}, and (H};, Q) is amenable.
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Fact 2 Let R, R, Q,Q’, f1,..., fr,o, M, M’ be as in Fact 1. Let @, X be as
above. Then:

0(X) = {= £ € o (k)[R (0(@), 0,(f)(£)}-
Proof (sketch)
We know:

—

NE< k(= €€ X < Q(a¢f))

which is Hén)(M) in the parameters HM @, p. (We use here the fact
that x and the Gédel v-tuple function on s are HM-definable.) But

then the corresponding H(()n) (M’ p) statement holds of H,,(M', p), o(a),
o(d),o(p). QED (Fact 2)

Note. o is 3 preserving mod p, if n > 0. But then ' = o (k) is a cardinal
in M’, since it is a cardinal in Hy = Ho(M’, p) and pg is cardinally absolute
in M.

We now recall the Q—quantifier:
Q' p(2%) =: /\uZ \/vi(vi Sl Ap(v?)).

By a Q¥ formula we mean any formula of the form Qz'p(z%), where Q(v)
is Egl). We write:
o: M —g« N mod (p,p)

to mean that o is elementary mod (p, p') with suspect to Q™ formulae for
alln < w. Clearly, if o is Q* preserving mod (p, p'), then it is X*—preserving
mod (p, p). If p = (pl]i < w), we write:

o: M —g« N mod p.

In the following assume:

(1) 0: M =y« N mod p'.
We define a minimal good sequence:
p = min p' = min(o, N, p')
with the following properties:

(a) o: M =g« N mod p.

17X

(b) supo”p,
(c) Let @ be R Let & € M, 21, ..., 2, € Hy(N, p). Then:

< pi < plfori<w.

N E ¢[Z,0(x)] mod p <+ N = ¢[Z,0(x)] mod p.
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(d) p = minp.
We define p as follows:

Definition 3.6.5. Let 0 : M —s+« N mod p’. We define:

e pi(0) =:supo”p’,.

* pi(n+1) =: the supremum of all F/(n) such that 7 < pi1(n) and F'is
a Zgl) (N, p') map to p} in parameters from rng(c).

e p; =: supp;(n).

n<w
o p=(pili <w).

Lemma 3.6.7. p;(n) < pj(n+1).
Proof: We show by induction on n that it holds for all ¢ < w.

Case 1 n=0.
If £ < phy, then (&) = F(0), where F' = the constant function o(¢).

But then F' is E( )(N, p') in o(&). Hence (&) < pi(1).

Case 2 n > 0.
Then p;t1(n) > pit1(n —1). Hence:
P o P

for all F which is a Zgi) (N, p') map to pf.

The conclusion is immediate. QED (Lemma 3.6.7)

Lemma 3.6.8. p;(n) is p.r. closed for i > 0.

Proof: We show by induction on n that it holds for all ¢ > 0.

Case 1 n=0.
olJA g4 —5 J » cofinally, where ,oM is p.r. closed.
Pa Pha ¢

Case 2 n>0. Let n=m+ 1.
Then p;(m) is p.r. closed. Let f be a monotone p.r. function on On.
It suffices to show:
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Claim f“p;(n) C pi(n).

Let v < pi(n). Then v < F(n) where n < P§T1) and F is Egi)(N, p') to

p; in o(x). But then fo Fis Egi)(N, p') to pl, since p) is p.r. closed.
Hence f(v) < f- F(n) < pi(n). QED (Lemma 3.6.8)
Corollary 3.6.9. p; is p.r. closed for i > 0.
Definition 3.6.6.
Hi(n) = Hi(N, 0, ps(n) = [JAY, |
H; = Hi(N, p) =: ;"
Lemma 3.6.10. (a) H;(0) =Jo"H},.

(b) Hi(n + 1) = the union of all F(x) such that x € Hl(z)l and F is

50, ) to g}, in parameiers from (o).

Proof: (c) is immediate. (a) is immediate since:
o | Hy : Hyy —s, Hi(0) cofinally.

We prove (b). Let y = F/(z), where F,z are as in (b).
Claim y € H;(n +1).

Proof: We recall the function (S/'|v < oo) such that for all limit o

JA =, 582 and (S3|v < a) is

« v<oa TV

uniformly o1 (J4).

Since pij+1(n) is p.r. closed, there is a X1(H;+1(n)) map f of p;r1(n) onto
HZ‘_H(TL). Set:
g(z) =: the least v sucht that x € S,,.

Then F(§) ~ gFf(£) is a Egi)(N, p') map to p} in parameters from rng(c).
Hence, where f(n) = z, we have y € Sg(n) C Hi(n+1).
QED (Lemma 3.6.10)

By the definition 3.6.5 and Lemma 3.6.7:

Lemma 3.6.11. Let p = minp'. Then:
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o 0”phy Cpi < pp <P
o p; =sup X, where X is the set of all F(v) such that v < pjy1 and F
is a Zgl)(N, p') map to py in some o(x).

Similarly by Lemma 3.6.10.

Lemma 3.6.12. Let p = minp’. Then:

e 0"H), C H; C H C HY.
o H, =JX where S is the set of all F(x) such that z = H;+1 and F is
a Zgz)(N, p') map to H! in some o(z).

We now can show:

Lemma 3.6.13. p is good for N.

Proof: By Lemma 3.6.11 we have:
w < pip1 < pi < pi < ply.
Moreover, p; is p.r. closed for ¢ > 0 by Lemma 3.6.8.

It remains only to show:
Claim H; is cardinally absolute with respect to N.

Proof: We know: H; = |J X, where X = the set of F'(2) such that z € H;y;
and F is a Egz)(N, p') map to H] = H;(N,p'). Moreover H/ is cardinally
absolute in V.

(1) Let o € X. Then @' € X and there is f € X such that f: & 2%«

Proof: Suppose not.
Define a ¥ (H;) map by:

F(B) ~ the <ga -least pair (v, f) such that v < 8 and f:~ =3 6.
Then F"X C X. Set:

o) = 0G4 = (F(Ozl))o
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By induction on i it follows that «a; exists and a; € X. But then a;41 < o
for i < w. Contradiction! QED (1)

Now let « be a cardinal i 1n H, but not in N. Then a ¢ X by (1). Buta< g

for a § € X. Hence B > «a. (Otherwise, letting v = 6 < «a, we have

v € X C H; and there is f € X C H; such that f:~v 2% 8. Hence there is

g € H; such that g: v =3 o, since 0 < a < . Hence « is not a cardinal in
N

H;.) But then, letting v = E , o is a cardinal in Jf and + is a cardinal in
N. Hence « is a cardinal in NV by acceptability. QED (Lemma 3.6.13)

We now verify property (c) for p = min p'.

Lemma 3.6.14. Let B(«w') be E((]Z) (M) in the parameter x € M. Let B'(i")
be Z(()z)(N, 0') ino(z) and B(@') be Eéz)(N, p) in o(z) by the same definition.
Then:

/\ 7 € HiB(2) « B'(2)).

Proof: By induction on i. The case ¢ = 0 is trivial. Now let it hold for A
where i = h + 1. It suffices to prove the claim for B which is Egh) (M) in x.
We than have:

B(7) + \/ a"D(d", 2)

where D is E((]h)(M) in x;
B'(2) + \/d"D'(a", %)
where D’ is Eéh) (N, ') in o(x) by the same definition, and:
B(2) +» \/ d"D(a", %)
where D is E((]h)(N, p) in o(x) by the same definition.
Define a map F to pj, which is Egh) (N, p') in o(z) by:

E=F(2) < (Vue SD'(u2)n
N < ENu € Se,~D'(u, 2)
Hence for 7 € H;:
B'(Z) <+ Vu € HpD'(u,?Z)
< Vu € SF(g)D/(u, Z)
<~ Vu € HhD/(’LL, )
< Vu € Hp,D(u, 2) <» B(2)
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(by the induction hypothesis). QED (Lemma 3.6.14)
Since 0 : M —5i N mod p/, we conclude that o : M —y6 N mod p.

Since this holds for all ¢ < w, we conclude:

Corollary 3.6.15. 0 : M —y« N mod p.

Another immediate corollary is:

Corollary 3.6.16. p = min(N, o, p).

It remains only to prove:

Lemma 3.6.17. 0 : M —g« N mod p.
Proof:

Assume: M E Quigo(ui,x) where ¢ is Egi)-

Claim N = Quip(u’,2) mod p.
Let v € H;. Then v C w = G(w), where W € H;11. Then v C w =
G(w), where w € H;4q and G is Egi)(N, p) map to H; in parameter
from rngo. Let:

= \/ziw(zi,ui, x) where v is Zg).
Define a Egi) (N, p) map to H; in o(x) by:

F(w) ~ the N-least (z,u) € H® such that
z CuNYP(z,u,o(x)).
The Hgﬁl)fstatemen‘c:
/\a”l(a“rl € dom(G) — 1) € dom(F o @))
holds in N, since the corresponding statement holds in M by our
assumption. Let (z,u) = FG(w) = F(w). Then v C w C w and

Y(z,u,0(x)). Hence:

N E Qup(u,o(x)) mod p.

QED (Lemma 3.6.17)
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Then p = min p’ possess all the properties that we ascribed to it.

As a corollary of Lemma 3.6.17 we get:

Corollary 3.6.18. Let B be Egi)(N, p) in parameters from rngo. Then
(H;, B) is amenable.

Proof: Let? be Egi)(M) in z and B be Egi) (N, p) in the same definition.
Since (H%,, B) is amenable, we have:

Qui\/yi y' =u'NBin M.

But then: ‘ o ‘
Quz\/yz Yy =u'NBin N mod p.

Let u € H;. There is then v D u,v € H; such that v B € H;. Hence
uNB=uNv € H,. QED (Corollary 3.6.18)

Definition 3.6.7. ¢ : M —x+ N min p iff
[0: M —x« N mod p| A [p=min(N,a,p)].
(Similarly for =", Q'"), Q" etc.)
In the following we shall always assume that M is acceptable, Kk € M is

inaccessable in M, and that 7 = k™ € M.

Lemma 3.6.19. Let 7 : M —y+ M'. Let k = crit(r), A < 7(k), and
suppose an extender F at k, A on M to be defined by:

F(X)=XAnn(X) for X € P(k) N M.

Let 0 : M —y+ Mminp, where 0(R) = k. Let F' be a weakly amenable
extender at K, A on M. Assume:

(0,9) : (M,F) — (M, F), where g: X — \.
Let n < w be mazimal such that £ < p"M.
Define a good sequence p* for M’ by:
sup’p, if i =n
pi =1 wpi) if i #n and p; < phy

Pl if i £ noand p; = pl.

(Hence m: M —x« M’ mod (p, p*) by Lemma 3.6.3 and 3.6.4.) Then:
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(a) M is n—extendible by F.

(b) Let w: M —>%L) M'. There is a map o’ such that

., -
oM — o) M’ mod p* and 0’7 = 7o, 0’ [\ =
0

Moreover, ¢’ is defined by:
o' (@(f) (@) = ((r0),= (£))(g(a))
for f € T*(R, M), a < .

Proof: We obviously have:

w0 : M —s« M’ mod p*.
It is also clear that n is maximal such that x < p, and also maximal such
that &' = 7(k) < pf.

We now prove (a). We must show that the €-relation €* of D*(F, M) is well
founded. Let (f, ), (f’,a’) € D*. Set:

e ={=< & -<E[f(§) € F(O}
Then:
(f,a) € (f,d/) ¢ (a,0/) € F
== gla),g € F(o(e))
+—=<g(a),g € mo(e)
= (10)-(f)(g(e)) € (ma) - (f)(g(e))
(The second line rises the assumption: (o, g) : (M, F) — (M, F). The third

uses: F'(X) = ANm(X). The fourth uses Fact 2, which we established earlier
in the section. QED (a)

() =
() =

)

We now prove (b). Let R be a E(()n) (M) relation and let R’ be E(()n)(M’) by
the same definition. We claim that: o’ : M s M’ where o’ is defined
by:

o'(@(f)(@)) = (7o), (f)(9(a))
for f € T*(u, M), < .
Let R be a E( )( M) relation and let R’ be Z( )(M’,p*) by the same defini-

tion. Let a,...,cm < Aand fi,..., fm € F*(u,ﬂ). Writing e.g. f(d’) for
fila1), ..., (aum), it suffices to show:



3.6. VERIFYING FULL ITERABILITY 257

— —

Claim R (7(f)(@)) < R (7o (f), 9(a)).

Proof: Let R be E((]n) (M) and R be Z(()n)(M, p) by the same definition. Set:

-

e={< &~ [R(f(E)})-

Then:

J— —

R (7(f)(@)) +— < a = € F(e)
+— < g(a@) =€ F(o(e))
— < g(d) = emo(e)

> R ((r0),+ (f)(9(d)))
QED (Lemma 3.6.19)

We would like to prove something stronger namely that M is *—extendible
by F' and that:

o M =5+ M’ mod p*.
For this we must strengthen the condition:

(o,9) : (M, F) — (M, F).

In §3.2 we helped ourselves in a similar situation by strengthening the relation
— to =*. However —* is too strong for our purposes and we adopt the
following weakening:

Definition 3.6.8. (0,9) : (M, F) —** (M, F) mod p iff the following hold:

(2) (0.9) : (M, F) = (M, F)
(b) 0: M —x, M mod p

(c) Let @ < Ih(F),a = g(@). There are G, G, H, H such that letting

R = crit(F), k = crit(F)
we have:

(i) G, H are X;(M) in ag € M and G, H are ¥1(M,p) in ¢ = 0(q)
by the same definition.
(ii) G = Fg, H =M N (*P(u))
(ili) G C F,
(iv) HC{X € "P(u)| N¢ < k(X¢or K\ X¢ € G)}
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Note. Actually, only the first pseudo projectum pqg is relevant in this defi-
nition. (b)says merely that p is good for M and that o is a Xg-preserving
map into M with ¢” Ong; < po. In (c) the statement “G, H are (M, p) in
q by the same definition” can be rephrased as: “G, H are ¥1(M|po) in g by
the same definition”, where M|n =: <J7‘74, BN J;;‘) for M = (J2, B).

(Note that M|n is not necessarily amenable.) We set:
Definition 3.6.9. (0,g) : (M, F) —** (M, F) iff:

(X,g): (M,F) =™ (M,F) mod ({pj|n < w)).
Note. This always holds if pg = Onyy.

Note. Let o : (M,F) —* (M,F) mod p. Let X € M n (P(R)). If

X =o0(X), then X € M and hence A& < k(X¢ or (k\ X¢) € G).
Note. Let o : (M, F) —* (M, F). Tt follows easily that:

o1 (M,F) —** (M, F).

Note. Suppose that ¢ : M —x+« Mminp. Set M|py = (J;‘(‘),B N Jf‘,%>,

where M = (JA, B). Then M|pg is amenable by Corollary 3.6.18. Clearly
v p

7 =r*™M ¢ M|po since 7 = k™™™ € M. Hence P(x) N M C M|py. But then
F is an extender at k on M|pg and it makes sense to write:

(0,9) : (M, F) = (M]po, F).
But this means exactly the same thing as:

(0,9) : (M, F) =" (M,F) mod p.

We are now ready to prove:

Lemma 3.6.20. Let m,0, M, M,M/,M’,p,p*,?, T,7,0',g be as in lemma
3.0.19. Assume:

(0.9) : (M, F) »** (M, F) mod p.
Then M is x—extendible by F and:
o' : M =y« M mod p*.

Proof: F is then close to M. Hence M is x—extendible by F. By induction
on ¢ we now show:
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Claim o' : M’ — 50 M’ mod p*.
1

For 7 < n this is given. Now let ¢ = n. We prove a somewhat stronger
claim:

Subclaim 1 Let A C % be Egn) (M)inae M and A C k be Egn)(M’L;)*)
in a = o'(a) by the same definition. There is 7 € M such that A is
Zgn) (M) in 7 and A is X%(M, p) in r = o(T) by the same definition.
(As we shall see, this proves the claim for the case i = n.)

We now prove the subclaim. Let:
Ai) & VyP (y.i.7),
A(i) <V yP'(y,i,a)
where P’ is $o(M') and P’ is So(M’, p*) by the same definition.

Let P be Zén) (M) and P be Eén)(M) by the same definition. Let
a=7(f)(@) and a = To(f)(«), where a = g(@). Let p be a "defining
parameter" for f (i.e. either p = f or else f(§) = B(§,p) where B
is a good Egl) (M) function for an i < n.) Then p = o(p) is in the
same sense a defining parameter for o(f) and p’ = 7o (p) is a defining
parameter for mo(f). (The good definition of B remaining unchanged.)

Finally, let G, G, H, H be as given for @, a = g(@) by the principle:
(0,4) : (M, F) = (M,F) mod p".

Since (M',7) is the extension of (M, F), we know that: TUHT s
cofinal in Hy;.
Thus:
(1) B _
A(i) > Vue HGVy em(u)P (9,1, 7(f)(@))
< Vue Hta e m(X(i,u))
—~+Vue H%Y(z,u) € G,
where X (4, u) = {{ <l P(y, i, f(£))}-
Thus A is Egn) (M) in p,q,%. We now show that A is Zgn)(M) in
D, q, k by the same definition. Set:
Hy, = Hn(M7 ,0)7 H;L = Hn(Mlup*)'

It is easily seen that the relation:

Qu,1,€) «—: (u € Hy A/ y € uP(y,,0,(f)(€))
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is E(()n)(M, p) in p and the relation:
Q' (u,4,€) +—: (uw € Hy A\ y € uP'(y,i, (10),+(€))

is Eén) (M, p*) in p' by the same definition. Set: X (u,i) = {£ <
ulQ(u,1,€)}. Then X(u,i) € H,, since (H,,Q) is amenable by
lemma 3.6.14 and hence is rud closed. Since pf = supo”p,, we
know that ©” H,, is cofinal in H},. Thus:

A(i) < VueHyVyen(u)P'(y,i, (7o) (f)(a))
< Vue H,Q(n(u),i, )
~Vue Hyaen(X(u,i)NX
< Vue Hya € F(X(u,i))
< Vue H, X (u,i) € F,.
If F,, = G, we would be finished, but G might be a proper subset

of F,. (Moreover, we don’t even know that F, is M-definable in
parameters.) However, we can prove:

A(i) < Vue Hy X (u,i) € G,

which establishes subclaim 1. The direction (+) is trivial by (2),
since G C F,. We prove (—). Assume A(ig), where iy < k.
We must show that v € H, can be chosen large enough that
X (u,ip) € G. We know that it can be chosen large enough that
X(u,ip) € F,. Since p = min(M, o, p), we also know that the
set of S(&) such that S is a partial Zg")(M, p) map to H, in a
parameter s = o(5) and & < ppy1 is cofinal in H,. (This uses
Lemma 3.6.12.) Hence we can assume w.l.0.g. that u = S(§) for
a &y < pn+1. Now set:

Y (v) = {z(v,i)|i < u} for v € Hy.
Then Y (v) € H, by the rud closure of (H,,Q). Moreover, the
function Y is 31((Hy,,Q@)) and hence is a Zgn)(M, p) function.
Hence Y o S in Egn)(M, p) in s. Let S be Zgn)(M) is 3 and Y be
Egn) (M) by the same definition. The TI"*1 (M, p) statement:
A< < pni1(¢ €dom(Y - S) - Y -S(¢) € H)
is true, since the corresponding statement:
A¢<pif'(¢edom(Y-S) =Y -5() € H)
is true in M. Since u = S((p), it follows that: Y (u) € H and:
X(k,i9) € GV (k\ X(u,ip)) € G.
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But G C Fu(k\ X(u,ip)) € G is therefore impossible, since we
would then have:

X(k,i0) N (k\ X(u,ig)) =0 € F,.
Hence, X (U, 1) € G. QED (Subclaim 1)
Subclaim 2 ¢ : M’ — () (M) mod p*.
Proof. Let @ be Zgn) (M, p*) and Q be E(”)( M') by the same defini-

tion. Set:
P(i,z) < (i =0/ Q(z)),

P(i,z) < (i=0AQ(x)).
Set:
A(z) = {i|P(i,2)}, A(z) = {i|P(i,z)}.
Then A is the characteristic function of @ and A is the characteristic

function of Q. But A(o’(z)) = A(x) for x € M by Subclaim 1.
QED (Subclaim 2)

A slight reformulation of Subclaim 1 yields:

Subclaim 3 Let A be SU(M’,p*) i p = o’(p). Let A be SIV(M') in p
by the same definition. Set: H = H¥ H = HM. Then AN H is
Z( )(M p)in a ¢ = o(g) and AN H is Eg )(M) in g by the same
deﬁmtlon

Proof: H = JE, where E = EM and H = JE where E = EM. But

nt
k,F are preclosed. Let f : x 2% H be primitive recursive in E and let
onto

f:® 23 H be primitive recursive in E by the same definition. Apply
subclaim 1 to

B=f"AB=f "A
Then B C R is Z(n)(M p)inaq=o(g) and B CF is Egn)(ﬂ) in q.
But then the same holds for A = f"B, A= f"B

QED (Subclaim 3)

For + > n, we know: p?v = p’M, so we can write p' =: p’ﬁ By the
definition of p*, we know: p; = p} for ¢ > n. We can also set:

H' = Hi = H H; = Hi(M, p) = Hi(M', p*).
We now prove:

Subclaim 4 Let i > n. Let A be X\)(A') in @ € M and let A be
Egl)(M’, p*) in a = o’(@) by the same definition. Then there are B, B,
q, q such that



262 CHAPTER 3. MICE

Proof: By induction on i. Let it hold below ¢. Then w.l.o.g. we can
assume:
(1) A(x) +— (Fi,Fﬂﬁi> = oz] for z € H' where ¢ is ¥y and p is
(M) in @
(2) A(x) «— (H', PN H;) |= ¢[x] for z € H; where ¢ is the same ¥,
formula and P is X ' (M’, p*) in a by the same definition.
But then there are Q, Q, 7, ¢ such that

(3) PNH'=Qn H', where Q is ¥:" (M) in g € M.
(4) PNH; = QN H;, where Q is Ei_l(M, p) in ¢ = o(q) by the same
definition.

This is by subclaim 3 if ¢ = n 4+ 1, and otherwise by the induction
hypothesis. QED (Sublemma 4)

The claim then follows easily, since ¢ is X*—preserving mod p*.
QED (Lemma 3.6.20)

We can then go on further and set:
o' =min(M', o', p*).

It then follows that:
ép; C pl < pf for i < w.

To see that 7”p; C p), we recall that p, = sup{p}(n) : n < w} where the
sequence (p}(n)|i < w) is defined from p*, M’, ¢’ by a canonical recursion on
n (cf. Definition 3.6.5).

But since p = min(M, o, p), we have: p; = supp;(n), where (p;(n)|i < w) is
n<w

defined from p, M, o by the same induction on n. Since 7’'c = 7o, it follows
easily by induction on n that:

m“pi(n) C pi(n) for i < w.
The details are left to the reader.

Putting all of this together:
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Theorem 3.6.21. Let m : M —x+ M’ with critical point k. Let X < w(k)
and let the extender F at kK, A on M be defined by:

F(X)=nm(X)NA.
Let o : M —x+ M min p with 0(8) = k. Assume:
(5,6} - (1, F) = (M, F) mod p

where F is a weakly amenable extender at &, X on M. Then

(a) M is x—extendable by F, giving 7 : M —5 M.
(b) There are o', p' such that
(i) o' : M —s M'min p/
(i1) o' is defined by:
o' (@(f)(e)) = (70),(f)(g(a))
fora <\, f €T*(R,M). (Hence o'T = mo and o' [A=g.)

(iii) 7" p; C pi < w(p;) for i <w (taking w(p;) = Onypy, if pi = Onpy).

(¢) The above, in fact, holds for:

/

p' =: min(p*) = min(M’, o' p*).
where p* is defined by:

sup”p; if piv1 < K
po =14 m(pi) if ki < piv1 and p; < phy,

Phrs if ki < piv1 and p; = Py

This is the most important result on pseudo projecta.

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.22. Assume that M;, M| are amenable for i < p, where ju is a
limit ordinal. Assume further than:

(a) mij: My —s« M (i < j < p), where the m; j commute.
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(b) ;M —sx M7 (i <j < p), where the m ; commute.

Moreover:
(M vi<p),(mij i <j<p)

has a transitivized direct limit M', (m} ; 11 < j < p).
(c) o5 M —s+ Mj minp' (i < j < p).
(d) O-jﬂ'i,j = 7'(';’]-03.

TSN )

(€) 7 ;“ph C p < 5(ph) fori <j < p,n<w,

Then:
(M ri<p),(miji<j<p)

has a transitivized direct limit M, (m; j 11 < p).
There is then o : M — M’ defined by: om; = wio;(i < p). Moreover:

(1) There is a unique p such that ¢ : M — sy« M’ min p and:

/e 1

7' 4pl C pn < mh(pl) for i < p,m < w.

(2) There is i <y such that p, = 7’ (ph) for i < j < p,n < w.

3.6.3 Mirrors

Let I = ((M;), (v4), (mij),T) be a normal iteration of length 7. By a mirror
of I we shall mean a sequence:

I'= (M), (), (02), (p"))
such that o; : M; =y« M/ min pi for ¢« < n and the sequence:

I// = <<Mz/>’ <U£>, <7ng>vT>
"mirrors" the action of I, where v =: 0;(v;). However, I” will not necessarily
be an iteration. If i 4+ 1 is not a drop point in [ and h = T(i + 1), we will,
indeed, have:

/ oAl /
7Th7i+1 N Mh —)2* M'+1,

(]

but M, is not necessarily an ultrapower of M;. None the less x] =: 0;(k;)
will still be the critical point and we shall have:

P(k}) N M}, = P(i) 0 JE
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and: ,
a€ By (X) ¢ a €, (X) for

X e P(k)) N M} and o < X,
where X, =: 0;(\;).
We shall also require a measure of agreement among the maps ¢;. In partic-
ular, if h =T'(i + 1) is as above, then:
Tt Thit1 = Thip10hi 0i | i = i1 [ i
Note. that this gives:

(00,01 1 i) = (M, EYE) — (M, B

The formal definition is:

Definition 3.6.10. Let I = ((M;), (v3), (m;;),T) be a normal iteration of
length . By a mirror of I we mean a sequence:

I'= (Ml < n), (w]i <p i), (o5 < [i <m), (p'i <))

satisfying the following conditions:

(a) M/ is a premouse and o; : M; =« M/ min p'.

(b) mj; is a partial structure preserving map from M] to M. Moreover

the ng commute and m; = id | M;. If A\ < 7 is a limit, then M| =

U rng(my).-

iTA
(c) oimij = w;jai for 1 <+ j.
(d) oi A = 0j [A; for i < j <.

In order to state the further clauses we need some notation. Set:

oi(vi) if v; € M;
/. f— . . e
Vi = oi(v) = OnNM/ if not

ki = 0i(ri), ) = 04(T), Xy = 0i(Mi)

For h=T(i+ 1) set:

MZ/* _ O’h(Mi*) if Mi* € My
M; if not.

Noting that 7] = o5,(7;) by (d) we can easily see that:
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M{* = My ||p, where pp < Onyyy is maximal such that
7, < pand 7] is a cardinal in Mj ||p.

(To see that this holds for M/* = M;, we note that 7/ = op(7;) is a
cardinal in M} ||ph and pf is cardinally absolute in M;.)

We now complete the definition of mirror:

(e) Let h=T(i+1),i4+ 1 <p i, and assume that there is no drop point in
(i4+1,7)r. Then:

(i) 7t M{* —se M.
(ii)
(iii) If X € P(x}) N JE™, then X € M} and EY*(X) = N, n ) (X).
(iv) Set:

Ky = crit(m,;).

N

Pl it M!* = M
{ min(M/*, pp, | M7, <p§(/[{*|n < w)) if not.
Then: A ‘ _
mhs B © P < wh () for n < w
(where 71';1]([);) =: On M} if p, = Onypyr).
(Hence, if o <7 j and [h, j]7 has no drop point, then 7, ; “ph

pn < WZ,;‘(PZ)-)
This completes the definition.

Lemma 3.6.23. JE"" = JE"™' for i1 <1,

. . . . . M, . .
Proof: )\, is an inaccessible cardinal in be; ‘. Hence there are arbitrarily
large primitive recursive closed ordinals o < A} and it suffices to show:

. M! M! L. .
Claim JE' = J, "™ for primitive recursive closed a < ..

Proof: Let h = T(i+ 1). Since z € J¥ is JE—definable from parame-
ters B4, ..., Bn < «, it suffices to show:

Subclaim Let §1,...,8, < a. Let ¢ be a first order formula. Then:
JE™ b ol JET = glB.
Proof: Set: X = {< ¢, ¢ >~< AP " mod ¢[¢]}. Then X € P(ki) N

JE" < M by (e) (i), But JE = JE = JE by (o) (), (i),
Then:
NE ¢ <ri(=x &€ X & JF Eld)),
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which is a first order statement in (J5, X), where E = EM" . But

then the same first order statement holds in ('(J%),7'(X)), where

M
7 =, ;4. Clearly W/(Jlfé) = Jf(ﬁ?)”l. Thus:

(X)) = (< £.¢ =< n(s)TE" = o]},

and we have:

=

JEY L O8] < Bia =€ 7'(X)

QED (Lemma 3.6.23)

We know that \; = Eljy‘/(/—i;) < 7'(k}), where h = T(i+ 1), ' = w41 (by
(e) (iii)). Set:
Ai =m0 (67) where h=T(i + 1), fori+1 <n.

Lemma 3.6.24. Let i +1 <n. Then X, < \f = 0;(N\;) fori < j<n.

Proof: A\, < A7 is trivial. But then:
oir1(Ni) = oiamp it (ki) = 7, 0n(Ki)
= 7T§m+1("f§) = A

Hence o;(\;) = oi+1(\;) for j > i, since \; < X\jp1.  QED (Lemma 3.6.24)

Note. The main difference between a mirror of I and a simple copy of I in
our earlier sense is that we can have: X, < Af.

Corollary 3.6.25. A} <\ fori<j, j+1<n.

Proof: \| <\ =0;(\) <0;(N) = N). QED (Corollary 3.6.25)

Corollary 3.6.26. If h = T(i + 1),h+ 1 <r j, then k] < X < \; < K}
(since Kj > Ap).

1! M
Lemma 3.6.27. J)‘?M’ = JE Tfori<j<nm.

Proof: By induction on j
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Case 1 j = ¢ trivial.

Case 2 j = | + 1. Then it holds at I. But JE" = JE™ where A <A
l l
The conclusion is immediate.
Case 3 j = p is a limit ordinal.

By 3.6.26 we have: & < /@;- for i +1 <r j+ 1 <7 u. Moreover
sup k; = sup A by 3.6.26, 3.6.25. Pick an [+ 1 <7 p such that & > A,

Then JEMZ = J5M“ by axiom e (i), (i) and J/\E,Mi = J){E,Ml, where
l l 7 7
N < K.
The conclusion is immediate. QED (Lemma 3.6.27)

EMi EMJ/' . .
Lemma 3.6.28. Jy. =Jy " fori<j<n.

Proof: For j =i+1it is trivial. For j > i+ 1, we have A} | = oj41(Xiy1) >
! M
gi+1(Ai) = A7 and J/{E,M’“ = Jf, ’. The conclusion is immediate. QED
i+1 i+1
(Lemma 3.6.28)

Lemma 3.6.29. X} is a limit cardinal in M} for all j > i.

Proof: \} = 0;();) is a cardinal in M, since \; is a cardinal in M;. (This
uses that p‘g is cardinally absolute if pj) < OnMI(.) But then A} is cardinally
absolute in M} and:

M
%y " = there are arbitrarily large cardinals,

since the same is true in J/\iM". QED (Lemma 3.6.29)

Lemma 3.6.30. \; is cardinally absolute in M} for j > i.

Proof: Let a be a cardinal in JE = JE,'MZ' = J)]?,_Mj. Let h =T(i+ 1) and
let:
X = {¢ < K;)JE | ¢ is a cardinal }.

M!
Then: o € Eu; X)) C iy (X). Hence:
EMis1 . .
Jyx =« is a cardinal.

But JE™ = JE™ and A! is cardinally absolute in M.
QED (Lemma 3.6.30)

But there are arbitrarily large cardinals in the sense of J E™ Hence:

i
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Corollary 3.6.31. \| is a limit cardinal in M} fori < j.

Lemma 3.6.32. Let h =T(i+ 1). Then J;E{Mh _ JEMZ.'

Proof: For h = i it is trivial. Let h < i. Then J/{?Mh = J)?Mi, so we need
h h

only show that 7/ < Aj. But A} is a limit cardinal in M/ and ] < 7;. Hence

in M/ we have: 7/ < &/} < \,. QED (Lemma 3.6.32)

Corollary 31133.m(mngAI?::E%ngrwijﬁ

Proof: Since 7/ > k] is a cardinal in M/*, we have by acceptability:
P(s}) 0 M =P(s}) N JE " =P(sl) 0 JE"
=P(s) N JE"
QED(Corollary 3.6.33)
Lemma 3.6.34. Let h=T(i +1),F = EM: F' = ™. Then
(on [ M 00T \i) « (M7, F) — (M]", F').
Proof. Clearly (o | M) : M} —x, M/*. Moreover, rng(o; [ A;) C .
Now let X C ki, X € M, a;,..., 0, < A;. Then:
<as€ F(X) = 7Th7i+1(X)
== 0i41(Q) =€ oip1mh 11 (X) = 7, i 0n(X)
+—=0;(@) =€ F'(on(X)),
since o; [ A\ = 041 [ A and F’(O’h(X)) = /\; N TF;l7Z-+1(O'h(X)).
QED(Lemma 3.6.34)

We also note:

Lemma 3.6.35. Let A < n be a limit ordinal. Then for sufficiently large
1 <7 \ we have:

Pt =miapy) forn <w

Proof. Pick £ < A such that [{, \)7 has no drop points. For each n < w
and each 4, j such that & <7 ¢ <7 j <p A we have:

Wg,j “pi, C p < ng(PiJ
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(1) For each n < w there is iy, € [£, \)r such that:
7rzl~7j(pf1) = pil for iy, <7 i <pj <p A

Proof. Suppose not. Then there exist i,(r < w) such that £ <7 i, <p

iry1 and pp Tt < Wér+17/\(p§{“+1) < m y(pir). Hence: 7r§r+1’>\(pi{+l) <
T A(py,) for 7 < w. Contradiction!
QED(1)

(2) 7 5\(p) = pp for in <p<r A,
Proof. Since M, (7}, : i, <7 i <7 A) is a direct limit, we have:

miA(ph) = U Tix“pn C pn < A (Ph).
inSTi<T>\
QED(2)
(3) If p) = Phy, then in =¢&.
Proof. If not, there is i € [£,\)7 such that p!, < phs,- Hence ph <
7T§’)\(,O%) < pjy, - Contradiction!
QED(3)

But then the set {n : i, > £} is finite. Set: ¢ = max{i, : i, > £}. This has
the desired property.
QED(Lemma 3.6.35)
Corollary 3.6.36. Let X\ be a limit ordinal. Then
7T7/;,)\ : M] —sy+ My mod (pi,p)‘)

for sufficiently large 1 <p .
Proof. Let ig <7 i <7 A such that 7T§7)\(pfl) = p) for ig <7 i < \,n < w.
By Lemma 3.6.3 we need only show:

(1) pl, < plyy, — P = 7\ (Ph)

(2) Pl = PRy, — P = Phr,

(1) is immediate. To prove (2) we note:

) A
pn =\ (ph) = min(Phs) = Pir, > P

QED Corollary 3.6.36
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Definition 3.6.11. By a mirror pair of length n we mean a pair (I, I') such
that I is a normal iteration of length 1 and I’ is a mirror of I.

It is natural to ask whether, and in what circumstances, a mirror pair of
length 7 can be extended to one of length n + 1. For limit n the answer is
fairly straightforward:

Lemma 3.6.37. Let (I, 1) be a mirror pair of limit length. Let b be a cofinal
branch in T = Ty. Let the sequence:
(M :i€b), (mj;:i < jinb)

have a well founded direct limit. Then (I,I') extends uniquely to a mirror
pair (I,1') of length n+ 1 with b =T"{n} (where T =T}).

Proof. Let M;,(m i € b) be the transitivized direct limit.

Note. By our convention this means that for some jy € b, b~ jg is drop free
and:

)

(M - i € bjo), (m; : jo < i< jinb)
in the usual sense, and we define:

/A / . ..
Tin = Tjo.m © Tijo fori < join b

In the same sense the sequence:
<Mi:i€b>,<ﬂ'i’jii§jin b>

has a transitivized limit:

M, (M, :i€b)
The maps m;y, 7;,
extend T to T by setting 7”{n} = b. We define the map o, : M, — My
by: o,my, = Wgnm for ¢ < n. We must then define a good sequence p = p"
for M;] We first imitate the proof of Lemma 3.6.35 by showing that there is
19 € b such that b~\ig has no drop points and for all j € b~ig:

are easily seen to be X*—preserving for jo < i € b. We

ngj(p;) = pl forn <w
Thus, setting: p, =: ﬂ'goyn(p;?), we have:

A /

pn = mj (o)) for n < w,io <r j€b

It is easily shown that p = (p,, : n < w) is a good sequence for M;l Repeating
the proof of Lemma 3.6.36 we then have:
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(1) W;‘n : My/‘ —x+ M; mod (p', p) for ip <7 j <r 1.

Using this we show:

Claim 1. o, : M;; —s+ M} mod p.

Proof. Let z1,...,z, € M,. Then & = m;,(%) for an i € [ig,n). Hence for
any E((]n) formula:

My |= o[Z] «— M; = ¢[7]
s M = plor()] mod pf
> M |= o[} ,0i(2)] mod p

where 7}, 0:(2) = oy, (2) = 0y (7).

QED(Claim 1)
We must also show:
Claim 2. o, : M, —x+ M, min p.
Proof. We must show:
p = min(M,, oy, p)

Let (p;(n) : | < w) be defined by induction on n < w as in Definition 3.6.5.
We must show: g = U, f1(n). Let & < p. Then = 7 n(é) where
io <r<r n and i < pj. But p} = U, pi(n). Thus & < pi(n) for some n.
Using (1) and Definition 3.6.5, we easily get:

/77Z

m, pi(n) C pi(n) by induction on n
But then £ = 7r£m(£_) € pi(n).
QED(Claim 2)

Using these facts it is easy to see that the extension (f I ) we have defined
satisfies the axiom (a)-(e) and is, therefore a mirror pair of length n + 1.
(We leave the detail to the reader). The uniqueness of the maps ; ,, ﬂg,n, oy
is immediate from our construction. Finally, we must show that p = p" is
unique. This is because p, = 7; L (p19) where T, 1S unique.

QED(Lemma 3.6.37)

We now ask how we can extend a mirror pair of length n+ 1 to one of length
1+ 2. This will turn out to be more complex.
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If I = ((M;), (vi), (mi;), T) is a normal iteration of length n + 1, we can turn
it into a potential iteration of length n + 2 simply by appointing a v, such
that Ei\;[” # @ and v, > v; for ¢ <. This then determines h = T'(n+1) and
M. (The notion of potential iteration was introduced in §3.4, where we gave
a more formal definition). If (I, I’} is a mirror pair of length n + 1, we can
then form a potential mirror pair of length 1+ 2 by appointing 1/7’7 =: oy (vp)-
This determines M/]* Our main lemma on “l-step extension” of mirror pair
reads:

Lemma 3.6.38. Let (I, 1) be a mirror pair of length n+1. Form a potential
pair of length n+ 2 by appointing vy and v, = oy(vy). Let:

m' s Myt —x- M’ such that r, = crit(x’)

and
M’ M/
Ey,"(X) =X, N7'(X) for X € P(}) N Jf;] !

Our potential pair then extends to a full mirror pair with:

M'= My, " =, where h=T(n+1)

In order to prove this, we must first form a x-ultrapower:
m: My —F M where F' = E%"

We must then define o, p such that:

lan

7' “pp C pp < 7' (pn) for n < w

where p is defined as in axiom (e)(iv). If we then set:

—. / —. / . / — — +1
My =2 M, M,y =t M', Tp i1 =1 T, T g =7, 0941 = 0, p

n =P

we will have defined the desired extension. (We leave it to the reader to
verify the axioms (a)-(e)). By the proof of Lemma 3.6.34 we have:

<Uh rM;;va?? f/\n> : <Mz*7F> — <M1*7F/>
where F = EO" F' = B,
n

Lemma 3.6.19 then points us in the right direction. In order to get the full
result, however, we must use Theorem 3.6.21 together with:

Lemma 3.6.39. Let (I,I'),vy,v,, 7" be as in Lemma 3.6.58. Set: & =

T(n+1),F =EM, F'=E)". Set:
n

p= 7 if My = M
min(M;*, op [ My, (ph :n < w))  if not
n
Then:
on | My, on Ay o (M, F) —™ (M,", F')  mod p
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We leave it to the reader to see that Theorem 3.6.21 and Lemma 3.6.39 give
the desired result.

Note. It is clear that 7rh777+1,7r;m+1,0n+1 are uniquely determined by the

choice of vy, vy, 7. If we wished, we could use clause (c) of Theorem 3.6.21

to make p"*! unique.

We are actually in familiar territory here. The notion of mirror is clearly
analogous to that of copy developed in §3.4.2. The analogue of mirror pair
was there called a duplication. The role of Lemma 3.4.16 is now played by
Lemma 3.6.38 and that of Theorem 3.4.16 by Lemma 3.6.39, which verifies
the weaker principle —** in place of —* (which was, in turn, patterned
on the proof of Theorem 3.4.3), which said that, if I is a potential normal

iteration of length n 4 2, then E7]7V[" is close to My).

We now turn to the proof of lemma 3.6.39. Just as in §3.4.2 we derive it
from a stronger lemma. In order to formulate this properly we define:

Definition 3.6.12. Let M be acceptable. Let x € M be inaccessible in M
such that P(k) "M € M. A C P(k)NM is strongly ¥1(M) in the parameter
p iff there is B C M such that B is ¥o(M) and:

e € A+— \/2B(z,z,p)

e If u € M such that v C P(x) and " < k, then:

\/v c M/\X c u\/z € v(B(z,X,p) V B(z,knX,p))

We shall derive:
Lemma 3.6.40. Let (I,1'),n,&, vy, vy, m be as in Lemma 5.6.39. Let A C
P(ky) be strongly 1(My|[vy) in p. Let A" C P(ky) be E1(Myllvy) in p' =
oy(p) by the same definition. Then there is ¢ € M, such that

o A is strongly 31 (M) in q.

o Let A" be ¥1(M;*) in ¢’ = o¢(q) by the same definition. Then A" C A.

Before proving this, we show that it implies Lemma 3.6.39:
Lemma 3.6.41. Assume Lemma 5.6.40. Let p* be good for M'™* and let:
oc| My : My —s+ M;*  mod p*.

Then:
<Uf quij}] r)‘ﬂ> : <M7>7kaF> —>** <M7/7*>F/> mod P*«
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Proof. Let a < A, &/ = oyy(). Then F, is El(JlfIM") n «, since:
XeF+— \/YY =FX)raeY)
We know, however, that if u € JEIM",u C P(k),and 7 < K in JVE;M", then:
\/v € anM" N X Eu\/YGU(Y:F(X)/\(a cYVae (k\Y)))

Hence F, is strongly £1(J2"") in a. Obviously F¢ is £1(J5 ") in of =
o n

oy(a) by the same definition. Hence G = I, is strongly %1(My) in a pa-

rameter ¢. Moreover, if G in ¥1(M'}) in 0¢(q) by the same definition, then

G' C F),. Now let G be ¥1(M;*, p*) in 0¢(q) by the same definition. Then

G C G' C F!,. Now let:

X eG+— \/zE(z,X,q)
be the strongly ¥1(M,;)-definition of G in ¢. Then:
X eG+— \/zB(z,X,q’)

where ¢’ = o,(q) and B is Xo(M;, p*) by the same definition. (In other
words, B is Xo(M"}|pg) by the same definition). Now let H be the set of
f € My N"P(k) such that

V2 \i < &(B(z, f(i),q) v B(z, k(i) 9))

Then H = M; N "*P(x) by the strongness of our definition. But if H has the
same Y1 (M, p*) definition in ¢/, then we obviously have:

feH — Ni<#(fi) € GVrnf(i) €G)
QED(Lemma 3.6.41)

(In the application we, of course, take p* = p, where p is defined as in Lemma
3.6.39).

We now turn to the proof of Lemma 3.6.40. Suppose not. Let 1 be the least
counterexample. We again have fixed v, and 1/7’7 = oy(vy), which gives us

Ky Ky Ty Ty Ay Ay § = T'( + 1), My, M7* and p*.

(1) £<n.
Proof. Suppose not. Let A C P(k) be strongly X1 (M,||vy) in p and
let A" C P(k;) be ¥1(M,|[v,) in p' = o,(p) by the same definition.
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Clearly 7, is a cardinal in Myllv1, so My = Myl|p for a p > vy,
Similarly M,;* = My||u" where:

r_ on(1) if pe My
ONN M, ifnot

Now suppose v, € My (i.e. p > vy). Then A € My and A" € M}*
where 0, (A) = A’. Then A is trivially strongly ¥ (M) in the param-
eter A and A’ is El(M;/) in A" = 0,,(A) by the same definition, where
A" c A’ Contradiction!

Now let My = M,;)||v;. Then M;* = M, ||y, and A’ is X1 (M) definable
in p' = oy(p) by the same definition. But A is strongly ¥1(My) in p,
since M, = M,|vy. Contradiction!

QED(1)

vy, = ONNM,,.
Proof. Suppose not. Then A¢ > 7, is inaccessible in M,. Hence
Ae gt = g M. Similary 4 € JE = Jng C M|
Then A is strongly ¥1(M;) in A" = 0¢(A) by the same definition.
Contradiction!

QED(2)

1
Ty 2 PM,-

Proof. Suppose not. Then 7, < pt, . Hence A € JEIM" since A C
n pM”/ P

My,
JTE;M". Hence A € J/{EEM" = JiME C M. Hence A is strongly 3 (M)
in the parameter A,. Now let A” be ¥1(M;|pj) in p’ = o,(p) by the
same definition. Then A” C A’. But since

oy : My —>x= M, min(p"),

we have: A" = 0,(A). But X/ is inaccessible in Mj; hence A” €
JEM" = Jng C MT;* Hence A” = 0¢(A) is Zl(M;?*) in A” = o¢(A)
by the same definition. Contradiction!

QED(3)

7 is not a limit ordinal.

Proof. Suppose not. Pick § <t 71 such that 7 = p+ 1. 7y, is

total on Mz, k = crit(mg,) > Ay and p € mg(mg,). Then mj, is
total in M7, k' = crit(r;,) > A} and p' € mg(ny,), where p’ =

on(p). Set p = 71'%717(])),?, = 71'%717(;0’). Then o5(p) = p. Then My =
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My — .V —

(JEF), M} = (J5 ", F). Extend the mirror (Il +1,1'[7 + 1) to
a potential mirror (7, T’) of length 7 + 2, by setting: vz = v,7; = 7.
Then M, = M, M; = My = M & = T(M+1) = T(n+ 1) and
og | M - M% —y Mﬁ* min p*. It is easily seen that A is 3 (My)
in 7’ by the same definition. By the minimality of n we conclude that
there is ¢ € My = M% such that A is strongly X;(M;) in ¢ and A is
El(Mq;*) in ¢’ = 0¢(q) by the same definition. Contradiction!

QED(4)
Now let n = p+1. Let ¢ = T(p+1). Then m¢, : My —s+ M; and
fip = crit(me ). Hence M has the form M = (JEF) where F # @.
Set: & = crit(F),7 = zgf) = ®M X = \(F) =: F(). Similarly M;*
has the form M = <J5 ,F’> and we define &/, 7 ,X/ accordingly.
Set: m = ¢y, =7 .
Ky > K,
since otherwise k, = 7(R) > m(k,) = Ay > A¢ > Ky Contradiction!

QED(5)

But then x, > 7 and hence 7 = 7,k = x;. Similarly #}, > 7' and
7 =7/ K = k.. But then:

n n
1
"ill > pﬁa
. . 1 — . . ’
since otherwise py; > 7(ku) = Ay > 7. Contradiction! by (3).

QED(6)

Hence, since m: M —7%, ~ M,, we have:
"

7 M —E,," M, is a Yo ultraproduct and p}v—[ = p}wn.

Recall that A is strongly %1(M,) in p and A" is 31 (M}) in p’ = oy (p)
by the same definition. By (7) we know:

p=7(f)(a) where « < A, f € M and f : k, — M. Hence

J = (f)(o!) where ' = o5(f),0 = ou(a).

Proof. 1/ = o,(n()(@)) = (oy7(f))(o(a)) = (oe(f))(p(a).
QED(9)

Note. o, [\, = o, [\, since p < 7.

Let A be strongly (M) in p as witnessed by \/ 2B(z, X, p), where

B is ¥o(M,;). Set:

By(u, X,p) «—: \/Z € uB(z, X,p).
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Then A is strongly £1(M,) in p as witnessed by \/ uBy(u, X,p). Note
that for all u,u':

(10) (BO(ua Xap) ANu C ul) — Bo(UI,X,p)-
Let By be Xg(M) by the same definition as By over M,. Set F =

’

M, = M i _ ==
E, " F' = EV‘,L“. By the cofinality of the map p: M — M, and (10)

Yy

we have:
(11)
AX +— \/u € MBy(n(u), X, p)
«— \/ueM{y<ry,:By(u,X, f(7))} € Fa.

But F, is strongly % (M,||v,) in o and F(;, is X1(M,[|v},) in o/ by the
same definition.

Hence by the minimality of n we conclude:
(12) There is ¢ € M such that the following hold:

(a) G = F, is strongly %1(M) in q.

(b) Let G’ be S (M) in ¢ = o,(q) by the same definition. Then
G' C F!,, where o/ = o,(a).

Let: V 2Go(z, X, q) witness the fact that G is strongly ¥;(M) in q.
Then:

AX +— \/u € MBy(n(u), X, 7(f)(c))
«— \ueM{y<r,:Bi(u, X, (7))} €G
«—\veM\/uecv\/cv\/zcv
(Y ={vy <rp:Bi(u, X, f(7)} A Go(2, Y, q))
This has the form:

(13) AX +— \/vBs(v, X,r), where r = (g, f) and By is ¥o(M).

For this By we claim:

(14) A is strongly 31 (M) in r are witnessed by \/ Ba(v, X, 7).
Proof. Let w CP(R) N M,w <& in M.
Claim. There is v € M such that

/\ X € w(Ba(v, X,7) A By(v,FxX, 7))
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For the sake of simplicity we can assume without lose of generality that
X € w+— (F\M) € w. Fix u € M such that

A\ X € w(Bo(n(u), X,p) A Bo(m(w), (FxX),p))

For X € w set:

0(X) = {y < K : Bulu, X, f(1)}
Then:
M\ z € wd(X)eGVoFE-X)cq)
By rudimentary closure, (§(X) : X € w) € M. Hence §“w € M and
card(§“w) <% < £, in M. Thus there is z € M such that:

A\ X € w(Go(z,0(X),q) V Go(z, ku~0(X), q))
Claim. A X € w(Go(z,0(X),q) V Go(z,0(R~X),q))-
Proof. Suppose not. Then there is X € w such that:
kuN0(X), K NO(F~X) € G = F,.

Hence —By(7m(u), X, p) and =By(m(u), ~X, p). Contradiction!
QED(Claim)
Pick V € M such that v € v,z € v and §”w C v. Then:

A\ X € w(Ba(v, X,7) V By(v,FxX), 1)
QED(14)

Let A” be (M) in v’ = o¢(r) by the same definition. Then A” C A’.
Proof. Let B be ¥o(M’) by the same definition as By over M. Let
B! be $o(M) by the same definition. A”X says that there is u € M
with:
{y <wy: Bi(u, X, f'()} € G

where f' = o¢(f). But G’ C E,. Hence B)(m(u), X, 7' (f')(e)), where
p =7'(f")(a). Hence A’X.

QED(15)
Now extend (I|¢+1,I'(C+1)) to a potential mirror pair (I, ") of length
( +2 by setting: v; =V,v; =7'. Since § = Ky, T = 7, we have:

§=T(¢C+1), M = My, M = M,

But ¢ < < n. By the minimality of  and by (14), (15), we conclude
that there is a parameter s € M, such that:
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o Alis strongly ¥ (M) in s.

e If A” has the same Zl(M,;*) definition in s'(o¢(s)), then
A" c A” (hence A" C A').

This contradicts the fact that n was a counterexample.

QED(Lemma 3.6.40)

The argumentation used in the proof of Lemma 3.6.35, Lemma 3.6.36 and
Lemma 3.6.37 actually establishes a more abstract result which is useful in
other contexts:

Lemma 3.6.42. Assume that M;, M] are amenable for i < p, where p is a
limit ordinal. Assume further that:
(a) mj: My — s+ M; (i < j < p), where the m; j; commute.
(b) ;M —sx M7 (i < j < p), where the m ; commute. Moreover:
(M i < p),(mj ;00 < j < p)
has a transitivized direct limit M', (7} 1 i < p).
(c) o7 M] —sx M min p? (i < j < p).
(d) =, “of C pl < Wg’j(p%) fori<j<pu,n<w. Then
(M; ri<p)(miji<j<p)

has a transitivized direct limit M, (m; : i < p). There is then o : M —
M’ defined by: om; = wio; (i < p). Moreover:

1) There is a unique p such that o : M —s» M’ min p and:
( p p

AT

TPy C pn < mi(p}) for i < pyn < w.

(2) There is i < p such that p, = W;(pﬁl) fori<j<p,n<w.

3.6.4 The conclusion

In this section we show that every smoothly iterable premouse is fully iter-
able. We first define some auxiliary concepts:



3.6. VERIFYING FULL ITERABILITY 281

Definition 3.6.13. Let (I, I’) be a mirror pair of length 7 with:

I = ({My), (vi), (mi;), T) and I' = (M), (m};), {03), ("))

Let N be a premouse such that M) = N||u for some p < ONy. As usual
set: v] = 0;(v;). Let:
I" = ((N3), (i), (mij), T)

A i

be an iteration on N of length 7. (T being the same as in I). Set:

o mo; () if p € dom(mg;)
" |ONy, if not.

We say that the mirror pair (I,I’) is backed by I" (or M-backed by I") iff:

M; = Nillpi,v; = v}, mj; = 73 | M for i <p j <.

1 1 My T

Now suppose that (I,I') is a mirror pair of length n + 1 backed by I”.
Extend I to a potential iteration I of length 7 + 2 by appointing v, such
that Elj,\f” # @ and vy, > v; for i < 7. This determines ( = T'(np + 1) and
My. If we then set: v, = oy(vy), we have determined M,/]* and turned
(I,I') into a potential mirror pair (I*,I'*). But 1}, also extends I” to a
potential iteration I T of length 7 + 2, determining N;. We then say that

I'* potentially backs (IT,I't).

Note that if My € Mg, then:

M = o¢(M;) = N;.

If, however, My = M, then we have M,;* = Mé, but if is still possible that
Mé* € N, and even that Ny € N¢. This can happen if M{ = Nel|ue and
pie € N¢. There might then be v > pe such that 77’7 is a cardinal in Ngl|y.
Hence M;?* = M{ € N¢|[y C N;. But if the largest such ~ is an element of
Ng, we then have N € Ng.

N"?

vl

’ " . M’
Note. If [T, I+, ' are as above, we certainly have: E," = E
n n

Using Lemma 3.6.38 we can then prove:

Lemma 3.6.43. Let IT, ', I"" be as above. Suppose that N,y is x-extendible

by F/' = Ei\/[”. Then (I, I't) extends to an actual mirror pair (I,1') with
n

Dy = vy and I't extends to an iteration I" which backs (I, T').
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Proof. Set 7" : Ny —7%, N’. Then It extends uniquely to I” with:

— / 7 -
Nyy1 =N e g1 =T -

Set: n/ =: 7" [M,/]f Then:
7 M) —ye M
where:
A (M) if M,* € Ny
M’ if not
Then crit(r’) = &), and F' = Ey”. Hence by Lemma 3.6.38, (I, I') extends
n

to a mirror (I, 1) of length n + 2 with: M’ = M; 5. Obviously, I" backs
(I,1').

QED(Lemma 3.6.43)
Note. If M;?* € Ny, then (', M’) is not necessarily an ultraproduct of

(M, F').
Using Lemma 3.6.37 we also get:

Lemma 3.6.44. Let (I,I') be a mirror pair of limit length n which is backed
by I". Let b be a well founded cofinal branch in I". Then (I,I') extend
uniquely to (I,I') of length n+1 such that b= T“{n}. Moreover I" extends
uniquely to I" which backs (I, 1').

The proof is straightforward and is left to the reader.
But by the same lemmata we get:
Lemma 3.6.45. Suppose that N is normally iterable. Let M = N||u. Then

M is normally a-iterable.

Proof. Fix asuccessful iteration strategy S for N. We must define a strategy
S* for M. Let:

I = ((M;),(vi), (mij), T)

be an iteration of M of length n. We first note:

Claim. There is at most one pair (I’, I”) such that (I, I’} is a mirror pair
backed by I"” and I” is S-conforming.

Proof. By induction on 1h(7). We leave this to the reader.
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We now define an iteration strategy S* for M. Let I be a normal iteration
of M of limit length 7. If there is no pair (I’, I") satisfying the above claim,
then S*(I) is undefined. If not, we set:

S*(I) =: S(I")

b= 5*(I) is then a cofinal well founded branch is I. (Clearly, if we extend
each of I,I',I” by the branch b, we obtain (I, I, I") satisfying the Claim).
It is then obvious that if I is of length n + 1 and we pick v > v;(i < n) such
that B, # &, then I extends to an S*-conforming iteration of length n+ 1.
Hence S* is successful.

QED(Lemma 3.6.45)

This is fairly weak result which could have been obtained more cheaply. We
now show, however, that our methods establish Theorem 3.6.1. We begin by
defining the notion of a full mirror I' of a full iteration I.

Definition 3.6.14. Let I = (I' : i < u) be a full iteration of M, inducing
Mi,'ﬂ'ij (Z << /.L) Let:
I' = ((My), (vh), (), T)

By a full mirror of I we mean I’ = (I'*: i < p) such that
It = (M), {mgy), (on), ("))

is a mirror of I for i < y, and I’ induces (M : i < p), (mij i <j <)o
i < ), (p':i < p) such that:

(a) o : M; —s+ M/ min p’

(b) ng is a partial structure preserving map from M/ to MJ’ Moreover,
they commute and 7;; = id [ M. If o < p is a limit ordinal, then
Mg, = Ujcq mg(m,)-

(c) ojmij =m0 for i < j < p.

(d) If i < j < pand [4, j) has no drop point in I, then:

T 2 M —s« M and “pt Cp' < ng(/)i)

(e) Mi=My= M;o0=id[M, and

P = (g n < w)

(f) M, = Ml'j where I’ has length I; + 1. Moreover, 0,41 = Jlii and
P = pili and 74 = Wf,z i

i
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We leave it to a reader to see that (M; i < p),(m; 19 < j < p), (01 < p)
are uniquely characterized by (a)-(f), given the triple (M, I, I'). In particular
if @ < p is a limit ordinal, then:

M! (7!, i< q)
is the transitivized direct limit of
(M] i < a), (]

1< j<a).

)

(This makes sense by (d), since I has only finitely drop points i < «). o,
is then defined by: o,mio = 7,0;. By the method of §3.6.2 it follows that
there is only one p® satisfying our conditions and that, in fact, for sufficiently

large 7 < o we have:
(07 /

Pn = 7ria<piL) for i <w.
(I,1') is then called a full mirror pair.

We leave to the reader to verify:

Lemma 3.6.46. Let (I,I') be a full mirror pair of limit length . Suppose
further, that, if [io, ;) has no drop point, then:

(M 2io <i < p),(mjj 1ig < i < j < p)
has a well founded limit. Then (I,I') extends uniquely to a mirror pair of

length p+ 1.

We recall that a full iteration I = (I* : i < ) is called smooth iff M; = M}
for all © < p. We define:

Definition 3.6.15. Let I = (I' : i < u) be a full iteration of M. Let (I,I’)
be a full mirror pair. Let:

I"=(I"":i < p)
be a smooth iteration of M inducing
(M 2d < ), (77045 00 < j < p)
such that My' <t M! < M!" and I'* backs (I*, I'?) for i < p.

We then say that I” backs (M,I,1").

It is obvious that, if I” backs (M, I,I') then I” is uniquely determined by
(M,I,I'). Building on the last lemma we get:
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Lemma 3.6.47. Let (I, 1) be a full mirror pair of limit length p. Let 1"
be a smooth iteration of M of length p+ 1, such that I"|u backs (M,I,1').
Then (I, 1) extends uniquely to a pair of length p+ 1 which is backed by I”.

Proof. (Sketch). The extension is easily defined using Lemma 3.6.46 if we
can show:

Claim. [ has finitely many drop points.

We first note that if I* has a truncation on the main branch, then so do
I'" and I'". Hence there are only finitely many such I*. Now suppose that
M} # M; for infinitely many 4. Let (i, : n < w) be a monotone sequence
of such i such that [in,i,41) has no drop. Then, letting M; = M’ ||u, for

. 7
n < w, we have: pn11 < 7rin7in+1(un).

Hence 77 (ttn41) <, (4n). Contradiction!

QED(Lemma 3.6.47)

Now let S be a successful smooth iteration strategy for M. (Thus S is defined
only on smooth iterations I = (I' : i < n) such that I” is a normal iteration
of limit length. S(I), if defined, is then a well founded cofinal branch b in
1. We call S successful for M iff every S-conforming smooth iteration I of
M can be extended in an M-conforming manner. (This is defined precisely
in §3.5.2).).

Claim. Let I be a full iteration of M. There is at most one pair (I',I")
such that (Z,I’) is a full mirror pair, I” backs (I, I’) and is S-conforming.

Proof. By induction on 1h(I) and for Ih(I) = i + 1 by induction on Ih(I?).
The details are left to the reader.

We now define a full iteration of length i + 1 where I’ is of limit length. If
there exist (I’,I") as in the above claim, we set S*(I) = S(I”). If not, then
S*(I) is undefined. It follows as before that an S*-conforming full iteration
of M can be properly extended in any permissible way to an S*-conforming
iteration. More precisely:

e If I is of length i + 1 and I is of limit length, then S*(I) exists.

e If I is of length i + 1 and I’ is of successor length j + 1 and v > V}il
for h < j, where E,],V[; =% &, then I extends to and S*-conforming f, I;
extends I’ and vj =vin It

e If 1,4, are as before and M < M}, then I extends to an S*-conforming
I of length i + 1 such that M = Mé“.
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e If [ is of limit length p, then it extends uniquely to an S*-conforming
iteration of length p + 1.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excur-
sion into the combinatorics of normal iteration, using methods which were
manly developed by John Steel and Farmer Schlutzenberg. We first answer
a somewhat easier question: Let M be uniquely normally iterable and let
M’ be a normal iterate of M. Is M’ normally iterable? Our basis tool in
dealing with this is the reiteration: Given a normal iteration I’ from M’
to M", we “reiterate” I, gradually turning it into a normal iteration I* to
an M*. The process of reiteration mimics the iteration I’. This results in
an embedding o from M” to M*, thus showing that M” is well-founded.
However, o is not necessarily X*-preserving but rather ¥*-preserving modulo
pseudoprojecta. This means that, in order to finish the argument, we must
draw on the theory of pesudoprojecta developed in §3.6. The above result is
proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous,
however. It is mainly due to Schluzenberg and employs his original and sur-
prising notion of “inflation”. In order to complete the argument (in §3.7.6) we
again need recourse to pseudo projecta. The remaining subsections (§3.7.1,
§3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudoprojecta, and
are of some interest in their own right.

We begin by describing a class of operations on normal iteration called in-
sertions. An insertion embeds or “inserts” a normal iteration into another
one.

3.7.1 Insertions

Let I be a normal iteration of M of length 7. Let I’ be a normal iteration
of the same M having length 1’. An insertion of I into I’ is a monotone
M,
Ey,e(l) in
a(4)

M é(i)' (This is far from exact, of course, but we will shortly give a proper

definition).

function e : n — 1’ such that Ei\fl plays the same role in M; as

In one form or other, insertions have long played a role in set theory. They are
implicit in the observation that iterating a single normal measure produces
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a sequence of indiscernibles. This situation typically arises when we have a
transitive ZFC™ model M and a x € M which is measurable in M with a
normal ultrafilter U € M. Assume that we can iterate M by U, getting:

Mi,m,Ui,mJ : Mi < Mj (’L §] < OO),

where the maps ; j are commutative and continuous at limits, x; = mg;(k), U; =
WOi(U) and:
Tii+1 : My —ry, Myt

Now let e : n — 0o be any monotone function on an ordinal 7. e is then
an insertion, inducing a sequence (o; : i < 1) of insertion maps such that
oi : M; < M;). To define there maps we first introduce an auxiliary function
¢ defined by:

é(i) =:inf{e(h) : h < i}

Thus é is a normal function and é(0) = 0.

By induction on ¢ < 1 we then define maps 6;,0; as follows: We verify
inductively that:

Gi: M; < Me(;y and 6;h; = Te(n) e(i)0h

Since é(0) = 0, we set: 69 =id | M. If o; is given, we know that é(i) < e(7)
and hence define: 6; = m4(;) ¢(;0i- Now let i+1 < 7. Then é(i+1) = e(i)+1.
We know that each element of M;q has the form m;;11(f)(ki). Hence we
can define ;41 by:

Git1(miiv1 (f) (ki) = Te(i),e(i+1) (0i())(oi(ki))-

Finally, if A < 7 is a limit, then é(A\) = lub{e(i) : i < A}, and we can define
Gy by:
ONTTpA = Wé(h%é(/\)@'h for h < A

This completes the construction. The fact that (up : h < i) is a sequence of
indiscernibles for M; is proven by using insertions defined on finite 7.

This was a simple example, but insertions continue to play a role in the far
more complex theory of mouse iterations. We define the appropriate notion
of insertion as follows:

Let:
I = <<Mi>7 <Vi>7 <7Tij>7T>

be a normal iteration of M of length n. Let

I'= (M), (vi), (i), T')

% i i
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be a normal iteration of the same M of length 7. Suppose that
e:n— 1
is monotone. Define an auxiliary function é by:
é(i) =: lub{e(h) : h < i} fori <n

Then é is a normal function and é(0) = 0. We call e an insertion of I into
I' iff there is a sequence (d; : i < 1) of insertion maps with the following
properties:

(a) Gi: M —sx Mgy, 60 = id.
(b) i <p j<+— é(i) <77 é(j). Moreover:
Ojmij = Wé(i)’é(j) o &y, for i <pj.
(¢) é(i) <pre(i) fori < 7.
Before continuing the definition, we introduce some notation. Set:
= W/é(i)’e(i), o; =m0; fori <n
We further require

(d) oi(vi) =V,

(i) for ¢ + 1 < n. More precisely, one of the following holds:
o v; € M; N &(Vz) € dom(m;) A Vé(i) = Ui(”i)
_ !
o= On ﬁMé(l.)
e v; = OnNM; Adom(m;) = Mé(i) A I/é(i) = On ﬂMé( )

%

o v; € M; ANdom(m;) = Mé(i)H&(l/i) A z/é(

(e) é’if)\l:Ulf)\l fOI‘l<i<7].

This completes the definition.

Note. The insertion maps 6;, 0; are uniquely determined by e, but we have
yet to prove this fact.

Note. The map §; is total on M;, but o; could be partial.
Note. We shall often write é;,e; for é(7), e(i).

Note. ¢, ¢ are order preserving, and é takes <7 to <. On the other hand,
© <7 j does not imply e; <7 ej, although we have:

’i<Tj—>éi<T/6j andei<T/ej — 1 <7 7.
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Definition 3.7.1. The identical insertion is id [ n, with &; = o; = id [ M;
for i < n.

We write o;(v;) as an abbreviation for v when v; = OnNdom(oy).
Note. We use the familiar abbreviation:

o (M M; A
ki = crit(B, 1), \i = B, (ki), 7i = K;
for i + 1 <. Similarly for &}, X, 7/ (i +1 < n’). It follows that:

i M e

oi(k;) = /@’ei,ai()\i) = )\’ei,ai(n) = Téq
We then have:

o 0; [ (Mil|vi) —rs» M ||V,
Note. By (e) we have:
n<i—&; 1 JE =0 [ I
To see this, let:
JP = JiM” = J/\WMZ (since n < ).
Similarly let:
’ B, EM{‘
JE/‘ = AIQJWE" = J>\,e i (since en < éz)
Let x € Jf. Then there is a limit ordinal @ < A and a # < « such that:
x = the 5-th element of JAE in <f,

where <Z is the canonical well ordering of JE. Let 6;(a) = op(a) = o/,
5:(8) = 7(8) = B, Then:
6i(r) = op(x) = the B'-th element of ng in <5/ .

Lemma 3.7.1. The following hold:

(1) oildp=oplApforn<i<nand n+1<n.
Proof. This is trivial for n = 4. Now let n < 7. Then
g; r>\n = ;05 r)\n = T;© (Ui r>\n)
Hence it suffices to prove:
Claim. 7; [\, =id since £ < Ay — 0,(§) < on(An) = X,

Proof. If é; = e;, then m; = id | M;,, where A, < X, € M,,. Now
let é; < e;. There is a least j such that é&; <7 (j + 1) < e;. Let
¢=T'(j +1). Then crit(m;) = £} > A, since e, < e; < j.

QED(1)
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Let ¢ =T(i+1). Then kg, < Xq,.

Proof. g, = 0i(ki) = o¢(ki) < o¢(A¢) = Ac,, since ¢ <iand ki < ¢
QED(2)

Let (=T +1),('=T'(e;+1). Then éc < (' <e.

Proof. (' is by definition the least such that s, < Al,. Hence ¢’ < e¢
by (2) But éc <77 é;4+1 = e; + 1. Hence éC <7 </.

QED(3)
Now we give the full determination of 7"(e; + 1).
Let j =<qv e¢ be least such that w5 [k, =id. Then j=T'(e; +1).
Proof.
Claim 1. kg, <\
Proof. Suppose not. Then j < e since xf,, < >‘,e<' Set: k= crit(me,)-

Clearly x < A, since I is a normal iteration. Thus Hle(i) <Kk <N
Contradiction!

QED(Claim 1)
Claim 2. x, > X, for n < j.
Proof. If j = é¢, then j = T(e; + 1) by (3) and Claim 1. The
conclusion is then obvious. Now let j > e;. Thus j = lub A where:

A:{n‘ég <T/n—|—1§T/j}.

Hence it suffices to show: Claim 2. &, > A}, for n € A.

Suppose not. Let n € A be a counterexample. Let 7 = T'(n + 1).
Then é; <7/ 7. Hence:

ran(wl 1) C ran(l ).

kg, € ran(me) where crit(mpy1,e.) > A, > K,
Hence kg, C ran(me, ni1) C ran(mr pi1), where
[k, AL) Nran(mr 1) = 0.

n»’m

Hence ry, < Ky, and 7. [ kg, = id, where éc <7v 7 <gv j. Contradic-
tion!

QED(4)
Definition 3.7.2. Let { =T(i +1). We set:

* _ ol x _ _/ * kA
e; =T (e;+ 1), m = Moe ) Of = T; O¢
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(10)

(11)

The following are then obvious:
M¥ = M. ||, where p is maximal such that 7/, is a cardinal in M. ||u.

* * * 53
oF I M7 My —sse M.

Note. If M = Mg, then 7; is a cardinal in M¢. Hence 6¢(7;) is a
cardinal in M} and 7, = m/6¢(7;) is a cardinal in M/, = M[*. If

M € Mg, then &g(Ml*) S Még and 7} f&g(MZ*) : &ﬁ(Mi*) — Méj
(However, we cannot conclude that M/* € M/ ). Hence:

Let £ = T(i+1). m¢ 41 is a total function on M iff ﬂégﬁi“ is total on
Még.

Hence, there is a drop point in (a, )7 iff there is a drop point in
(éa,eg]T/.

~ / L .
Oit1Teit1 = 7Te;_k7ei+lU;(, where £ =T(i + 1).

Proof. 62'4_17%7“_1 = &g = 7TI* F*&g = We*i,ei+10—*i~ QED(S)

/
Ts 4 ;
€¢,€i+1 €;:€i+1 T

oi(X) = 0} (X) for X € P(k;) N M.

Proof.o;(X) = 0¢(X) where £ = T(i + 1), since X € J)iMn and
0i [ Ae = 0¢ [ Ae by (1). But 0¢(X) = 7725765&5()() - Wéf,egU?(X)v since
Meree | e, 1 =1id.

QED(9)

Using notation from §3.2, then we have:

!

(0F 1 M7, 0y TA) = (M7, F)y — (M2, F') where F = EM: | F/ = B,
Proof. a € F(X) «+— oi(a) € 0;(F(X)) = F'(o (X)) by (6) and (9).
QED(10)

But we are now, at last, in a position to prove:

The sequence (G; : i < n) of insertion maps is uniquely determined by
e. (Hence so is (0, 11 <), since 0; = m} . 0G;).
/

Proof. Suppose not. Let (6] : i < n) be a second such sequence. By
induction on ¢ we prove that ; = o). For ¢ = 0 this is immediate. Now
let 6; = ag. We must show that 6,41 is unique. Let n < w be maximal
such that x; < pjy,.. By Lemma 3.2.19 of §3.2, we know that there is
at most one o such that

O'ZMi—> Méiyaﬂ'{,i—i-l =7 of O‘f)\i:O'i[)\Z’

Eén> 6:; éi+1 79

Hence 6;11 = 0j,; = 0 by (8).
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(14)
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Now let © < 7 be a limit ordinal. Then &, = UL is the unique o :

M, — Méu defined by: om;, = Wéi,éu(}i for i < p.

QED(11)

We also note:

Let § =T(i+1). Then m [ (] +1) =id.

(Hence o} [ (i +1) = 0¢ [ (i + 1) = 05 | (1 + 1).

Proof. If e = e, this is immediate. Now let e < e¢. Set 7’ =m. .
Then £y, < i = crit(n') where & is inaccessible in M . Hence 7/ 4 <

R, since 7). = (k)" in M, . QED(12)

é’i+1(Vi) = Véi.

Proof. Let { =T(i +1). Then:

Git1(vi) = Gis1me,ip1 (i) = Tor 1107 (73)

o I o)
- Wef,e¢+1(7—ei) - Vei

since 7. = 0i(1;) = 0} (7). QED(13)
Hence:
j >i4+1— O'j(VZ‘) > l/él,.

Proof. By (13) it holds for j = i+ 1. Now let 5 > ¢+ 1. Then
Ry < )\Z'+1 and
&j(l/j) = O'Z'Jrl(lji) > O‘i(lji) = Vé_.

7

QED(14)
We also note:
e; <7 €; —r 1 <7p ]
Proof. Since e; < é; and é; <r e;, we conclude:
e; <pre; < éj; hence ¢ <7 j.
QED(15)

Extending insertion

Given an insertion e of I into I, when can we turn it into an ¢’ which
inserts an extension I of I into an extension I’ of I'? Some things are
obvious:

If e inserts I into I' and 1" extends I', then e inserts I into I”.
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(17) If e inserts I of length v + 1 into I' and e(v) <y j in I', there is a
unique €' inserting I into I' such that €' [v =e|v and ¢'(v) = j.

(18) Let I be of limit length v and let e insert I into I’ of length v/ = lub e“v.
Suppose that b is a cofinal well founded branch in I' and b = e~ 1<V
is cofinal in I. Extend I' into I of length n+ 1 by setting T“{n} = b.
Extend I' to I' of length /+1 by: T'“{n} = '. Then e extends uniquely
to an insertion é of I into I' with &(n) = 1.

The proof is left to the reader.

These facts are obvious. The following lemma seems equally obvious, but its
proof is rather arduous:

Lemma 3.7.2. Let e insert I into I' where I is of length n and I' is of
length ' + 1, where ' = e(n). Extend I to a potential iteration of length
N+ 2 by appointing v, such that v, > v; for i <. Suppose o, (vy) > l/;~ for
all 7 <n'. Then we can extend I' to a potential iteration of length ' + 2 by
appointing: V7/7, = oy(vy). This determines £ = T(n+1), ey =T'(n +1) and
MZ*,]\/[(QLk If Méz is x-extendible by F' = E%ﬁ', then e extends uniquely to an
¢ inserting I into I', where I' is an actual extension of I by vy and I’ is an
actual extension of I' by v,,.

Using Lemma 3.2.23 of §3.2 we can derive Lemma 3.7.2 from:
Lemma 3.7.3. Let e,I,1', vy, ve,, My, MZ*, F, F' be as above. Then
(onson [ Ag) + (M, F) —* (M, F')

We first show that Lemma 3.7.3 implies Lemma 3.7.2. Since Méj‘7 is *-
extendible by F’ we can extend I’ by setting:

A~/ . 1% * !
Teren+1* Moe, = Me, 41

gé€n

It follows that F'is close to M;"; hence we can set:
Tt s My —" My
But by Lemma 3.2.23 there us a unique
o My1 —rsx Mz, +1

such that ome 1 = 7r227571+10; and o [ A\, = o, [ \. Extend e to e by:
€(n+1) = e, + 1. The € satisfies the insertion axioms with 0,11 = 0.

QED(Lemma 3.7.2)

We derive Lemma 3.7.3 from an even stronger lemma:
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Lemma 3.7.4. Let I,1' be as above. Let A C I, be 31 (My||vy) in a param-
eter p and let A" C 7, be Z1(Me,||v;,) in p' = oy(p) by the same definition.
Then A is £1(M;) in a parameter q¢ and A’ is £1(M;?) in ¢ = o7(q) by the
same definition.

We first show that this implies Lemma, 3.7.3. Repeating the proof of Lemma
3.7.1(7), we have:

(o0 I My, a0 I Ny) = (M), F) — (Mg*, )
where F = E)" F' = E,,“".

l/cn

We can code F, by an F C T, such that F, is rudimentary in F and F
is X;(M,||vy) in o, 7). Coding F/, the same way by F’, we find that F" is
Y1(Me,|ve,) in o/, 7; by the same definition, where oy (a) = o, oy (7)) = 7¢, .
Hence by Lemma 3.7.4, F” is ¥1(My) in a g and F'is Zl(Mé:) in ¢’ = 0;(q)
by the same definition. Hence Fy is ¥1(M)’) in ¢ and F, is X;(Mc)) in
q¢' = 0;(q) by the same definition.

QED(Lemma 3.7.3)

Note. We are in virtually the same situation as in §3.2, where we needed
to prove the extendability of the triples we called duplications. Lemma 3.7.2
corresponds to the earlier Lemma 3.4.17 and Lemma 3.7.4 corresponds to
Lemma 3.4.20.

We now turn to the proof of Lemma 3.7.4. Its proof will be patterned on
that of Lemma 3.4.20, which, in turns, we patterned on the proof of Lemma
3.4.4.

Our proof will be rather fuller than that of Lemma 3.4.20, however, since we
will face some new challengers.

Suppose Lemma 3.7.4 to be false. Let I,I’ be a counterexample with n =
Ih(7) chosen minimally. We derive a contradiction. Let £ =T (n+ 1).

1
(1) ’OMnHVn = n
Proof. Suppose not. Set p = p]l\/[nnyn,p’ = Py v, - Then A €
en en
EMn 4y EMen
Jy A€ Jp, .
Moreover, “z = A is Z(()l)(M,’7|]u’) inp, 7, and “z = A" is Z((Jl)(MnHz/n)

in p', 7/ Dby the same definition. Hence o,)(A) = A’. Since A € Jf;M",

e
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Oy [)\5 = 0¢ f)\g and MSH)‘i = M§|’)\5, we have: Ug(A) = JH(A) =
A’. But o,(A) = 71'27*77660;;(14) where 7Té;97en [ 7, +1 = id by (10).
Hence o (A) = A’. Hence A is ¥1(M,") in the parameter A, and
A'is ¥1(M7) in the parameter A’ = o7 (A) by the same definition.

Contradiction! since n was a counterexample.

£ <.
Proof. Suppose not. Then Ais ¥ (My|[vy) in p and A"is 3 (M, |1, )
in p’ = o,(p) by the same definition. But o, = Wéfﬂend;;, since £ =7
and:

Wé;‘],en fTén + 1=id

Hence A" is X1 (Me; |[v*) in oy (p) by the same definition, where v* =

— ; 1 1
oy (vy). But M|y, = My since Py < To- But P

;.
L < Te,» SINCE
M

oy | My takes My in a ¥* way to Mé;”l/* Ax'(z! # 7,;) hold in M.
But then M/* = M/.||v*. Hence A is 31 (M) in p and A’ is ¥1(M] )

n n n €n
in oy (p) by the same definition. Contradiction! QED(2)

Since { <nand 7/ = o¢(7y), we have:

Tén = an(Tn) = 71',7677(7'77) = WUOE(TH) = 71-”(7—;])

Hence crit(m,) > 7/ if é, # e;y. Hence A’ is ¥1(My|[vy) in p and A’
is El(MénHVén) in 6, (p) by the same definition. But then we can set
I" = I'|e, + 1 and define €’ inserting I into I” by:

ep, ifh<n
ep =
&y ifh=n

(e/,n,I,I") is obviously still a counterexample to Lemma 3.7.2. Thus
we may henceforth assume:

en = &,
vy = ONyy,, .

Proof. 7, < A¢, where A¢ is inaccessible in M;,. Hence, if v, € M,,, we
would have: 'O}Wnl\lfn > \¢ > 7, contradicting (1). QED(4)

7 is not a limit ordinal.

Proof. Suppose not. Let A, A’ p,p’ be as above. By (2), £ < 7
where £ = T'(n+1). By (4) M,, = M,||v, is an active premouse. But
op: My —s« M, and oy(vy) = v, . Pick I <r 7 such that:

e crit(m,) > A¢,

e 7, is a total map on M,
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e p € rng(m,).

Set p = 7le771(p) Then A is ¥1(M;) in p and A is 3¥1(M,) in p by
the same definition. Define a potential iteration I of length [ + 2
extending I|l + 1 by appointing: 7 =: TrZTnl(yn). Then M; = M;||i.
Since m,(ky) = ky it follows that & = &, and M; = M. Define
e:l+1—nby:ell+1=cell+1,¢e41 =e,+1 (hencee =e,).
Then € inserts I into I’, giving the insertion maps:

o;=o; fori<l,0;= OnTin

Then K; = ky. It follows easily that ]\Z/l* = My and 0; = o,. But
[ <m, so by the minimality of 7 there is a ¢ such that A is ¥1(M) in
q and A’ is ¥1(M(7) in op(q) by the same definition. Contradiction!
QED(5)

Now let n =35+ 1,h =T(n). Then e, = &, = e¢; + 1. We know
Tha | M7+ M —se My = (JE B, )
Hence M has the form:
My = (JE E,) where E, # @.
Ty < Kj.
Proof. 7 < kj since £ < n = j+ 1. Hence 7, < A; < Aj. But
T, € rng(my ), where:
[kj, Aj) Nrng(mhy) = @
QED(7)

p}w; < 7y

Proof. Suppose not. Then 7, = m,,(7)) < T ;04 C phy s contra-
J n

dicting (1). QED(8)

Thus:

Thy M; —E,, M, is a Yo ultrapower.

o} () = Tén-

Proof. 7, < kj < Ay by (7). Hence:

*

= bylr) = anlr) = s 3 (1) = (7,
since 07(1y) < 0 (k;) = ke, and wé;,eh [ ke, = id.

QED(10)
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(11)

p}we*j = Tén.
Proof. A\ z'(z! # ;) holds in M by (8). But:
U;( fM]* : Mj —ry* Méj

Hence A z!(z! # 0} (my)) holds in M*, where o7(ry) = 7/ . QED(11)
But then:

/ . /% 1 —
776;7677 : Mej _>El’e]- M,y is a Yg—ultrapower.

We can now prove:

Ais ¥1(M;) in an r and A" is ¥y(M[) in v’ = oj(r) by the same
definition.

Proof. Let p = m,(f)(a), where f € M7, a < XA;. Then p’ =

ﬂé;’en(f’)(o/), where: f' = 07(f),a’ = G;(a). Let F' = E,i\j/.[j,F’ =

!

E,,e:j. F, can of course be coded by an F' C 7; which is ¥; < (M;||v;)
in o, 7j and F, is coded by an F’ C 7, whichis ¥1 (M) in o/, 7, by the
same definition. By the minimality of n we can conclude: Fy is 31 (M)
in a parameter a and Fy, is ¥1(M;7) in the parameter a’ = o7} (a) by
the same definition. Now suppose:

A(u) «— \/ yB(p,y,p) and
A () «— \ yB' (1, y,p)
where B is X(M;) and B’ is £o(M,) by the same definition. Let B*
be ¥o(M;) and B™ be ¥o(M,?) by the same definition. Since the map
T = T,y takes M7 cofinally to M, we have:
Ap) <= \Jue M \/y € 7(w) B(p,y, 7(f)(@))
«— \ue Mi{y<r;:\/yeuB(uy f(7)} € Fa

Hence A is 31(M;) in 7 = (a, f). By the same argument, however, A’
is (M) in v’ = (d’, f') by the same definition. QED(13)

Now extend I|h+1 to a potential iteration IT of length h+ 2 by appointing:
v = W;}Y(yn). (Hence My = My|;7). Set: h' = e. Extend I'|h/ 41 to I'*t

I+ /

of length h’ + 2 by appointing: v}; = ﬂ;zhen(yn)' (Hence M;* = M}, ||[vih).
Obviously, O'*(l/;) = l/;j Now extend e[h toeT : h+1 — W' + 1 by:

+ €; ifi<h
e ifi=h
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Then e™ is easily seen to insert I™ into I’", giving the insertion maps:

+_{ai forz < h

oj =m, yod; fori=h

Then o) (v;) = v,i. We note that 7,7 = 7,7/ = Tén. It follows easily
that (M;7)* = My, (M;T) = M and (0}7) = o;. By the minimality of 7
we conclude that A is (M) and (o) = oy. By the minimality of n we
conclude that A is ¥1(My) in a ¢ and A’ is 31 (Mc7) in 07(g) by the same
definition. Contradiction! QED(Lemma 3.7.4)

Composing insertions

Lemma 3.7.5. Let e insert I into I', with insertion maps 6¢,0¢. Let f

1 1"
insert I' into I" with insertion maps &l-f, azf, Then

(i) fe inserts I into I"”

Proof. We show that f o e satisfies the insertion axioms (a)-(e) with ffzfe =

6l o 6¢. In the process we shall also verify (ii), (iii). We first note:

Fe(i) = lub(fe)”i = lub f (lube”i) = fé(3)

Axioms (a), (b), (c¢) then follow trivially. By definition we then have:

fe _ _n é_ef

Ti = Tfe(i),fe()

_ ! ~ f
= T e(i), fei) (0).fe(i) © e
/

_ " Af
N (WfE(i%fe(i) © Ue(i)) o (mg

— f
_Ue(

o,
(i)e(i) © G7)

e
i)OG',L‘

Axioms (d), (e) then follow easily. QED(Lemma 3.7.5)
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We now consider “towers” of insertions. Let I¢ be an iterate of M for € < T,
where e&* inserts I¢ into I* for € < u < I'. (We take €54 as the identical
insertion).

Definition 3.7.3. We call:
(I€:€ <), (e € < p<T))

a commutative insertion system iff eS* o e8¢ = eSH for E < (< pu<T.

Now suppose that I' is a limit ordinal. Is there a reasonable sense in which
we could form the limit of the above system? We define:

Definition 3.7.4. I, {e* : ¢ <T) is a good limit of the above system iff:

e [ is an iterate of M and ¢ inserts I€ into I.
o eloebt =¢f for € < pu<T.
e If i < Ih(I), then i = e%(h) for some & < T', h < Ih(I¢).

Note. Let n; = ht(I?) for i < I'. It is a necessary but not sufficient condition
for the existence of a good limit that:

(i i< T),{e¥:i<j<T)
have a well founded limit.

If n, (6" : i < T) is the transitivised direct limit of the above system, then
any good limit must have the form (I, (e’ : i < T)).

Fact. Let 1, (e’ : i < T) be as above. Let £ < 1 and let é'(¢;) = £ for an
1 <I'. Fori<j<TI set:

& =1e"(&) = (&)1

Then e/ (&) = é7(¢;) = £ for sufficiently large j < T.

Proof. Suppose not. Then there is a monotone sequence (j, : n < w) in
[i,T) such that efmint1(&; ) > &, .

Hence e/n+1(¢;, . ) < e/n(&;,) for n < w. Contradiction! QED

We then get:

Lemma 3.7.6. Let (I%), (¢S, 1) be a commutative system of insertions of
limit length 0. Then there is at most one good limit I,(ef). Moreover, if
i <Ih(I), then |M;| = U{rmg(5%) : (h) =i},
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Proof. Let (I{e%)), (I'(¢’)) be two distinct good limits. We derive a con-
tradiction. Set n¢ = 1h(I¢) for & < I'. Then (1), (6%, u) has a transitive
direct limit 7, (f€). Moreover n = 1h(I) and e¢ = €’ = f¢ for £ < T'. Hence
é8 = &€ =lub{f" : h < &} for £ < T. By induction on i < & we prove:

(a) Mi = Mz/
(b) o = o for ef(h) = i.

(¢) |M;| = U{mgo? : ef(h) = i}.

For ¢+ = 0 this is trivial. Now let ¢ = 7 + 1. Then:

vj =v; = 02(1/2) whenever e*(h) = j

This fixes p =: T'(j + 1) = T'(j + 1). But then we have: M7 = M*. Thus
M; = M] and m,4; = 7, are determined by:

Tuti : M; —p M;, where F'= E, 7 = EV;]

We must still show:

Claim. If = € M;, then x = 0% (Z) for a £ < 6 such that e£(I) = .

Proof. Let n < w be maximal such that r; < pf,. Then z = m;(f)(a)
for an f € I"™(k;, M}). Let either f =p € M} or else f(£) = G(&, p) where
p € M and G is a good Egm)(Mi*) function for a m < n. Pick £ < 6 such
that there are pig, je,i¢ with:

¢ (ne) = 1, €*(i¢) = i, *(je) = J

Assume furthermore that o(p) = p and Uji(@) = a. Since oy, (Vi) =vj, it

follows easily that e = T¢(i¢) and:
op LMy o MyT —se M

Let f be defined from p over Mi as f was defined from p over M;. Let
z= wfﬁ.g( £)(@). Then o (Z) = « by Lemma 3.7.1(5). QED(Claim)

Now let A < 0 be a limit ordinal. We first prove:
Claim. i <7 X iff whenever e(i¢) = i and e5(\¢) = A, then i¢ <gpe A¢.
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Proof. (—) is immediate by Lemma 3.7.1(10). We prove (+—). Suppose
not. Let A be the set of £ < @ such that there are i¢, \¢ with e(i¢) = 1,
e*(A¢) = A. Then i £ X but ig <p¢ A¢ for € € A. Then:

ég(ig) <r ég()\g) <r 65()\5) =\

Set: j = sup{é®(i¢) : £ € A}. Then j <7 X by the fact that T“{\} is club
in . Hence j <. Let £ € A such that €°(j¢) = j. Then j¢ < ig, since € is
order preserving. Hence:

j=etje) < é(ig) <
Contradiction! QED(Claim)

But then T“{\} = T"“{A}. Hence M\ = M}, m;» = m, , are given as the
transitivized limit of:

<Ml <7 )\>, <7Ti,j 1 < ] < )\>

Finally, we show that each x € M) has the form ai (z) for an £ € A. We
know that = m;,(2/) for an i <7 A. Pick & < 6 such that ef(ig) =
i, e5(\¢) = A and 2/ = afﬁ(i"). Set: T = 7['5&/\&(3_}/). Then cri(:f) = x by
Lemma 3.7.1(10).

QED(Lemma 3.7.6)

In the following we take a more local approach for forming a good limit and
ask if and when the proven can be break down. It is of course a necessary
condition that the limit be indexed in a well founded way, so we assume that.

In the following let C = ((I¢), (¢5*)) be a commutative insertion system of
limit length 6. Let ne = length(I¢) for £ < 0. Suppose that

(e 1€ < O), (e (< p<0)
has the transitivized direct limit:
7, (€5 €< 0)
(Thus if C had a good limit, it would have the form (I, (e¢ : & < 0))).

Definition 3.7.5. Let C,n, etc. be as above. Let ¢ < 7. Let I be a normal
iteration of M of length ¢ 4+ 1. I is a good limit of C at ¢ iff whenever v < 6
and €7(h) =i, then €7 [h + 1 inserts I7|h + 1 into 1.

Note. By Lemma 3.7.6 it follows that there is at most one good limit of C
at i. To see this, let v < e such that €”(h) = i and apply Lemma 3.7.6 to
the structure:

C' = ((I¢ .y <€ <6),...) where I = I|€"(h) + 1.
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Moreover, if I is a good limit of C at ¢ and h < 4, thus I|h 4 1 is the good
limit of C at h. Thus we can unambiguously denote the good limit of C at
i, if it exists, by: I]i + 1. By uniqueness we then have:

(Ili+ )|h+1=TIh+1for h<i

It is clear that I is the unique good limit of C iff I|i + 1 exists for all i <,
and I = J;, I]i + 1. We also note that I|1 = ((M), &, (id), @) is trivially
the good limit at 0.

Recall that we call a premouse M wuniquely iterable iff it is normally iterable
and has the unique branch property -i.e. whenever I is a normal iteration
of M of limit length, then it has at most one cofinal well founded branch.
(Similarly for uniquely a-iterable). In the later subsection of §3.7 we shall
always assume unique iterability of M and make use of the following two
lemmas:

Lemma 3.7.7. Let C,n be as above and let M be uniquely n-iterable. Let
i+1<mn. IfIli+1 exists, then so does I|i + 2.

Proof. Let I = I|i+1. Pick o < 6 such that e*(i,) =i and e*(i,+1) = i+1.
Set: v; = o} (v} ). For p < 6 < 0, we have v = ol () and v > v? for

7 < is.

It follows easily that v; > v; in I whenever j < ¢. Thus v; determines a
potential extension of I|i + 1, giving: £ =T"(i + 1), M. Let F = E,ﬂ‘ffl in 1.

Set:

7T1/7,i+1 P M —% i/+1
This gives us an iteration I’ of length i+ 2 extending I, it follows by Lemma
3.7.2 that e|i, + 2 inserts I*|i, + 2 into I’. But this holds for sufficiently
large 11 < 0. Now let 1 < 0 with e = i + 1. Let u > 7 be as above. Then
eft(h) =i, + 1, and e | h + 1 inserts I*|h + 1 into I*|i, + 2. Hence
el = et o eH inserts T#|h + 1 into I’

QED(Lemma 3.7.7)

Now let 0 < 1 be a limit ordinal and let I|i + 1 be defined for all i < ¢§. If
I6 + 1 defined? Not necessarily. Set: I = J,.5I|i + 1. Then I is a normal
iteration of length §. Hence it has a unique cofinal well founded branch b.
We can then extend I to I’ of length 6 + 1, taking 7"“{¢6} = b. However I’
will only be a good limit of C at J if a certain condition on b is fulfilled:

Lemma 3.7.8. Let C,I,b,I', etc. be as above. Assume that there are arbi-
trarily large v < 0 such that:
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(*) €7(0) = 6 for some d. Moreover, either e1(8) €boré(d) =46
and €7(i) € b whenever i <r~ 0.

Then I' is a good limit of C at §.

Proof. Let v, ¢ as in (*). We show that 7 [ § + 1 inserts I7[0 + 1 into
I'|6 + 1. We consider two cases:

Case 1: ¢7(0) € b.

Let ¢ = &7(0). Then & <p/ 6. It is easily verified that €7 | § + 1 inserts

170 + 1 into I’ with 6 = 5;, o= 0% defined as follows:

By the above Fact there is 4/ > « such that € (§") = £, where &' = &7 (9).
Thus €' [ 8" + 1 inserts 5|6 + 1 into T|¢ + 1. Set:

G =:6y 0 Ag’yl,a = TMgs00
QED(Case 1)
Case 2: ¢7(6) = 6.

Then €7 takes § cofinally to 6. Thus e” [ & + 1 inserts 17|56 + 1 into I|6 + 1,

where 0 = ag = 6; is defined by:

The verification is again straightforward.
QED(Case 2)

Now let y1 < 0 be arbitrary such that e (') = d. Let v > p satisfy (*) with
€7(0) = 0. Then e inserts I#|6’ + 1 into I7|d + 1 and €7 inserts 17§ + 1
into I'|0 4+ 1. Hence e# = €7 - "7 inserts I#|d’ + 1 into I'|0 + 1.

QED(Lemma 3.7.8)
Remark. It follows that every v < 6 such that § € rng(e”) satisfies (*).

Building on what we have just proven, we show that we can disperse with the
iterability assumption if the length of the commutative system has cofinality
greater than w.

Lemma 3.7.9. Let C be o commutative insertion system of length 0. If
cf(0) > w, then C has a good limit.
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Proof.
Claim. (n; :i < 0), (e5* : & < pu < 0) has a transitivized direct limit:

n,<e§:§<0>

Proof. Suppose not. Let (u,<* ), (e : £ < 6) be a direct limit, where <*
is a linear ordering of u. Then there are x, (n < w) such that z,+1 <* z,
for n < w. Since cf(f) > w, there must be v < 6 such that z,, € rng(e?)
for n < w. Let €’(ayp) = x, (n < w). Then a1 < ay, in 75 for n < w.
Contradiction!

QED(Claim)
We now prove by induction on i < 7 that C has a good limit I|i at 3.

Case 1. i = 0. The 1-step iteration of M: ((M), &, (id),d) is the good
limit at 0 (with e) = &3 =id [ {0}).

Case 2. i=h+1.

Let v;,§ =T'(i+ 1), M}, F = El],\jfl be as in the proof of Lemma 3.7.7. The
proof of Lemma 3.7.7 goes through exactly as before if we can show:

Claim. M is extendible by F'.

Proof. Suppose not. Then there are f,, € I'"(k;, M), a, € A (n < w) such
that

U, 7) 2 fapr(p) € fu(7)} € Flaniha, forn<w

Let p, € M} such that either p, = f, or f, is defined by: f,(8) = G(pn, 5),
where G is good over M. Since cf(f) > w, we can pick v < 6 such that

eV (iy) =14,€7(&y) =€

o 02 (By) = pu (n < w)

o) (@n) = ap (n <w)

[€7(&), €7 (&)]r has no drop point in I. (Hence ag:,Mg —s M,
- "\/ o A’y
since o/ = me, O'gv).

We note that &, = T7(iy + 1). (Suppose not. Let t = T7(iy + 1). Then
€ € [éV(t),e(t)] by Lemma 3.7.1 (3). But thus ¢t < £ and £ < t are both
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impossible. Contradiction!) It follows that:
If f,, is defined from p,, as f,, was defined from p,, we then have:

{<M77> 3?n+1(#) € ?n( )} € F (Qn+1,0n)

~

— M;
where F' = E,, 7. But:

Y Nall Y
ﬂéw»iv ’ M MZ +1

Hence M 41 would be ill founded. Contradiction!
QED(Case 2)
Case 3: ¢ = p is a limit ordinal.

Let ' be the set of j < p such that for some v < 6 and 71 < 1, we have
V(@) = p and j = é7(i) for an ¢ <pv @. Let b be the closure of ¥ under
limit points below pu. Then b is a cofinal branch in I. Moreover, b satisfies

()-

Ti, 18 not a cardinal in Lemma 3.7.8. Ience we can simply repeat the proof
of Lemma 3.7.8 if we can show:

Claim. b is a well founded branch in I.

Proof. We must first show:
Subclaim. b has at most finitely many drop points.

Proof. Suppose not. Let (i, : n < w) be monotone such that i, + 1 is a
drop point in b. Since 4, + 1 is not a limit point in b, we have i, +1 € V.
Hence for each n there is a v < 6 and a @ such that e7(n) = p, e”(h +1) =

in+1,hy,+1 <py 1. If v has this property, so will every larger v/ < 6. Since
cf(0) > w, we know that sufficiently large v < 6 will have the property for
all n. We can also suppose without lose of generality that e7(t,,) = t,, where
n=T(in+1)in I. Just as in Case 2 we then have I,, = T7(h,, + 1). As
in Case 2 we can assume 7 chosen big enough that [€7(%,),e?(f,))r has no

drop point in I. (Hence the map Jg is X*-preserving). Then 7;, is not a
cardinal in My, and 7;, = o}, (74,) = o] (74,). Hence 73, is not a cardinal
in M ,Zn. Hence h, + 1 is a drop point in [7. Hence T7“{} has infinitely

many drop points. Contradiction!

QED(Subclaim)
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We now prove the claim. Suppose not, Let b’ =: ¥\ 3, where 8 < [1 is big
enough that no ¢ € b” is a drop point. Then there is a monotone sequence
(in : n < w) such that i, € b, x, € M;_ and

Tpil € Ty ingr (Tn) forn <w

Pick v < 0 big enough that €”(n) = p and €7(hy,) = iy, where hy, <7+ fi.
We can also pick it big enough that x,, = d;,(Z,) for n < w. Hence

Tnt1 € ﬂ-zmhnﬂ(i") forn <w

Hence Mg is ill founded. Contradiction!

QED(Lemma 3.7.9)

3.7.2 Reiterations

From now on assume that M is a uniquely normally iterable mouse (i.e.
every normal iteration of limit length has exactly one cofinal well founded
branch). (Our results will go through mutatis mutandis if we assume unique
normal a-iterability for a regular cardinal o > w).

Interpolating extenders

Let I = ((M;),(vi), (mij),T) be a normal iteration of M of length n + 1.
A “reiteration" of I occurs when we “interpolate" new extender which were
not on the sequence (v; : i < 7). This rounds very vague, or course, but
we can make it more explicit by considering the case of a single extender
F = E,J,V[" which we had neglected to place on the sequence. Set: 7 =
rHMallv i = crit(F),\ = A(F) =: F(u). For the moment let us assumer
that 7 is a cardinal in M,. The interpolation gives rise to a new iteration
I'. I’ coincides with I up to the point at which F should have been applied.
At that point we apply F' and thereafter simply copy what we did in 1. The
point s at which F' should have been applied is defined as follows:

s = the least point such that s=nor s <nand v < v,

We want I|s+1 = I'|s+ 1, but at stage s we apply F instead of E%S. Thus
we set: vs = v. This determines ¢t = T"(s 4+ 1) and M[*. We then form:

o1 o M" — 5 Mgy,
There is then an obvious insertion f of It + 1 into I'|s + 2 defined by:
Flt=id, f(t)=s+1
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f induces the new insertion embeddings:

oy =id [ My, m = 7T;,,S+17 O = m0¢
If t =7 (hence s = 1), then I’ = I'|s + 2 is fully defined. Now let t < 7.
Then M;* = My||pn, where p < ONyy, is maximal with: 7 is a cardinal in
My||p. But then 7 € J,,EtM" c JE'™ so 1 is a cardinal in JIEM". Hence

p > v and o4(vy) is defined. Set: v, ; = oy(14). This defines a potential
extension of I'|s + 2, since

vy =m(7) < m(ve) = voyy
where T = 7 (.
Now define e on n by:
elt=id,e(t+i)=s+1+ifort+i<n

Then e[t 4+ 1 = f. It is easily seen that é(t) = ¢ and e(t) = s + 1. But for
i # t we have é(i) = e(i). We prove:
Claim. e inserts I into a unique I’ of length e(n) + 1.

To show this we prove the following subclaim by induction on i:

Subclaim. If t +1+i <m, thene[(t+1+i+1)inserts I|(t +1+i+1)
into a unique I =TI'|[(s+2+i+ 1) of length s + 2+ + 1.

Proof. Case 1: i = 0.
We have seen that o4(14) exists and that o4(14) > v,. Hence we can appoint
Vi = O'(Vt) which determines £ = T"(s+2) and M% ;. M is *-extendible

by F=E, Mo by the fact that M is uniquely iterable. By Lemma 3.7.2 we
+
conclude that e[t + 2 inserts I|t 4+ 2 into a unique I’|s 4+ 3 extending I'|s + 2.

QED(Case 1)
Case 2: 1 =j + 1.

Then I'|s+ 2+ is given. Set: h =t+ 1+ j. Then e(h) = é(h) = s+2+j.
We are given: op(vp) = on(vp). Set l/é(h) =: op(vp). This determines a
potential extension of I’|e(h) + 1, since:

Vé(h) > O'h(Vl) > Vé(l) for ¢ < Il<h

But M;* is *-extendible by E, Mean by unique iterability. Hence by Lemma

Ve(h)

3.7.2, e|lh + 2 inserts I|h + 2 into a unique I'|e(h) + 2 extends I'|e(h) + 1 by
Lemma 3.7.2.
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QED(Case 2)
Case 3: 7 = )\ is a limit ordinal.

We first observe that the componentwise union I’ = (J,_, I'|e() is the unique
iteration of length e(\) into which e|\ inserts I|A. Now let b’ be the unique
cofinal well founded branch in I'|e(\). Then b = {i : e(i) € b'}is the unique
cofinal well founded branch in I|A. Hence b = T“{\}. By Lemma 3.7.1 (18),
e|A + 1 inserts I|A + 1 into a unique I'|e(\) + 1 extending I'|e()).

QED(Case 3)

QED(Claim)

We must still consider the case that 7 is not a cardinal in M,,. If t <n, then 7
is not a cardinal in J /€Mt since J /€Mt = /€M" and \; is a cardinal in M,. M.
thus has the form: M;||n = M,||p. (Hence we truncate to the same place
that we would if we applied F' directly to M,). Clearly p < A\ < vy if t <.
Hence the “copying" process we performed in the previous case is impossible.

(Note, too, that t = s, since if ¢t < s, then A; would be inaccessible in JVE%

and 7 < A\; would be a cardinal in Jf:MS = /€Mt. Contradiction!). We set:
I"=1It+1

We can extend I* to I’ by setting v, = v. Set e[t =id,e(t) =s+1=1t+1.
Then e inserts I* into I’

The I’ which we have described above is called a simple reiteration of I.
If I’ is obtained by a chain of simple reiterations, we also call it a simple
reiteration. However, we must still show that an infinite chain of simple
reiterations has a well founded limit. This will require considerable effort.
Before doing that we develop the notion of normal reiteration, which is easier
to deal with.

Now let (I’ : i < w) be a chain of simple reiterations with

10 = <(M}l>, (V%}, <W2>,Ti> of length ;.

Let I'*! be obtained from I’ by interpolating F; = El],\fé‘ into I, giving
rise to the insertion e’ of I** into I*t!. In an effort to tame the complexity
of these structures, we could impose the normality condition: v; < v; for
1 < j < w. It turns out that we can impose a far more powerful normality
condition by requiring that F; be interpolated in the earliest possible I" with
h < i, rather than necessarily into I; itself. This gives the concept of normal
reiteration, which is clearly analogous to that of normal iteration. First,
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however, we must redo our definitions in order to make this notion precise.
To say that I" is a possible candidate for interpolation of F; means simply
that h < i and I"t +1 = I'|t + 1, where t is defined from as before from
v, I*. In a normal reiteration it will then turn out that either ¢ = n, or
vi < v (v} will exits if b < 7). In a normal reiteration we will then have:
Plt+1=1TIj+1for h<j<i.

We now give a precise definition of the operation we perform when we apply
F; to I".

Definition 3.7.6. Let I = ((M}), (v},), (m}),T) be a normal iteration of M
of length n. Let ‘ ' '
I' = ((Mg), (vi), (mp), T')

be a normal iteration of M of length n'. Let F = Ei\/l,; #+ . Set:
K o=: crit(F), A\ = AN(F) =: F(k), 7 = M,

Let s be least such that

s=n V (s<n AV <)
Let ¢ be least such that:

t=n"V (t=n"AK <)
(Hence t < s).
Assume that I|t+ 1 =I'[t + 1 and v; < v;. We define an operation:

W(I,I'v) = (I",1"€)

by cases as follows:

Case 1: t = n and 7 is a cardinal in M.

Extend I to I” by appointing v = v. Then 7, .4 : M —% My41. e is
then the insertion of I into I” defined by e [n = id,e(n) = n+ 1. (Hence
Ty = Ty py1 and oy =id [ My, 6 = Ty0y;). We set: I* = I.

Case 2: t < n and 7 is a cardinal in M,. We set I"|s +1 = I'|s + 1.
We then appoint v = v. Thus ¢t = T"(s + 1) and M* = M||n, where
p < ONyy, is maximal such that 7 is a cardinal in My||x. But 7 is a cardinal
in JVEtMt = JVEtM". Hence p > 1. Let f be the insertion of I|t+1 into I”|s+2
defined by

flt=id, f(t) =s+ 1.

Then:
or =1id [ My, m = Tt,s4+1,0t = Tt O O¢
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(Hence o¢(v¢) > v} as before).
Now define e on 1+ 1 by
elt=id,e(t+i) =s+1+1.

Set n”" =: e(n). I" is then the unique iteration of length n” + 1 extending
I'ls + 2 such that e inserts I into I”. We set: I* =: I.

The existence and uniqueness proofs are exactly as before.

Case 3: 7is not a cardinal in M,,. If £ < n, then 7 is not a cardinal in JlfMt.
Hence M!* = M,||p, where p < vy, Set: I* =: It + 1. Set: v/ =: v. This
gives:

" . 1% * "
ﬂ—t,s-‘,—l . Ms 43 s+1

which defines I” = I"|s + 2. e is thus the insertion of I* into I” defined by:
elt=1id,e(t) =s+ 1.

Note that e[t =id (hence é[t+ 1 =id in all three cases.)

This completes the definition. We are now in a position to define the notion
of normal reiteration. First, however, we prove a particularly useful lemma:

Lemma 3.7.10. If j € (t,s] and s < p, then j £p» p.

Proof. We proceed by induction on p.

Case 1: y = s+ 1. Then t = T"(u) and j £p» t, since t < j. Hence
J L

Case 2: 4 > s+ 1 is a successor. Let 4 = v+ 1. Then v > s+ 1 and
v = e(y) where 7 > t. Let { = T"(y +1). Let j € (¢, s] such that j <pr p,
then j <p» £. We derive a contradiction. Let £ = T'(7 + 1). Then:

e(§) <pn & <pme(§).

If £ =t, thent <p & <7 s+ 1. Hence ¢ ¢ (t,s] by Case 1. Hence
either { =¢ < jor { = s+ 1>y j, contradicting the induction hypothesis.
If £ <t then ¢

§=eé(§) =e(§) =
hypothesis.

e(€) = e(€) = € < j. Contradiction! If & > ¢, then
s+ 1. Hence 7 <y € < u, contradicting the induction

QED(Case 2)

Case 3: p is a limit ordinal.
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Pick ¢ <p» p such that ¢ > s. Then j £~ ¢ by the induction hypothesis.
Hence j {T” L.

QED(Lemma 3.7.10)

As we have seen, if e is an insertion of I to I’ and h = T'(i + 1), then the
determination of e*(i) = T"(e(i) + 1) is important. In the case of the e
defined above, this determination is as follows:

Lemma 3.7.11. Let h=T(i+1). If k; < K, then é(h) = h =T"(e(i) +1).
If ki > K, then e(h) = T"(e(i) + 1), where e(h) > s + 1.

Proof. Let A’ =T"(e(i) + 1). We know:

é(h) <7 h, ST’ e(h)

The cases: h < t and h > t are straightforward. Now let h = ¢t. As in Case
2 of the above proof we conclude: h/ =t or b/ = s+ 1. But “Z(i) = 7(Ki),

where m = m/ ;. Hence, if x; < & = crit(m) we have: (ki) = ki < M.
Hence b/ =t. If k < Ky, then: m(k;) > w(k) = A > \;. Hence b/ = s+ 1.

QED(Lemma 3.7.11)
We now turn to the definition of a normal reiteration.

R={(I'":i<n),(:i+1<n),(e :i<rj),T)is a normal reiteration
on M iff the following hold:

(a) » > 1 and each I = ((M}), (1), (x}),7%) is a normal iteration of M
of length n; + 1.

(b) T is a tree on n such that iTj — i < j.

M}, .
(¢) F; = E,;," # @&. Moreover, v; < vj for i < j.

E

Set: wk; =: crit(F;), Ay = M(Fi) =: Fi(k;), i = 7(F;) =: /<a+‘]”z, where
E = EMn.

(d) "7 inserts a segment I'|u into I7. Moreover, e?? = ¢ o M for h <p
1 <p j. € is the identical insertion on I°.

(e) Sgt: s =8 = the least s such that s = n; or s <n; and v; < vi. Then:
I''s+1=I|s+1land vl =y fori<j<nm.

(f) Leti+1 < n. Let h be least such that h =i or h < i and k; < A\,. Then
h is the immediate predecessor of i+1in 7. (In symbols: h = T'(i+1)).
Before continuing with the definition, we note some consequences:
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Set:
t =t; =: the least ¢t such that t =n; ort<m/\/~€<)\i
(Hence t; < s;). In the following assume: h =T(i + 1),t = t;. Then:

(1) I'|t +1 = I"t + 1. Moreover v* > v} if t < np,.
Proof. If h =i this is trivial. Now let h < i. Then

K< A=A, by (e).
Hence t < sp,. Clearly by (e) we have:
I"sp+1=Ts,+1and vl =, (*)
Hence 1"t +1 = I’|t + 1. If t = s3,, we then have: v} > v}, = v}
if ¢t <. If t < sp,, then: v = v by (¥).
QED(1)
(2) h is least such that I’|t = I"|t.

Proof. Let | < t. Then /\gl = M < k < AL Hence s; < t. But
v =y < Vil if s; < m;. Hence I'|t # I"|t.

51

QED (2)

By (1), the conditions for forming W (I I, v;) are given. Our next
axiom reads:

(g) Let h =T(i +1). Then e™*! ingerts I’ into I**! where:
<I>’Z;’Ii+1’€h,i+1> — W(Ih,_[i, Vi)

We define:

Definition 3.7.7. i + 1 is a drop point (or truncation point) in R iff
7; is not a cardinal in M#h where h = T'(i + 1). (This is the only case
in which I? # I" is possible).

Our final axioms read:
(h) If X <nis a limit ordinal, then T“{\A} is club in A\. Moreover, T“{\}

contain at most finitely many drop points.

A

(i) If X is as above and (h, A\)7 has no drop points, then e** inserts I" into

I and: ‘
I)‘, <€z’)\ ) <71 <p )\>

is the good limit of:

(I' :h <pi<p A, (€ :h<ri<pj<\)



3.7. SMOOTH ITERABILITY 313

Note. As usual, we will then refer to I, (e?* : i <7 \) as the direct limit
<IZ 1 <7 /\>, <€Z’] 1< g < )\>,
since the missing points are supplied by: e = e?* o ebh for [ < h.
Definition 3.7.8. If R = ((I'), (v;), ("), T) is a reiteration of length 1 and
o< p<mn, welet R|u denote:
(I i< p),wii+1<p), (e i<y j<p),Tnu?)

Lemma 3.7.12. If R is a reiteration and 0 < i < 1h(R). Then R|i is a
reiteration.
Lemma 3.7.13. Let R = ((I'), (1), (e¥),T) be reiteration of length v + 1,

y

. M,

where I' have length n; +1 fori < ~. Let E, " # &, where v > v; fori < 7.
Then there is a unique extension of B to a reiteration R’ of length v+ 2 such
that R'ly+1=R and v, = v.

Proof. Let i = T'(y + 1). Then W (I, I7,v) is defined.

A much deeper result is:

Lemma 3.7.14. Let R be a reiteration of limit length n. There is a unique
extension R’ such that R'|n = R and Ih(R') =n+ 1.

The proof of this theorem will be the main task of this subsection. It will
require a long train of lemmas.

For now on let:

R = ((I*), (ve), ("), T)
be a reiteration of limit length 7. Let:

I = (M), (v5), (m5;), T9)
be of length n¢ 4 1 for £ < n.

Lemma 3.7.15. Let £ < p <n. Then:

(a) s¢ < sy
(b) ve = Vgg
Proof. (b) holds by (e) in Definition ??. We prove (a). Suppose not.

. I . I3 b
Mu > S¢ since Vs, exists. Hence s, < 7n,. Hence v, < vs, < Vse = Vg.
Contradiction!

QED(Lemma 3.7.15)
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Lemma 3.7.16. Let £ + 1 <p pu. Then eT1H [ se +1 =id.

We proved by induction on p. For p = £+1 it is trivial. Now let £+1 <7 p+1
and let it hold at v = T'(u + 1). Then £ <  and hence: r, > A¢ = Ms,.
Hence t,, > s¢ + 1 and:

eH e, =id

by (g). Hence:

e£+1nu'+1(a) = 67’u+1€£+1’7(a) = fOI‘ (6% S S’r]~

Now let u be a limit ordinal and let the induction hypothesis hold at v for
all ¥ with: €4+ 1 <7 v <r p. For i <7 j <7 p we then have: e’(a) =
ej“eij(a) = ej“(a).

Let a < s¢ be least such that o < et (a). Let €+ 1 <7 § <7 p such
that e**(@) = a. Then @ < a = e+19(a). Hence e®*(a) = a < a.
Contradiction!

QED(Lemma 3.7.16)
Definition 3.7.9. §, =: lub{s¢ : { <~}.

Lemma 3.7.17. Let y =T({+1). Then 5, <t¢ <s,.
Proof.

(1) 8y <ty, since if i < v, then \; = A, < ke.

(2) tg § S,y.

This is trivial for v = . Now let v < §. Then k;, < Ay = )\gv. Hence t¢ < s5.
QED(Lemma 3.7.17)

Definition 3.7.10. X is in limbo at p iff X C 5, and there is no pair (i, j),
such that 1 € X, 7 > 5, and i <7u j.

Lemma 3.7.18. If { + 1 <p p, then (t¢, s¢] is in limbo at .

Proof. By induction on pu.
Case 1: =&+ 1 by Lemma 3.7.10.

Case 2: p=0+1>7&+1.
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Let v = T'(0+1). Then it holds at v. Moreover, 5, <ty <s,. Let i € (¢, s¢
and i <7u j, where j > 5, = ss + 1. We derive a contradiction.

Jj > 38, =55+ 1. Hence j = ss+ 1+ 1. Hence e"#(k) = j, where k =t5 + L.
Since e7"(i) = i, we conclude: i <p» k, where §, < t; < k. Contradiction!

QED(Case 2)
Case 3: u is a limit ordinal.

Suppose i € (t¢, s¢] with i <pw h, h > §,. Then h = e7TH#(h) for a ~ such
that
E+1<puy+1<qup

But 714 5, + 1 = id by Lemma 3.7.16. Hence h > s,. Hence h > §, =
sy + 1. Hence @ £pv+1 h by the induction hypothesis. Hence ¢ 7w h.

QED(Lemma 3.7.18)

By Lemma 3.7.16, I¢[s¢ + 1 = I7|s¢ + 1 for £ < < 5. The componentwise

union: ~
I=JIse
£<n
is then a normal iteration of length
7 =lub{s¢ : { <n}
For £ < 7 set:
Definition 3.7.11. (i) =: the least v such that i < s,.

(Hence 5, <i < 's,). The following lemma establishes an important connec-
tion between the normal iteration I and the reiteration R.

Lemma 3.7.19. Let i <7 j. Then v(i) <7 (7).

Proof. Suppose not. Let i,j be a counterexample. Then (i) L7 v(j)-
Hence ¢ < j and (i) < v(j). Set: v = ~v(j). There is p+ 1 <p v such
that T(p+ 1) < v(i) < p+ 1. Set 7 = T(u+ 1). Then s, < i, since
7 < 7(i). Hence t, < s; < i by Lemma 3.7.17. But i < s,(;) < s, since
(i) < p. Hence i £+ j by Lemma 3.7.18, since j > 5,. Hence i £; j, since
I'|s, 41 = I|s, + 1. Contradiction!

QED(Lemma 3.7.19)
Lemma 3.7.20. Let 1 =T({ + 1) <p p. Then:

crit(e™) = t¢ and €™ (tg) < 5,
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Proof. By induction on pu.
Case 1. p =&+ 1. €™ (te) = s¢ + 1 = 8¢41 > ty, but

ePSTL(i) = emS (i) =i for i < t¢

Case 2. =6+ 1 is a successor.

Let y=T(5 +1). Then:

67—7” (té_) — e’Y7M o €T7M(§’7>

< eTH(ts) = 55+ 1 = 5,

By the induction hypothesis we have:
ePH(te) = eVl oe™(eg) > e (te) >ty
For i < t¢ we have:
et (i) =eVte™ (i) = eV (i) =1
(since i < t,).
QED(Case 2)

Case 3. p is a limit cardinal. Then €™ [t = id, since e™7 [t¢ = id for t <7
v <t p (cf. the proof of Lemma 3.7.16). Moreover e (t¢) > €77(t¢) > t¢.

Claim. e (t¢) < 5.

Proof. Let h < e™#(t¢). Then h = €V7(h) where £ <p v <7 p. Assume
w.lo.g. that y =T(0 4+ 1), where § + 1 <7 p. Then:

h < e (te) <5y <ts.
But e"* [ts = id by the induction hypothesis.

Hence: _ _
h=e""(h) =h< 5, < 5,

QED(Lemma 3.7.20)
In order to prove Theorem 3.7.14 we must find a cofinal branch b in T such

that ' N
(I':i€b),(e" i< jinb)
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has a good limit. An obvious necessary condition is that
(n; i €b), (e i< jinb)
have a transitivized direct limit:
n, (€' i € b).

Note. This does not say that e’ inserts I* into a good limit I. It simply
gives us a system of indices which, with luck, might be used to construct a
good limit.

We obtain a rather surprising result:

Lemma 3.7.21. Let b be any cofinal branch in T. Then the commutative
system: N
(nizie€b), (e’ :1<jinb)

has a well founded limit.

Note. This is surprising since, as we shall see, there is only one branch which
yields a good limit, whereas these could be many cofinal branches.

We now turn to the proof of Lemma 3.7.21. Let ig € b such that there is
no drop point in bxig. Hence €% (n;) = n; for i < j, i,j € b. Let 7 + 1,
(€' : i € bxip) be the direct limit of

(ni + 114 € big), (e 14 < j in bxig)

We claim that 7 is well founded.
Set: Ry =:t¢ for 7,€ + 1 € bxig, 7 = T({ +1). Using Lemma 3.7.20 it is
straightforward to see that:

) €TF Ry =id for 7 < p in bxip.

) Ry < €T (Ry) < Reqa.
(c) ePH(&r + ) = e (Rr) +J

) If 7 is a limit ordinal, then:

Ny = U{rngei’T tip <4 < 7 in b}.

Given this, the conclusion follows from a sublemma, which -in an effort to
simplify notation- we formulate abstractly:
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Sublemma. Let n be a limit ordinal. Let (6; : i < n) be a sequence of
ordinals and e;j : 0; — 0; (1 < j < ) be a commutative system of order
preserving maps. Let

A, (e i< n)

be the direct limit of
(0i i <m), {eij:1<j<m)

Let <a be the induced order on A. Assume that k; < §; for i <mn such that
the following hold:

(a) e =id
(b) ki < €iir1(ki) < Kit1

()

(d) 0 = Uscrmng(ein) for bimit X <.

€q H—l(ﬁz +.7) =€ H—l(/ﬁ) +J

Then <a is well founded.

Proof. Set A = wfc((A, <a )). Assume w.lo.g. that A is transitive and
<a NAZ =€ NAZ. Thus, our assertion amounts to: A= A.

(1) kj > K for j > .
Proof. Otherwise e; j11(ki) > kj where k; < K;, contradicting (a).
(2) Kj > K for j > .
Proof. k; > kj_1 > k; by (b).
(3) Let e;(h) € A. Let p < 6; and:
eij(h+1)=e;jh)+1lfori>jand h+1 < p.
Then e;(h+1) = e;j(h) + 1 for h+1 < p.

Proof. Suppose not. Let [ be the least counterexample. Then [ > 0.
Let ej(a) = e;(h) + 1l for a j > i. Then e;;(h) < a < e;j(h) + [, since

ejeij(h) <ej(k) < ejles;(h) +1)
Hence o = e;j;(h) + k for a k < I. Hence:
ej(a) =ej(eij(h) + k) =ei(h)+k <ej(h)+1=c¢ej(a).

Contradiction!

Taking h = 0, we have e;;(l) = i for [ < ;. Hence:
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(4) K; C A and e; fﬁi =id.

(5) Let eij(h) > Kj. Then eij(h + l) = eij(h) + 1l forall h+1<6;.

Proof. By induction on j > 4. The case ¢ = j is trivial. Now let
j =k + 1, where it holds at k. Then e; ;(h) > Ky, since otherwise:

eij(h) = expr1eik(h) = e;p(h) < ki, < Kj.
Hence:

ei,k(h + l) = ekjeik(h + l) = ekj(eik(h) + l)
= ekj(h) + l

since if e;x(h) = ki + a, then:

erkr1(h+1) = eppr1(hr +a+1) = eprr1(rr) +a+1
= enpt1(rk+a) +1=eppr1(h) +1

Now let j be a limit ordinal. Then:
(5]', <6i]’ 1< j>

is the limit of
<(5i:’i<j>, <€h’i2h§i<]'>

and we apply (3).
QED(5)

We now prove A C A by cases as follows:
Case 1: For all i <n,h < §; there is j > i such that e;j(h) < k.

Then e;(h) = eje;j(h) C kj, since ¢; [ ; = id. Thus A = [J;g(e;) C
Ui ki C A.

Case 2: Case 1 fails.

Then there is ¢ such that for some h < §;,, we have: e;j(h) > k; for all j > 1.
Since ejieir(h) > eip(h) > ki, for ig < j < k, there is for each j > iy a least
h; such that ej(h;) > r; for all I > j.

Claim. €Z'j(hj) = hj for i() S 7 S j

Proof. Suppose not. Let j be the least counterexample. Using (3) it follows
that j = [ 4 1 is a successor. Then h; < e;;(h;). But h; > k; > ejj(Ky)-
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Hence h; = e;j(k;) + a = e;(k; + a), where k; + a < hy. But for j/' > j we
have:

hij (ki +a) = hyj(en;(ki) +a) 2 k.
Hence h; < k; + a < h;. Contradiction!

QED(Claim)

But then e;(h;) = ej(h;) for ig < i < j < n. Now let h = e;(h;) for
10 < i < n. Then:

Claim. h = J{h; : ip < i < n}.

Proof. h = U, € “hi. But if a < h;, then e;;(a) < k; for some j > i by the
minimality of h;. Hence e;(a) = e;(e; j(a)) = e;j(a) < hj, since e; [ k; = id.

QED(Claim)
Hence h € A and:
ej(hj +1) =h+1for hj +1< 6,

by (3), (5). Hence rg(e;) C A and A = A. This proves the sublemma and
with it Lemma 3.7.21.

QED(Lemma 3.7.21)

Note that 79 > &; for i € bip where €'(n;) = 7. Hence as a corollare of the
proof we have:

Corollary 3.7.22. Set 7j; = the least h such that ¢/ (h) > k; for all j > i.

Then 7); is defined for sufficiently large i and €'(7);) = 7. Moreover 7 =

lub{n; : i < n}.

However, in order to prove Theorem 3.7.14 we must find the:‘right” cofinal
branch in T'. Lemma 3.7.19 suggests an obvious strategy: Let b be the unique
well founded cofinal branch in I. Set:

b={y():iebhb={r:\/yeb <7}

Then b is a cofinal branch in T. We show that this branch works, thus
establishing the existence assertion of Theorem 3.7.14.

By Lemma 3.7.21, the commutative system

(i +1:i€b), (e :i<jinb)
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has a transitivized direct limit:
i+ 1,(e" i€ b)

This gives us a system of indices with which to work.

We must show that the commutative insertion system:

(I":heb), (e :h<jinb)
has a good limit I. By induction on ¢ < 7 we, in fact, show:

Lemma 3.7.23. Let ¢ < 7). Then the above commutative system has a good
limit I]i + 1 with respect to i in the sense of Definition 5.7.5 at the end of
§3.7.1. In other words, Ii+1 has length i +1 and €& [ h+1 inserts I5|h+1;
into I|i + 1 whenever e(h) = i.

Remark on notation. In §3.7.1 we showed that there can be at most
one good limit below i. We denote this, if it exists, by I|i + 1. But then
(I]i 4+ 1)|h +1 = I|h + 1 by uniqueness.

We recall that we defined: #; = t¢ where 7 =T({ +1),£ +1 € b, and that
R, = crit(e™) = crit(e”) for 7 < j in b.

But then I = J, o, I7|ir, since if 7= T(£ + 1), + 1 € b, then:
IMfr = (I8 41) |for = I|for.
But (J, ¢ ir = UKU s; + 1, since if 7 = 6 + 1, then:

§T:S(5+1§t§:RT.

We prove Lemma 3.7.23 by induction on ¢ < 1.
Case 1. i <7 =1h(I).

Let ef(h) = i. Let &£ <y 7 € b, where i +1 < &,. Then e|h +1 =
(e7|i +1)(e5T|h 4 1) where €7|i + 1 = id. Hence:

eflh+1=e5T|h+ 1 inserts I¢|h+ 1into I"|h+1=TI|h+1

QED(Case 1)

Case 2. 1 =1
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Let b be the unique cofinal well founded branch in I. Let Mg, (7;7 : i € b)
be the transitivized direct limit of: (M; : i € b), (7i; : i <7 j € b). This gives
us I|f + 1. We must prove that whenever e¢(7) = 7,& € b, then e inserts
I¢|7+ 1 into I|77+ 1. By Lemma 3.7.8 it suffices to show that for arbitrarily
large & € b:

(%) eg(ﬁ) = 7, where either é(77) € b or else é5(7) = 7 and
é5(i) € b for all i < ¢ 7.

We know: 7, = crit(e™ 1) =t¢ for 7 =T(£+ 1), £+ 1 € b. Set:

Ar = e (R ) = s+ 1for T =t(E+1), E+1€D.

Then:

(1) bN UTEb(RT? 5‘7) =9.

Proof. Suppose not. Let i € bN (7r, A\r) where 7 € b. Let pu > 7 such
that:

peb={y():iecb}.

Let = (j),j € b. Then §, < j < s,. Then i < j in b, since:
i <s¢g<5,<j, wherer=T(+1),{+1€b.

But T'|s = T"|s, + 1. Hence i <7u j in I*. But:

(Fry Ar) = (tg, se]-

Hence (FaT,;\T) is in limbo at u, since £ + 1 <p p. Hence i £pu j.
Contradiction!

QED(1)
Set:
A={r€b:5 <Rk}
The set A strongly determines what happens at 7. We first consider
the case:
Case 2.1. A is cofinal in b.

There is then a 75 € b such that §, = &, for all 7 € b~71g. (Recallfhat,
ifT=T(E+1)and {41 € b, then f; = t¢ and 5, <t < 5. < A\ by
Lemma 3.7.17.) By (1) we have:

B\TOCB::{§i:70§iinb}:{/%i:Togiinb}.
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(2)

5\7’0 = B.

Proof. Suppose not. Let i € Bxbg be the least counterexample. Then
@ > 1. Moreover, 7 is not a limit ordinal, since otherwise i = lub{3s; :
j € Bni}, where BNi C b and b is closed in 7. Hence:

i =38¢41 =5¢+ 1, where {+1 € b (19 +1).
Let 7=T(£+1). Then 7 > 79 in b and
§7—:/~£7—:t5, Sé‘—‘rl:S\é.

Hence §; = T(s§ +1), where 8, € B. Clearly §; € b, by the minimality
of i. Now let j+1 € bsuch that §; = T(j+1). Then j+1 > A; = s¢+1,

since 7 +1 > K and (Rr,Ar) Nb = &. Let v = v(j +1). Then
j+1 =35, = Ky is a successor ordinal. Hence 5, = ss + 1, where
v =041 Let u = T(§+1). Then 3, = &, = T(ss + 1). Hence
5,=5. Hencep=7,0=§andi=5+1=j+1¢ b. Contradiction!

QED(2)
But then every 7 € b~y satisfies (*), since:
Let 79 < 7 € b. Then €”(i;) = 7 and €7 | &y = id. (Hence é(k,) =
Rr €b).
Proof. We know that if 7 =T(£+1),£ + 1 € b, then:

N Ry =id, e (Ry) = A = 8¢ + 1 = Fe

Using this we prove by induction on £ € by thatif p <7< &, 7€ b,
then:
e Ry = id, €78 (Ry) = Fg.

At limit & we use the fact that:
ety = |J e (i),
T<71'€b
But then the same proof shows:
e’ [Rr =id, e’ (kr) =1,
since:

= sup Kr= sup $;= sup S¢+ 1.
TEbNTY TELNTY E+1e€b~1g

QED(Case 2.1)
Case 2.2. A is cofinal in b.

We shall make use of the following general lemma on normal reiteration:
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Lemma 3.7.24. Let & <7 p,i < n¢ such that §, < j < e5H(i). Then
J € rng(e”*).

Proof. Suppose not. Let p be the least counterexample. Then p > &.
Case 1. p is a limit ordinal.

Let ¢ such that £ < ¢ < p and j = eS#(j’). Then j' > &, since
otherwise:
Jj=7 < ke <A <8y

Contradiction! Thus 8 < j' < €%#(i). By the minimality of p we
conclude:
j' € mg(eth);
hence j = eS#(j") € rng(eS*). Contradiction!
Case 2. ;= ( + 1 is a successor.

Let 7=T((+1). Then j > 5, = s¢ + 1 = A\;. Moreover:
e (R + h) = Ay + h for h < ;.

Let j = A + h,eSH (i) = A + k. Hence h < k. Set j' = & + h.
Then e™#(j') = j, where 5, < &, < j' < €5#(i). By the minimality
of p we conclude: j' € rng(e7). Hence j = e™"(j') € rng(esH).
Contradiction!

QED(Lemma 3.7.24)

Let 19 € b such that 77 € rng(é™). Then 7 € rng(e”) for all 7 € bx\7p.
Set:
iy = (e7)71(#) for T € bxTp.

Then:

e (Ry) < 1 for 7 € bxTy.

Proof. Let 7 < v € A. Then e™7(k;) < §, < K, by Lemma 3.7.20.
Hence:

e (k) =€ € (Rr) =€ (Ry) < Ry < 1.

QED(4)

Now set:

B=|J [ 7).

TEbNTO

Note. [§.,k;) =2 if T ¢ A.
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(5)

Let 79 < 7 € b. Then B C rng(e”).
Proof. Let 7 <~ € A. Let j € [5,k,). Then

8y < J <y =M (iy)-
But then by Lemma 3.7.24 we have:
(54, Ry) C rng(e™7).
But €7 [[8,, k) = id. Hence:
[5y,Ry) C tg(e”) = rng(e’é").

QED(5)
Since B is cofinal in 7, we conclude:

T«

e” “f; is cofinal in 7 for 7 € bN1y. Using this we then get:

Let 7 € bN19. Then:

bN (rng(e”) Urng(éT))

is cofinal in 7.

Proof. Suppose not. Then there is a 9 < 7, such that

bN (rng(e”) Urng(éT)) C .

Note that if v € A, then [5,, k) C rng(e”). Hence (5,, k] C rng(é7).
We shall derive a contradiction by showing that A is not cofinal in b.
In particular, we show:

Claim. Let ig < j € b. Let o = v(j). Assume that v < § € b. Then
85 = kg € b.
Proof. We proceed by induction on §. There are three cases:
Case 2.2.1. § = .
It suffices to show: 79 ¢ A, since then 3,, < j < 5\7,j ¢ (/%70,5\70),
where 8., = Ay,. Hence j = 3, = /&y € b. Suppose not. j € [3,, &,]
since (K, Ay)Nb = @. But [$,, ky| C rng(e”)Urng(é”). Contradiction!,
since j < ip.

QED(Case 2.2.1)
Case 2.2.2. § =&+ 1 > 7 is a successor.

Let p = T(§ +1). Hence, 70 < p € b. Then s, = &, € b. Let
J + 1 be the immediate successor of s, in b. Then £, < j + 1. Hence
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j+1> XN, =s+1,since (Fu,A\) Nb= 2. Let v = y(j +1). Then
j+1€l3,,ky]. Hence, as in Case 2.2.1, ky = 3,, since otherwise:

[84,R4] C rng(e™) Urng(éT).

Then j+1 = 5, = Ky and 8, = s¢+1, where y = (+1. Let £ = T'((+1).
Then &, = T(j + 1), where j = s;. Hence &, = 4, = T(j + 1). Hence
n = p, since otherwise > p and 5, < 8, = k. Hence { = (, since
£ +1=(+ 1= the immediate successor of x in b. Hence 85 = kg € b.

QED(Case 2.2.2)
Case 2.2.3. § > g is a limit ordinal.
Then 35 = sup,; .5 8; € l~), since b is closed in 7. But then §5 = kg, since
otherwise:

[$5,ks) C rng(e”), where §5 > iy.

QED(Case 2.2.3)
This proves (7).
We now show that (*) holds for all 7 € b\7y.

Let 7 € by, If i <pr 7, then é7(i) € b.
Proof. Set: b= (")~ 17b.
Claim 1. b is cofinal in 7.
Proof. Let i < 7j,. Set ' = €7 (7). By (7) there is j' € b such that
j' > i and j' € rng(e”) Urng(é7).
If e7(j) = j', then j > i and é7(j) <7 j/ € b. Hence é¢7(j) € b and
j€b. It e (j) =4, then é7(i) < j' € b. Hence j > i and j € b.
QED(Claim 1)
Claim 2. b is a branch in 7.
Proof. Let i <pr j € b. Then é7(i) <z é(j) € b. Hence é(i) € b
and 7 € b.
QED(Claim 2)
Claim 3. b is well founded.

This follows by standard methods, given that b is well founded. But
then b = T7”{7;} by uniqueness.

QED(Case 2)
Case 3. ¢ > 1.
Then €7 (7, +1i) = 7+ 4 by Lemma 3.7.24. Using this, it follows easily

by Lemma 3.7.8 and Lemma 3.7.7 that I|i + 1 exists. We leave the
details to the reader.
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QED(Lemma 3.7.23)

This proves the existence part of Theorem 3.7.24. We must still prove unique-
ness.

Definition 3.7.12. Let b be a cofinal branch in:
R = <<IZ>7 <Vi>¢ <€i7j>?T>a
where R is a reiteration of limit length 7. b is good for R iff R extends to R’

of length n + 1 with b = T“{n}.

We have proven the existence of a good branch . Now we must show that it
is the only one. Suppose not. Let b* be a second good branch, inducing R*
of length n + 1 with: b* = T*“{n}. Since b, b* are distinct cofinal branches
in T, there is 79 < 1 such that:

(b~10) N (b*\1p) = @.

I' = (IM has length / and I* = (I")" has length n*. However:

i=si+1 I=JIlsi+1
i<n i<n

remain unchanged. Moreover I = I'|p = I*|n. Since b is the unique cofinal
well founded branch in I, we must have:

b=T"*{n} = T"{q}.
Now let v > 7; such that:
y=7() €b={y(i):ieb}
Then v € bxro. Let v = (i) where i € b. Then &, <i < s,.

Let § be least such that § € b* and § > 9. Then 6 = £+ 1 and 7 =:
T*(£+1) <~. Then t¢ < s,. But

s; <8y <1i<sy where s, +1=25,11 <38 =s¢+ 1.
Hence i € (t¢, s¢]. But then:
i < s+ 1=\ <k} = crit(e®)
Hence e**(i) = i € b*. But i <~ 7, since i € b. Hence, letting e (7g) = 7,

we have:
i <7 15, where 75 > 59 = s¢ + 1.
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But this is impossible, since (t¢, s¢] is in limbo at ¢. Contradiction!
QED(Theorem 3.7.14)

We have shown that, if M is uniquely normally iterable, then it is uniquely
normally iterable in the sense that every normal reiteration of limit length
has exactly one good branch. As we stated at the outset, the result can
be relativized to a regular § > w. In this case we restrict ourselves to 6-
reiterations.

Definition 3.7.13. Let § > w be regular. A normal reiteration R =
(I, (1), (€™}, T) is called a @-reiteration iff Ih(R) < 6 and 1h(I%) < 6
for all 5. M is uniquely normally O-reiterable iff every O-reiteration of limit
length < 0 has one good branch.

We have shown that, if M is uniquely normally #-iterable, then it is uniquely
normally O-reiterable. But what if M is, in fact, 8 + 1 iterable? Can we
strengthen the the conclusion correspondingly? We define:

Definition 3.7.14. Let 0, R be as above. R is a §+1-reiteration iff h(R) < 0
and Ih(I%) < @ for all i. M is uniquelly normally 6 + 1 reiterable iff every
f-reiteration of length < # has a unique good branch.

Now suppose M be normally 6 + 1-iterable. Let R be a 6 + 1 reiteration of
length 6. Define I, 13, 13, b exactly as before. Then b is a cofinal branch in 7.
(Tt is also the unique such branch, since if b were another such, then b N/
s club in #. Hence b = ¥'). b has at most finitely many drop points, since
otherwise some proper segment of b would have infinitely many drop points.
Suppose that v € b and b~ has no drop points. Then:

(I 25 € bxAy), (€% 10 < j € b))

has a unique good limit: ‘
(I,(e" i eb\y))
by Lemma 3.7.9. Hence b is a good branch. Thus we have:

Lemma 3.7.25. If M is uniquely normally iterable, then it is uniquelly
normally reiterable. Moreover if 0 > w is reqular, then:

(a) If M is uniquely normally 0-iterable, then it is uniquely normally 0-
reiterable.

(b) If M is uniquely normally 6 4+ 1-iterable, then it is uniquely normally
0 + 1-reiterable.
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Remark. The assumption that M is uniquely normally iterable can be weak-
ened somewhat. We define:

Definition 3.7.15. Let S be a normal iteration strategy for M. S is inser-

tion stable iff whenever I is an S-conforming iteration of M and e inserts I
into I, then [ is an S-conforming iteration.

Now suppose that M is iterable by an insertion stable strategy S. We can
define the notion of a normal reiteration on (M, S) exactly as before, ex-
cept that we require each of the component normal iterations I* to be S-
conforming. (We could also call this an S-conforming normal reiteration
on M). All of the assertions we have proven in this subsection go through
for reiterations on (M, S), with nominal changes in formulation and proofs.
For instance, if we alter the definition of good branch mutatis mutandis, our
proofs give:

(M, S) is uniquely reiterable in the sense that every reiteration
of limit length has exactly one good branch.

We close this section with two technical lemmas which will be of use later.
Both assume the unique iterability (or #-iterability) of M.

Lemma 3.7.26. Let I,1' be normal iterations of M. There is at most one
pair (R, &) such that . N
R={(I"), (vi), ("), T),

is a reiteration of M,Ih(R) =&+ 1,1 =1° 1" = I-.

Proof. Assume such R,¢ to exist. Ww show that R,¢ are defined by a
recursion:

Rli+ 1= F(R|i)
where ¢ is least such that F(R|{ + 1) is undefined. F' will be defined solely
by reference to I, I’. We have:
RI1 = (1), &, (i [I(1)), 2.

At limit A, R[ A+ 1 = F(RJ|\) is given by the unique good branch in R|\.
Now let R|i+ 1 be given. If I = I, then F(R]i+ 1) is undefined. If not, let
s=s;. Then I'|s+1=I'|s+1, since v; = viT! = .. If s+ 1 < Ih(I?), then
v; = v, < vt Hence I'|s + 2 # I'|s + 2. We have shown:

s = the maximal s such that s 4+ 1 < Th(I?)
and I'|s+1=1'|s+ 1.
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But then R|i + 2 is uniquely defined from R|i + 1 and v; = /.
QED(Lemma 3.7.26)

For later reference we state a further lemma about reiterations:

Lemma 3.7.27. Let R = ((I'), (v;), ("9}, T) be a reiteration of length u+1.
Let I' be of length n; for i < p. Set:

Aj = Af =:{i:i <pj and (i,j]lr has no drop point in R}

for j < p. Set:
oij =0y fori € Ajori=j

. Then:

(a) ei’“(m) =y fori € Ay,
(b) o4y My, —>s+ My, foric A,.

(¢) If p is a limit ordinal, then

M, = U mg(o; ).
i€ A,

Proof. We prove it by induction on pu.
Case 1. u=0. Then A, = @ and there is nothing to prove.

Case 2. ;= j+11is asuccessor. If y is a drop point, then A, = @ and there
is nothing to prove. Assume that it is not a drop point. Then h = T'(u) is
the maximal element of A,. (c) holds vacuously. We now prove (a), (b) for
i = h. By our construction, e™#(n;) = 1, could only fail if ;i is a drop point,
so (a) holds. We now prove (b) for i = h. If t; < n,, then é"# = e* and:

— shp — Shp
Uh””‘ - U77h - Uﬁh :

Hence (b) holds. Now let ¢t; = n,. Then 7, = s; + 1 and:
h,u . h *
ot My — M#ﬂ,
where F = El],t[” . Hence (b) holds.
Rlh+1

Now let 7 < h. Then i € A" . This gives us o5, = O‘%’ih. Then (a)-(c)
holds for R|h + 1 by the induction hypothesis.

By Lemma 3.7.5 we then easily get:

Oh,u0i,h = Oip-
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It follows easily that (a), (b) hold at i.
QED(Case 2)

Case 3. p is a limit ordinal. Then A, = [ig, u)7 for a ig <7 p. We know
that: 4
Ny, (e 11 e Ay)

is the transitivized direct limit of:
(vi i€ Au), (e i <jin A,)
Hence (a) holds at p. But:
IF (eF i€ Ay)
is the good limit of:
(I':i€ Ay), (€™ 1 < jin Ay)

(where e/te¥ = eb#). But then (c) holds by Lemma 3.7.7. Hence (b) holds,
since (b) holds for R|i 4+ 1 whenever i € A, (hence A; = A, N1).

QED(Lemma 3.7.27)

3.7.3 A first conclusion

In this section we prove:

Theorem 3.7.28. Let M’ be a normal iterate of M. Then M’ is normally
sterable.

We prove it in the slightly stronger form:

Lemma 3.7.29. Let [ = (<Mz>1<ﬂz>, (7:.), T) be a normal iteration of M of
length n+1. Let 6 : N — s« Mzminp. Then N is normally iterable.

First, however, we prove a technical lemma. Recalling the Definition 3.7.6
of the function W (I, I’ v), we prove:

Lemma 3.7.30. Let W(I,I',v) = (I*,I",e), where F,v,k,T,\,s,t are as
in 3.7.6. Let I,1*,I' 1" be of length n+1,n* + 1,7 +1,7" + 1 respectively.
Let o = o, be induced by e. Set:

M, = M,||p whose i is mazimal such that T is a cardinal My||p.

M,
(Hence P(k) N M, =P(k)NJE ™). Then:
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(a) o My —>s+ M]),

(b) o(X) = F(X) for X € P(k) N M* (hence k = crit(o)).

Proof. Case 1. t =7 and 7 is a cardinal in M,,.

Then n* =n, M, = M,n” =n+ 1 and:

_ " . * "
op =Ty ="Tppi1: My —p My,

QED(Case 1)

Case 2. t <nand 7 is a cardinal in M,,. Then n* = n, M, = M,. Moreover,
Gy = op; hence (a) holds. Set:

M = My||u where p is maximal such that 7 is a cardinal in M;||pu.

Then M = M!* and:

_ o . 1" * 1
Op =T =Ty g1 My —p My,

Note that p > Ay, since \; in inaccessible in M, and 7 < \; is a cardinal in
M,. Then o[ A = o¢ [ A\ and JE* = JE™" Hence o, [ JE™" = oy [ JE™.
Hence:

op(X) = 0¢(X) = F(X) for X € P(k) N M.

QED(Case 2)
Case 3. 7 is not a cardinal in M,. Then n* =¢,7" = s+ 1, and:
or=m: My —5 MY,
QED(Lemma 3.7.30)
Corollary 3.7.31. Let:
R = ({I'), (vi), ("), T),
be a reiteration where:
I' = <<M,z>, <1/,i>, <7T,i€’l>,Ti) is of length m; + 1.
Let £ =T(i+1). Let I' have length n* + 1. Set: M! = ME*HM, where (1 is
mazimal such that 7; 1s a cardinal in Mg Then:

L A
S ML e ML and:

4 Mi+1

o5 (X) = EL(X) for X € P(r;) N M.
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M?

Note. ]P)(/ii) N M}( = P(Hi) N inni .

. . M)
Note. This does not say that Mfr:ll is a *-ultrapower of M} by E,,".

We now make use of the notion of mirror defined in §3.6.
This suggests the following definition:

Definition 3.7.16. Let I* = ((V;), (v3), (m; ;),T) be a normal iteration of
length 7.

By a reiteration mirror (RM) of I* we mean a pair (R, I’) such that

(a) R = {{I"), (;),{e"), T) is a reiteration of M of length 1, where

I' = ((My), (vp), (mh;), T") is of length 7.

(b) I' = ((M]),(x},), ("), (p")) is a mirror of I*. (Hence o;(v}) = 1;).

(c) M =M.

(d) If h=T(i+ 1), then
M* = M#}lHu, where p is maximal such that 7; is a cardinal
in M} and Thitl = U%ZH, where 7; +1 = 1h(I?).

Definition 3.7.17. (I*, R, I') is called an RM-triple if (R,I’) is an RM of
I*.

We obviously have:

Lemma 3.7.32. i + 1 is a drop point in I* iff it is a drop point in R.

Moreover:

Lemma 3.7.33. If (i, j|r has no drop point, then 71'2’-]- = afﬂ.

Proof. By induction on j, using Lemma 3.7.27. We leave this to the reader.

Lemma 3.7.34. Let (I, R,I') be an RM-triple of length n+1. Let EZJ,V" #+ g,
where v > v; for i < n. Then (I, R,I') extends to a triple of length n + 2,

with v = vy (hence v, = oy (v)).
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Proof. By Lemma 3.7.25, R is uniquely reiterable. Hence R extends to R
of length 1 + 2 with 4, = 0y)(v). Set: M, =: the final model of I¢™1, ¢ =:

T(n+ 1), = USL”+1, where n* = In(I{). The choice of v,, determines
M; = M,§||,u Then:
7 VN e My, 7(X) = Ey'1(X) for X € P(x) N M.
The conclusion then follows by Lemma 3.6.38.
QED(Lemma 3.7.34)
By Lemma 3.7.25 and Lemma 3.6.37 we then have:

Lemma 3.7.35. Let (I, R, I') be an RM-triple of limit length n. Let b be the
unique good branch in R. Then there is a unique extension to an RM-triple
of length n + 1. Moreover, b =T“{n} in the extension.

Proof. R extends uniquely to R of length 7+ 1. We now extend I’ to I’ by
taking M’ as the final model of I'". Pick i < n such that b~i has no drop
point in R. For j € b~ set:

7%;',77 = [771'7’].’7 (where n; + 1 = Ih(I’) in R).

By Lemma 3.7.33, we know:

-/ / . .. .
TnTh,j = Thy for h < jin bxi.

By Lemma 3.7.27 it follows that:
M, (7)o 7 € bN1)
is the direct limit of:

(Mj, : h € bxi), (7, ;- h < j in bxi).

(For h € bNi, we then set: 7}, = m m} ..)
The conclusion is immediate by Lemma 3.6.37.
(Lemma 3.7.35)

Now let N, I be as in the premise of Lemma 3.7.2. In particular, I is a
normal iteration of M of length 7 + 1 and:

0: N — 5= Mﬁ min p.
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Using the last two lemmas, we define a successful strategy for N. We first
fix a function G such that whenever I' = (I, R, I’) is an RM triple of length
@+ 1 and E,],w“ # @ with p > v; for j < p, then G(I',v) is an extension of
I' to an RM triple of length 1+ 1 with v, = v. In all other cases G(I',v) is
undefined. Now let I be any normal iteration of N. There can obviously be
only one RM triple I' = (I, T, I') with the properties:

(a) I°=1,00=6,p°" = p.
(b) Tf i + 1 < Ih(I), then:
Tli+2=G(Tli + 1, 1),

since I'|A+1 is uniquely determined at limit stages A by Lemma 3.7.35.

Denote this I' by I'(]) if it exists. We define the strategy S as follows:

Let I of limit length. If T'() is undefined, then so is S(I). Now let I'(I) =
(I, R, I') be defined. Set:

S(I) = the unique cofinal, well founded branch in R.

(This exists by Lemma 3.7.35). We then get:

Lemma 3.7.36. Let I be a normal iteration of N. If I is S-conforming,
then T'(I) is defined.

Proof. By induction on 1h([), using Lemma 3.7.34 and Lemma 3.7.35.
QED(Lemma 3.7.36)

In particular, if I is of limit length, it follows by Lemma 3.7.35 that S(I)
is defined and is a cofinal, well founded branch in I. This proves Theorem
3.7.28.

Theorem 3.7.28 is stated under the assumption that M is uniquely normally
iterable in V. As usual, we can relativize this to a regular cardinal 6 > w.
We call M’ a O-iterate of M is it is obtained by a normal iteration of length
< 0. Modifying our proof slightly we get:

Lemma 3.7.37. Let 0 > w be regular.

(a) If M is uniquely normally 0-iterable and M’ is a 0-iterate of M then
M’ is normally 0-iterable.
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(b) If M is uniquely normally 6 + 1-iterable and M’ is a O-iterate of M,
then M’ is normally 6 + 1-iterable.

Note. In proving (b) we must restate Lemma 3.7.29 as:

Let I = ((M;), (), (mi;),T) be a normal iteration of length 7+ 1 < 6. Let
o : N —s« My;minp. Then M is normally 6 + 1-iterable.

Note. In proving Lemma 3.7.37, we restrict ourselves to #-reiterations R =
((I*),...) meaning that Ih(I?) < @ for i < §. Thus we restrict to 6-reiteration
mirror (R,I'), meaning that R is a f-reiteration. Lemma 3.7.34 is then
stated for RM-triples of length n + 1 < 6. Lemma 3.7.35 is stated for RM-
triples of length nn < @. All steps fo through as before.

Note. An easy modification of the proof shows that, if M is normally
iterable by a insertion stable strategy, then every S-conforming iterate of M
is normally iterable.

This is a relatively weak result, and could, in fact, have been obtained with-
out use of the pseudo projecta. (However, we would not know how to do it
without the use of reiteration). What we really want to prove is that M is
smoothly iterable. The above proof indicates a possible strategy for doing
so, however: If M is “smoothly reiterable”, and:

0:N —y« Mminp

we could use the same procedure to define a successful smooth iteration
strategy for N. In §3.7.4 we shall define “smooth reiterability” and show
that if holds for M.

3.7.4 Reiteration and Inflation

By a smooth reiteration of M we mean the result of doing (finitely or in-
finitely many) successive normal reiterations. We define:

Definition 3.7.18. A smooth reiteration of M is a sequence S = ((I; : i <
), (€ : 4 < j < p))such that p > 1 and the following hold:

(a) I; is a normal iteration of M of successor length n; 4 1.

(b) e ; inserts an ;| into I;, where a < n; + 1.

(c) enj = €ijoen
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(d) If i + 1 < p, there is a normal reiteration:
R; = ((If), () (}"). T)

of length n; + 1 such that I; = I?, I;11 = I'" and ;41 = e?’m.

Note. R; is unique by Lemma 3.7.21. Hence so is (e;j : 1 < j < ),
which we call the induced sequence.

Call i a drop point in S iff R; has a truncation on the main branch.

(e) If A < p is a limit ordinal, then there are at most finitely many drop
points ¢ < X\. Moreover, if h < A and (h, A) is free of drop points, then:

I, (eix:h <i<A\)
is the good limit of:

(I :h<i<\),(ej:h<i<j<\)

This completes the definition. We call p the length of S.

Note. Since e, = epre;p for | < h < A, we follow our usual convention,
calling:
I, (eix:i<A)
the good limit of:
<Illi<)\>,<€i’j2i§j<)\>

We call M smoothly reiterable if every smooth reiteration of M can be prop-
erly extended in any legitimate way. We note:

Fact 1. If I is a normal iteration of M, then ((I), @, (id [ I), @) is a smooth
reiteration of M of length 1.

Fact 2. If S = ((I;), (ei;)) is a smooth reiteration of M of length i + 1,
and R = (I'), (b)) is a normal reiteration of length n + 1 with I° = I,
then S extends to S’ of length ¢ + 2 with I/,; = I" and ¢}, ; = €®" (hence

. 2,04
R=R).

Fact 3. Let S = ((I;), (esj)) be a smooth reiteration of M of limit length
A. Assume:

(a) S has finitely many drop points.

(b) S has a good limit: I, (e; : 7 < A).
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Then S extends uniquely to " of length A + 1 with I} = I, ¢; , = e;.

Clearly, then, saying that M is smoothly reiterable is the same as saying that,
whenever S is as in Fact 3, then (a), (b) are true. In the next subsection
(§3.7.5) we shall prove the smooth iterability of M. The proof is, in all
essentials, due to Farmer Schlutzenberg, and is based on his remarkable
theory of inflations. This subsection is devoted an exposition of that theory.

Before proceeding to the precise definition of inflation, however, we give an
introduction to Schlutzenberg’s methods. Let R = ((I'), (1), (¢"7),T) be
a reiteration of M. Schultzenberg calls I’ an “inflation" of I, since it was
obtained by introducing new extenders into the original sequence. He makes
the key observation that the pair (I, I') determines a unique record of the
changes made in passing from I° to I*. We shall call that record the history
of I and denote it by hist(I°, I?).

Definition 3.7.19. Let n; + 1 = Ih(I?) for i < Ih(R). For a < n;, set:

I(a) = I(a) =: the least i such that I'|a + 1 = I'|a + 1.

Let s;,t;, 8; = lubp<; sp be defined as in §3.7.2. Then:

Lemma 3.7.38. (a) I(«) = that | < i such that §; < « and either | =i or
I <iand a<s.

M) Uja+1=1a+1 forl <j<i.
Proof.

(a) & < a, since otherwise s;+1 > aforaj < I. Hence I’|s;+1 = I'|s;+1
where oo +1 < s; + 1. Hence j > [. Contradiction!

Suppose [ # 3. Then a < s, since otherwise s; +1 < o and I'|a + 1 #

I+ 1, since v}, < vk .

QED(a)

(b) Suppose not. Then i # I, < s and I'|s; +1 = |s;+1for I < j <
Ih(R). Contradiction! QED(Lemma 3.7.38)

Hence 8; < a — I'(a) = i.

Lemma 3.7.39. If h <i and I"|a + 1 = I'|a + 1 then V!, < v if a < np,.

Proof. By induction on .
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Case 1. i = 0 (trivial).
Case 2. i =h+ 1.

Then I?|s;, + 1 = I"|s;, + 1 and vl < Vgh. Thus it holds for a < s, by the
induction hypotheses. But [(«) =i for a > sp,.

Case 3. 7 is a limit.

Then I'|s; + 1 = I’|s; + 1 for j < 4. Hence it holds for a < §; = lubj<; s;
by the induction hypothesis. But I(a) =i for a > §;.

QED(Lemma 3.7.39)

The next lemma is crucial to developing the theory of inflations:

Lemma 3.7.40. Let o < n;,l =1(a). Set:

a={y<m:e(y) <a}.
There is a unique e inserting I°|a + 1 into I'|a + 1 such that e [a = % |
and e(a) = a.

a

Proof. By induction on 1.
Case 1. i =0. Set a=a,e=idJa+ 1.
Case 2. i =h+ 1.

If a < sp,, then I'ja+ 1 = I"|a+ 1. Hence | = I"(a) and the result holds by
the induction hypothesis.

If @ > sp, then I(@) = i, since I'|s, + 1 # I"|sp +1. Then a = s, + 1+ 5.
Let = T(h+1). Then e’ (@) = «, where @ = t;, +j. But §, < t, < s, by
Lemma 3.7.17. Hence I#(t},) = I*(@) = p. Clearly:

a={y<m:e"(y) <a}

Since p < h, the induction hypothesis gives a unique f inserting I°la + 1
into I*|@ 4 1 such that f[a = %" a and f(a) = @. Thus e = ef!f has the
desired properties.

QED(Case 2)
Case 3. 7 is a limit ordinal.

Then I'|sj + 1 = I/|s; + 1 for j < i. Hence the assertion holds for a <
§; = lubj<; s; by the induction hypothesis. But [(a) =i for §; < a. Then
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there is j <7 i such that a = e?(a). Let j = T(£ + 1) where £ +1 <r i.
Then @ > crit(e’*) = t¢. But §; < t¢ < s;. Hence (@) = l/(t¢) = j. Since

e = e 0 %9 we conclude as in Case 2 that:

a={y<n:e(y) <a}

By the induction hypothesis there is f inserting I°|a + 1 into I/|@ + 1 such
that f | a = €% | a and f(a) = @ Hence e = e/ o f has the desired
properties.

QED(Lemma 3.7.40)
Definition 3.7.20. For i < Ih(R),a < ng set:
al, =: lub{€ < ng : ® (&) < a} where | = I*(a)

e!, =: the unique e inserting I°|a/, + 1 into I'|a + 1 such

that e [aé» = W [aé- and e(dl)) = «

It follows easily that:

Lemma 3.7.41. (a) Ifl = li(a), then a < my and | = I'(), a’, = d!, and

T )
€y = €u-

(Hence €!, = el and o, = a” whenever I'|a +1 = I"a +1).
(b) If er(@) = o, 8, < @, 8; < a, then:

(@) = p,l"(a) = i,a = a’,, and et'el = €l,.

(c) el lal =e ™ lal ; el (al ) =mn; (1" =n;, since n; > 5;).

(d) If there is no truncation on the main branch of R|i+1, then %' = €',
and ap, = no (since e**(ny) = n;).

The proof is left to the reader.

We now fix an ¢ < Ih(R) and set:

I=({Ma), (Va), (Ta,5), T) =: I’
I' = (M), (va), (o), T') = I'

[0}

a:<@gia§m>,6a:ei for a < m;.

{a,(eq : a < n')) is then called the history of I’ from I. We shall show that
it is completely determined by the pair (I,I’). a, is called the ancestor of
« in this history.

We prove:
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Theorem 3.7.42. Let I,I',a,{eq : a < ;) be as above. Then:
(1) a: (') — h(I) and ey inserts Ilao +1 into I'|la+1 for a < 1h(I").
Moreover, eq(aq) = a.
(2) Let ag < 1. If o = 052 (va,) exists and a + 1 < 1h(I"), then v}, < iy,
(3) Let a <m0+ 1 <1(I"),v, = vy. Then:
Gat+1 = 0o+ 1, eqt1laq +1=eq.

For a+ 1 < 1h(I%), define the index of a (in(a) = in‘(a)) as:

in(a) =

0 ifaisasin (3)
1 if not

(4) Ifin(a) =1,y =T"(a + 1), then ag+1 = a.

(5) If B <7 v, then e [ B =e5" | 5.
Note. Ignoring our formal definition of (a,e) and using only (1), (5),
we get:

® e, lag =eglag.

® ag <7 aq Since:
éa(aﬂ) = éﬂ(aﬁ) <7 65(6) = /B <ra= ea(aa).

o If ais a limit ordinal, then:

Ao = U ag and eq [ aq = U eglag,

B< e B< o
since eyt [ = Us<pra egl [ 5.
Note. By (1), (4) and (5) we get:
o Ifin(a) =1, v=T (a+1), then eqt1|aat1 = €y [ay.
Note. Since eq, eg are monotone and aye = egl“ﬂ, the statement:
el 1B=ez" 1
s equivalent to:

eglag =eqlag and eq(ag) > f.
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(6) If Rli + 1 has a truncation on the main branch, then there is a €

(€n, (an,), i) which is a drop point in I'.

Note. By Lemma 3.7.41 (a) we have:

ém (am) = lub €n; “am‘ = lub *% Any = éo,i(am)'

We prove Theorem 3.7.42 by induction on :

Case 1. : =0.

Trivial, since aq = a, e, = id [a + 1.

Case 2. i=h+1.

(1) is given.

(2) If a < sp, then I'la+1 = I"|a + 1, hence l'(a) = I"(a), €}, = el 7, =

a T o T
7. By the induction hypothesis v/

b= gt But v < v Now let
a > sp. Then (o) =i and o = s, + 1+ for some j. Let p=T(h+1).
Then et (@) = o where @ = t, + 1. Just as in the proof of Lemma
3.7.40 (Case 2), we have: u = I#(t;) = I*(@) and e*'oek = e,. Hence:

7 = 05 (vg) = oo = (1v]) = o5 (75)

(Sinceif e = ejoeg, then of = ez;(ﬁ)oeeﬁo). By the induction hypothesis:
vh < DL, Hence:

Vi = oh° () < o (7) = 7,

QED(2)
If a < sp, then vl = v" 0" = 5 since I'|s;, + 1 = I"|s;, + 1. Hence
h _ 5h
v =1

h — ,h h h — Lh ; ; ;

Hence a1 = aq + 1,e4,4 [aq,q = e, by the induction hypothesis.
But (a4 1) = I"(a+1). Hence: a?,; = a’ q,al = d\, el =

el 1,el = el. The conclusion is immediate. Now let a@ = s;,. We

still have e’ = ¢! ; hence 7" = . But v/, < v < #". Contradiction!

Now let a > s,. We again have: a = s, + 1+ j,a = e (@), where
p=T(h+1)and @ =t + j. As before, we have l'(a) = 4, 1M(@) = p.
1 (i i

~i_ i 1 7" .
Moreover 7!, = o2 (74) and v}, = o5’ (v5). Hence v = 2. Hence:

BB T _ b
g1 =g+ 1leg  [a+1=eg

Buti = l'(a) = l}(a+1), p = (@) = I"(a+1), and e’ (@ + 1) = a+1.
Hence:

_ il N
a=a, = ayand ag1 = an 1 = a5 ; =a+ 1.
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Moreover, we have:
ehprla+l=elel  Ja+1=e"el =e,.
QED(3)

If o < s, the result follows by the induction hypothesis, since I'|a+2 =
I"|h + 2. Now let @ = s5,. Then in(a) = 1 as shown above. Let
p=T(h+ 1),y = ty. Then e’ (y) = a + 1. Hence af = al, ;. But
I'ly +1 = I"|y + 1. Hence I*(y) = I'(7) and a!, = af = al,,,. Now
let « > sp. Then ¢ = h 4 1 is not a drop point in R, since otherwise
ni = sp+1=a. Hence a+ 1 £ Ih(I*) = n; + 1. Contradiction! Then
o = sp+1+7j and a = e**(@) where @ = t;+j and p = T(h+1). Note
that et (&) = eMi(€) = lub et “¢ for € > ty,. Clearly a+1 = e (a+1).
As in the foregoing proofs we have:

ot () = va; oM (DR) = T

Hence v& < v and in(a@) = 1. By the induction hypothesis we con-
clude: af, | = a%‘, where 5 = T#(a@ + 1). But, as before, ak | = al,

since et(@+1) = a+ 1,IF(@+1) = p, I'(a+ 1) = i. Thus it suffices
to show:

. u -
Claim. az = a’, where v =T"(a + 1).

We consider two cases:

Case A. k& > k;. Then e*'(¥) = v by Lemma 3.7.10 (1). As before

(%) = p, I'(y) =i and ab = a,.
Case B. kL < k;. Then v =7 by Lemma 3.7.10(1). Then 7 < t3,

where I'|t;, + 1 = I*|t;, + 1. Hence a% = a%.

QED (4)

If a < sp, then I"a+1 = Ija+ 1 and afj = afy,ez = efy for v < o

Hence the conclusion follows by the induction hypothesis. Now let
a > sp. Then a = s, + 1+ j for some j. Let p = T'(h + 1). Then
eMi(@) = a where @ = t), + 1. But @ > crit(e?) =t > §,. Hence:

—\ [T R TR
(@) = p, a5 = ay, e, = e’ - eq.
Let B <7i a. We consider two cases:

Case A. § > sp.

Then 8 = s, + 1 +r for an r < j. Hence, letting 8 = tj, + r, we have
e“’i(ﬁ) = (3 and:

T
l“(ﬁ)—u,aﬁ—af@,e/’g—ewﬁﬁ.
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It follows easily that 8 <7« @. Hence by the induction hypothesis:
()15 = () Ia

Hence:

—~
D
=
~
L
™
o
—~ o~
D Q) ™
Q= OIET WIE

~

L

—~

Q)

=

~

S~—

L

@

QED(Case A)
Case B. [ < sp.
Then 8 < ty, since (th, sp] is in limbo at §; = s +1. Hence e/ | B = id,
since tp, = crit(e"). But then:
B =e""(B) <ru a = e"(@),
Hence 8 <7w a. Moreoverlliw +1=1*3+1,since é*' | B+ 1 =id.
Hence ajj = aj; and e}y = . But:
(118 = ()18
since 8 <ru @. Hence:
(ea) 1B =(ef) (") THB = (ef) ) THIB=(ep) 1B
QED(Case B)
This proves (5).
It i = h+1is a drop point on R|i 4+ 1, then M;z # My, where
n' = sp + 1,t; = T*(sp, + 1). Hence 7; is a drop point in I’. Now

suppose that h + 1 does not drop in R|i+ 1. Let p = T(h +1). Then

there must be a drop point on the main branch of R|u + 1. Hence I*

has a drop point in (g,n,]rs where e = él; (al;,). Since e’ (n,) = n;,

it follows easily from Lemma 3.7.10(7) that there is a drop point on I’
in (é"'(e),t;]yi. Since 8, <1y, 5 < n;, we have:
=1 = 1M(n,), i =1 = I (np).
Hence ay), = aj,. Clearly:
e () = lub e .

: H B 0u M e 0,10 ¢ 1 .
Since ey, [ay, = e [ay,, we have: € = lube™* “a;,. Hence:

é"'(¢) = lub €% “afn = éfﬁ(aih,).
Hence I" has a drop in (&}, (af,), ni]7i.
QED(6)

This completes Case 2.
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Case 3. i = )\ is a limit ordinal.

(1)
(2)

is given.

Set 8 = 3y = lub;<y s;. Then IMs; +1 = Is; + 1 for i < A\. Thus
(2) holds by the induction hypothesis for a < §. Now let o > § then
I*(@) = . Pick u < X such that @ € rng(e®*) and there is no drop in
(s N)pa. Let i = h4-1, where o = T(h+1), h+1 <px \. If eN&) = o,
then & > ty, since e®* | ¢, = id. Hence @ > sp + 1 = §;, where
e?Ma) = a. Hence I' =: I'(@) = . Hence ai = a))
We are assuming that:

A LA
and e}, = e""el.

Uy = UZS(VSQ) exists.
But then: ‘ i | |
Vg = Gzz(ugg ) exists and gg‘(;%) — ~C)C-
Clearly: v 02}/\(1%). But & < 7L by the induction hypothesis.

QED(2)

For a < §) it holds by the induction hypothesis, so let a > §). Let
, h,i,@beasin (2). Then I*(a) = A\, l'(a) = i. We assume in*(a) = 0,
ie.:

But then: ‘ 4 ‘

a < n; and v4 = 4 hence in*(a@) =0
Hence al,; = ak + 1 and €5, [ ak +1 = €. But l'(a+ 1) =
i,IM@+ 1) = X\. Hence

P T
Uot1 = Og41 = g + 1
and

A A iX i i
Cat1 oy =€ e lag +1

AT A
=e"eqg =€,

QED(3)

For a < &) it holds by the induction hypothesis, so let a > 5). Let
. h,i,@ be as in (2) with the additional stipulation that v € rng(e*?)
where v = T« 4+ 1). Let e**(§) = ~. Then either v > 5y and
¥ > 38 =sp+1,0or vy < 8y, and ¥ = . It follows easily that 7 =
Ti(@ + 1). Moreover in’(@) = 1, since in*(a) = 1. But then al = a,%
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But a’ = aj. Moreover a% = a:Y\. (If 7 > 8y, this is because I*(¥) = i.
If v < 8y, it is because I'|y + 1 = I'|y + 1).
QED(4)

If o < 3, it follows by the induction hypothesis, since I*|a+1 = I|a+1
for 8 < A\,a <'s;. Now let @ > 5. Fix 8 <p» a. Let p,i,h,@ be as
before with z chosen big enough that 8 € rng(e”*) and 8 < t), =
crit(et?) if B < 8. Let a = €M @), B = e"*(B). Since:

¢ (B) = B < a =),
we conclude: 3 <p: @. Hence:
()18 = (e)'B

by the induction hypothesis. Since §; < @, we again have:

aia = ag\é, eg\é = ei”\eia.
If B> 3, then §; < 8 and we have :
VS U W W
ag—aﬁ,eﬁ—e 63.

Hence:

= (ep) " 18.

Now suppose that 3 < 4. Then 8 = 3 < crit(e’*). Hence I'|f + 1 =
I3+ 1 and:

ag = ag,e% = eg where e [+ 1 = id.
Hence we again have:

[ A A (2N

CLE = CLB765 =€ GB,
and we argue exactly as before.

QED(5)

Suppose R|A + 1 has a truncation on the main branch. Clearly 1) >
3y, so IMm\) = A\ Let p,i,h,@ be as in (2) with a = 1,. Then
[i, N is free of drops. Hence e*(n;) = nx. But R|i 4+ 1 then has a
drop on the main branch. Hence there is a drop in (€} (a,),ni]71.
By Lemma 3.7.1 (7) it follows that there is a drop in (6%*(), na]p»,
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A
A

and € = é;,(ay,) = lub e%i“ql . Moreover e¥*(¢) = lube?*“c. Hence
i i

¢ () = lub e} “a%‘A = é,)‘h(a;\h).

where & = 6770.(6‘%0)- But I'(1;) = i, since n; > 8;. Hence aj, = a

QED(6)

This completes the proof of Lemma 3.7.42.

Inflations

Following Farmer Schlutzenberg we now define:

Definition 3.7.21. Let I be a normal iteration of M of successor length
n+1. Let I’ be a normal iteration of M. I’ is an inflation of I iff there exist
a pair (a, ) satisfying (1)-(5) in Theorem 3.7.42 (with e = (e, : @ < 1h(I"))).
We call any such pair a history of I’ from I.

By the remark accompanying the statement of Theorem 3.7.42 we have:

Lemma 3.7.43. Let I’ be an inflation of I with history {(a,e). Then:

(a) If B <, then ag <7 aq and ey [ag = eg[ag.

(b) If a < 1h(I') is a limit ordinal, then:

Ao = U ag and e, [ aq = U eglag.

ﬁ<T/Ol BTIQ
() Ifa+1<Ih(I'),in(a) =1,y =T (a4 1), then:

Uat1 = Gy and i1 [Gat1 = ey [ aga.

Lemma 3.7.44. Let I,1I' be as above. Then there is at most one history of
I’ from I.

Proof. Let (a,e) be a history. By the conditions (1)-(5), this history satisfies
a recursion of the form:

(@0, ea) = F({(a,€) : £ <)),

where F is defined by reference to the pair (I, I') alone. To see this we note:

(a) ag = G, ep(D) = @ by (1).
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(b) Let aq,eq be given. Then:
ao +1 ifin(a) =0
® Qo411 = . o
ag where f =T'(a+1) if in(a) =1
e eqr1(an+1)=a+1
€ if in(a) =0

® Co (075% =
+118a41 {65 lagr1 S =T(a+1)and in(a) =1

In order to determine in(«), however, we need only to know aq, eq, I, I'.

(¢) If X is a limit ordinal, then:

ay = U Qo; exlay = U €a [ Qas; e,\(a)\):)\.

a<T/>‘ Oz<T/>\

QED(Lemma 3.7.44)

Definition 3.7.22. Let I’ be an inflation of I. We denote the unique history
of I’ from I by: hist(Z,I").

Note. Schlutzenberg’s original definition replaced (5) in Definition 3.7.21
by the following statement, which we now prove as a lemma;:

Lemma 3.7.45. Let i < aq such that é,(p) <7 <77 eq(p). Then ag = p.
Moreover eg [ = eq [ p. (Hence e, (1) = B,€é5(1) = éa(pt) = supeq“p).

Proof. Suppose not. Let a be the least counterexample. Let u < aq, éq (1) <77
B <7 eq(p). We derive a contradiction by showing:

ag = p,eglag = eq lag.

Case 1. = aq.

Then ag <t a, and eg [ ag = e, [ ao. But ag = an = p, since otherwise
ealag) < éalaq) < B. Hence ag € e;'“B but ag = egl“ﬁ. Hence e ! #
egl [ 5. Contradiction!

Case 2. i < aq.

Then there is v < « such that:

< Gyyeq [y = €y ] ay.

(Clearly o > 0. This holds by (3) or (4) if « is a successor and by Lemma
3.7.43 if v is a limit.) Hence:

&y(p) <1 B <17 ey(p).
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Hence:
ag = p,eglag = aylag = aq [ag
by the minimality of «.

QED(Lemma 3.7.45)

Remark. (5) can be equivalently replaced by Lemma 3.7.45 in the definition
of “inflation”. Tt can also be equivalently replaced by the conjunction of (a)
and (b) in Lemma 3.7.43.

Extending inflations

By Definition 3.7.21 it follows easily that:

Lemma 3.7.46. Let I’ be an inflation of I with history (a,e). Let 1 < pu <
Ih(I"). Then I'|n is an inflation of I with history {(alu, e ).

Proof. (1)-(5) continue to hold.

Taking p = 1 it becomes evident that an inflation might say very little about
the original iteration I. Hence it is useful to have lemmas which enable us to
extend a given inflation I’ to an I of greater length, thus “capturing” more
of I. We prove two such lemmas:

Lemma 3.7.47. Let I be a normal iteration of M of length ' + 1. Let I’
be an inflation of I of length nf' + 1 with history (a,e), where a,y < 1. Let
U= a;z;(y(’l ) be defined with: v > v, for i <n. Extend I' to I" of length

7]/

n' +2 by appointing 1/7’7, =v. Then I" is an inflation of I with history (d,€’)
where:

e dn+1=a, e, =e, forn<v,
® Gy =ay T Ley  Tay+1=ey,
o eyplay +1) =" +1.

Proof. We must show that (1)-(5) are satisfied. The only problematical
case is (5). We must show that if v <p» 1/ + 1, then

-1 _ -1
e Iy =l .

It suffices to prove it for v = T" (7’ +1). Let ¥ = T(a,y + 1). Then

ey () < v <17 e (7)
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by Lemma 3.7.1 (3). Hence

ay =7 and ey [a, = ey [a,

by Lemma 3.7.46. But then

since e, (7) = 6%/+1(7) > 7.
QED(Lemma 3.7.47)

Lemma 3.7.48. Let I’ be an inflation of I of limit length . Let b be the
unique cofinal well founded branch in I'. Extend I' to I" of length ' +1 by
appointing: {§ : & <pn n'} = b. Then I" is an inflation of I with history
(d',e), where:

!/

! / / /
s =supag, €[n =eln,
n Beb B

a’[n’:a, a

e, [a%, = U eglag, e%/(a%) =1
Beb

Proof. (1)-(5) are satisfied.

Composing Inflations

We now show that if I’ in an inflation of I and I” is an inflation of I’, then
I" is an inflation of I.

Theorem 3.7.49. Let I,1', 1" be normal iteration of M with: 1h(I) = n+
L,Ih(I') =n"+ 1. Let I' be an inflation of T with:

hist(1,I') = {a,e).
Let I" be an inflation of I' with:
hist(I', I") = (d’, €').
Then I" is an inflation of I with:
hist(Z, I") = (a”,€"),

. no__ no_ !
where: ag = aqr , €, = €,€q, -
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Proof. We verify (1)-(5).

(1) a” = a-d clearly maps Ih(I”) into Ih(I). Since €, inserts I’|a), + 1 into
I"la + 1 and ey inserts Ilaf, + 1 into I'|a], + 1, then e, - eq; inserts
I|a” + 1 into I"|a + 1.

QED(1)
Now let:

I= <<Ma>v <’/Oé>7 <7T0175>ﬂ T>
I'= <<M(/x>7 <Vé¢>7 <7r/a,5>7T/>
I" = ((Mg), (va): (map), T")

We recall by Lemma 3.7.5 that if e inserts I into I’ and €’ inserts I’
into I” then €’e inserts I into I”. Moreover:

ele __ e e

0'5 _0—6/(5).0—5'
Thus, in particular:

7" e ey ’ e s
€a __ @ Fag €y . Agy "
0. =0, = 0.6 O¢ for £ < a,.

@

(2) Ul = aZ?g (Var) exists and a < 1h(I”), then:

’
«

QED(2)
Now let:
in(a) = the index of o with respect to I, I,
in’(«) = the index of o with respect to I’, I”,

in”(«) = the index of a with respect to I, 1",
(3) It is easily seen that if in”(«) = 0, then in(al,) = in’(a)) = 0. Hence:

/ o " _
Qot1 = Gy + 1? Qo1 = Qg

"
b = Mapt1) T da+ 1
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Moreover:

" " /
Cat1 o +1=¢q €0 11 laq, +1

= €o41 €al,
= eot1l(ag +1) - eq
=€, - €ql, = €.
QED(3)
(4) Assume in”(a) = 1. Then either in’(a) =1 or in(al,) = 1.
Case 1. in'(a) = 1.
Let v = T"(a + 1). Thus a), = a;, ;. Hence
ag = aa% = aaiwrl = ag+1.
Case 2. in(al,) = 1 but in’(a) = 0.
Let v =T'(al, + 1). Then:
Ay = Qar,+1) = Qa/ | = agz—i—l'
Let 8 =T"(a+ 1). Then:
éa(7) <17 B <17 €a(7)-
Hence by Lemma 3.7.45:
v = ajg, dg = ay = ag, = aj.
QED(4)
(5) Let B <rv a. Then aj; <7~ a;, and hence:
ag = Qq, <7 aq, = ar.
But then (el,)™' 8 = (e},)"' 8 and
(ea%)il fag = (eafl) ra/ﬁ
Hence:
[(ebe) ™ 18 = (eq,) ™ (ep) ' 18
= (eay) "M (ea) 18
= (eay) (€)1
= (ea) ' 18
QED(5)

This proves Theorem 3.7.49.
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3.7.5 Smooth Reiterability

In §3.7.2 we proved that if M is uniquely normally iterable, then it is nor-
mally reiterable. In this section we prove the fact announced in §3.7.4. that
if M is uniquely normally iterable, then it is smoothly reiterable. Just as be-
fore, it will also be of interest to know whether this theorem can be relativized
to a regular cardinal x > w. We called a normal reiteration R = ((I%),...)
a k-iteration iff each of its component normal iteration I has length less
than k. If we are given a smooth s-reiteration S = ((I;), (e; ;)), we call it
a smooth k-reiteration iff each of its induced reiteration R; (i + 1 < 1h(S))
is a k-reiteration of length less than k. We proved previously that, if M is
uniquely normally k-iterable, then it is normally k-reiterable. In the present
case the proofs are more subtle, and the best we can get is:

Theorem 3.7.50. Lel k > w be regular. Let M be uniquely normally x +
1-iterable. Then it is smoothly k + 1-reiterable. (Hence if M is uniquely
normally iterable, it is uniquely smoothly reiterable).

We don’t see any way to weaken the hypothesis of this theorem. Thus, for
instance, if we only know that M is uniquely normally wi-iterable, we have
no proof that it is smoothly wi-iterable.

We prove Theorem 3.7.50. From now on we take “reiteration” as meaning
“k-reiteration” and “smooth reiteration” as meaning “smooth k-reiteration”.
We assume M to be uniquely normally x4 1-iterable. The desired conclusion
then is given by:

Lemma 3.7.51. Let S = ((I;), (ei;)) be a smooth reiteration of M of limit
length u < k. Then:
(a) S has at most finitely many drop points.

(b) S has a good limit I,{e; : 1 < u).

Proof. Case 1. u = k.

(a) is immediate by cf(k) > w, since if S had infinitely many drop points,
then so would S|y + 1 for some v < k.

To prove (b), let (i, k) be free of drop points, where i < k. We must show
that ((I; :i < j < k),(e" :i <h<j<k))hasa good limit:

I{e:i<j<k).
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(We then set: e? = ¢? - e for h < 4). But this is immediate by Lemma
3.7.9.

QED(Case 1)
The hard case is:
Case 2. i < k.
By induction on p we prove (a), (b) and:

(¢) If i < p, then I is an inflation of I; with history (a?, (€%, : o < n;)), where
i +1 = 1h(L).

(d) If i < p and (i, ) has no drop point in S, then a, = n; and €/, = e;.
Assume that this holds at every limit ordinal A < . Then:

Claim 1. Let ¢ < j < u. Then

(i) I; is an inflation of I; with history (a™, (5’ : a < ;).

(i) If the interval (4, j) has no drop point in S, then a%j = ande;; = e%yj
Proof. Suppose not. Let j be the least counterexample. Then ¢ < j since
(i), (ii) hold trivially for ¢ = j. But j is not a limit ordinal since otherwise

(i), (ii) hold by the induction hypothesis. Hence j = h + 1. We first show
that it holds for i = h.

(i) is immediate by Theorem 3.7.42. We now prove (ii) for i = h. Let R,¢
be the unique objects such that:

R=({I'), (v'), ("), T)

is a normal reiteration of length £ +1 and I, = I°,I; = I¢. Then €hj = et
Since R has no truncation on its main branch, ey ; inserts Ij, into I; and

h,j h,j
en,j(nn) =n;j. But an’ ={a <mp: en,j(a) <mn;}. Hence an]’.J = ny. But:

h; h.j
eh,j [ = en; [nn and ep j(nn) = ey’ (nn) = n;
Hence e; = eg}j.

But then i < h. We know that (i), (ii) hold at h and that

i7h . 617] — ehmj . el,h

ij _
Ay = Qg 55 hjs
o alvi? o o ald
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h,j _ ih — ohh — i .
where ap” = np, ay, = i, €n = €y, ,epj = ey, Thus:
i gbh — .
apl =ap' =mn; and
hj . ih _ i
€ij = enj-ein = ey’ e = e
Contradiction!

QED(Claim 1)

We now attempt to prove (a)-(d), taking an indirect approach. Call I a
simultaneous inflation if it is an inflation of I; for each i < p. Our job is
to find a simultaneous inflation which also satisfies the conditions (a), (b)
and (d). There is no shortage of simultaneous inflations. For instance the
normal iteration of length 1:

(M), 2, (id | M), &)

is a simultaneous inflation. Starting with this, we attempt to form a tower
of simultaneous inflations 1), where I®) is an iteration of length & + 1
extending I for i < £&. The attempt will have only limited success. If we
have constructed I for & below a limit ordinal A\, we shall, indeed, be able
to construct M. In attempting to go for 1) to I€*t1) however, we may
encounter a “bad case”, which blocks us from going further. Using the s+ 1-
normal iterability of M we can, however, show that, if the bad case does
not occur, we reach ). But this turns out to be a contradiction. Hence
the bad case must have occurred below x. A close examination of this “bad
case” then reveals it to be a very good case, since it gives I = I©) satisfying

(a)-(d).
In the following let:

I = (ML), (V"), <7rfl’5),Ti) be of length n; + 1.

«

We attempt to construct:

I = (M), (Va), (Ta,p),T) of length n + 1
satisfying (a)-(d).
We successively construct:

10 = (MO, (W), (x*)), TO) of length 1 + 1.
The intention is that I(€) = I|¢€ + 1 will be defined up to an n < 0 and that
I = I will have the desired properties (a)-(d). The proof that there is
such an 7 is highly indirect and non constructive. We shall require:
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I® is an inflation of I; with history

i< &— IO = 1O 1.

Note. By (B) we can write Mo, Va, a8, T, 1 instead of M(gé)‘, etc.
without reference to . Similarly we can write a, e’ instead of a(6)%, ¢(6)7,
Thus, for a < & we have:

a, < mn; and €', inserts I'|a’, + 1 into I|a + 1.

Let a <¢&. Then a =, e “al,.

By (C) we have:

(1)

(2)

a = sup{é’,(ai) : i < u}, since & (ai) = lub e’ “al,.
Set: eég) = ei’i . Hence by (C) we have:
Ila+ 1, (!, : i < p) is the good limit of

(Plag+1:i<p), (e i <j<p)

i - ei’j .
. ) — ezx ] — & (a) . h hﬂ — h
Now set: a(a). =00 00) = Ogi Then: T0)€) = €a)" We can

define 6fa), 6&)), similarly. Note, however, that aéa) might be a partial
function on M;Z , whereas &Za) is a total function. Nonetheless we do
have: :

02 : M;Z —yx M, for sufficiently large ¢ < .

@)

Proof. Uéa) = T

ioy(ai)a &Ea)’ where:

—>2*M¢

A €la) (ad)

OA-Z&) . MZ

a

By (1) we can pick i big enough that there is no truncation in (ef,(a%,), a]r.

Hence LE is X*-preserving.
(23

(a0
QED(3)

We construct 1) =T |€ + 1 by recursion on & as follows:

Case 1. £ =0.

IO = ((M), @, (id | M), @) is the 1-step iteration of M. (A)-(C)hold
trivially.
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Case 2. £ =60+ 1 and a’é < n; for arbitrarily large ¢ < u. Let D be
the set of ¢ such that:

aé < n; and 029) : Méé —y My
Then D is unbounded in u by (3). Clearly:
imj . i ; - > >
T@ MZL% —y Méé fori € D,j € D\.i.

Hence: N
1,] 1 7 . . .
0'(9)(Vaé) > Vs forie D,j e D\i.

But then for sufficiently large ¢ € D we have:
aébj)(l/fzé) = Vzizg for j € D~ai.

(To see this, suppose not. Then there is a monotone sequence (i, :
n < w) such that i,, € D and

In,ln+1 in Int1

0(9) (Vaé") > azwrl'

Set v, = Uég)(yi’;n). Then: =, > Yp+1. Hence My is ill founded.
Contradiction!)

Let D’ be the set of such ¢ € D. Then there is v € My such that
v= O'Eg)(l/;é) fori e D.
Claim. v > vs for § < 6.

Proof. Pick an i € D large enough that § € e} “a)). Let €}() = 4.
Then 1! < Vél Hence
4

vs =v =0 (v5) <opv,:)=v

QED(Claim)
We are now in a position to apply the extension lemma Lemma 3.7.47.
Extend I®) to 10D by setting vy = v. For each i € D', I' = I0+1) ig
an inflation of I; with history (a”,e’), where:

' 10+1= ai,agﬂ —a +1,¢" lal) = ¢’ aj) and eé/+1(ag+1) =0+1.

But D’ is cofinal in u. It follows easily that I’ is an inflation of each
I (i < p). Thus (A) holds for £ = 6 + 1. (B) follows trivially. (C)
holds trivially for a < #. But then (c) holds for a = & = 6 + 1, since
oh(ah) =6 for i < pand = Us<p eh“al.

QED(Case 2)
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Case 3. £ =0+ 1 and Case 2 fails.

Then aé = n' for sufficiently large i. This is the “bad case” in which
I0+1) is undefined.

Case 4. £ = )\ is a limit ordinal.

Let I = I|\ be the componentwise union: I = U7<>\ IO T is then an
inflation of I; (¢ < p) with history:

all\=: U ally, €A = U e'ly.

y<A F<A

Let b be the unique well founded cofinal branch in I. Extend I to
I' = I™ of length A + 1 by setting: T“{\} = b. By Lemma 3.7.48, I
is then an inflation of each I; with history (a'%,e?) such that:

dIA=a TN\ e [A=¢€ T\, a)\ = Uaﬁ, &5 (al) = \.
Beb

(A), (B) are then trivially satisfied. But then so is (C) since

et = YU et = U U =Ur =2

TEW 1Ep BEDL BEbi<p
QED(Case 4)
We note that the construction in Case 4 goes through for A = &, since

M is k + l-normally iterable. Hence I(") would exist if the bad case
did not occur. This is impossible, however, since:

If X is a limit ordinal and IV exists, then c¢f(\) < u or cf(X) < n; for
some ¢ < U

Proof. Suppose first that A > é(a}) for all i < u. Since A =
lub;<, é§(a}) by (1), we conclude that cf(\) < p. Otherwise A =
e (al) = lubel “a. Hence aj is a limit ordinal. Hence cf A < a} <.

QED(4)
Hence the “bad case” occurs at € = § + 1, where § < k. [ = I ig
the final element of our tower. For sufficiently large ¢ < p we have:
afg =n;. Thus if ¢ < j < p we have:

7] —_— ‘7 7] —
am =a (5 =M, 6 6(6)

We now show:

There are only finitely many drop points h +1 < g in S.

Proof. Suppose not. Since the assertion is true for all y/ < u, we
conclude that here are cofinally many truncation points h + 1 < g in
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S. By (1), we can then pick such an h + 1 > i, where ¢ is chosen such
that (€j(aj),d)r has no truncation point in /. But we can also choose i
large enough that a’ = 1;. By Theorem 3.7.42(6) there is a drop point:

o€ (éfy’fﬂ(a%i)ﬂml]wﬂ‘

By Lemma 3.7.1(7) we then conclude that there is a drop point in

(éﬁh_ (ap,), 8)7. Contradiction!

QED(5)
Now suppose i is chosen large enough that there is no drop point in (i, 0)
in S, and that a) = n; for ip < j < 0. By Claim (1)(ii), we have
a%’ij =mn; and e; ; = ei;ij = eéjé)
for ig <1i < j < 6. By (2) we have:
I, {ep i <i < p)
is the good limit of
(L'l + 1o < i< ), (eiiio < j < p)

We have thus proven (a), (b) in Lemma 3.7.51. (c) and (d) are immediate
by the construction.

This proves Lemma 3.7.51 and, with it, Theorem 3.7.50.

Note. By the same method we get:

Let S be an insertion stable strategy for M and assume that
(M, S) is k + 1-normally-iterable. Then (M,S) is k-smoothly-
iterable.

The proofs require only cosmetic changes.

We note the following consequence of Lemma 3.7.51:

Lemma 3.7.52. Let S = ((I;), (ei;)) be a smooth reiteration of M of length
w, where each I; is of length n; + 1. For j < p set:

Aj ={i<j:(i,j] has no drop points in S}, A; = A; U {j}.

(Hence i € Aj — Aj =iNA;). Fori€ A} set: m;; = on’. Then:
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(a) T35 Thyg — Th,j for h < ) S] mn A;

(b) Tij - M’fh' —r* M”h"

(¢) If j = X is a limit ordinal, then:
M77>\’ <7Ti,/\ 11 € A)\>

1s the direct limit of:

(M, 1i€ Ay), (mj:i<jinAy)

Proof.

(a) Since ep ;(nn) = n; and e; ;(n;) = n;, we have: O'?g:) = a(e;’j) -0(67;1:).
We prove (b), (c) by induction on j as follows:

Case 1. j = 0. Then A; = & and there is nothing to prove.

Case 2. j = i+ 1. We must prove (b). If i + 1 is a drop point, then
Aj = @ and there is nothing to prove. If not, it suffices to prove it for h = 1,
by (a) and the induction hypothesis. Then the main branch of R; has no
drop point in R;, where R; is the unique reiteration from I* to I'*1. Then
Tiit]l = (02;7)&, where v + 1 = 1h(R;). But:

0,7 .
op M, — s+ Mnhle

in Rz
QED(Case 2)
Case 3. j = X is a limit ordinal.

It suffices to prove (c), since (b) then follows by the induction hypothesis.
In S we have:

I)\, <€i,)\ e A,\)

is the good limit of

(Ii i€ Ay), (mj i <jin Ay)
But then My, = U;ca, rng(a,@’;\). This implies (c).

QED(Lemma 3.7.52)



3.7. SMOOTH ITERABILITY 361
3.7.6 The final conclusion

We now apply the method of §3.7.3 to show that M is smoothly iterable. In
§3.5.2 we defined a smooth iteration of N to be a sequence I = (I; : i < p)
of normal iterations, inducing sequences (N; : ¢ < p), (m; ;4 < j < p) with
the following properties:

e N, is the initial model of I;. Moreover Nog = N.

e Let ¢4+ 1 < pu. Then I; is of successor length. N;;; is the final model
of I; and m; ;41 is the partial embedding of N; into N;11 determined
by Iz

® T iThi = Thy-

e Call i +1 < p a drop point in I iff I; has a truncation on its main
branch. If the interval (i, j] has no drop point, then:

mij 0 N —>s+ Nj.

e If A < p is a limit ordinal, i9 < A and (¢, A) has no drop point, then:
Ny, (miy ig <0< p)
is the direct limit of

<Ni2i0§i<u>, <7Ti7j2’i§j<u>.

((Ni), (mij)) is called the induced sequence.

Call a smooth iteration I critical if it has successor length + 1 and I, is of
limit length. By a strategy for N we mean a partial function S defined on
critical smooth iterations such that S(I), if defined, is a well founded cofinal
branch in I,,, where Ih(I) =n + 1.

A smooth iteration I = (I; : i < p) is S-conforming iff whenever i < p and
A < 1h(I;) is a limit ordinal, and I* =T [i U {(I; [\, 4)}, then:

T"{\} = S(I*) if S(I*) is defined.
S is a successful strategy for N iff every S-conforming smooth iteration I of

N can be properly extended in any legitimate S-conforming way. In other
words:
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(A) Let I have length n+ 1 and let I,, have length ¢ + 1. Let @ = N, be
the final model of I,;. Let EY % &, where v is greater than all the
indices V]n (j < i) employed in I,,. Then @ is *-extendible by ES.

(B) If I is critical, then S(I) is defined.

(C) Let I have limit length p. Then there are only finitely many drop
points in I. Moreover, if Iy < p and (ig, p) is free of drops, then:

<Ni2i0§i<u>, <7Ti7j1’i§j</l>
has a well founded direct limit:

NM’ <7Ti’# <1 < /L>

We say that N is smoothly iterable iff it has a successful smooth iteration
strategy.

These concepts can, of course, be relativized to an ordinal c. To this end we
define the total length of I = (I; : i < p) to be:

t1(1) =) " Ih(Iy).
1<p
The notion of a-successful smooth iteration strategy is then defined as before,
except that we restrict ourselves to iteration of total length less than a.

Note that if kK > w is regular, then there are only two ways that a smooth
iteration I = (I; : i < pu) can have total length k. Either p = x and 1h(I;) <
for i < Kk, orelse p=n+1<k,1h(l;) =k and Ih(l;) < k for i <n.

In this section we shall prove:

Theorem 3.7.53. Let M be uniquely normally iterable. Then it is smoothly
iterable.

Note. There is of course, considerable interest in relativizing this theorem
to a < co. We shall later show that, if x > w is regular, then the theorem
can be relativized to x + 1. That will require fairly modest changes in the
proof we give now.

Until further notice, assume M to be uniquely normally iterable. We prove
our Theorem 3.7.53 in the slightly stronger form:

Lemma 3.7.54. Let I be a normal iteration of M of length n+ 1. Let:
o: N —x« M, minp

Then N is smoothly iterable.
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In §3.7.3 we used the premiss of Lemma 3.7.54 to derive the normal iterability
of N. We first briefly review that proof, since our new proof will build upon
it. Our main tool was the reiteration mirror (RM). Given a normal iteration
of N:

I = (N3}, (), (ms3), T of length 7,

we define a reiteration mirror of I to be a pair (R, I’) such that:

(a) R= ((I"), (V) (e"),T) is a reiteration of M of length n, where:

It = (M), (1)), <7rfl7j),Ti> is of length n; + 1

(b) I = (M), (7} ), {o:), (p")) is a mirror of I with o;(r;) = v;.
(c) M= M,,.
(d) If h=T(i+ 1), then:

M,* = M} || where p is maximal such that 7/ is a cardinal in Mj.

Moreover:
/ hyi+1 * i
Thitl = Oyl s where 7, = 1h(7}).

(I, R,I') is called an RM triple of length 7 if and only if (R, I’) is an RM of
1.

We observed that:

Lemma 3.7.34 Let T' = (I,R,I') be an RM triple of length n + 1. Let
El],w" # &, where v > v; for all i < n. Then I' extends to an RM triple
I'={(I,R,I') of length n+ 2 with v = v.

We fixed a function G such that whenever (T, v) is such a pair, then G(T', v) =
(I,R,I') is such an extension.

We also observed that:

Lemma 3.7.35. Let I' = (I, R,I') be an RM-triple of limit length 1. Let
b be the unique good branch in R. Then thqre 18 a unique extension to an
RM-triple T of length n + 1. Moreover, b =T“{n} in this extension.

We also noted that:

Lemma 3.7.32. i+ 1 is a drop point in I iff it is o drop point in R.

Lemma 3.7.33. If (i, 7] has no drop point in I, then 7r£7j = ari]’lj.
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Clearly, if T' = (I, R, I') is an RM-triple of length  and 1 < i < 7, then
Tli = (I]i, R|i, I'|i) is a RM triple of length i. Now let:

o : N —s+ M;min p,

where T = ((M;), (%), (7;;), T) is a normal iteration of M of length 7 4 1.
We define:

Definition 3.7.23. Let I be a normal iteration of N of length u. By a good
triple for I we mean an RM triple I'(I) = (I, R, I') such that:

(a) R :O<<IZ>7 <Vz{>7 <€ij>7T>7 I'= <<Mz/>7 <7Tz,‘,j>7 (i), <pz>> with 10 = I~7Ui =

P =P

Qe

(b) If i+1 < p, then I'|i +2 = G(T'|i + 1,v7)).

By the fact that M is uniquely normally iterable and I' is an RM-triple, it
follows that, if n < p is a limit ordinal then I'|n + 1 is obtained from I'|n as
in Lemma 3.7.35. It follows easily that I can have at most one good triple,
which we denote by I'(]), if it exists, we then define a strategy S for N as
follows:

Let I be a normal iteration N of limit length. If T'(I) is undefined, then so
is S(I). If not, then we let:

b = the unique good branch in R,
where I'(I) = (I, R, I'). We set: S(I) = b, We then noted:
Lemma 3.7.36. If I is an S-conforming iteration, then I'(I) is defined.

But this means that I can be extended one step further, using Lemma, 3.7.34
and 3.7.35. Hence S is a successful normal iteration strategy.

Building upon this, we now try to define a successful smooth iteration strat-
egy for N. Note that, given the function G, the operation I'(I) is uniquely
characterized by &, I, 5. Thus we can write: F&j,’ﬁ(I). We now try to define
I'(I) for smooth iterations I of N.

Definition 3.7.24. Let I = (I; : i < u) be a smooth iteration of N inducing
<Nl 1< ,u), <7Ti,j 1<y < ,u) Let

I = <<N,Zl>, <u,il>, <7r,il7j),Ti> be of length ;.

By a I'-sequence for I, we mean any sequence I' = (I'; : 4 < p) such that:
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(a) T; = L. o (I;) = (I;, R;, I}) is an RM triple where:

oi : N; —s« M; min p*

and fi is the first iteration in R; and Mi is the final model in Il
We set:

Ri = (I, (Wl (e}, T
I = (M), (7 ), (o), (1))
(Hence I; = 19, M; = M)

(b) I = (I;:i < p)is a smooth reiteration of M such that R; = the unique
reiteration from I; to I;1q for i +1 < p.

I then induces partial insertions €;,; with:

I = Im, éi,z‘-{—l = 6?’m fori+1<p

)

and

Iy, (€ix 11 < A) is the good limit of

(Li 21 < A), (€501 < j<A) for limit A < p.

(c) There is a commutative system (7; ; : ¢ < j < p) such that 7;; is a
partial map from M; to M; and:

. /5 .
il = 7r0’7m_ fori+1< p.
Moreover:

My, (7t; x =i < A) is the limit of

(M; 20 < X), (7,5 01 < j <) for limit A < p.

(d) Gi41 = afh,p”l = pbli for i+ 1 < p.

(e) I=1Iy,6=060,p=p"

(f) Suppose that I has no drop point in [i, j]. Then:
(i) iy My —sxe M

(ii) 75 - 05 = 05mi;

LT

(iii) 7, “pl, C ph < 755 (p) for n < w.

This completes the definition.
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Recall that A + 1 is a drop point in R; iff it is a drop point in I;. We call
i+1 a drop point in I iff r; has a drop point on its main branch. Similarly,
i+ 11is a drop point in [ iff I; has a drop point on its main branch. Hence
i+1isa drop in I iff it is a drop point in 1.

Lemma 3.7.55. There is at most one I'-sequence for I.

Proof. By induction on ¢ < p we show that the sets:
I, I, (éni:h < i>,Mi, (Thi th < i),oi,pi
are uniquely determined by T'|i = (I'y, : h < 7).
Case 1. 1 = 0.
Iy, 00, p° are explicitly given by (e). Hence so are:

My = the final model of I@Fjo &0 po(fo)

Case 2. 1 = h+ 1. Then

I, = I;Zh,éj,i . éj7h for h < i.

‘ . ™ . / . .
M; is defined from I; ; and 7;; = Wohnhﬂ'jvh for h < 1.
_ h i _ _h,
® g =o0,,p" =p-h.

Li = ijﬁiyﬂi (IZ)

Case 3. i = )\ is a limit ordinal.

I, (énx o h < A) are given by (b).

o M)y, (7pn: h < \) are given by (c).

oy is defined by: oxmp x = 7y 20, for [h, A) drop free in I (by (f)).

By Lemma 3.6.42, p* is the unique p such that

o Ny —s M, min p and
7'rl-7,\“pi Cp< 7'riv>\(pi) if (i, A) is drop free.

o =T , )
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QED(Lemma 3.7.55)

We denote the unique I'-sequence for I by T'(I), if it exits. Writing dli’j for

€i,j i

o," and 7); for Ih(1;) we have:

Lemma 3.7.56. Let I' = I'(I). If (i,j] has no drop point in I, then 7r; j =
o
i

Proof. We recall that if i + 1 is not a drop point, then

7 ey ii+1
o i i,
Tii41 = Moy, =0 =0 .

(Here n; + 1 = Ih(R;),7; + 1 = 1h(I?)). Using this and Lemma 3.7.52, we
prove the assertion by induction on j.

QED(Lemma 3.7.56)

Lemma 3.7.57. Let I = (I; : i < u) be of limit length p. Assume that

I' =T'(I) exits. Then there are unique: Ny, (7 u), Ly, (€i ), My, (i), o, p*
such that:

(@) Ny, (mip 20 < p) is the direct limit of:

(Nivi <), (mij i <j<p).
(b) f“, (€ 11 < p) is the good limit of

(i i <p),(€iji<j<p

(c) Mu is the final model of f#.

(d) M, (75, 20 < p) is the direct limit of:

(Mjri < p), (500 <j<p).

(e) o, : Ny —s+ M, min p.

(f) For sufficient i < p we have:

. . i . i
OuTip = Tiu0i; i “p* C pH* < 75 u(p")

Proof. (b) is immediate by Theorem 3.7.50. We let M, be defined as in (c).
Let i < u such that (i,u) has no drop points in I, Then (i, ) has no drop
points in [ = (I; : i < p). By Lemma 3.7.56 we know that 7, ; = ('IS;L] for
i <h<j<p Set: wp, = éZ;L“ for h € [i, ). Then (d) follows by Lemma
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3.7.52. We know that o;my,; = 70y, for © < h < j < p. Hence we can define
oy asin (f). o, is obviously unique. But then there is a unique p# satisfying
(e), (f) by Lemma 3.6.42. QED(Lemma 3.7.57)

We now define the strategy S. Let I be a critical smooth iteration. Then
I has length n + 1 and I, is of limit length. If I'(I) is undefined, the so is
S(I). If not, then:

oyt Ny — 5 ]\'477 min p"

where I, Mn, oy, p" are as in the definition of “I'-sequence”. Moreover, I'; =
Fj»,,,o:,],pﬁ (177) We then set:

S(I) =: S,(I,) = the unique cofinal, well founded branch in I,,.

But then:

Lemma 3.7.58. Let I = (I; : i < p) be any S-conforming smooth iteration.
Then I'(I) exists.
Proof. Let I = (I; : i < p). Define a partical function on p by:
I'; =: the unique x such that T'(I|i + 1) = (' : h < i) U {(z,4)}.
By induction on i we show:
Claim. I'; exists.
Case 1. i = 0.

Clearly I'; = T'; ; ﬁ(IO)- But this holds for any Iy which is a normal iteration

of N. Hence by induction on lh(/p), we have: Iy is Sf ﬁ—conforming, where

Sf,fr,ﬁ is the normal iteration strategy for N defined from the function Uiz

QED(Case 1)
Case 2. i=h+1.
Set I; = " o; = af;h,pi = plmn. Clearly, then:
Ly =T} 5 (L)
where fi is a normal iterate of M and:
o:N; —sx MZ min pi,

MZ- being the final model of Il Since this holds for any normal iterate I; of
N;, we conclude by induction on 1h(Z;) that I; is S . pi—conforming. Hence

I, = Ffi,oi,pi exists.
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QED(2)
Case 3. 7 = )\ is a limit.

It is easily seen that (I'y : h < A) = I'(I [ A). Let Iy, My,0n,p* be as in
Lemma 3.7.57. Clearly we have: I'x =Ty,  a(Ix). Exactly as before,

we conclude that Iy is S Vo pA—conforming, hence that I') exists.

QED(Claim)
But then it is easily seen that (I'; : i < p) = T'(1).
QED(Lemma 3.7.58)

But then S is successful, since, if I is S-conforming, then I can be extended
un any S-conforming way -i.e. (A)-(C)hold. (A) follows by Lemma 3.7.34.
(B) follows by Lemma 3.7.35. (C) follows by Lemma 3.6.47.

This proves Lemma 3.7.54 and with it Theorem 3.7.53. We now show how
to relativize this to a regular cardinal £ > w. We assume that M is uniquely
k + 1-normally iterable. By a k-reiteration of M we mean a reiteration of
length < k in which each component normal iteration is of length < k. If
we understand “reiteration” as meaning a x-reiteration of length < k, and
“smooth iteration” as meaning a smooth iteration of total length < k, then
a literal repetition of the above proof shows:

Lemma 3.7.59. Let M be uniquely normally k + 1-iterable. Let I be a
normal iteration of M of length n+ 1 < k. Let

0: N — s+ M,minp

Then N s smoothly k-iterable.

The following strength of k- 1-iterability is needed for this, however, in order
to justify the use of Theorem 3.7.50. We now show that, under the premises
of Lemma 3.7.59, N is in fact, smoothly k + 1-iterable. Let I = (I; : i < )
be a smooth iteration of N of total length k. As mentioned earlier, one of
two cases hold, which we consider separately:

Case 1. u=n+1 <k and I, is of length &.

We assume I to be S-conforming. Then I|n is S-conforming. Then I|n is

S-conforming and I, is S e p,,—conformlng. Hence:

(I,) = (I, R, I") exists,

jmo'mpn
where R is a reiteration of M of length x. But then R has a well founded
cofinal branch b. Hence b is cofinal in I;). b has only finitely many drop points
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in I,), since otherwise, by the fact that x > w is regular, there would be A € b
such that h N A = T"“{\} has infinitely many drop points. Contradiction!
Let ¢ € b such that b~ has no drop points. Using the fact that k > w is
regular, it follows easily that

(Mp, : h € bNi3), (mp 5« h < j in bNi)

has a well foundgi limit. (If x,,41 € x,, is the limit, these would be a £ € b\i
such that z, = N¢(Zy,) for n < w. Hence 41 € T, in N¢. Contradiction!)

QED(Case 1)
Case 2. u=&.

I has only finitely many drop points, since otherwise these would be £ < &
such that I|£ has infinitely many drop points. Contradiction! Let the interval
(i, k) be drop free. Since k > w is regular, it again follows that:

(Mp i <h<k),(mp; i <h<j<k)

has a well founded limit.
QED(Case 2)

This proves Theorem 3.6.2.

3.8 Unique Iterability

3.8.1 One small mice

Although we have thus far developed the theory of mice in considerable
generality, most of this book will deal with a subclass of mice called one
small. These mice were discovered and named by John Steel. It turns out
that a great part of many one small mice are uniquely normally iterable.
Using the notion of Woodin cardinal defined in the preliminaries we define:

Definition 3.8.1 (1-small). A premouse M is one small iff whenever EM =
&, then ;
no u < k = crit(EM) is Woodin in JZ

Note. Since JF is a ZFC model, we can employ the definition of “Woodin
cardinal” given in the preliminaries. An examination of the definition shows
that the statement “u is Woodin” is, in fact, first order over H, where 7 = u™.
Thus the statement “u is Woodin in M” makes sense for any transitive ZFC™
model M. Tt means that g € M and “u is Woodin” hold in HM where

r=put (taking 7 = card M if no £ > pu is a cardinal in M). We then have:
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Lemma 3.8.1. Let M be a premouse such that EM +# & and let us set:
k= crit(B)), A = MEY) = B (k), 7 = 7(E}) = x™F"

The following are equivalent:

a) No u < r is Woodin in JF
b) No pu < k is Woodin in JF
(c) No p < X is Woodin in JE
(d) No pu < X is Woodin in J7E.

(a)
(b)
)
)

Proof: (d)—(c)—(b)—(a) is clear. We now show (a)—(d). Assume (a).
Since JE < JE we have (¢). But then (b) holds. Since m : JE — JE
cofinally, we conclude that  is elementary on .JZ. Hence (d) holds. QED
(Lemma 3.8.1).

Recalling the typology developed in §3.3, we have:

Lemma 3.8.2. Fvery active one-small premouse is of type 1.

Proof: Suppose not. Let M = (JF, F) be a counterexample. We derive a
contradiction by proving:

Claim. x is Woodin in M, where xk = crit(F).

Proof: Let A C x, A€ M. We show that some 7 < r is A-strong on JZ.
It is easily seen that (JZ, B) < (JF, F(B)) whenever B C k, B € M. Hence
it suffices to find a 7 < A such that 7 is F(A)-strong in JF.

Claim. x is F(A)-strong in JF.

Proof: Suppose not. Then there is £ < A such that whenever G € Jf is
an extender at  on J¥, then F(A)N¢& # G(A) N & (where A = F(A) N k).
Let ¢ be the least such. Since M is not of type 1, there is A < A such that
F = F|\is a full extender at x in M. Hence F € Jf. But:

(IS, F(A)) < (I, F(A))
Since for a1, ...,a, < A we have:
(J$, F(A) = ¢ld) «— (Y, F(A)) E ¢la]
+—— (d) € F(e)

—

where e = {(€) < r: (JE, A) |= ¢[€]}. Hence € < A by minimality. Hence
F e JE and F(A)N ¢ = F(A)N&. Contradiction! QED (Lemma 3.8.2).

We leave it to the reader to show:
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e If M is one small and p € M, then M]||u is one small (for limit p).

e Let (M; : i < \) be asequence of one small premice. Let m;; : M; —x«
M; for i < j < A, where the m;; commute. Let My, (m;y : i < ) be the
direct limit of (M; : i < A), (m; 14 < j < A). Then M) is one small.

It then follows easily that:

Lemma 3.8.3. Any full iterate of a small mouse is one small.

In particular, any normal iterate of a one small mouse is one small.

In §3.8.2 we shall show that there is a large class of one small premice, all of
which have the normal uniqueness property. That will be our main result in
this section.

3.8.2 Woodiness and non unique branches

In the preliminaries we defined the notion of A-strong. We now adapt this
notion to certain admissible structures in place of V.

Definition 3.8.2. N = J is a limit structure iff N is acceptable and there
are arbitrarily large 7 € N such that N |= 7 is a cardinal.

Definition 3.8.3. Let N = JZ is a limit structure. x € N is strong in N
iff for arbitrarily large & € N there is F' € N such that:

e F'is an extender at x on N of length > £.

e N is extendible by F.

e Let 7: N — N’ = JE'. Then JE' = JE.

Hence, if £ is a cardinal in N, it follows that Hév = Hév/.

Definition 3.8.4. Let A C N, where N = JF is as above, k € N is A-strong
in N iff (N, A) is amenable and for arbitrarily large £ € N there is F € N
such that

e [F'is an extender at x of length > ¢

e N is extendible by F' (hence so is (N, A))
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o Let m: (N, A) — (N, A') = (JZ, A). Then JF = JE and ANJEF =
AnJE.
Definition 3.8.5. N is Woodin for A C N iff there are arbitrarly large
k € N which are A-strong in N.

Hence if N = JE" ¢ € M, then M |= “¢ is Woodin” if and only if £ is
Woodin for all A € M such that A C N.

In this subsection we shall prove:

Theorem 3.8.4. Let M be a premouse. Let
I = ((M;), (vi), (miz), T)
be a normal iteration of M of limit length n. Set:

1 =supk; =supA;; N = JﬁE =: U M;|v;

i<n i<n i<n
Assume that by, by are distinct cofinal well founded branches in T (hence
1 = supby for h = 0,1). Then N is Woodin with respect to every A C N
such that A € My,, My, .

The proof will require many steps. We first prepare the ground by reformu-
lating the definition of “strong” and “ A-strong”.

Note that if A C ON, then AﬁJSE = AN¢ for £ € N. Thus, if F € N verifies
A-strongness, then so does F|€. In the following we shall make frequent use
of this fact. Since, in the book, we have generally worked with full extenders,
we pause now to remind ourselves what it means to say:

F'is an extender at k on M of length &

We take M as being acceptable. The above statement then means that the
following hold:

(a) € > K is Godel closed (i.e. closed under Godel pairs <, >).
(b) ke M and P(k)NM € M

()
(d)

F:P(k)NM — P(€)
F has an eztension 7 characterized by:

o 7: HM 5 H cofinally, where H is transitive
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e F(X)=m(X)Nn¢for X e P(k) N M

e Bach 2 € H has the form 7(f)(€), where £ < ¢ and f € HM is a
function on k.

Then 7 is uniquely characterized by F. Moreover, 7 is definable from F
by an “ultrapower” construction which is absolute in ZFC™ models. Thus
TeMif FeMand M |=ZFC™. But then 7 € M if F € M and M is
a limit structure in the above sense, since then M is a union of transitive
ZFC™ models.

m: M —p M’ here means that (M',T) is the X¢ lift-up of M, 7. We say
that M is extendable by F if (M’ ) exists.

Definition 3.8.6. Let M = (JZ B) be acceptable. Let F be an extender
on M at k € M of length & < a. Let 7 be the extension of F' and let
7(JE) = JE'. Fis strong with respect to M iff JéE = JéEl. If F' is strong, we
define a function F' on P(JF) N M by F(a) =: #(a) N JSE.

Note that F(a) = F(a) for a C k.

Note. If M is a premouse, E, # & and 7, is a cardinal in M, then E, is a
strong extender on M at x of length A\,. If v € M, then F, € M, but the
case v = « can give us trouble.

Definition 3.8.7. Let M, F, k, & be as above. Let A C M. F is A-strong in
M iff

e (M, A) is amenable

e ['is strong in M

o« F(ANJE)NJE =AnJE.

We note:

Fact. Let F' be an extender on M at kK € M of length n. Let Kk < p < &,
where p is Godel closed. Define F' = F|u by:

F'(X)=F(X)Npu for X € P(k) N M.

Then:

(a) F'is an extender on M at x of length p

(b) If F is strong in M, so is F’
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(¢) If F is A-strong in M and (JE,A N Jf) is amenable, so is F’

(d) If M is extendible by F, then it is extendible by F".

We sketch the proof of (b). Let 7 be the extension of F' with:

e JTE —y, H cofinally, where 7 = kM.

Similarly for 7/, F”. Let:
7' JF —s, H' cofinally

Define:
k:H' —sy, H cofinally

by k(7' (f)(§)) = 7(f)(€) where £ < p and f € J,; is a function on k. Then
k| =1id, since:

k(&) = k(n'(id [7)(§)) = m(id [7)(§) = ¢
But then k = k [Jf’ maps Jf, cofinally to Jf, since k:(JgE/) = JgE for limit

& < p. Now let I/, h be the X1 Skolem function of Jf/, Jf respectively. Then

—

R (i, (8))) = h(i, (€))

for i < w, &1,...&, < p. It follows easily that k is an isomorphism of Jf/
onto Jf. Hence k = id, Jf/ = Jf. QED (part (b)).

We shall sometimes make use of the following:
F'=Flu, D=F'oG
Then:

Lemma 3.8.5. Let M be acceptable. Let F' be strong on M ot k of length
. Let G € M be strong on M at E < Kk of length k. Assume that M is
extendable by F'. Set: D = F - G. Then:

(a) De M
(b) D is strong on M at & of length pu.
Proof: Let m: M —p M’. The statement: G is strong over M at & of

length & is a first order statement:

M = o(G, R, k).
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Hence:
M'E o(n(G), R, (k).

Set D = 7(G)|pu. Then D € M’ is strong on M’ at & of length p. But for
X € P(R) N M we have:

D(X) = m(G)(X)Np=F-G(X).

But F-G € JF = HM where 7 = kM. Hence D= F -G € M. QED
(Lemma 3.8.5)

Note We did not assume: F' € M. If we dropped the assumption G € M,
we would still get (b), though we have not proven this.

Lemma 3.8.6. Let N = JE be a limit structure. Let F € N be a strong
extender at Kk on N of length n, where 1 is regular in N. Then N is extendible
by F.
Proof: Suppose not. Let
D= {(f,a) e N:a < & and f is a function on k = crit(F)}
Let e C D? be defined by:
(f.a) € g,8) «— (o B) € F{{&.C) : F(€) € 9(O})

Our assumption says that e is ill-founded. Hence there is a sequence (f;, a;)
such that

<w

(fit1, 1) e (fi, o), for i <w

Let (fo, o) € Jf where v > £ is regular in N. We can assume without lose
of generality that (f;, ;) € Jf . If not, replace f; by f! where

. if f: E
fi,(é)_{fz(&) £ fi(€) € J!

o otherwise

But then ¢/ = eN Jf is ill-founded, where ¢/ € N. Since N is a union of
transitive ZFC™ models, it follows by absoluteness that:

N [ € is ill-founded.
But then there is ((fi, ;) : i <w) € N such that
(fir1, ciq1) € (fi,aq) for i < w
Let @ € N be the extension of F'. Then:

7:JE —5, H cofinally.
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Set: X; = {(&, Q) : fi+1(&) € fi(&) € fi({)}. Let 7 = k", we have (Xi:i<
w) € JF. Set

<XZZ<W>:7~T(<XZZ<W>)

Then X; N7y = F(X;) for i < w. Since n is regular in N and F is strong, we
have:
<ai:i<w>€J§ECH

But (a1, 05) € F(X;) C X; for i < w. Hence H satisfies the statement:
There is g : w — 7 (k) such that (g(i + 1), ¢(i)) € X; for i < w
But then JZ satisfies:
There is g : w — & such that (g(i+1),9(i)) € X, for i <w

Hence fiy1(g(i+ 1)) € fi(g(7)) for i <w. Contradiction! QED (Lemma
3.8.6)

But then by Fact 1, it follows easily that:

Lemma 3.8.7. Let N be a limit structure, K € N. Then k is strong in N
iff for arbitrarily large n € N there is F' € N which is strong for N at k of
length n.

Lemma 3.8.8. Let N,k be as above. Let A C N. Then k is A-strong in N
iff for arbitrarily large £ € N there is F' € N which is A-strong for N at K
of length .

The proofs are left to the reader.

Before embarking on the proof of Theorem 3.8.4 we digress in order to prove
a lemma which will be important later chapter.

Lemma 3.8.9. Let M = (JE F) be an active premouse. Let pt, = \. Then
M = “k is Woodin”. (Hence M is not 1-small. )

Proof. We must show that if A € M, A C JF then there is ' < s which
is A-strong for J at x’. Since we can canonically code A as a subset of &,
we shall assume: A C k. Let m: JE — JF be the extension of F. Since
Tl JE: (JE, A) — (JF, F(A)), it suffices to show that the above statement
holds of (JE, A"), where A’ = F(A).

By §3.3 we know: hpr(\) = M. Hence 0 € R}, since p},; = . We shall, in
fact, show:

Claim. Let 7 < n < X such that 7 is regular in Jf. Then there is an
extender G € JF at x which is A’-strong.
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Set: N = (JE,T) = M! = M. Then N is amenable. Since 7 is regular
in NV, it follows by acceptability that N = (J,RT N Jf) is amenable. But
N <y, N. By the downward extension lemma, there is a unique M such
that N = MY and 0 € P]%Z. Moreover, there is a unique o such that

o M —>E(()1) M and () € P]t—f.

M is recoverable from N in any transitive ZFC™ model containing N. Hence
M € JP. But M = (JE F). 1t follows easily that F' is an injective function
and that dom(F') = dom(F) = P(xk) N M = P(x) N M. Moreover F(X) C X,
where A\ = F(k) is the largest cardinal in M. But for each & < M there
is X € P(k) N M such that F(X) ¢ J5EM. It follows easily that F is an

extender at k on JE with base |JZ| and extension F': J¥ — JE. Now let
G = F|7n. Then G € M is an extender at x on M. Let 7: [JF| — H be

the extension of G. Then H = JI;E and 7: JE — JL cofinally. There is a
cofinal map &: JE —y, JZ, defined by:

v

a(7(f)(a)) = 7(f)(a)

fora <, f € JE, f:x — JE. Clearly 6 [ n = id. Hence 06 [ = id.
Hence Jf = Jf and @G is strong. Moreover, G(A)Nn=A"Nn=ANnand
G is A’-strong.

O

We are now ready to embark upon the proof of Theorem 3.8.4.

The proof will have many steps. We shall in fact, first prove it under a
simplifying assumption, in order to display the method more clearly.

Since by, by are distinct and T is a tree, there is an a < n such that (by ~
a) N (by ~ a) = @. Define a sequence (J; : i < w) by:
0o = theleast £ € b; \ (o + 1)
0241 = the least £ € by such that £ > §y;
(521‘4_2 = the least & € bg such that £ > (5%_;,_1

By minimality, each §; is a successor ordinal. Note that
T'(02i41) < 62i < 2i41

since otherwise, setting & = T'(d2i+1), we would have £ > d9;,& € by; hence
& > d9;. But then o541 < € < d9;41- Contradiction! A similar argument
shows:

T(62i42) < 62i+1 < 02i42

Hence:
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T(5i+1) < ;< (51'4_1 for i < w.
Set

vi =:0; — 1,77 =T().
By (1) we then have

Ky < )‘Wfﬂ < Ayi S By

We have A\, < K, since (7 +1)T(yi42+1). Now note that for n < w
we have:

If n is even, then (,4; : ¢ < w has the same definition as (J; : i < w)
with d,, in place of a. Similarly for n odd, with by, by reversed.

Hence we may without lose of generality assume « chosen large enough
that:

No & € (b \ @) is a drop point (h = 0,1). Thus M,» = MJ and we
have:

7771-*751' : Mv{‘ —>El’w Mgi.
Clearly
SUP; ., Vi = SUP;, 0; = v, since otherwise sup;_,, i € (bo~a)N(b1 ).
By (6) we conclude:
Ty, is a cardinal in M for £ > ;.
Set:

E . E]\J i E]\J i
N = J£ = UiJnW’Y - UiJZ/%. i :
Until further notice we make the following simplifying assumption:

M, .
(SA) EV%- |H7i+1 € M'Yi (Z < w)

This would be true e.g. if M were passive and no truncation occurred

: . . . M,
in the iteration, since then E, " € M,,.

Using this assumption we get:

N [= there are arbitrarily large strong cardinals.

Proof. Since we can choose a (and hence k) arbitrarily large, it
suffices by (4) to show:

Claim. k., is strong in V.
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Proof. Set: F, = E%Z"\/@%H. Since k,,, < Ay, by (3) and

M, ||\, = NI||\,,, we conclude that F,, is strong at k., on N of
length x, ,. But k,,,, is regular in N. Hence N is extendable by F,.
But we also have F, € M-, since either v = n or 7,1 <y, and
Ay, is a cardinal in Mo, . But 7, is a cardinal on My« 1. Hence:

Fn 6 M'Y:;,+1”T'Yn+1 = M'Yn—Q—lHT'Yn+1 C N

Set Gg = Fp. Then Gg € N is strong on N at k., of length x,,. If we
then set: Gpi1 = Frq1 - Gy for n < w, we get

Gny1 € N is strong on Kk, on N of length k.,
by successive application of Lemma 3.8.5. QED (10)
Let A C Ony, A € My, N Mp,. Then N is Woodin for A.

Proof. Assume « is so chosen that A € rng(mys p,) N rng(myr p, ). It
follows easily that:

Fo(ANKy,) = AN ky, .

Hence G,,(ANkyy) = AN K,,,,. Then G, € N is A-strong for N at
Ko of length k., . QED (11)

We now face the task of redoing this without the special assumption
(SA). We first choose « large enough that we can avoid a certain un-
desirable situation:

Definition 3.8.8. If M = (|M|, F') is an active premouse, we call F
the top extender of M.

Definition 3.8.9. n € w is undesirable if and only if Ms has a top
extender F' with crit(F') € [k, , fy,,,)-

If « is chosen sufficiently large, then no n < w is undesirable.

Proof: Suppose not. Then there are infinitely many undesirable n.
But then these are undesirable n,m such that n < m and n,m are
both add or both even. Then d,+1 <7 §pm+1. Let F be a top extender
of Ms, ., k = crit(#). Then:

R < Kg,,, = crit(ms, , 5,.,,) by undesirablity.

Hence & = crit(F"), where:

7T5n+1767n+1 : <’M§n+1 |’ F> — <|M57n+1 ‘7 F/>

and F’ is therefore a top extender of M;, . . But & < Ky, ., < Ky, by
(3). Hence m is not undesirable. Contradiction! QED(12)

From now on let a be chosen as in (12). We wish to prove Theorem
3.8.4. Since a (and with it k+,) can be chosen as large as we wish, it
will suffice to show:
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(13) There is & such that

® ki, < K and K is strong in N

o If A C OnNN, A € My, N My, such that A € tng(my: p,) N
g (7ot by ),

then & is A-strong for N.

Our main tool in proving this will be:

Lemma 3.8.10. Let a € P(k4,) NN such that F(a Nk, ) = a. There
are G, F' such that k., < Kk < k, and:

e G is strong on N at & of length k.,
e G(ank)=a
e GeN.

Proof. We assume the lemma to be false and derive a contradiction.
Knowing that we must fail, we nonetheless make w many successive
attempts to produce such a G. But this sequence of attempts give a
descending sequence (f; | i < w) of ordinals with: £;11 < ; for i < w.

Assume « chosen large enough that Ao < k,,. We successively con-
struct

(Bn, Gy Fn)(n < w) such that

® Ky S Kn < Ky
e G, is strong on N at &y, of length r,
o GulanNky) =a

e G, = F|ky,, where F' = El],\gi” is a top extender of Mg, .

We set By = 0, Go = Fy, ko = Krg. Since Go ¢ N, we have seen that
M, s
F = El,Bf ® must be the top extender of Mpg,. Hence all conditions are

fulfilled at n = 0. Now let (B, Gy, Ky,) be given. ~f is the least ordinal
n such that k., < ;. Hence v < 3,. But 7] < 8,, since otherwise:

71'7?751: <|M/37L|7F> — <M515F,>
where F' = E%f” Moreover:
crit(myz 5,) = Kyy > R

Hence Ry, = crit(F’) € [Ky,, kv, )7 where F’ is a top extender of Msg,.
Hence 1 is undesirable. Contradiction! by (12). Since 7§ < 3, there
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must be a least 8 such that 4+ 1 <7 By, ky, < Ag, and (8 + 1, Bulr
has no trancation. Set:

_ M ~ M
Bn+1 =: B,k = Rpy1 =: crlt(El,@ﬁ),GnH =G = El,ﬁﬁ|mﬂ.

Let h = T(8+ 1), 7 = mpp,. Then m: Mj — Mg, where Mpg,

has a top extender F' = E%f” Thus ME has a top extender F’ and

m(crit(F")) = crit(F) = Ry,. Hence crit(F') = Rk, < R, since otherwise:
Kp = crit(F) > w(R) < Ag > Ky > Kp.
Contradiction! We have shown:

(1) Ry <R
We now show:
Suppose not. Then: ] = h, Mg = My, and 5, ME — Ms,.
Hence Mj, has a top extender F' with crit(F) = crit(F') = &, €

[K~os Ky, ). Hence 1 is undesirable. Contradiction! QED (2)
(2) K < H'Yn
Suppose not. Then k,, < k: Hence either 77 = h or 7y < h

[*
gammay __ M,
= Jo " and

M
and Ayx is a cardinal in M},. In either case J- |
Ty, < K is a cardinal in Mj,. But then Mg = M}, since otherwise
F' € My; F'|r = F|R, since 7 |k = id. Hence:

Ty

Gn = F,|K’yl S JEiV[,YI C N.
Contradiction! But then 5+ 1 is not a drop point. We have seen,
however, that v7 < f3,. Hence 3 is not the least 3 +1 <t 3, such

that k,, < Ag and (8 + 1, 8,7 has no drop point. Contradiction!
QED (2) Hence:

3) G = Efy\gﬂmyl is strong on N at Rqg of length &, .

Proof. N||Ag = Mpg|Ag and hence El],\gﬁ is strong on N at & of
length A\g > Ko, .

M

(4) G(aNEg) = a.
Proof. Let G* = E,,”, @ = aN iy, o = F'(a), a = F(a). Then

@ N ky, = Gp(a) = a. Since:
K = crit(G*) = crit(r),a = w(d’),

we have: ' Nk
an Ay,
Hence

=anNk=ank. But G*(aNk)=G*(d)NA, =
since m(a') = mpy12,5,G*(a") and crit(Tpetat1,8,) = vy

G(aNE)=aNky =a.



3.8. UNIQUE ITERABILITY 383

QED (4)
By our assumption we conclude: G ¢ N. But then:
(5) G* = Elj,gﬁ is a top extender on Mpg.

* M'Yf _ 7EM8
Proof. Suppose not. Then G* € Mg. But J. * = Jo and 7,
is a cardinal in Mg, since either v; = f or y1 < B and A, is a
cardinal in Mpg. Hence:

G =G*|kg € Pt
- B T /\'Vf

QED (5)

This completes the construction. It is evident that Bn+1 < Bn for
n < w. Contradiction! QED(Lemma 3.8.12)

We can now prove (13): Let G be as in Lemma 3.8.12. Set G,, =
Fot1-G. Since G € N is strong on N at k of length ., and we set

Gn: n+1'G(TL<(JJ)
it follows by successive application of Lemma 3.8.5 that:
G € N is strong on N at & of length &, ,.

Moreover, if A C OnNN such that

A € mg(Tyg b0) N TRG(Toy 5,)-

Then:
F.(ANky,) = ANKy,,, forn<w.

Hence Fo(ANk,,) = AN Ky, and:
Gn(ANER) =ANEKy, , (n€w).
Hence & is A-strong in V. QED (13)

This proves Theorem 3.8.4.

Note Strictly speaking, we have only proven that if A C OnNN and
A € My, N My,, then N is Woodin for A.

We now show that this implies the full result. We use the fact that any
A C N can be coded by a set Ac n. Let N = JﬁE and suppose that
a < 71is Godel-closed. By Corollary 2.4.12 we know M = hp;” (w X a),
where M = JZ. Tet k, be the canonical ¥1(M) uniformization of

{(v,2) - & = har((V)o, (W)1)}
Then k, injects M into a and is uniformly ¥1(M). Set k = kj;. Then:
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(a) ko = klaif a < € is Godel-closed.
(b) kljl = k7' pif p < 7 is a cardinal in N (since JME is 3q-
elementary submodel of N).

(¢) ko € N for Godel-closed a < 7).

(d) Let A C N and set A = k“A. Tf p < 7 is a cardinal in N,
then ANp =k“,(AN Jf) (hence (N, A) is amenable if (N, A) is

amenable.
Theorem 3.8.4 then follows from
(14) Let A C N such that (N, A) is amenable and N is Woodin with respect

to A. Then N is Woodin with respect to A.

Proof: Let G € N be A-strong in N at & of length p, where > w is
regular in N.

Claim. G is A-strong in N (i.e. G(ANJE) = AN Jf)
Proof: N is extendable by G. Set:
7:N —g N = ng

Let k', k!, be defined over N like k, ko over N. Since G is strong in N
we have: JI' = Jf/ and k;, = k. Let v = 7(x). Then k;, = ¥’ I JE
Hence for y € JME we have:

y € GANJTE) «— ku(y) € K, G(ANJE)
> ku(y) €K m(ANJE)
— ku(y) € 7k, (AN JL))
> ku(y) € G(ANk)
—kuly) e Anp =k, (AnJY)
+—yeAN JE

This proves (14) and with it Theorem 3.8.4.

Note. The notion of premouse which we develop in this book is based on
the notion developed by Mitchell and Steel in [MS]|. However, they employ
a different indexing of the extenders than we do. Their indexing makes it
much easier to prove Theorem 3.8.4, since our special assumption (SA), when
reformulated for their premice, turns out to the outright.

We note a further consequence of our theorem:

Lemma 3.8.11. Let N = Jg be as in Theorem 3.8.4. There are arbitrarily
large v € N such that E, # O.
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Proof: Suppose not. Let o < n be a strict upper bound of the set of such
v. Then N is a constructible extension of JZ (in the sense of Definition of
E in §2.5). By Theorem 3.8.4 some k > « is strong in N. In particular,
there is F' € N which is an extender at x on N and N is extendible by
F. Let 7 : N —pr N’. Then (N’ 7) is the extension of (N,7) where
7: JE — JF is the extension of F (with 7 = x*V). Then 7 € N. Hence v
is not regular in N since 7 < v and v = sup 7’ 7. Clearly, however, N’ = Jf,/
is a constructible extension of JE, where o/ > a. Hence N C N'. v is
regular in N’, since v = (7). But then v is regular in N. Contradiction!
QED(Lemma 3.8.11)

We have actually proven a stronger result than we have stated. Theo-
rem 3.8.4 does, in fact, not require that the cofinal branches bg, b; be well
founded. Let b be any cofinal branch in I, Let ig be such that ig € b and no
i € b\ ip is a truncation point. Let:

My, (mip | i € D)

be defined by taking
My, (mip | 7 € b\ do)

as the direct limit of
(Mi | i €b\ig), (mij|io<i<jinb)

and then setting:
Tib =" Tig,b * Tiig for j € bNig

My may not be well founded, but we assume it to be grounded in the sense
that its well founded core wfc(Mp) is transitive and:

EnN WfC(Mb) = E]\/]b N WfC(Mb).

(M is thus defined up to isomorphism and wfc(Mp) is defined uniquely. ) If
we define efa, N as in Theorem 3.8.4 it follows easily that 7, N C wfc(M,)
(since m;p [ k; = id for i € b). We then obtain the following stronger result
of Lemma 3.8.4:

Theorem 3.8.12. Let M, I, i, N be as in Theorem 3.8.4. Let by, b1 be
distinct cofinal branches in I. Let A= AgN N = A NN, where Ay, € My,
for h=0,1. Then N is Woodin with respect to A.

As before, the proof is by showing that there are arbitrarily large k < 7
which are A-strong in N. The steps are virtually the same, requiring only
cosmetic changes. (Basically, this is because our proofs only talked about
(N, A) rather than M;, and M;,. ) Theorem 3.8.12 will play an important
role in Chapter 5. It was first noticed by Woodin.
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3.8.3 One smallness and unique branches

We now apply the method of the previous subsection to one small mice. We
let M, by, b1, a, v (n < w), etc. be as before, but also assume that M is one
small. It is easily seen that every normal iterate of M must be one small.
Hence My, My, are one small. Letting 7,7, N be as before, we set:

Definition 3.8.10. Q =: JﬁEN, where 8 = min(OanO,Oanl).

By Theorem 3.8.4 we obviously have:
Lemma 3.8.13. 7 is Woodin in Q.

From now on, assume w.l.o.g. that OanO < Oan1 (i.e. Oan0 = (). Then:

Lemma 3.8.14. M;, = Q.

. - M
Proof: Suppose not. Then there is v > 7 such that E, " # @&. But then
v > 1, since 7 is a limit of cardinals in M}, and v is not. Taking v as

M,
minimal, we then have JF o= JfN = 7 is Woodin. Hence My, is not one
small. Contradiction! QED (Lemma 3.8.14)

But then we can essentially repeat our earlier argument to show:

Lemma 3.8.15. Let A C N be ¥*(Q) such that (N, A) is amenable. Then
N is Woodin for A.

Proof: As before, we can assume w.l.o.g. that A C Ong. Let A be ¥*(Q)
in a parameter p by * definition . We assume « to be chosen as before,
but now large enough that for h =0, 1:

o p € mg(nys, bn)
o If N#Q, then N € rng(my: b, )
o If Ony, > Ong (hence h = 1), then @ € mg(my:,b1).

Since My, = @@ we have
. * . o . .
Tz bo + MJ,, —rx+ Q with critical point k.

Let Ag; be defined over M7, in py; = W%;bo (p) by @. Set:

-1 .
Ny — 7T7§i>bi(N) ifNeq@
M. » if not
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Then (Na;, Ag;) is amenable and:
(7s,0 | N2i) © (N2, Agj) —>x, (N, A)

It follows easily that Ag; N Ky, = AN K,,, and

My,
Yyai

E (A N H"/Qi) = 7T’y§i,72¢+1(A N ’%721') =AnN )‘721"

If OnNMp,, = OnNQ, it follows by symmetry that M, = (). Hence:
TSy b1 My; 1 — s+ Q with critical point x,, ;.

If we then define Agjy1, Najt1, p2itr1 as before. We get:

M,
l/—yi

E (Aﬁ/ﬁ%) = 7T'Y;7’7i+1("4ﬂﬁ"7i> = Am)‘%‘

for i € w. If My, # Q we set:

—1
A2i+1 = 7775“_171)1 (A), N2i+1 = W75i+1,b1 (N)

and get the same results. As before we define F; = E%Zi |knyiyr- Then :
Fi(ANkKy,) = ANk, foricw.

In particular, F'is A-strong on N at k-, of length r,11. Now let a = ANk, .
By Lemma 3.8.12 there are G, k such that k., <k < k4, and :

e G € N is strong on N at k of length x.,

° G(aﬂ/%):a.

Successively, define G,, (n € w) by:
Go=G,Gpy1 = Fpi1 - Gy,
Just as before we get: G,(ANEK) = ANk,,,, and:
G is A-strong on N at & of length &, ,,.

But this holds for arbitrarily large &, since, by making « large enough, we
can make k-, as large as we want. QED (Lemma 3.8.15)

Note that, by lemma 3.8.15, we san conclude that if p > 7 and A € *(Q)
such that A C N, then N is Woodin with respect to A. We now prove:

Lemma 3.8.16. p¢ > 1.
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Proof: Suppose not. We consider two cases:

Case 1 pjy > 1, pg“ < 7 for any n < w.

(This includes the case N = @.) Then there is a ;gn)(Q) set B C 7 such
that (N, B) is not amenable. Let:

B(&) «— \/ 2" A(,6),
where A is a E(()") in a parameter p. Define B’ C 7 by:
B'(=<€¢ =) ¢ \/2€ JE" A(z,€) for £,¢ < 7.
Claim 1 (N, B’) is amenable.
Proof. If 7 € N is regular in N, then B'N7 € N, since:
<& ¢me BNt \/2e JEV Az, €).

By Claim 1 there are arbitrarily large x < 7 which are Woodin with respect
to B’. Choose such a « large enough that BNk ¢ N.

Claim 2 There is {; € B Nk such that =B'(< &, >) for all ¢ < k.

Proof. If not: BNk = {{ | V(¢ < kB'(< £ >)}. Hence BNk € N.
Contradiction. QED(Claim 2)

Let F' € N be B'-strong in N at k of length p, where \/ ¢ < uB'(< &, ( >).
Set: B" ={( | B'(< &,¢ >)}. Then:

D=F0)=FB"nk)=B"Nnu#0.
Contradiction! QED(Case 1)

Case 2 pj >77>pg+1 for an n < w.

Let Q* = Q™P2. Then each element of Q* has the form: h(i,< p,&, 7 >)
where ¢ < w, £ < 7 and h = hg- is the X1 Skolem function for Q*. Set:

F(=6,6 =) > h(i, < p,&§0 ) if i <w, & <7 (3.1)
f(a) undefined otherwise.

Then |Q*| = f77. Set:

():{ﬂO Q) <

U otherwise undefined.
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Then 7 = f77. We consider two subcases:
Case 2.1 There is § < 7j such that lub 76 = 7.

Let: B
(=f(&) =\ 2€QH(2,¢)

where H is Z(()n)(@). Let n* = ht(Q*). For v < n set:

C= (&) ¢ \[ 2 € SPY H(=,£,0).

Then fv € @. Hence lub ﬁy”é < 7, since 71 € @ is Woodin, hence regular in
Q. But:

U fw”é = 76 is unbounded in 7.

y<n*
Set:

g(p) =Tub{y <" | 76 < u}
Then:
g(p) < n* for p < 7 but lub,sg(p) =n".

We are now in a position to imitate the proof in Claim 1. Assume B €

;gn)(Q) where B C 77 and (N, B) is not amenable. We can suppose 0 to be
chosen large enough that BNéd ¢ N. Let:

B() +— \/ 2"A(2,€) where A is Z{(Q).
Set: o*
B'(<&¢ =)« \[v<g(Q)\/z €85 A(z,¢)
for £, < 7. Then
B() +— \[ ¢ <iB'(= &¢ ).
Claim 1 (N, B’) is amenable.

Proof. If 7 € N is regular in N, then B'N7 € N, since: g(¢) < g(7)for ( <7
and (SEQ | v < g(7)) € Q. Thus B N7 € Q. Hence BNt e N = H?
QED(Claim 1)

But then there are arbitrarily large k € N which are Woodin for B’ in N.
Choose such a k such that k > J. Exactly as before we get: Claim 2 There
is §y € BNk such that =B’(< &y, >) for all { < k.

Now let F' € N be B’-strong in N at & of length p such that p > ¢ for all ¢
such that B'(&p, (). Set:

B"(¢) «—: B'(&, C).
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Then:
D=F0)=FB"nk)=B"Nu#0.

Contradiction! QED (Case 2.1)
Case 2.2 Case 2.1 fails.

Then lub f”§ < 7 for all § < 7. We again derive a contradiction. Let
B C 71 be £1(Q*) in ¢ € Q* such that (N, B) is not amenable. Note that
7 <5, QF whenever v < 7 is Gddel closed. Moreover, Q* = f”7. Let
BnNd ¢ N, where 6 < 7 such that § is Godel closed and ¢ € f”4. Define a
sequence d, (n < w) by: dg = 0, d,41 = the least § C f76, such that ¢ is
regular in N. Set: 5= lub, <, 9. We consider two cases:

Case 2.2.1 0 < 7.

Let X = f”g. Then X <y, Q*_such that ¢,7 € X. Let 0: Q* <~ X be the
transitivation of X. Then o: Q* —y, Q*. It is easily seen that X N5 = 4.
Since 17 € X we have:

6 = crit(0), 0 (8) = 7.
Let 0(q) = q. Then B = BNé is ¥1(Q*) in g. By the extension of embeddings
lemma there are Q, p, o’ such that Q* = Q™? and ¢’ C o such that
o' Q —y Q and o/(5) = p.

Since @ = JE where E € N and N = Jf, we conclude that Q = Jg where
ECN,N = Jf. Since o(8) =17, 0 |0 = id, we conclude E = ENN. WE
now show:

Claim & < 7.

Proof. Suppose not. Since 7 is Woodin in @, we know that E, # 0 for
arbitrarily large v < 7. Let v be least such that 6 <vand E, # (). Then
6 < v, since § is a limit cardinal in N. Then E, # () and § is Woodin in
JE = JF. Hence N is not 1-small. Contradiction! QED(Claim)

But then Q = Jf € N,since E=ENN and N = J(;E. Hence Q* = Q™P ¢
N. Hence BNJ € N since BNd is ;(Q*). Hence BN§ € N. Contradiction!
QED(Case 2.2.1)

All that remains is:
Case 2.2.2 § = 7.

Let C = {0, | n < w}. Then C is Q-definable in parameters and (N, C) is
amenable, since v N C' is finite for v € N. But then there is kK € N which is



3.8. UNIQUE ITERABILITY 391

Woodin with respect to C. Let p < k such that C' N (k\ u) = 0. Let F be
C-strong at x in N of length 7 such that C' N (7 \ k) # 0. Then:

0=F@0)=F(Cn(k\k)=Cn(t\k)#0.
Contradiction! QED(Lemma 3.8.16)

Making use of this we prove:

Lemma 3.8.17. There is no truncation on the branch bg.

Proof: Suppose not. Let p + 1 be the least truncation point. Let p* =

T(pw+1) (hence p+1 <7 v + 1 and pu* <7 ~g). Then p%,. < k,. Hence
m

p‘fwbo < Ky < 17, since crit(m, ) = k. Contradiction! QED (Lemma 3.8.17)

Hence mop, : M —x+ Q. We shall use this fact to garner information about
M. We know:

(a) Q= JBE is a constructible extension of N = JﬁE.

(b) n=1ub{v: E, # @}

(c) pg = 1 (hence Q is sound).

(d) fACN= J}?, A € ¥(Q), then N is Woodin for A.

Note. By soundness we have: ¥*(Q) = X,(Q).

We shall prove:
Lemma 3.8.18. Let ng = lub{v : EM # @}. Then:

(a) no < ONyys is a limit ordinal. Hence M is a constructible extension of
No = JE.

(b) p%; = mo. Hence M is sound.
(c) Let A€ X (M) such that A C N. Then Ny is Woodin for A.

Proof: Set m = mq,,. For ¢ € by set: m = m;p,. Then m; : M; —si
Q. We find prove (a). Suppose not 19 # 0, since otherwise the iteration
would be impossible. Hence there is a maximal v, such that EM # @. The
statement EM # @ is ¥,(M) in v and the statement “v is maximal” is
IT;(M). Hence these statement hold in @ of m(v). But 7(v) < 7 is not
maximal. Contradiction! QED(a)
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We now prove (b). If not, then p%, < v where EM £ . But Piry < A
where x = crit(EM) and A = A\(EM) =: EM (k). Hence p%, < A < v. Hence
o < ) < 7N < 7(v) <
Contradiction! QED(b)

We now prove (c). Let A C Ny be £,(, ). Since M is sound, A is ¥*(M)
by Corollary 2.6.30. Let A be ¥*(M) in ¢ and let A’ be ¥*(Q) in ¢’ = 7(q)
by the same definition. Pick n < w such that pjy, = no and p¢) = 7). Clearly,
every Y, (H},, A) statement translates uniformly into a statement which is
Y*(M) in g. Similarly for Q, A’,¢’. Hence:

FrNg‘<N07A> < <N, A/>

But the statement “N is Woodin for A" is elementary in (N, A"). Hence Ny
is Woodin for A. QED(Lemma 3.8.18)

We now define:

Definition 3.8.11. A premouse M is restrained iff it is one small and does
not satisfy the condition (a)-(c) in Lemma 3.8.18.

We have proven:

Theorem 3.8.19. FEvery restrained premouse has the normal uniqueness
property.

By theorem 3.6.1 and theorem 3.6.2 we conclude:

Corollary 3.8.20. Let n > w be reqular. Let M be a restrained premouse

which is normally x + 1-iterable. Then M 1is fully k + 1-iterable.

Hence, if a > w is a limit cardinal and M is normally a-iterable, then M is
fully a-iterable. This holds of course for a = oo as well.

We also note the following fact:
Lemma 3.8.21. Let M be restrained. Then every normal iterate of M is
restrained.

Proof: Let I = ((M;), (v;), (m;),T) be the iteration of M to M’ = M,.

Case 1: There is a truncation on the main brach b = {i : i <7 p}. Let
i+ 1 be the last truncation point. Then x; < A, where h = T'(: + 1). Hence
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!/

p‘j\’@: < A < vp. Hence pY; < Wh,y(pfwz) < mhu(vp), where E% (1) + .

N7
Hence M’ is restrained.

Case 2: Case 1 fails. Then w1 : M — 5+ M.

Case 2.1: p%; < v for a v such that EX # @. This is exactly like Case 1.
There remains the case:

Case 2.2: Case 2.1 fails. Then 1 = lub{v : EM # &} is a limit ordinal and
M is a constructible extension of JfM. But then there is A C JZ such that
AeX, (M) and JfM is not Woodin for A. Repeating the proof of Lemma
3.8.18, it follows that mp,, is an elementary embedding of M into M'. If A

is S,(M) in p and A’ is S, (M’) is 7(p), it follows that N’ = JE is not
Woodin for A’ where

Y = ub{: EM' £ 3} = mo ()
Hence M’ is restrained. QED(Lemma 3.8.21)

Note. We could also show that every smooth iterate of a restrained premouse
is restrained. This does not hold for full iterates, however, since there can
be a restrained M such that M||u is not restrained for some pu € M.

3.8.4 The Bicephalus

In this section we verify some technical lemmas which will be needed in
Chapter 5. There are we’ll need to consider "two headed mice", also known
as bicephali.

Definition 3.8.12. By a bicephalus we mean a structure M = (|M|, F°, F!)
s.t,

e |M| = JE is a passive premouse
12 )

e (|M|,F") is an active premouse for n = 0, 1.

The possibility that F° # F! is not excluded. (Ultimately, however, we will
aim to show that in all interesting cases, we have F* = F!. Using this we
shall show that the inner model K¢ constructed in Chapter 5 is uniquely
determined. ) By Theorem 3.3.24 we have;

Lemma 3.8.22. Let M = (|M|, FY, F') be a bicephalus. Let G be an exten-
der at k € M on M. Let;

m: M —g M' = (M|, F°, F').
Then M’ is a bicephalus.
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Note. Here we are using Y ultrapowers. This makes sense if we consider
that M’ is obtained by first applying G to the ZFC™ model |M| and then
recovering FO/7 FY by:

= U m(un F") for h=0,1
ueM

When we normally iterate bicephali, we shall apply the ¥ ultrapowers on
non-truncating branches.

By Theorem 3.3.25 we have:
Theorem 3.8.23. Let My = (| M|, F°, F'') be a bicephalus. Let m; j: M; —
M; (i < j <n) be a system of commuting maps such that
o Tiiy1: My —rq, Miy1, where Gi is an extender in M;,
o M; 1s transitive and the m; j commutes,
o If X < n s a limit ordinal, then
My, (mix [ i< A)
1s the transitivased direct limit of:
(M | i< X),(mij|i<j<A).
Then each M; is a bicephalus.

Definition 3.8.13. By a precephalus we mean either a premouse or a pre-
bicephalus. If M is a precephalus, v C M is a limit ordinal, and EM is
uniquely determined, we set: M|y = (|M|, EM). If, however, v = ht(M)
and M = (|M|, F°, F') is a bicephalus, we set M|y =: M. FM is then
defined to be :

{EMY if uniquely defined, {F°, F'} if not.

Using this we can define the notion of a normal iteration:
I = ((M;), (vi), (F3), (mi3), T)

of a precephalus M. This is defined exactly as before in §3.4 except that:

o If h=T(i+1), we apply F; € F,, to M}

e If i + 1 is not a drop point (i.e. 7; is a cardinal in M} ) and M}, is a
bicephalus, then M, is the Xg-ultrapower of My:

Thyit1: My —r g, M
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e In all other cases, set:
Thi+1: MZ F; i+1,

where n < w is maximal such that x; < plj;«.

As usual we set:
ki =: crit(F}), 7 =: ﬁjMi”Vi.
and:
Ai =: F;(v;) = the largest cardinal in M;||v;.

(Thm k;, 7; are dependent on the choice of F;, whereas \; depends only on
v;. ) We again have:

T'(i + 1) =: the least h such that k; < A\j or i = h.

This, of course, means that in the definition of "normal iteration" given in
§3.4.2, we must make appropriate changes in (b), (¢), and (f). If I is the
iteration of a bicephalus M, it follows easily by induction on ¢ that

M; is a bicephalus if and only if [0,7)7 has no drop.

We leave this to the reader. If M is not a bicephalus, then [ is a normal
iteration in the new sense if and only if in the old sense, Lemma 3.4.1 and
Lemma 3.4.10 still hold.

Note. It may seem strange that, if h = T(i + 1) and M; = M} =
(|My], FP, F}l) is a bicephalus, we take the ¥ ultraproduct of M), rather
that the s-ultraproduct. But |Mj| is then a ZFC™ model and we are -in
effect- applying E%ﬁ to |M]|. For this the ¥g-ultrapower is appropriate. We
then recover F,, F}\,; by:

! !
Fip = U Thiv1(u Fp).
ue\Mh\

We can turn an iteration:
I = ((M;), (vi), (Fi),(Tij),T)

of length to ¢+ 1 into a potential iteration of length ¢+ 2 by appointing a pair
of indices (4, Fj) such that v; > v; for j < i and F; € F%Z We leave it to
the reader to amend the definition in §3.3.2 appropriately. Given the choice
of v;, F; we can then define h = T'(i + 1), My = My||5 (for appropriate 3)
as usual. We do not know, however, whether M} is extendable by F;. In
place of Theorem 3.4.4 we then have:
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Theorem 3.8.24. Let I be a normal iteration of M of length i + 1. Extend
it to a potential normal iteration of length 142 by appointing appropriate v;,
F;, then F; is close to M.

This means that whenever M is not a bicephalus, we shall have:
Thir1: M —5 My,

whereas we take the Yg-ultraproduct otherwise.

The proof of Theorem 3.8.24 is a simple variant of the earlier proof.

Our main result here is that Theorem 3.8.4 holds for bicephali as well as
for premice. In fact, we can almost literally repeat the proof. This seems
problematic at first glance, since our proof makes frequent use of the notation
Elj,\z/ll in describing a normal iteration of a precephalus M, although M; =
(|M;], FO, F') might be a bicephalus. If then v; = ht(M;), we let E}% denotes
that F' € {F°, F} which we chose to apply to M} at stage i. Let M be a
precephalus and let

1= <<Mz>’ <Vi>> <FZ>’ <7Ti7j>vT>

be a normal iteration of M of limit length 7. Let by, b1 be distinct cofinal
well fouded branches in I. Pick o < n such that (by \ &) N (b1 \ @) = 0 and
define 9;, v;, ] exactly as before. If we make the special assumption:

(SA) E,

,

i’,i')’iJrl € My,
We can literally repeat the steps (1)-(11).

We now attempt to redo the proof without (SA). The situation is compli-
cated by the fact that a bicephalus M can have two distinct top extenders.
Nontheless we define the notion undesirable able exactly as before. (Note
that the definition speaks of "a top extender" rather than "the top extender".
) We again prove:

(12) If « is sufficiently large, then no n is undesirable.

Proof. Assign to each undesirable n an integer (iy, j,) as follows:

. 0 niseven
[ ] Zn =
1 nisodd.

e j, = 0if M;,_ is a premouse or Ms, = (M|, FO, F1) is a prebicephalus
with crit(FO) € [y, , fip iy )-
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e j, = 1if not.
(Hence crit(F') € [k, , Fynir)- )

If (12) fails, there are infinitely many undesirable n. In particular, there are
undesirable n, m such that

n <m and (in, jn) = (tm, Jm)-
This gives a contradiction exactly as before. (We leave this to the reader. )

If we have chosen « large enough that (12) holds, we can then literally repeats
the proof of Lemma 3.8.12 and the definition of (13). QED(Theorem 3.8.4)

We call a bicephalus (| M|, FO, F') 1-small if and only if (|M|, F°), (|M]|, F!)
are l-small premice. (Since |M| is a ZFC™ model, this is equivalent to:
|M| = There is no Woodin cardinal. ) The proofs in §3.8.3 then go through
literally as before for 1-small precephali. In particular, Lemma 3.8.18 goes
through (although we must change the definition of 7y to:

no = lub{v | F, # 0}).

If M has top extenders, then 7 is obviously a successor ordinal. Hence M
is restrained. In particular, every prebicephalus is restrained. Hence:

Lemma 3.8.25. Let I be a normal iteration of a prebicephalus M of limit
length. Then I has at most one cofinal well founded branch.
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Chapter 4

Properties of Mice

4.1 Solidity

In §2.5.3 we introduced the notion of soundness. Given a sound M, we
were then able to define the n-th projectum p},(n < w). We then defined
the n-th reduct M™® with respect to a parameter a (consisting of a finite
set of ordinals). We then defined the n-th set Py, of good parameters and
the set R}, of very good parameters. (Soundness was, in fact, equivalent to
the statement: P"™ = R" for n < w). We then defined the n-th standard
parameter py, € Ry, for n < w. This gave us the classical fine structure
theory, which was used to analyze the constructible hierarchy and prove such
theorems as [ in L. Mice, however, are not always sound. We therefore took
a different approach in §2.6, which enabled us to define ply,, M™%, Py, RY,
for all acceptable M. (In the absence of soundness we could, of course, have:
Ry, # Pyy). In fact R}, could be empty, although Py, never is. Py, was
defined in §2.6.

Py, is a subset of [Ony|<% for acceptable M = (JZ, B). Moreover, the
reduct M™* is defined for any n < w and a € [Ony|<¥. The definition of
Py, M™ are recapitulated in §3.2.5, together with some of their consequences.

vy 1s defined exactly as before, taking = R}, = & if n is not weakly sound.
At the end of §2.6 we then proved a very strong downward extension lemma,
which we restate here:

Lemma 4.1.1. Let n = m + 1. Let a € [Onpy]<*. Let N = M™®. Let
T: N —5, N where N is a J-model and j < w. Then:

(a) There are unique M,a such that @ € R and M =N.

399
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(b) There is a unique ™ DO T such that:

T M —rsom) M strictly and m((a)) = a.
0

In §2.6. we also proved:

Lemma 4.1.2. Let n =m + 1. Let a € RY;. Then every element of M has
the form F(&,a) where £ < ph, and F is a good Egm) function.

Corollary 4.1.3. Let n,a, 7,7 be as in Lemma 4.1.1, wehere j > 0. Then

rng(m) = The set of F(§,a) such that F is a good Egm) function and & € rng(T)Nply

Proof.. Let Z be the set of such F (&, a).

Claim 1. rng(r) C Z.

Proof. Let y = w(y). Then ¥ = F(¢,@) where F is a good Egn)(ﬂ)
function and § < p; by Lemma 4.1.2. Hence y = F(n({), a), where F has

the same good Egn) definition in M.
QED(Claim 1.)
Claim 2. Z C rng(m).

Proof. Let y = F(7(£),a), where F is a good Egm)(M) function. Then the

Zgn) statement:
\Vyy=F(x(6),a)

holds in M. Hence, there is 7 € M such that § = F(&,a) where F has the
same good ng) definition in M. Hence

QED(Corollary 4.1.3)
Note. rng(7) C Z holds even if j = 0.

Lemma 4.1.1 shows that a great deal of the theory developed in §2.5.3 for
sound structures actually generalizes to arbitrary acceptable structures. This
is not true, however, for the concept of standard parameter.
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In our earlier definition of standard parameter, we assumed the soundness
of M (meaning that P" = R" for n < w). We defined a well ordering <, of
[On]<¥ by:

a<ib+— \/5(&\5 =bENE € bNa).

We then defined the n-th standard parameter p; to be the <,-least a €
M with a € P™. This definition stil makes sense even in the absence of
soundness. We know that p"~p’ € P’ for i < n. Hence by <,-minimality we
get: p"~p" = @. For i < n we clearly have p' <, p"~p’ by <,-minimality.
However, it is hard to see how we could get more than this if our only
assumption on M is acceptability.

Under the assumption of soundness we were able to prove:
p~pt = p for i < n.

It turns out that this does still holds under the assumption that M is fully
wi + 1 iterable. Moreover if 7 : M — N is an iteration map, then 7 (pl},) =
Py, The property which makes the standard parameter so well behaved is
called solidity. As a preliminary to defining this notion we first define:

Definition 4.1.1. Let a € M be a finite set of ordinals such that p*Na = @
in M. Let v € a. The v-th witness to a in M (in symbols M) is defined as
follows:

Let pt! < v < pi. Let b=a~(v+1). Let M = M*" be the i-th reduct of
M by b. Set: X = h(vU(bNM)),i.e. X = the closure of v U (uN M) under
31 (M) functions. Let:

7:We+—M|X

be the transitivation of M|X. By the extension of embedding lemma there
are unique W, n,o D @ such that:

W=wog:.W-—

o M.o(B) = b.
s M, o(b)

Set: MY = W. o is called the canonical embedding for @ in M and is
sometimes denoted by oy .

Note. Using Lemma 4.1.3 it follows that rng(r) is the set of all F(&, b) such
that &1,...,&, C v, b=a~(v+1) and F is good Egl)(M) function. This is
a more conceptual definition of M}, 0.

Definition 4.1.2. M is n-solid iff M7 € M for v € a = pY, it is solid iff it
is n-solid for all n.
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p" was defined as the <,- least element of P™. Offhand, this seems like
a rather arbitrary way of choosing an element of P". Solidity, however,
provides us with a structural reason for the choice. In order to make this
clearer, let us define:

Definition 4.1.3. Let a € M be a finite set of ordinals. a is solid for M iff
for all v € a we have
oy <vand M e M

Lemma 4.1.4. Let a € P" such that a N p" = @. If a is solid for M, then

'

a=7p".

Proof. Suppose not. Then there is ¢ € P™ such that ¢ <. a. Hence
there is v such that ¢~\(v + 1) = a~(v + 1) and v € a~gq. But then ¢ C
vU(a~(v+1)) C rng(o) where o, = 0% is the canonical embedding. Let A

be X" (M) in ¢ such that AN p"*t! ¢ M. Let A be Eg")(Mg) ing=o0"1(q)
by the same definition. Since ¢ [v = id and p" < v, we have:

Anp'=AnNp" e M,
since A € X7(M}) C M. Contradiction!
QED(Lemma 4.1.4)

The same proof also shows:

Lemma 4.1.5. Let a be solid for M such that aNp” = & and aUb € P"

for some b C v such that ab C v for all v € a. Then a is an upper segment

of p" (i.e. a~v =p"~v for allv € a.)

Hence:

Corollary 4.1.6. If M is n-solid and i < n, then M is i-solid and p' =

pUNp"

Proof. Set a = p™\ p'. Then a € P is M-solid. Hence a = p'.
QED(Corollary 4.1.6)

We set pi, =: U, <, Py- Then p* = p™ where p" = p“.

p* is called the standard parameter of M. It is clear that M is solid iff p* is
solid for M.
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Definition 4.1.4. Let a € [Ony]<¥,v € a with p'™ < v < p' in M. Let
b=a~(v+1). By a generalized witness to v € a we mean a pair (N, ¢) such

that IV is acceptable, v € N and for all &,,...,& < v and all Zgi) formulae
© we have:

M = p(Eb) — N | (€, 0).

Lemma 4.1.7. Let N € M be a generalized witness to v € a. Assume that
v ¢ rng(o), where o = ol is the canonical embedding. Then MY € M.

Proof. Let W = MY W ,& be as in the deﬁnitiog of MY. Then W = Wi’g,
where pt! < v < p'in M, b= a~(v+1) and o(b) = b. Since o [v = id, we
have:

W = 0(€,5) — N = ¢(£,0),

for &1,...,& < v and Egi) formulae ¢. We can then define a map 7 :
w —)E(i) N by:
1

Let z = F(£,b) where &,...,&6 < v and F is a good Egi)(W) function.

Then, letting F' be a good definition of F' we have:

W = \/x(ac = F(£,b)); hence N = \/:c(ac = F(£,c)).

We set 6(z) =y, where N =y = F(E,¢).

If we set: N = N%¢, we have:
o rW : W — N.

Let v = sup&” Ong, N = N|y. Then:

GIW : W —yx, N cofinally.

Note that, since o(v) > v and o [ v = id, we have: v is regular in M}.
Hence o(v) is regular in M and Hg('y) is a ZFC~ model. We now code W
as follows. Each x € W has the form: h(j, < &,b =) where h = hyy is the

Skolem function of W and o < v.

Set:
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€E={=<=<7E= <k (== h(j,<&b=) € h(k, (¢,b)}
A={=<j,&:h(j, (&) € A}
B ={<j,&=:h(j,(&D) € B}

where W = <J§4,B>. Let D C v code (€, A, B). Then:

D e S, ((N)) C M,
since e.g.
€= {< <J,§ =<k, (> > : h’N(]v <§,C>) € hN(k7 <<7C>)}

But then D € H(%y) by acceptability. But H%V) is a ZFC™ model. Hence

W e H%/) is recoverable from D in H%y). Hence W € H%y) C N is recov-
erable from W in H é\/([l/).

QED(Lemma 4.1.7)
We note that:

Lemma 4.1.8. Leta € P",v € a,M} € M. Then v ¢ rng(c%).

Proof. Suppose not. Then a € rng(o). Let A be 31(M) such that ANp™ ¢
M. Let A be ¥1(MY) in @ = o~ '(a) by the same definition. Then:

ANpt=AnNp" € H(MY) C M.

Contradiction!
QED (Lemma 4.1.8)

But then:

Lemma 4.1.9. Let g € Py;. Let a be an upper segment of q which is solid
for M. Let m: M —x+ N such that w(q) € Py. Then w(a) is solid for N.

Proof. Let v € a,W = MY, 0 = o}. Set:

d =m(a),V =n(v),W = Cllj//,O'/ = O'Z/l.

We must show that W’ € N. We first show:
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(1) v ¢ rmg(o’).

Proof. Suppose not. Let p't! < v < p’ in M. Then pi*t! </ < p’in N.
Then in N we have: v/ = F/(§, V') where { <V, b/ =d/\(V/+ 1), and F’ is
a good Egl) (N) function.

Let F be a good definition for F’. Then in N the Egi) statement holds:

\ ¢ <V =F(E.V)).
But then in M we have:
\/ ¢ <v(v=F(E,b)
where b = a~ (v + 1). Hence v € rng(s). Contradiction!
QED(1)
Now set: W” = n(W). In M we have:
N\ & <v(MEp(6,b) — W E p(&,b))

for Egi) formulas ¢. But this is a Hgi) statement in M about v, b, W. Hence
the corresponding statement holds in N:

NE<VIN @) — W' = p(&,0)
Hence W” is a generalized witness for / € a/. Hence W = N € N.
QED(Lemma 4.1.9)

As a corollary we then have:

Lemma 4.1.10. Let M be n-solid. Let m : M —>x+« N such that ©(p},) €
Py. Then N is n-solid and w(Py;) = Py.

Proof. Let a = p},;. Then o’ = w(a) € Py, is solid for N by the previous
lemma. Moreover, a’ N p = @. Hence o’ = pY.
QED(Lemma 4.1.10)

This holds in particular if p" = p¥ in M. But if 7 : M — N is strongly
Y*-preserving in the sense of §3.2.5, then p" = p¥ in N and n”(P};) C Pyj.
Hence:
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Lemma 4.1.11. Let M be solid. Let w: M — N be strongly >*-preserving.
Then N is solid and 7(ph,) = ply fori < w.
QED(Lemma 4.1.11)

Corollary 4.1.12. Let I = ((M;), (vi), (mij),T) be a normal iteration. Let
h=T(i+1) where i +1 <r j. Assume that (i + 1, jlr has no drop. If M7
is solid, then M; is solid and mp, ;(ply) = p’]}/fj forn < w.

Proof. 7, ; is strongly X*-preserving.

We now define:

Definition 4.1.5. Let M be acceptable. M is a core iff it is sound and
solid. M is the core of N with core map iff M is a core and 7 : M —s+ N
with 7(p},) = py and 7 [ p%, = id.

Clearly M can have at most one core and one core map.

Definition 4.1.6. Let M = (JE E,) be a premouse. M is presolid iff M||¢
is solid for all limit n < a.

Lemma 4.1.13. Let M be acceptable. The property “M is presolid” is uni-
formly 111 (M). Hence, if m: M —s, N, then N is presolid.

Proof. The function:
(IFag¢: € is a limit ordinal)

is uniformly ¥;(M). But for each i < w there is a first order statement ¢;
(22

which says that M is “solid above p*”, i.e.

M;}u € M for all v € pi.

The map i — ¢; is recursive. But M is presolid if and only if:

/\ ¢ €M Ni(¢is alimit —l-pe o)

QED(Lemma 4.1.13)

We shall prove that every fully iterable premouse is solid. But if M is fully
iterable, then so is every M||n. Hence M is presolid.

The comparison Lemma (Lemma 3.5.1) tells us that, if we coiterate two pre-
mice M°, M of cardinality less than a regular cardinal , then the coiteration
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will terminate below 6. If both mice are 8 4 1-iterable, and we use successful
strategies, then termination will not occur until we reach ¢ < 6 such that
MP<aM} or M<aM? (M <M’ is defined as meaning \/ € < Onyy, M = M'||€.)
If M? < M}, we take this as making a statement about the original pair
MO, M*' to the effect that M! contains at least as much information as M.
However, we may have truncated on the man branch to Mil, in which case
we have “thrown away” some of the information contained in M;. If we also
truncated on the main branch to My, it would be hard to see why the final
result tell us anything about the original pair. We now show that, if M°
and M" are both presolid, then this eventually cannot occur: If there is a
truncation on the main branch of the M'-side, there is no such truncation
on the other side. (Hence no information was lost in passing from M to
M?.) Moreover, we then have M < M.

Lemma 4.1.14. Let 6 > w be reqular. Let MY, M € Hy be presolid premice
which are normally 0 + 1-iterable. Let:

"= <<Mzh>7 <Vz'h>7 <7Tzhj>7Th> (h =0, 1)

be the coiteration of length i +1 < 6 by successful 0 + 1 strategies SO, S*
(Hence M? <« M} or M} < M?.) Suppose that there is a truncation on the
main branch of I'. Then:

(a) M? <M}

(b) There is no truncation on the main branch of I°.

Proof. We first prove (a). Let [; +1 < i be the least point of truncation in
T {i}. Let hy = T(l3 +1). Let Q! = M111*~ Then Q! is sound and solid.
Let 7' = m, ;. By Lemma 4.1.12, M] is solid and 7'(pg1) = pay- Hence
Q' =core(M}) and 7! is the core map. But 7! # id. Hence M is not sound.
If MY 4 M}, we would have: M} = M?||n for an n € M?. But M?||n is
sound. Contradiction! This proves (a).

We now prove (b). Suppose not. Let lp + 1 be the last truncation point
in T}, Let hg = T%lp +1). Let Q°,7n° be defined as before. Then
Q" =core(M?) and 7 # id is the core map. Hence M} is not sound. Hence,
as before, we have: ]\41.1 N Mio. Hence MZ-O = MZ-1 and Q = Q° = Q! is the
core of M; = MZ-O = M} with core map m = 70 = 7!, Set:

h My,
F* =B, " (h=0,1).
It follows easily that there is x defined by:
K= nlf; = crit(F") = crit(n) (h = 0,1)
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Thus P(kq) N M{Z =P(x) N Q. But:
o€ FMX] +— a e n(X)

for X € P(k) N Q,a < A\, = F"(k). Hence ly # Iy, since otherwise \g = A\
and FY = F!'. Contradiction!, since vy, is the first point fo difference. Now
let e.g. lop < l;. Then v, is regular in MJQ for lp < 7 < i. But then it is
regular in Mlll||yl1, since Mlll||Vl1 = Mﬂ”l/ll and v, > y,.

But FO = Fl|)\, is a full extender. Hence FO € My ||\, by the initial
segment condition. But then 7 € M, ||\;, where 7 is the canonical extension
of FO. But # maps ¢ = k9 cofinally to 1,. Hence v, is not regular in
Mll1 [|v1,. Contradiction!

Lemma 4.1.14
We remark in passing that:
Lemma 4.1.15. Fach J, is solid.
Proof. Suppose not. Let M = J,,v € a = p§\4, where p't! < v < plin
M. Let M} = Jg and let 7 : Jg — J, beithe canonical embedding. TheP
@ = a, since Jy ¢ J,. Let b=a~(v+1),b=71(b). Set a = (aNv)Ub.

Then @ € P in M;. But 7”(@) = (aNv)Ub <, a where 7 is monotone.
Hence @ <, a. Hence @ ¢ Pl by the <,-minimality of a. Contradiction!

QED(Lemma 4.1.15)

By virtually the same proof:

Lemma 4.1.16. Let M = J2 be a constructible extension of Jg‘ (i.e. AC
Jg‘, where B < «). Let p§; > B. Then M is solid.

The solidity Theorem

We intend to prove:

Theorem 4.1.17. Let M be a premouse which is fully wi + 1-iterable. Then
M 1is solid.

A consequence of this is:

Corollary 4.1.18. Let M be a 1-small premouse which is normally wi + 1-
iterable. Then M 1is solid.
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Proof. If M is restrained, then it has the minimal uniqueness property and
is therefore fully wy + 1-iterable by Theorem 3.6.1 amd Theorem 3.6.2. But
if M is not restrained it is solid by Lemma 4.1.16.

QED(Corollary 4.1.18)

It will take a long time for us to prove Theorem 4.1.17. A first step is to
notice that, if M € H,, where k > w; is regular and 7w : H < H,, with
n(M) = M, where H is transitive and countable, then M is solid iff M
is solid, by absoluteness. Moreover, M is fully w; + l-iterable by Lemma
3.5.7. Hence it suffices to prove our Theorem under the assumption: M is
countable. This assumption will turn out to be very useful, since we will
employ the Neeman-Steel Lemma. It clearly suffices to prove:

(*) If M is presolid, then it is solid.

To see this, let M be unsolid and let 1 be least such that M||n is not solid.
Then M]||n is also fully wy + 1-iterable and v is also presolid. Hence M]||n is
solid. Contradiction!

Now let N be presolid but not solid. Then there is a least A € p}, such that
N} ¢ N, where a = p&. Set: M = N, and let 0 : M —rm N, oA =id
1

where pv! < A < p% and a~(\ + 1) € mg(c). We would like to show:
M € N, thus getting a contradiction. How can we do this? A natural
approach is to coiterate M with N. Let (I°, I') be the coiteration, I° being
the iteration of M. If we are lucky, it might turn out that M, € N,
where p is the terminal point of the coiteration. If we are ever luckier,
it may turn out that no point below A was moved in pairing from M to
M, -ie. crit(wg)ﬂ) > A. In this case it is easy to recover M from M,,
so we have: M € N,, and there is some hope that M € N. There are
many “ifs” in this scenario, the most problematical being the assumption
that crit(ﬂg’“) > X. In an attempt to remedy this, we could instead do a
“phalanx” iteration, iterating the pair (N, M) against M. If, at some i < p,

we have F' = E',],\Z/Il0 # &, we ask whether /{? < A. If so we apply F to N.
Otherwise we apply it in the usual way to My, where h is least such that
/-;? < M. For the sake of simplicity we take: N = MY, M = M?. v; is only
defined for i > 1. The tree of I° is then “double rooted”, the two roots being
0 and 1. (In the normal iteration of a premouse, 0 is the single root, lying
below every ¢ > 0). Here, i < p will be above 0 or 1, but not both.

If we are lucky it will turns out the final point yx lies above 1 in T°. This
will then ensure that crit(7r87 x) = A. Tt turns out that this -still improbable
seeming- approach works. It is due to John Steel.
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In the following section we develop the theory of Phalanxes.

4.2 Phalanx Iteration

In this section we develop the technical tools which we shall use in proving
that fully iterable mice are solid. Our main concern in this book is with one
small mice, which are known to be of type 1, if active. We shall therefore
restrict ourselves here to structures which are of type 1 or 2. When we use
the term “mouse” or “premouse”, we mean a premouse M such that neither
it nor any of its segments M ||n are of type 3.

We have hitherto used the word “iteration” to refer to the iteration of a single
premouse M. Occasionally, however, we shall iterate not a single premouse,
but rather an array of premice called a phalanz. We define:

By a phalanz of length n + 1 we mean:
M= ((M;:i<n),(N\:i<n))

such that:

(a) M; is a premouse (i < n)
(b) As € M; and JEY = JE" (i < j <)
(e) Ai < Aj(E<j<m)

(d) A\i > wis acardinal in M; (i < j <n).

A normal iteration of the phalanx M has the form
I={((M;i:i<p),(viit+1emup),(m;:i<rj)T)

where p > n is the length of I. M = I|n + 1 is the first segment of the
iteration. Each ¢ < 7 is a minimal point in the tree T. As usual, 7; is
chosen such that A\, < \; for h < 4. If h is minimal such that x; < A\, then
h=T(i+1) and EZJXIZ is applied to an apropiately defined M, = M}, ||y. But
here a problem arises. The natural definition of M is:

M} = M|y, where v < Onyy, is maximal such that 7; < v is a
cardinal in Mjp||y.
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But is there such a 7 If Ay is a limit cardinal in M;, then 7; < Aj and
hence A is such a v. For ¢ < n we have left the possibility open, however,
that Ay, is a successor cardinal in M;. We could then have: 7, = Aj,. In this
case k; 1s the largest cardinal in J/]\EiMh. If Ey, # @ in My, it follows that
p}whH A, S Ri < T Hence there is no v with the desired property and M;" is
undefined.

In practice, phalanxes are either defined with restrictions which prevent this
eventuality, or -in the worst case- a more imaginative definition of M} is
applied. If h = T'(¢ + 1) and M is given, then M;,1,T} ;41 are, as usual,
defined by:

Thit1 © M —>%?1. Mitq,
where n < w is maximal such that x; < p?w;. In iterations of a single

premouse, we were able to show that E,, is always close to M;*, but there is
no reason to expect this in arbitrary phalanx iterations.

We will not attempt to present a general theory of phalanxes, since in this
section we use only phalanxes of length 2. We write (IV, M, \) as an abbre-
viation for the phalanx M of length 2 with My = N, M; = M, and A\g = A.
We define:

Definition 4.2.1. The phalanx (N, M, \) is witnessed (or verified) by o iff
the following hold:

(a) o: M g N for all n < w such that X\ < pf,

(b) A = crit(o)

(¢) o is cardinal preserving and regularity preserving, i.e. if 7 is a cardinal
(regular) in M then o(7) is cardinal (regular) in N.

Note. (c) is superfluous if o is Xj-preserving, since being a cardinal or
regular is a II; property.

Lemma 4.2.1. Let (N, M, \) be witnessed by o. Then the following hold:

(1) Let a € M. Then « is a cardinal (regular) in M if and only if o(a) is
a cardinal (reqular) in N.
(2) A is regular in M.

Proof. Suppose not. Then there is f € M such that f: v — A and

v < XA =1lub f”y. Hence o(y) = v, a(f(€)) = f(&) for £ < . Hence
o(f)=fand o(A\) =lub f’y = Xin N. But o(\) > X. Contradiction!

By acceptability it follows that:
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If X is a limit cardinal in M, then it is a limit cardinal in N. But if
A=~Tin M, then o(\) =~ in N.

Hence:

EY =0.

Proof. This is trivial if A is a limit cardinal in M. If A = 4" in
M, then p}ww‘ < 7. Hence X is not a cardinal in M. Contradiction!

QED(4)

Hence:

Let k < X be a cardinal in M. Set 7 = k™. There is v € N such that
v > T and T is a cardinal in N||y.

Proof. If 7 < ), take A = 7. Otherwise 7 = . But EY = B} =)

M
and A is a cardinal in M. Hence M||A+w = N|[A+w = Jf_ﬁw and the
assertion holds with v = A 4+ w.

QED(Lemma 4.2.1)

Note. It will follow from (5) that if h = T'(i 4+ 1) is a normal iteration of
(N, M, ), then M is defined.

Following our earlier sketch, we define:

Definition 4.2.2. Let (N, M, \) be a phalanx which is witnessed by o. By
a normal iteration of (N, M, \) of length n > 2 we mean:

I=((M;:i<p),(vizit1e(np) (mj;:i<rj),T)

such that:

(a)
(b)
()

T is a tree on n with iTj — i < j. Moreover T77{0} = T7{1} = @.
M; is a premouse for ¢ < n. Moreover My = N, M; = N.

If 1 <i,i+1<n,then M||lv; = (JE E,,) with E,, # @. We define
Ki, Ti, Aj as usual. We also set: Ag = A. Werequire: v; > vpif 1 < h <1
and Ay, > A. (Hence \; > A\, for h < i).

Let ¢ > 0. Let h be least such that h =i or h < i and x; < \,. Then
h=T(i+1) and JE"™" = J2".

m;,j is a partial map of M; to M; for ¢ <7 j. Moreover m;; = id,

Ti,jThi = Th,j-
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(f) Let h = T(i + 1). Set: M} = Mjy||y, where v < Onyy, is maximal
such that 7; < v is a cardinal in Mp||y. (We call it a drop point in I if
My # My). Then:

Thit1 © M —>SEnV) My, where n < w is maximal s.t.
1

An < plys (where A\g = A)

(g) If i <7 j and (4, j]7 has no drop point, then m;; is a total function on
M;.

(h) Let p < n be a limit ordinal. Then 77y is a club in p and contains at
most finitely many drop points. Moreover, if i < p and (i, u)7 is drop
free, then:

My, (mju i <rj <t p

is the transitivized direct limit of
(Mj 20 <pj <pp),(mjr:i<7j<7k<rpN.

As usual we call M, (7, : j < p) the limit of (M; 19 <7 p), (7
i <7 j <7k <p ), since the missing points are given by:

ﬂ_h,j - 7ri,j7rh,i fOI' h <r ) ST .] <T M>

This completes the definition. Note that the existence of M is guaranteed
by Lemma 4.2.1(5). We define:

Definition 4.2.3. ¢ + 1 is an anomaly in [ if ¢ > 0 and 7, = A (hence
0=T(i+1)).

Anomalies will cause us some problems. Just as in the case of ordinary
normal iterations, we can extend an iteration of length 1+ 1 to a potential
iteration of length n + 2 by appointing v, such that:

El],\f”#@,:Vn>1/ifori§i<77,/\n>/\.

This determines Mp. In ordinary iterations we know that E,, is close to
M. In the present situation this may fail, however, if 7+ 1 is an anomaly.
We, nonetheless, get the following analogue of Theorem 3.4.4:

Theorem 4.2.2. Let I be a potential normal iteration of (N, M, \) of length
i+ 1. If i+ 1 is not an anomaly, then Ez]/\flz is close to M. Ifi+1 is an
anomaly, then E%la € N for a < .
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We essentially repeat our earlier proof (but with one additional step). We
show that if A C 7; is ¥, (M;||v;), then it is ¥, (M) if i+1 is not an anomaly,
and otherwise A € N. Let I be a counterexample of length ¢ 4+ 1 where ¢ is
chosen minimally. Let h = T'(i+1). Let A C 7; be a counterexample. Then:

(1)

(2)

h <.
We then prove:

1
vi = Onng,, pyy, < T

The first equation is proven exactly as before. The second follows as
before if 141 is not an anomaly, since then 7; < Ap. Now let i+ 1 be an
anomaly. Assume p]lvji > 7; and let A C 7; be X(M;). Then A € M,

since either i =1 or A € JflMi = JflMl where A1 is a cardinal in M;.
Hence A = o(A) N\ € N. Contradiction!

QED(2)
In an extra step we then prove:
Claim. i > 1.
Proof. Suppose not. Then ¢ =1 and h = 0. Let:

. 7FE E /. 7E’ E’
T JTl —>JI/17 o JT{ —>in

be the extensions of M, N respectively. Then m,7n’ are cofinal and
or =7n'o. If 7; < X then o7 +1 =id and o takes M cofinally to N.
Hence o in ¥j—preserving. If A is ¥1(M) in p, then A is also X1(N)
in o(p), where N = M. Contradiction!

Now let 71 = A. Then ¢+41 is an anomaly. Then o takes v, non cofinally
to v, since 7'(X) > 7(§) = om(€) for € < A\. Let 7 =: supo”v;. Then:
o: M —y, M cofinally,
where M = (JIJ,E,,EZ/,i NJEY. Let A’ be X1(M) in o(p) by the same
definition as A in p. Then A’ € N and A = A'N\ € N. Contradiction!

QED(Claim)

7 1s not a limit ordinal.

Proof. Suppose not. Then as before, we can pick [ <r ¢ such that m;
is a total function on M; and [ > h. Hence m;; is ¥i-preserving. Let
M; = <J£, F). We can also pick [ big enough that p € rng(m;;), where
Ais ¥1(M;) in p. Hence A € X,(M;), where M; = (JE F), where
v = Onyy, > v Extend I]l + 1 to a potential iteration I’ of length
[ + 2 by setting: v/ = ». Since [ > h, it follows easily that:

Ky = ki, 7 =T, h=T'(1+1), M} = M[*.



4.2. PHALANX ITERATION 415

By the minimality of ¢ it follows that A € (M) if ¢ + 1 is not an
anomaly and otherwise A € N. Contradiction!

QED(3)
We then let: i = j 4+ 1, = 7(i). By the claim we have: j < 1.

But:
meq s My —\" M = (I B,

J

If n = 0, this map is cofinal. Hence in any case m¢; is Yq-preserving.
Hence:

M]* — <JE,E7> where Ey # @.

14
Hence:
T < Kj.
Proof. k; < A, < A; where )\; is inaccessible in M; (since j > 1).
Hence 7; < Aj. Moreover, k;, 7; € rng(m¢ ;) by (4). But:
g (meq) N[\, Aj) = @.

QED(5)

Exactly as before we get:
Tyt M]* —E,, M; is a X ultrapower. But then:

1 is not an anomaly.

Proof. Let A C 7; be ¥1(M;) in the parameter p. By (6) we have:
p = mei(f)(@), where f € MF,a < ).
Then:
AQ) +— \Jue M \/y € mei(w)A (y,¢,p)
But then:

A(Q) = Vue Mi{y < 5 : A (y,¢, f(N)} € (Byy)a-

But since j < i and j 4 1 is an anomaly, we have by the minimality of
i that (Ey;)a € N. Hence A € N. Contradiction!

QED(7)
Since j + 1 is not an anomaly, we have (E,;)o € X;(M]). Hence
A € X;(M;7). Hence we have shown:
P(r) (15, (M) © (M),

We know that M} = M¢||[v = (JHE, E5). Moreover, 7 > v for | < &,
since \; < kj < )‘Z < U hence v < A\¢ < 7. Thus we can extend /] +1



416 CHAPTER 4. PROPERTIES OF MICE

to a potential iteration I’ of length £ + 2 by setting: Vé = 7. Since
7; < Kj, we then have: k; = n’g,n = Té. Hence:

h=T(i+1)=T(+1)and M = (M)".

Suppose that 7 + 1 is not an anomaly in I. Then neither is £ + 1 in I'.
By the minimality of ¢ we conclude:

P(ri) N Xy (Me|[v) C Zy (M)
where Me|[v = M. Hence by (8):
P(ri) N X, (M;) C X, (M7).

Contradiction!

Now let 7+ 1 be an anomaly. Then so is £+ 1 in I’. But then just as before:

P(r:) N Xy (M;) € P(7i) N Z, (Me|[v) € N.

Contradiction! QED(Theorem 4.2.2)

We now prove:

Lemma 4.2.3. Let h = T(i + 1) in I, where I is a normal iteration of
(N, M, \). Then:

Thit1 : M —s= Mipq strongly.

Proof. If i + 1 is not an anomaly, then E%ﬁ is close to M and the result
is immediate. Now let ¢ + 1 be an anomaly. Then h = 0, M = N||n for
an n < 7, = o(A), since 7; = . p?’w < k4, since 7; is not a cardinal in
Nin+w = Jff;. But then pf. = #;, since #; is a cardinal in N. Let
P > ki > p"MJ@l, where n < w. Let m = mp,;41. Since M; ;1 is the E(()n)
ult;rapower of MZ-*, we know:

TPy C p’fwi*“ and W(pi\/[i*) = pg\/[iﬂ for j <n.

Since E),, is weakly amenable, Lemma 3.2.16 gives us:

(1) sup7”phys = Phr,,, and 7 s Egn)—preserving.

We now prove:
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(2)

Let H =: [JE"| = |JE"*|. Then P(H) NS\ (Miy1) C N,
Proof. Let B be Eg”)(MHl) in g such that B C H. Let ¢ = 7(f)(«)
where f € I'(k;, M), < A;. Let:

B(x) +— \/y € Hyy, ., B'(y,7,9)

where B in £\ (Mi41). Let B be S (M) by the same definition.
Then:
B(z) +— \/u e Hi;- \/y € 7(w)B'(y,z,7(f)(a))
«— \ue Hp{y <ri:\JyeuB(y,z, f(7)} € (B},

But (EJ)) € N. Hence B € N.

QED(2)
Clearly, if A C H is ¥*(M;4+1), then it is X ,((H, B)) where B is
Egn)(MiH). Hence A € N and (H, A) is amenable, since H = J,;EiMi =
J,gN, and k; is regular in N. But then p‘]"m+1 = p‘]‘f@* = K;. It follows
that:
m is X*-preserving.
Proof. By induction on j we show that if R(37,72) is Egi)(Mi*) and
R/(#7,Z) are ©](M;;1) by the same definition (where Z= 20" ... zhm
with hy,...h, < j), then:

R(Z,Z) «+— R/ (m(Z),7(2)).

For j < n this holds by (1). Now let it hold for j = m > n. We show
that it holds for j = m + 1. Then:

R(7,2) «— Hz = o]

where ¢ is X7 and:
—1 —P
Hz= <H7Q57"'7Q5>

where Q'(w, 2) is Egm)(M;) and:
0 = (@) e H: QUi 2)} for l=1,....p.

Now let Q' be Egm)(MiH) by the same definition and let H be de-
fined like Hz with Q" in place of Q' (I = 1,...,p). By the induction
hypothesis we then have:
R(Z, Z) «— Hz |= ()
> Hy(z) (2
+—— R(Z,7(2)) +— R(n(%), (7))
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since (%) = .

QED(3)
But this embedding 7 is also strong, since if p = k and A confirms
a € P™in M}, then if A’ is ) iy 7(a) by the same definition, we

m—+1

i+1
have: ANH = A' N H, where M NP(H) = M;1; NIP(H). Hence
ANH ¢ M.
QED(Lemma 4.2.3)
But then:

Lemma 4.2.4. Let h =T(i+1), where i+1 <7 j and (i+1, j| has no drop
point. Then:
T M —x= M strongly.

Proof. By Lemma 3.2.27 and Lemma 3.2.28.
QED(Lemma 4.2.4)

Exactly as in Corollary 4.1.12, we conclude that if M is solid and ¢ = j +1,
then so is M; and 7(p;") = p}* for m < w.

We intend to do comparison iterations in which (N, M, \) is coiterated with
a premouse. For this we shall again need padded iteration. Our definition
of a normal iteration of (N, M, \) encompassed only strict iteration, but we
can easily change that:

Definition 4.2.4. Let (N, M, \) be a phalanx which is witnessed by o. By
a padded normal iteration of (N, M, \) of length p > 1 we mean:

I= <<Mz 11 < M>, <Vi 11 E A>, <7Ti’j 11 <gp j>,T>.

Where:

(1) A={i:<<i+ 1< u} is the set of active points.

(2) (a)-(b) of the previous definition hold. However (f), (d) require that
i € A. Moreover:

(i) Let 1 < h < j < psuch that [h,j) N A= @. Then:
o h<pj, M,= Mj,ﬂhﬂ‘ =id.
e i<h— (i<ph<+—i<pj) fori<pu.
o j<i— (j<ri<+—h<ri)fori<p.
(In particular, if 2 < i4+1 < p,i ¢ A. Theni=T(i+1),M; =
M1, m 541 = id).
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Note. 0 plays a special role, behaving like an active point in that \g exists,
but vy does not exist.

Our previous results go through mutatis mutandis. We shall say more about
that later.

Definition 4.2.5. Let M° be a premouse and M! = (M, N, \) a phalanx
iteration witnessed by o. By a coiteration of M°, M?! of length p > 1 with
coindices (v; : 1 <i < p) we mean a pair (I, I') such that:

(a) I" = ((M]), (Wl i € AP, (wffj),Th> is a padded normal iteration of
M" (h=0,1).

(b) Mg = M.
0 1
(¢) v; = the least v such that B # B

(d) If El],\:[? # @, then i € A" and V' = v;. Otherwise i ¢ Al

Note. We always have M{ = MY whereas: M} = N, M} = M.

Definition 4.2.6. Let M°, M € H,, where k > w is regular. Let S be a
successful iteration strategy for M" (h = 0,1). The (S°, S')-coiteration of
length p < k + 1 with coindices (v; : 1 < i < ) is the coiteration (I°, ')
such that:

o I"is Sh-conforming.

e Either y=#x+1or u=i+1 < r and v; does not exist (i.e. MY < M}
or Mg <1 MY).

Note that < was defined by:
P <@ +— P=Q|Onp
We leave it to the reader to show that the coiteration exists. This is spelled

out in §3.5 for coiteration of premice. We obtain the following analogue of
Lemma 3.5.1:

Lemma 4.2.5. The coiteration of M : M' terminates below k.

The proof is virtually unchanged. We leave the details to the reader. Using
Lemma 4.2.4, we get the following analogue of Lemma 4.1.14:
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Lemma 4.2.6. Let N, M° be presolid. (Hence M' is presolid). Let (I°,T')
be the coiteration of MO, M terminating at j < r. Suppose there is a drop
on the main branch of I". Then there is no drop on the main branch of I'™"
Moreover, Ml-i_h < Mih,

The proof is virtually the same.

At the end of §4.1 we sketched an approach to proving that fully iterable
mice are solid. The basic idea was to coiterate (N, M, \) with N, where
N is fully iterable and o witnesses (N, M, A). In order to do this, we must
know that (N, M, \) is normally iterable. (The notions “iteration strategy”,
“successful iteration strategy” and “iterability” are defined in the obvious way
for phalanxes (N, M, \). We leave this to the reader.) We prove:

Lemma 4.2.7. If (N, M, \) is witnessed by o and N is normally iterable,
then (N, M, \) is normally iterable.

For the sake of simplicity we shall first prove this under a special assumption,
which eliminates the possibility of anomalies:

(SA) X is a limit cardinal in M.

Later we shall prove it without SA.

In §3.4.5 we showed that if 0 : M —x« N and N is normally iterable,
then M is normally iterable. Given a successful iteration strategy for N, we
defined a successful strategy for M, based on the principle of copying the
iteration of M onto N. In this case, we “copy” an iteration of (N, M, \) onto
an iteration of N. It suffices to prove it for strict iterations. Let

I = (M), (vi), (mi5), T)
be a strict normal iteration of (N, M, o). Its copy will be an iteration of N:

I'= ((N3), (i), (mij), T)

1

of the same length. We will have Ny = Ny = N. (Thus I’ is a padded
iteration, even if I is not). There will be copying maps o;(i < Ih(I)) with:

o;: M; — N;,00 =id[N,01 = 0.

We shall have v = 0;(1;) for 1 <. The tree T was “double rooted” with 0,
1 as its two initial points, 7", on the other hand, has the sole initial point 0.
We can define 7" from T by:

iT'j s (iTj V i <2< 7)
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In I each point @ < p has a unique origin h € {0, 1} such that h <7 i. Denote
this by: or(i). Using the function or we can define 7' from 7" by:

iTj «— (iTj Nor(i) = or(j))

Thus, each infinite branch b’ in I’ uniquely determines an infinite branch b
in I defined by:

b= | {or(i),i}

1€/ \2
However, we cannot expect the copying map to always be X*-preserving,

since 01 = o is assumed to be Z((]")—preserving only for pl, > A. In this
connection it is useful to define:

depth(M, ) =: the maximal n <w s.t. pjy;y > A.
Modifying our definition of “copy” in §3.4.5 appropiately we now define:
Definition 4.2.7. Let (N, M, \) be witnessed by o. Let
I= <<M1>7 <Vi>7 <7Tij>7T>
be a normal iteration of (N, M, \) of length p. Let:
I'= <<NZ>7 <V1{>7 <7l'£j>, Tl)
be a normal iteration of N of the same length. I’ is a copy of I onto N with

copying maps o;(i < p) iff the following hold:

(a) o;: M; —s, Nj,00 =id[N,01 =0, Ny = N1 = N.
(b) iT'j +— (iTjVi<2<y)

(c
(d

)
)
) oil A =onl Ay for h <i<p
) oimhi = w0 for i <p h.

)

vl = oi(v;)

(e

(f) Let 1 <pi. If (1,4]7 has no drop point in I, then o; is Z(()n)—preserving
for all n such that A < plt,. If (1,4]7 has a drop point in I. Then o; is
3*-preserving.

(g) If 0 <7 i then o; is ¥*-preserving.
Note: Ny = Ny, since 0 ¢ A.

Our notion of copy is very close to that defined in §3.4.5. The main difference
is that o; need not always be X*-preserving. Nonetheless we can imitate
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the theory developed in §3.4.5. Lemma 3.4.14 holds literally as before. In
interpreting the statement, however, we must keep in mind that if i € A and
T(i+1) =0, then T'(i+1) = 1. In this case 7; < A is a cardinal in N. Hence
M} = N. Moreover 7/ = o(7;) = 7;. Hence 7] is a cardinal in N* = N and
N; = N. In all other cases T'(i + 1) = T'(i + 1). Clearly m; = m;; for all
j > 1. Lemma 3.4.14 then becomes:

Lemma 4.2.8. Let I,I',(0; : © < p) be as in the above definition. Let
h=T(i+1). Then:

(i) If i + 1 is a drop point in I, then it is a drop point in I' and N} =
on(M]).

(i) If i + 1 is not a drop point in I, then it is not a drop point in I' and
N} = Np.

) N; .
(i) If F=EM F = E,'. Then:
(on [ M 0T N;) : (M}, F) — (N, F')

(iv) i (Thia1 ()(@) = 7 o100 (F)(0i(@)) for | € T* (ki My), a0 < Ay
(v) oj(vy) =2 v for j > .

(vi) oy is cardinal preserving.

Note. In the general case, where anomalies can occur, Lemma 3.4.14 will
not translate as easily.

Proof. In §3.4.5 we proved this under the assumption that each o; is
Y*-preserving. We must now show that the weaker degree of preserva-
tion which we have posited suffices. The proof of (i)-(ii) are virtually un-
changed. We now show that Xg-preservation is sufficient to prove (iii). Set:
M = M||lvi, N = Ny||v}. Then o; | M is a X preserving map to N. Let
a < A\, X € P(k;) N M. The statement o € F(X) is uniformly (M) in

a, X. But it is also IT; (M) since:
a€ F(X)+— ad¢ F(rinX)

Hence:
a€ F(X)+— o(a) € F'(o(X))

by Yg-preservation. Finally we note that o; | (M; | \;) embeds M;||\; ele-
mentarily into o;(M;||\;) = N;||A;. Hence:

oi(=a»)=<o0id@) = for aj,...,a, < \.
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Thus all goes through as before, which proves (iii).

In our previous proof of (iv) we need that oy, [ M;* is ¥*-preserving. This can

fail if 1 <7 h and [1, h]p has no drop point. But then oy, is E[()")—preserving
for A < pM in M, where A < k;. Hence the preservation is sufficient. Finally,
(v) is proven exactly as before.

(vi) is clear if o; is ¥j-preserving. If not, then 1 < ¢ and (1,¢] has no
drop. Hence m; is cofinal, since only ¥g-ultraproducts were involved. If
« is a cardinal in M;, then o < § for a § which is a cardinal in M. By
acceptability it suffices to note that o;m1;(5) = 7},0(5) is a cardinal in N;.

QED(Lemma 4.2.8)
Exactly as before we get the analogue of Lemma 3.4.15:
Lemma 4.2.9. There is at most one copy I' of I induced by o. Moreover,
the copy maps are unique.

As before we define:

Definition 4.2.8. Let (N, M, \) be a phalanx witnessed by o. (I,I’, (o)) is
a duplication induced by o iff I is a normal iteration of (N, M, \) and I’ is
the copy of I induced by o with copy maps (o; : i < ).
We also define:
Definition 4.2.9. (I,I',{0; : i < p)) is a potential duplication of length
1+ 2 induced by o iff:

o (Il|u+1,I'\|u+1,{o; : i < u)) is a duplication of length p + 1 induced

by o.
e [ is a potential iteration of length p + 2.
e [’ is a potential iteration of length u + 2.

o ou(vy) = v,

To say that an actual duplication of length p + 2 is the realization of a po-
tential duplication means the obvious thing. If it exists, we call the potential
duplication realizable.

Our analogue of Theorem 3.4.16 is somewhat more complex. We define:
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Definition 4.2.10. i is an exceptional point (i € EX) iff:

1 <714, (1,4]7 has no drop point, and p' < X in M.

Note. Suppose p' < Xin M. For j € EX we have: le\/[j < ), as can be seen
by induction on j.

Our analogue of Theorem 3.4.16 reads:

Lemma 4.2.10. Let (I,I',{0;)) be a potential duplication of length i + 2,
where h =T(i + 1). Suppose that i +1 ¢ EX. Then:

(on I M} 031 Ni) : (M, F) —* (N;, F")

where F = E%L’,F’ = El]/\,[7

Before proving this we note some of its consequences. Just as in §3.4.5 it
provides exact criteria for determining whether the copying process can be
carried one step further. We have the following analogue of Lemma 3.4.17:

Lemma 4.2.11. Let (I,I',{0; : i < u)) be a potential duplication of length
w2 (where p > 1). It is realizable iff N, is x-extendible by Ei\,[“,
m

Proof. If N/ is not x-extendable, then no realization can exist, so suppose
that it is. Form the realization I’ of I’ by setting:

!/ . * *
Thit1 Ny = Nyt

where h =T (n+ 1), F' = Ei\,[“. We consider three cases:

w

Case 1. o [ M}, is ¥*-preserving.
Bu Lemma 4.3.2 we have:
<0h FM;LO.H r)‘ﬂ> <M;7F> —" <N;7F,>7

where oy, [ M} is X*-preserving. By Lemma 3.2.23 this gives us:

* *
Thyet1 M —5 My,

and a unique:
Op+1 Mu—&-l —* N;H-l

/
such that oy 17h 41 = Tyt 10hs Opt1 [Au=0ulAu
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The remaining verification are straightforward.
Case 2. Case 1 fails and n+ 1 ¢ EX.

By Lemma 4.3.2 we again have:

(ah,au [/\M> : <Mh,F> —* <Nh,F/>.

Moreover oy, is Egm)—preserving, where m < w is maximal such that A < p™
in M. Now let n < w be maximal such that x; < p" in M. Then n < m,
since A < k;. By Lemma 3.2.19 M}, is n-extendible by F. But then it is
x-extendible, since F' is close to M}. Set:

Thyt1 t Mp —p Myt

)

Since o is Eém -preserving, it follows by Lemma 3.2.19 that there is a unique:

opv1 s Myt e Nimu+1,

such that JLHW;W“ = 7T;L7M+1O'h and o'\, = o, [ Ax. But ¢’ is, in fact,

E((]m)—preserving. If n = m, this is trivial. If n < m, it follows by Lemma

3.2.24. We let 0,41 = o’. The remaining verification are straightforward.
QED(Case 2)
Case 3. The above cases fail.

Then p+1 € EX and p' < Xin M. Thus p! < A < k; in M. By Lemma
4.2.8 we have:

<0-h’o-,u f)\u> : <Mh’F> — <NhaF,>'
Hence by Lemma 3.2.19, there are 7,0’ with:
T My —p Myy1,0": Mypy — sy Ny

such that o'm = Tr;WﬂUh and o’ [\, = o, [ Ay, But M), 1 is the -ultrapower
of My, since ,0}Wh < k; and F'is close to M. We set: 7, 41 = 7, 0,41 = o’
The remaining verifications are straightforward.

QED(Lemma 4.3.3)

Our analogue of Lemma 3.4.18 reads:
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Lemma 4.2.12. Let (I,I',{0; : i < p)) be a duplication of limit length p.
Let V' be a well founded cofinal branch in I'. Let b =J,cp o{or(i),i} be the
induced cofinal branch in 1. Our duplication extends to one of length pu+ 1
with:

T”{N} :b,T”{,U,} — b/

. p— / . y
and o,y = ;0 fori €b.

The proof is left to the reader.
With these two lemmas we can prove Lemma 4.2.7:

Fix a successful normal iteration strategy for N. We construct a strategy
S* for (N, M, \) as follows: Let I be a normal iteration of (N, M, \) of limit
length p. If I has no S-conforming copy, then S*(I) is undefined. Otherwise,
let I’ be an S-conforming copy. Let S(I') = b be the cofinal well founded
branch given by S. Set S*(I) = b, where b is the induced branch in I.
Clearly if I is S*-conforming, then the S-conforming copy I’ exists. If I is
of length yt 4+ 1(p > 1), then by Lemma 4.3.3, if v € My, v > v; for i < p,
then I extends to an S*-conforming iteration of length p + 2 with v, = v.
By Lemma 4.3.4, if I is of limit length p, then S*(I) exists. Hence S* is
successful.

QED(Lemma 4.2.7)

We still must prove Lemma 4.3.2. This, in fact turns out to be a repetition
of Lemma 3.4.16 in §3.4. As before we derive it from:

Lemma 4.2.13. Let (I,I',(0;)) be a potential duplication of length i + 1
where h =T (i + 1). Suppose that i +1 ¢ EX. Let A C 7; be X1(M;l||vs) in
a parameter p. Let A" C 7] be X1(N;||v]) in oi(p) by the same definition.
Then A is 1(M}) in a parameter q and A" is £1(N}) in op(q) by the same
definition.

Proof. The proof is a virtual repetition of the proof of Lemma 3.4.20 in
§3.4. As before we take (I,I,(0;)) as being a counterexample of length
i+ 1, where ¢ is chosen minimally for such counterexamples. The proof is
exactly the same as before. The only difference is that o; may not be X*-
preserving if j € EX. But in the case where we need it, we will have that o;

is Eél)—preserving, which suffices.
QED(Lemma 4.3.5).

Hence Lemma 4.2.7 is proven.
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However, we have only proven this on the special assumption that A is a
limit cardinal in M. We now consider the case: A\ = ™ in M. This will
require a radical change in the proof. Set:

N* =: N||y where 7 is maximal such that A is a cardinal in N||~.

Then A = x™V" < o(\) = k. An anomaly occurs at i + 1 whenever
7i = A\ Then 0 = T'(i + 1) and k = k;. Clearly N* = Mz. Thus M1y is
the ultraproduct of N* by F = E,ﬂ\jfz and N;11 is the ultraproduct of N by
F' = E,]/Yl In order to define 011, we require:

o(M}) = N;.

7

This is false however, since o; [ \g = o [ \; where 7; < \;. Hence:

I =0i(n) =o(r) =V,

Hence N = N 3 o(N¥).

The answer to this conundrum is to construct two sequences I’ and I. The
sequence:

I'=((Ny), (0 :i € A),(my 20 <7 j),T)
will be a padded iteration of N of length p in which many points may be
inactive. The second sequence:

I'={(N;), (Vi i€ A),(mi; i <7 3),T")
will have most of the properties it had before, but, in the presence of anoma-
lies, it will not be an iteration . If no anomalies occurs, we will have: I’ = I.
If 7 4+ 1 is an anomaly, then 7 ;41 will not be an ultrapower and N; will be
a proper segment of N; = N;11. (Hence i is passive in I). To see how this
works, let ¢ 4+ 1 be the first anomaly to occur in I, then I'|;11 = I|];11, but at
i+ 1 we shall diverge. Under our old definition we would have taken N = N
and 7; ;. = 7", where:

N —% N F=FEN.
v;
We instead take:
Ni* = N*, Ni+1 = W,/(N*), 7ri,i+1 = 7T” fN*

Note that 7”(N*) = #/(N*), where 7 is the extension of (JVEZMi,F). But
then N;i1 is a proper segment of JfNi hence of N; = ]\72

We can then define:
Oit1: Mit1 —> Nip
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by:
oir1(moi41(f)(@)) = 7'(f)(os(a))

for f € T"(k, N*),a0 < \;. 041 will then be Eén)—preserving, where n < w

s maximal such that k < p” in N*. To see that this is so, let ¢ be a E(()n)
formula. Let fi,..., f, € T*(k, N*) and let aq, -, < ;. Let:

xj = moir1(fi) (), y; = 7' (fi)(oi(eg)) (G=1,...,n).

Let X = {<&,...,6m = N* = o[fi(&1),..., fu(&)]}. Then o;F(X) =
F'(X), since ;| HY = o9 | HY = id. Hence:

M | ¢[X] ¢—=<d =€ F(X)
+—=0i(@Q) =€ F'(X) = 7'(X)
«— o(N7) = oly].

Since we had no need to form an ultraproduct at ¢ + 1, we set: NZ+1 Ni.
i is then an inactive point in I and N;11 is a proper segment of N2+1

We continue in this fashion: The active points in I are just the points ¢ > 0
such that ¢ +1 < p is not an anomaly. If ¢ is active, we set 7; = v/. (This
does not, however, mean that N; = N/.) If i is any non anomalous point, we
will have: N; = Nl If h < i is also non anomalous, thus 7T;Li =7p;. If7is an
anomaly, we will have: Nj is a proper segment of N;. If W is a limit ordinal it
then turns out that any cofinal well founded branch o’ in I’, which, in turn,
gives us such a branch b in I. This enables us to prove iterability.

77

We now redo our definition of “copy” as follows:

Definition 4.2.11. Let I = ((M;), (), (mij), T) be a strict normal iteration
of (N, M, \), where (N, M, \) is a phalanx witnessed by o.

I' = ((Mi), (vi), (mig), T)

)

is a copy of I with copy maps (o; : i < p) induced by o if and only if the
following hold:

(I) (a) T"is a tree such that iT"j — i < j.
(b) Let u be the length of I. Then N; is a premouse and

O'Z'IMl'—>ZONZ'fOI‘7;<,U/
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(c) m};(i <r j) is a commutative system of partial maps from N; to
N;.
(II) (a)-(f) of our previous definition hold. Moreover:
(g) Let 0 <7 j. If (0,4]r have no anomaly, then o; is X*-preserving.
(h) Let h =T(i + 1). Set:

N op(M}) if MF e M,
v Nh if not

/ . .

(i) Let h,i be as above. If i 4 1 is not an anomaly, then:
Thivt P Vi —F Nipa

where F' = Ei\,fl
7

(j) Let i + 1 be an anomaly. (Hence 7; = A , where Kk = k; is a

cardinal in M, hence in N.)
We then have:
M = N* = N|Jy,
where 7 is maximal such that A is a cardinal in N||y. Let m be the
extension of N;||v; = (JE, F’). Then:
Niy1 =n(N*) and 7, =7 [ N*.
Moreover, 041 : M;+1 — N1 is defined by:

i1 (moi+1(f)(a) = 7' (f)(oi())

where f € I™(k, N*),a < A;. (Hence ;41 is Zén)—preserving for k <
P=-)
(k) Let h <7 i, where h is an anomaly. If (h,i]7 has no drop point,

then o; is Eé")—preserving for k < p™in N*. If (h,i|p has a drop point,

then g; is X*-preserving.
(ITI) There is a background iteration:
I'= ((Ni), (D), (Ri5), T)
with the properties.

(a) I is a padded normal iteration of length .

(b) i < pis active in [ iff 0 < i+ 1 < p and i + p is not an anomaly

in 7. In this case: 7; = v/].
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(c) Tf i is not an anomaly in I, then N; = N!. Moreover, if h < i is
also not an anomaly, then:

h <TZ.H h <pr i, 7Arh,i :W;L,i if h <qv 1.

This completes the definition. In the special case that A is a limit cardinal
in M, we of course have: I’ = I and the new definition coincides with the
old one. We note some simple consequence of our definition:

Lemma 4.2.14. The following hold:

(1)

(3)

Ifi < j < p, then oj(Ni) = Ni. (Hence N, < X, for j+1< p.)

Proof. By induction on j. For j = 0 it is vacuously true. Now let it
hold for j.

0j+1(Nj) = 0ja10n41(k5) = 100 (K5) = Ty (K]) = Aj.

(Here op () = (k) = A, since k; < A and o|[Ap = on [ An.)

For 7 < 7 we then have:

Oj+1()\i) = Jj()\;)(since LY )\j).
QED(1)

0; 18 a cardinal preserving for i < p.

Proof. If o; is 31-preserving, this is trivial, so suppose not. Then one
of two cases hold:

Case 1. 1 <71, (1,i]r has no drop, and p! < Xin M.

Then 7y,; : My —x+ M; is cofinal for all h <7 j <7 i, since each of
the ultrapower involved is a Yg-ultrapower. Hence, if « is a cardinal
in M;, then a < 7y ;(f) where [ is a cardinal in M;. By acceptability
it suffices to show that o;m; ;(5) is a cardinal in N;. But o;m;(8) =
m,0(B), where o and 7}, are cardinal preserving.

Case 2. h <p i where h is an anomaly, (h,i]7 has no drop and
plgk:kZIDN*

The proof is a virtual repeat of the proof in Case 1, with (0, 7] in place
of (1, i]T.

QED(2)

I’ behaves like an iteration at limits. More precisely:
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Let n < k be a limit ordinal. Let ig <7 n such that b = (ip,n)r is free
of drops. Then
Ny, (T 20 € b)

is the direct limit of:

(Nj:ieb),(m;:1<jinb).

Proof. No i € bU {n} is an anomaly since every anomaly is a drop
point. Hence:

Ni = Nj,mj ;= fy; for i < jinbU{n}.

Since [ is an iteration, the conclusion is immediate.

QED(3)
(4) Let ¢ < p. If i 4+ 1 is an anomaly, then:

(a) Niy1is a proper segment of N;||vj. (Hence vj ; < vj).

(b) p* = A, in Niy1.
Proof. (a) is immediate by II (i) in the definition of “copy”. But
Nit1 = m(N*) where 7 is the extension of N;||v/. By definition, N* =

N||y, where v < o(A\) = T is the maximal « such that 7; = \ is a
cardinal in N||y. Hence p* = k in N*. But then p* = X, in N;4.

QED(4)
(5) Let ¢ < p. There is a finite n such that i + n + 1 is not an anomaly.
(This includes the case: i +n+ 1 = p.)
Proof. If not then v;y,4+1 < Viqy for n < p by(4). Contradiction!

(6) Let i < u. There is a maximal j < ¢ such that j is not an anomaly.

Proof. Suppose not. Then ¢ # 0 is an anomaly and for each j < i
there is j' € (j,4) which is an anomaly. But then 7 is a limit ordinal,
hence not an anomaly.

By(5) and (6) we can define:

Definition 4.2.12. Let ¢ < pu. We define:

e [(i) = the maximal j < ¢ such that j is not an anomaly.
e 7(i) the least j > i such that j + 1 is not an anomaly.

Definition 4.2.13. An interval [I, 7] in u is called passive iff i is an anomaly
for [ < i < r. A passive interval is called full if it is not properly contained
in another passive interval.
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It is then trivial that:
(7) [1(4), (z)] = the unique full I such that ¢ € I.

(8) Let [I, 7] be a full passive interval. Then, for all i € [I,7]:

(a) Nl :Nz
(b) If j <land j <; 1, then j <4 .
(c) If j > r and i <4 j, then r < j.

Proof. This follows by induction on j, using the general fact about padded
iterations that if j is not active, then:

o Nj=Nji
e h<;j<«—h<;j+1

o j<jh+—j+1<sh. QED(8)

(9) Let b be a branch of limit length in I. There are cofinally many i € b
such that ¢ is not an anomaly.

Proof. Let j € b. Pick i € b such that ¢ > r(j). Then [(:) > r(j), since
r(j)+1 <iis not an anomaly. Hence [(i) € b and I(7) > j is not an anomaly.

QED(9)

We define N} for i < p exactly as if I’ were an iteration: Let h = T"(i + 1).
Then:

N} =: N;||y where ~ is maximal such that 7/ is a cardinal in N;||~.

We then get the following version of Lemma 4.2.8.

Lemma 4.2.15. Let I' be a copy of I induced by o. Let h = T(i +1). If
i+ 1 is not an anomaly. Then the conclusion (i)-(vi) of Lemma 4.2.8 hold.
If i + 1 is an anomaly, then (v), (vi) continue to hold.

Proof. If i + 1 is not an anomaly, the proof are exactly as before. Now let
i+ 1 be an anomaly. (iv) is immediate by II (j) in the definition of “copy”.
But then (vi) follows as before.
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QED(Lemma 4.2.15)

Lemma 3.3.20 is strengthened to:

Lemma 4.2.16. I has at most one copy I'. Moreover the background iter-
ation I is unique.

Proof. The first part is proven exactly as before (we imagine I” to be a
second copy and show by induction on i that I'|i = I”|i). The second part
is proven similarly, assuming I’ to be a second background iteration.

QED(Lemma 4.2.16)
The concept duplication induced by o is defined exactly as before. Now let:
D={(I,I' {o; :i <n))

be a duplication of length n+ 1. We turn this into a potential duplication D
of length n + 2 by appointing a v¢ such that ve > v; for 0 <i <n.

By a realization of D of length n + 2 by appointing a v, such that vy <V
for 0 < i < . By a realization of D, we mean a duplication D= (I J, (i

i <n+1)) of length n + 2 such that Djp+1 = D and Uy = vy. It follows
easily that D has at most one realization.

Our analogue, Lemma 4.3.2, of Lemma 3.4.16 will continue to hold as stated
if we enhance the definition of ezceptional point as follows:

Definition 4.2.14. i is an ezceptional point (i € EX) iff either:
1 <7 i, (1,]7 has no drop, and p' < Xin M
or there is an anomaly h <7 ¢ such that:

(0, )7 has no drop, and p* < k in N*.

With this change Lemma 4.3.2 goes through exactly as before. As before,
we derive this form Lemma 4.3.5. The proof is as before. As before the
condition i 4+ 1 ¢ EX guarantees that the map o; will always have sufficient
preservation when we need it.

When we worked under the special assumption Lemma 4.3.3 was our ana-
logue of Lemma 3.4.17. In the presence of anomalies the situation is some-
what more complex. We first note:

Lemma 4.2.17. Let D = (I,I',{(0; : i < 1)) be a potential duplication of

length n+ 2. If n+ 1 is an anomaly, then D is realizable.
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Proof. Form Ny 1,70 n+1 : N* — Ny41 and oy41 as in I1(j). Set: N,H_l =
N,,. The verification of I, II, III is straightforward.

QED(Lemma 4.2.17)

Now suppose that 7+ 1 is not an anomaly. Let h = T'(n + 1). Then 7 is an
active point is any realization of I, so we set: 7, = V7/7. In order to realize D,

we must apply F = E,],\:][” to My, getting:
Thy » My —p My
Similarly we apply F’' = EZ]" to IV, getting:
Tyt Ny =5 Nyt

We then set:
Ty1 (Thn (f) (@) = Thpon(f)(on(e))
for f € I (ky, M), a0 < Ay

We must also extend I. Since Uy = vy and N, is an initial segment of Nm

we have: .
F =g

Vn

Now let: k =T (n+1). (k can be different from h!) III constrains us to set:
Tt Ny — 5 Nyt
However, IIT also mandates that Nn+1 = N,4+1. Happily, we can prove:

Lemma 4.2.18. Let D = (I, I, (0; : i < 1)) be as above, where n+ 1 is not
an anomaly. Then:

(a) N; = N;.

(b) D is realizable iff N,y is *-estendible by F".

Proof. We first prove (a). Let h =T'(n+1). Set:

Then h € [l,r] where [ is not an anomaly, j + 1 is an anomaly for | < j < r,
and r + 1 is not an anomaly. h is least such that «;, < XN or h =n. k =
T'(n+1) is least such that &+ 1 is not an anomaly and r; < A;. Since j is
not an anomaly for [ < j < r, we conclude that £ = r. Then N; = Nj for
[<j<r.
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Case 1. h =1.

Then Nh = N}, and:
Ny = Ny = Nplly

where v is maximal such that 7, is a cardinal in Np||y. QED(Case 1)
Case 2. | < h.

Then h = j + 1 where [ < j. Np is a proper segment of Np. We again have:
N, = Np||y where v < Ony, is maximal such that 7, is a cardinal in Np||y.

We have r = T'(y 4+ 1) and N;'; = N,||%, where 4 < Ong  is maximal such
that 7, is a cardinal in NT|W. But pf, = kj, where h = j +1 by Lemma
4.2.14 (4). Since N} <k, <7 < A} and Ny is a properAsegment of N, = N,
we conclude that 4 < Ony,. Hence v =4 and Ny = Np. QED(a)

We now prove (b). If ]\7; is not extendable by F’, then no realization can

exists, so assume otherwise. This gives us IV, 11 and 7T;w7+1, where Ny 11 =
Nypt1 and 71 = m, o, where k = T"(n + 1). oy41 is again defined by:

Oy (That1(£)(@) = 7 100 () (o9 (@)

for f € I'"(ky, My;), 0 < Ayj. The verification of I, 11, III is much as before.
However Case 2 splits into two subcases:

Case 2.1. 1 <pn+1.
This is exactly as before.
Case 2.2. 0 <rn+ 1.

Then there is j <7 h such that j is an anomaly and (0,7 + 1] has no drop.

Moreover, p! > k in N*. Then oy, is a E(()m)—preserving where m < w is
maximal such that k < p™ in N*. The rest of the proof is as before.

Case 3 also splits into two subcases:
Case 3.1. 1 <rn+1.

We argue as before.

Case 3.2. 0 <rn+1.

Then j <; h, where j is an anomaly and p' < k in N*. Hence p! < &y, in
M}, and we argue as before. QED(Lemma 4.2.18)

Using Lemma 4.2.14 (9) we get:
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Lemma 4.2.19. Let D = (I,I',(0:)) be a duplication of limit length p1. Let
b be a cofinal well founded branch in I. Let X be the set of i € b which are
not an anomaly. Let:

V=1{j:\JieXj<ri},b={j:\/ieXj<ri}.
Then D has a unique eztension to a D of length v+ 1 such that:

fj-m{lu} — B,T/”{,U} — b/,T77{M} — b

The proof is left to the reader.

Now let S be a successful normal iteration strategy for N. We define an
iteration strategy S* for (N, M, \) as follows:

Let I be an iteration of (N, M, \) of limit length u. We ask whether there
is a duplication (I,I’, (0¢)) induced by o*. If not, then S*(I) is undefined.
Otherwise, we ask whether S(I) is defined. If not, then S*(I) is undefined.
If not, then S*(I) is undefined. If b = S(I), define ¥,b as above and set:
S*(I) = b. Tt is easily seen that if I is any S*-conforming normal iter-
ation of (N, M,\), then the duplication (I,1’, (o)) exists. Moreover I is
S-conforming. In particular, if I is of limit length, then S(I) is defined.
Moreover, if I is of length n+1, and v > v; for ¢ < 7, then by Lemma 4.2.18,
we can extend I to an I of length 1 4 2 by setting: v, = v. Hence S is a
successful iteration strategy.

This proves Lemma 4.2.7 at last!

We note however, that our strategy S* is defined only for strict iteration of
(N, M, \). We can remedy this in the usual way. Let:

I= <<Ml>7 <Vi 11 € A), <7Tij>7T>

be a padded iteration of (N, M, \), of length p. Let h be the monotone
enumeration of:
{i:i=0Vie AVi+1=p}.

The strict pullback of I is then:
I = (M), (), (i), T)
where: '
M; = My, Vi = Vn(i)s Tij = Th(i),h(i)

and:
iTj <— h(i)Th(j).
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I is a strict iteration and contains all essential information about I. We
extend S* to a strategy on padded iteration as follows: Let I be a padded
iteration of limit length p. If A is cofinal in p, we form I, which is then also
of limit length. We set:

S*(I) = b, where S*(I) = b,

and b = {i: \/j(i <p h(j))}. If A is not cofinal in u, there is j < p such
that AN [j,u) = 2. We set:

S*I)={i<p:iTjVvy<i}.
It follows that I is S*-conforming iff I is S*-conforming.

Since I is strict, we have I, I, (0; : i < i), (where i is the length of I).
We shall make use of this machinery in analyzing what happens when we
coiterate N against (N, M, o). This will yield the “simplicity lemma” stated
below.

Note. We could, of course, have defined I’, I and (0 : 1 < p) for arbitrary
padded I, but this will not be necessary.

Building upon what we have done thus far, we prove the following “simplicity
lemma”, which will play a central role in our further deliberations:

Lemma 4.2.20. Let N be a countable premouse which is presolid and fully
wi+1 iterable. Let (N, M, o) be witnessed by o. Set Q¥ = N, Q' = (N, M, o).
There exist successful wi +1 normal iteration strategies SO, S for QV, Q1 re-
spectively such that (I°, I') is the coiteration of Q°, Q"' by S°, S' respectively
with coiteration indices v;, then the coiteration terminates at p < wy with:

Iy = ((Qi), (vi), <7Tzoj>7TO>

I = (M), (), (), TY)
such that:

(a) M,<Q,.
(b) 1 <p1 pin I,
(c) There is no drop point i +1 <p1 p in It
In the next section we shall use this to derive the solidity lemma, which says

that all mice are solid. We shall also us eit to derive a number of other
structural facts about mice.
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We now prove the simplicity lemma.

Let N be countable, presolid and fully w; + l.iterable. Let (N, M, \) be a
phalanx witnessed by o. (Recall that this entails A € M and A = crit(o).
Moreover, o is Eén)—preserving whenever A < p%/). Fix an enumeration
e ={e(n) :n <w) of OnNN. Suppose that 0 : N —x+ N’. We can define

a sequence €, € N'(i < w) as follows. By induction on i < w we define:

e; = the least n € N’ s.t. there is some ¢’ : N —s5« N’
with o/(ep,) = €, for h < i and n = o’(e;).

It is not hard to see that there is exactly one ¢’ : N — s« N such that
o'(ej) = €} for i < w. We then call ¢’ the e-minimal embedding of N
into N’. The Neeman-Steel Lemma (Theorem 3.5.8) says that N has an
e-minimal normal iteration strategy S with the following properties:

e S is a successul w; + 1 normal iteration strategy for N.

e Let N’ be an iterate of N by an S-conforming iteration I. Let o :
N —y« M < N'. Then I has no drop on its main branch M = N’
and the iteration map 7 : N — N’ is the e-minimal embedding.

Hence, in particular, if M is a proper segment of N’ or the main branch of
I has a drop, then there is no YX*-preserving embedding from N to M.

From now on let e be a fixed enumeration of Ony and let .S be an e-minimal
strategy for N. TLet S* be the induced strategy for (N, M,\). Coiterate
Qo = N against My = (N, M, \) using the strategies S, S* respectively. Let
(I, I') be the coiteration with:

Il = <<MZ>7 <VQ>7 <7T7?j>7T0>

)

19 = ((Qa), (vi), (i), TY)
and coiteration indices (v; : 1 <i < p) where p+ 1 < wy is the length of the

colteration.

We note some facts:

(A) If N’ is any S-iterate of N (i.e. the result of an S-conforming iteration),
then there is no Y*-preserving map of N into a proper segment of N'.

(B) Call N’ a truncating S-iterate of N iff it results from an S-conforming
iteration with a truncation on its main branch. If N’ is a truncating
S-iterate, then there is no ¥*-preserving embedding of N into N’.
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(C) If N’ is a non truncating S-iterate of N, then the iteration map w :
N — N’ is the unique e-minimal map.

Now form the strict pullback I of I' as before. Let I be of length
1+ 1. I will then be of length i+ 1. Let I', I, (0; : i < fi) be defined
as before. Set: N' =: N';, N =: Nﬂ, o = U;l. The following facts are
easily established:

(D) N is an S-iterate of N. Moreover: o' : M,, —x, N’ where N’ < N.

(E) If there is a drop point ¢ + 1 <71 g which is not an anomaly in It
then there is ¢ + 1 <o £ which is not an anomaly in I. Hence N is a
truncating iterate of N and o’ : M, —x- N.

(F) If there is no anomaly 7 + 1 <p p in I, then there is no anomaly
i+1<ppin 1.

(G) Suppose 0 <71 p and no ¢ + 1 < p is an anomaly. Hence the same
situation holds in I. Then N is an S-iterate of N by the iteration map
0,71'67“ (since (j'ﬂﬁ'o# = ﬁ'o,ﬂ).

We now prove the simplicity lemma. We do this by eliminating all other
possibilities.
Claim 1. @, is not a proper segment of M,,.

Proof. Suppose not. Then @, is a non-truncating iterate of N with iteration
map 7r87u. Hence 0'/7'(8”“ : N —y+ 0,(Qp), where 0,(Q,,) is a proper segment
of N and N is an S-iterate of N. Contradiction!

QED(Claim 1)

Claim 2. There is no truncation point ¢ +1 <71 & such that ¢ 4+ 1 is not an
anomaly in I'.

Proof. Suppose not. Then ¢’ : M, —5- N, where N is a truncating S-
iterate of N. I is truncation free on its main branch, since I' is not. Hence
Qg <4 M,,. Hence, QB < Mj, by Claim 1. Hence:

0'7r8,1 : N —5- N,
where N is a truncating iterate of N. Contradiction!
QED(Claim 2)

Claim 3. No i + 1 <;1 p is an anomaly in 1.
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Proof. Suppose not. Then x; = x and 7; = A\. Hence 7; < o()\) = 1.

Thus M = N*, where N* = N||n, n being maximal such that A is a cardinal
in N||n. By Claim 2, there is no drop point j + 1 <71 u such that i < j.
Hence:

To t N* —rs M.

Kk = p¥ in N* since p¥ < k by the definition of N*, but p* > k since N* € N
and k is a cardinal in N. But k; = crit(wé,u). Hence k = p* in M,,.

Q. = M, as above. Moreover the iteration IV is truncation free on its main
branch, since I' is not. Thus:

7r8’u N — s M,
Hence k{ > p%; for i + 1 <g0 p, since otherwise p%@ > \; > k. Hence:
PN =Py, =K
and:
P(k) NN =P(k) NQ, =P(k) N M, =P(r) N N*.
This is clearly a contradiction, since N* € N and card(N*) = k in N. Hence
by a diagonal argument there is A € P(k) N N such that A ¢ N*.
QED(Claim 3)
It remain only to show:

Claim 4. 1 <1 p.

Proof. Suppose not. Then o <71 p. By Claim 3 there is no anomaly on
the main branch of I'. Hence, if k; < A and i + 1 <j1 pu, we have 7; < \.
But then M* = N. By claim 2 there is no drop on the main branch of It
Hence: '

T i N —rme M.

M, <@, by Claim 1. Hence M, = (,, since otherwise 7Té“u would map N
into a proper segment of an S-iterator of N. Thus we have:

0 .
79 i N —s M,

1

Set: 7V = 7r8u,7r = 776#. We claim:

Claim. 7% = 7!

Proof. Suppose not. Let i be least such that 7%(e;) # 7t (e;). Then 7l (e;) >
7%(e;) since the map 7°, being an S-iteration map, is e-minimal. But o’z
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is the S-iteration map from N to N. Hence o'n'(e;) < o'n%(e;), since
o'm’ : N —5« N. Hence 7'(e;) < 7°(e;). Contradiction!
QED(Claim)
Let i, + 1 <gn p with o = T"(i;, + 1) for h = 0,1. Then k;, = ;, = crit(n),
where m = 778# = ﬂé}u. Set:
F'= g% F' = )P
Vi()’ Viq :
Then:
FMX) =l 11(X) for X € P(k;,) N N.

Thus:

a€ F'(X) +— acn(X)fora<),,
ince 7 = B .. But then v, # v, since otherwise FO € JE !
since T = 4, © 7y, 1. But then vy, £ 41, since otherwise F© € J,

M;
by the initial segment condition, whereas v;, is a cardinal in ‘]VEn ', Contra-
diction! Similarly v;, £ v;,. Thus ig = 4; = ¢ and FO = Fl. But then y; is
not a coiteration index! Contradiction.

QED(Claim 4)

This proves the simplicity lemma.

4.3 Solidity and Condensation

In this section we employ the simplicity lemma to establish some deep struc-
tural properties of mice. In §4.3.1 we prove the Solidity Lemma which says
that every mouse is solid. In §4.3.2 we expand upon this showing that any
mouse N has a unique core N and core map o defined by the properties:

e N is sound.
e 0 :—y N.
* p5- = py and o [pf = id.
o a(piﬁ) = py for all 4.
In §4.3.3 we consider the condensation properties of mice. The condensation

lemma for L says that if 7 : M —y, J, and M is transitive, then M <
Jo- Could the same hold for an arbitrary sound mouse in place of J,7 In



442 CHAPTER 4. PROPERTIES OF MICE

that generality it certainly does not hold, but we discover some interesting
instances of condensation which do hold.

We continue to restrict ourselves to premice M such that M||a is not of type
3 for any a. By a mouse we mean such a premouse which is fully iterable.
(Though we can take this as being relativized to a regular cardinal k > w,
ie. card(M) < k and M is fully x + 1-iterable.)

4.3.1 Solidity

The Solidity lemma says that every mouse is solid. We prove it in the slightly
stronger form:

Theorem 4.3.1. Let N be a fully wy+1-iterable premouse. Then N is solid.

We first note that we may w.l.o.g. assume N to be countable. Suppose not.
Then there is a fully w; + 1 iterable N which is unsolid, even though all
countable premice with this property are solid. Let N € Hy, where 0 is a
regular cardinal. Let o : H < Hy, o(N) = N, where H is transitive and
countable. Then H is a ZFC™ model. Since o [ N : N < N, it follows by a
copying argument that N is a wy + 1 fully iterable (cf. Lemma 3.5.6.). Hence
N is solid. By absoluteness, N is solid in the sense of H. Hence N is solid
in the sense of Hy. Hence N is solid. Contradiction!

Now let a = p% for some n < w. Let A € a. Let M = N be the A—th
witness to a as defined in §4.1. For the reader’s convenience we repeat that
definition here. Let:

Pt < <pin N;b=:a~(A+1)
Let N = N be the I-th reduct of N by b. Set:
X = h(AUb) where h = hy is the $1-Skolem function of N.

Then X = h”(w x (X x {b})) is the smallest ¥1-closed submodel of N con-
taining AU b. Let:

G : M +— N|X where M is transitive.

By the extension of embedding lemma, there are unique M, o, b such that
o D0 and:
M=M" 6:M —s N and o(b) = b.

Then N} =: M and o) =: 0.
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It is easily seen that o witnesses the phalanx (N, M, ). Employing the
simplicity lemma, we coiterate (N, M, \) against N, getting (I"V, I'M), ter-
minating at n, where:

o IV = ((N;), (M), <7r£}[),TN> is the iteration of N.

o IM = ((M;), (WM), (7T5;»1>,TM> is the iteration of (N, M).

(2

(v; 11 < n) is the sequence of coiteration indices. We know that:

Mn Ny,

I'™ has no truncation on its main branch.

1 <pm .

It follows that x; > A for ¢ <pm 7. Moreover v; > A for ¢ < n, since
M|\ = N|\.

We consider three cases:

Case 1. M, = N,, and I™ has no truncation on its main branch.
We know that pht! <\, since every € M is Egl)(M) in A\Ub. But k; > A

for ¢ <pm 7.

Hence:

(1) PA)N M =P(\) N M, and ph, = p%ﬁ for h > i. But then x; > plji,rl
for j <pw~ 7, since otherwise:

N 1 o 41 _ 141 ,
i <SUDT 1" PN S PN, = g, S A <K

where h = TV (j 4+ 1). Hence for h > [ we have:

(2) ply = Pl and P(p") N M =P(p") N N.

Recall, however, that a = p};, where m > [. Since every x € M is Egi)(M)
in AUb, there is a finite ¢ C A such that cUb € PJ,. Let A be Zgn)(M) in

cUb such that ANp"™ ¢ M. Let Abe Egn)(N) in ¢Ub by the same definition.
Then: -
ANnpt=AnNp" €N,

since cUb <, a = ply. Thus,

P(p") N M # B(p") NN,
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contradiction! QED(Case 1)
Case 2. M, is a proper segment of IV,,.

Then M, is sound. Hence M did not get moved in the iteration and M = M,,.
But then IV is not moved and N = N,,,n = 0, since otherwise v is a cardinal
in NV,,. But then A < 1 < Onys and p5; < A < vy, where M is a proper
segment of INV,,. Hence v is not a cardinal in IV,,. Contradiction!

QED(Case 2)
Case 3. The above cases fail.

Then M, = N, and I N has a truncation on its main branch. We shall again
prove: M € N.

We first note the following:

Fact. Let (). be acceptable. Let 7 : Q —7, @', where P <k < plin
Q, k = crit(F'). Then:

=M@ NB(k) = 2(Q) N P(x) for n > i.

Note. It follows easily that:
2M(Q) nP(H) = 2 (Q) N P(H)
where H = H? = HY'.

We prove the fact. The direction D is straightforward, so we prove C by
induction on n > 4. The first case is n = i. Let A C k be Egz)(Q’) in the
parameter a. Then:

Ag \/z € HZQ, B'(2,¢,a)
where B’ is Egl)(Q’). But then 7 takes Hy, cofinally to HY,. Hence:
A +— \ue H)\/ z € m(w)B'(7,¢,a).

Let a = w(f)a where f € T"(k, Q) and a < A\(F) = F(k). Let B be E(()i)(Q)
by the same definition as B’. Then:

A \/u € Hb{C <K: \/z € uB(z,§, f(a))} € Fy,

where F,, € ¥,(Q) by closeness.
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This proves the case n = i. The induction step uses the fact that pg = pg,,
for n > 1. (Hence Hy) = H{),.)

Let n =m+ 1 > i and let it hold at m. Let A C k be Egm)(Q’). Then:
Ae «— (H3, Bi,...,Bi) F o
where ¢ is a X; sentence and:
B?:{ZGHg g2y eBY (h=1,...,r)

and B" is ng)(Q’). We may assume w.l.o.g. that B" C H. But then B" is
Egm)(Q). Hence A is Zgn)(Q).

QED(Fact)
Recall that p't! < X < p! in M. Using this we get:

(1) There is a Egl)(M) set B C A which codes M (in particular, if @ is a
transitive ZFC™ model and B € @, then M € Q.)

Proof. Recall from the definition of M that:
M = M"" = hyz(w x (A x {€})), where €= b0 p};.
Thus we can set:
M={<ié~=€M:i<w &<\ and hy;(i, (£c)) is defined}.

For <i,& =€ M set: h(<i,& =) = hy(i, < €, =). Let M = (JF F).

We set:
o &= {(x,y) € M?: h(z) € h(y)}
o = {(z,y) € M?: h(z) = h(y)}
° E::{xEM:h(x)EE}
. F::{xGM:h(:E)GF}
Then:

(M,&,E,F)/T=(JE F)= M.
Let B be a simple coding of <M, € F, F>, e.g. we could take it as the
set of < &, 5 > such that one of the following holds:
o j=0NEEM
o j=1NE{==<&, & = with §€&
o j=2NE=<&,& - with &I&
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e j=3AEcE
oj:4/\f€F.

It is clear that if B € Q and Q is a transitive ZFC™ model, then M
is recoverable from B in @ by absoluteness. Hence M € Q. But
M = M4 and M is recoverable from M in @ by absoluteness. Hence
M € Q.

QED(1)
Let j+1 be the final truncation point on the main branch of IV. Then:

Bis 2V (Nj41).

Proof. Let B be Egl)(M) in the parameter p. Let B’ be E@(Mn)
in m(p) by the same definition, where m = w%. Then B = AN B’ is
Zgl) (N,). Let i be the least ¢ >7 j+1in IV set. Bis Egl)(Ni). iisnot a
limit ordinal, since otherwise lub{ky, : h <y~ i} =lub{k, : h <i} > A
and there is h <p~ i such that r, > A and a € ng(n),), where B is
Egl)(Ni) in the parameter a. Hence B is Egl)(Nh). Contradiction! But
then i = k+ 1. Let t = TN(k+1). If k > j, then t > j + 1 and

K > Aj > A > pl]\'/[H = plNzl = pé\};l. By the above Fact we conclude

that B € zgl)(Nt) where ¢ < ¢. Contradiction! Hence i = j + 1.
QED(2)
We consider two cases:

Case 3.1. k; > \.

By the Fact, we conclude that B is ;gi) (N ;) is a proper segment of
N¢, where t = TN(j + 1). Hence B € Egi)(N;‘) C N. But then
BNP(A)NN C Jf(I;), since o(A) > A is regular in N. Hence JUE(J;) is
a ZFC™ model and M € Jf(];,) CN.

QED(Case 3.1)
Case 3.2. Case 3.1 fails.

Then k; < A. But 7; > A, since otherwise 7; < A is a cardinal in M,
hence in N. Hence N7 = N and no truncation would take place at
j + 1. Contradiction! Thus:

A=r1=:7j, N; = N"= N||v, kj = K,

where & is the cardinal predecessor of A in M and v > X is maximal
such that 7 is a cardinal in N||y. Then:

. * * _ N _ N
(1) m: N* —% Njy1 where 7 =7y, F'= Ey,
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Since:
i1y - Njp1 —s My and crit(mjpry) > A,

we know that:
(2) p < X< plin Nj

By the definition of N* we have: pR. < A. But pR. > K, since & is a
cardinal in NV and N* € N. Hence:

(3) PR+ = k.
Now let: p't! <k < p’ in N*. Then:
P <k <A< phin Njy,
since:
LI » ot 1
A <sup7’A = A(F) < supn”ply = ply, ., ;-
Hence ¢ = [ and:
(4) p* =k < plin Njiq.
We now claim:

(5) B € Def(N*), i.e. B is definable in parameters from N*. Hence
BeN.

Proof. For { < X define a map g¢ : kK — & as follows:

For a < k set:

e X, = the smallest X < J/]\EN* such that a U {¢} € X.
e Cc={a<k:XcokCal.

For o € Cg, let o¢ : Q¢ TRAEN X¢ be the transitivator of X¢. Set:

o 1(¢) ifacC
= {7¢ ¢
9¢() {@ if not

It is easily seen that:
7(g9¢)(k) = & where m = 7'(‘[])\7[]-+I.
Since B is 2&1) (Nj41) we have:

N
B¢ +— \/z € JgVHIB’(z,C,a)

J+1

for some a € Nj;1. But 7 takes cofinally to 'Ole+1' Hence:

B +— \/u S JfN]\iv \/z € n(u)B'(z,(,u).
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Let f € T'(k,N*) such that a = 7(f)(a),a < A. We know that
£ = m(g¢)(r) for & < A. But then the statement B¢ is equivalent to

\/u € Jp}?rvj\iv{w, J9) : \/x € uB"(z,g¢c(1), £(0))} € Fii,a)

where F' = Ei\jj and B” is Z(()l)(N*) by the same definition. But F )
is X;(N*) by closeness. QED(5)

But then B €Def(N*) C JEZT) C N. Hence M € N.
QED(Lemma 4.3.1)

4.3.2 Soundness and Cores

Let N be any acceptable structure. Let m < w. In §2.5 we defined the set
R} of very good n-parameters. The definition is equivalent to:

a € R" iff a is a finite set of ordinals and for i < n, each z € N||p*
has the form F(£,a) where F is a Zgz) (N) map and & < p'th.

We said that N is n-sound iff R}, = Py. It follows easily that IV is n-sound
iff p" € R"™, where p" = p}; is the <,-least p € P". We called N sound iff
it is n-sound for all n. It followed that, if N is sound, then p"~p’ = p’ for
P <n<w.

We have now shown that, if NV is a mouse then p"~p’ = p’ for i < n < w,
regardless of soundness. We set: p* = (J Then p* = p™ whenever
p" = p“ in N. We know:

7
n<wp :

Lemma 4.3.2. If N is a mouse and 7 : N —ss« N strongly, then N is a
mouse and m(p5;) = P

Proof. N is a mouse by a copying argument. Hence N is solid. But then
ﬂ(piﬁ) = P4 for all i < w, by Lemma 4.1.11.

QED(Lemma 4.3.2)
We know generalize the notion RY; as follows:

Definition 4.3.1. Let p%, < p € N,a € RS\P,L) iff a is aa finite set of ordinals
and for some n,

e p"<p<p*lin N.
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e Every z € N||p"! has the form F(g7 a), where &1,...,& < pand F
is 2"V ().

e If j <n—1, then a € R}

We also set:

Definition 4.3.2. N is sound above p iff for some n, p" < u < p"tin N

and whenever p € Py then p\u € Rg\’;).

(It again follows that N is sound above p iff plt~p € RE\‘;).) We prove:

Lemma 4.3.3. Let N be a mouse. Let p3y < pu € N. There is a unique pair
o, M such that:

e 0: M —yx« N

o M is a mouse which is sound above u
*

e olp=id and o(p};) = py-

Before proving this, we develop some of its consequences.

Definition 4.3.3. Let N be a mouse. If M, o are as above, we call M the
p-th core of N, denoted by: core,(N), and o the y-th core map, denoted
by 0’5.

We also set: core(N) = corey (N) and oV = ajp\;v, M = core(N) is the core

of N, and ¢V is the core map.

We leave it to the reader to prove:

Corollary 4.3.4. Let N be a mouse. Then:

e core,(core,(IN)) = core, (V).
e N is sound above i iff N = core,(N).

e Let M = core,(N), 1t < p, M = coreg(M). Then M = corez(M) and

N_M _ _N
JNUE _O—H'

We now turn to the proof of Lemma 4.3.3. By Lowenheim-Skolem argument
it suffices to prove it for countable N. We first prove uniqueness. Suppose
not. Let M,m and M’,n’ both have the property. If x € M, then x =
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F(g, Py) where F'is good and &1,...,& < p, since M is sound above pu.
Hence: 3

m(x) = F(§, Py)
where F has the same good definition over N. But then in N the ¥* state-
ment holds:

\yy=F(E Py).

(This is ©* since it results from the substitution of F/(&, Pf;) in the formula
v =v.) Hence in M" we have:

\Vyy=F(P),
where F’ has the same good definition over M’. Thus rng(7) C rngn’'~! and
7'~l7 is a L*-preserving map of M to M’. A repeat of this argument then
shows that rng(n’) C rng(n~!) and «'~!7 is an isomorphism of M onto M’.
But M, M’ are transitive. Hence M = M’ and 7 = 7'.

QED

This prove uniqueness. We now prove existence. Let a = pj;. Let ptl <
< pt Set N =N"™"% Let b=anpy and set:

X = hy(pUb) = the closure of 1 Ub under ¥ (N) functions.

Let ¢ : M <~ N|X be the transitivazation of N|X. By the downward
extension lemma, there are unique M, o D 7, a such that:

M=M"" o:M g N, o(a) = a.

Clearly, o [ u = id. Moreover, a € R(M“). It suffices to prove:

Claim. ¢ is X*-preserving and @ = p};.

If o = id and M = N, there is nothing to prove, so suppose not. Let
A = crit(o). (Hence u < \.) There is then a h < n such that p'*+! < X < ph
in N. X\ is a regular cardinal in M, since o(\) > A. It follows easily that
o witnesses the phalanx (IV, M, \). Note that p%, < pu < A, since a € R(HN).
We now apply the simplicity lemma, coiterating N, (N, M) with:

N = ((N3), (), (mip), T)

7

M = (M;), (1), (m), T)

(2

being the iteration of N, (N, M, \) respectively. We assume that the iteration
terminates at an 7 < w; and that (v; : 1 < i < n) is the sequence of coindices.
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It is now time to mention that some of the steps in the proof of solidity go
through with a much weaker assumption on the phalanx (N, M, \) and its
witness o. In particular:

Lemma 4.3.5. Let o witness (N, M, \), where REQ) #+ &. If cases 2 or 3
hold, then M € N.

The reader can convince himself of this by an examination of the solidity
proof. But the premiss of Lemma 4.3.5 is given. Hence:

(1) Case 1 applies.

Proof. Suppose not. Let A be Zgh)(N) in a such that AN pht! ¢ N.
Let A be Egh)(M) in @ by the same definition. Then A N pht =
ANnphtt € N, since A € (M) € N. Contradiction!

QED(1)
Then M, = N,, and there is no truncation on the main branch of IN.
Then 71{\7/[,] : M — s+ M,. Hence, by a copying argument, M is a
mouse, hence is solid. Since crit(w{v‘[m) > A, we have:
_ P i :
(2) POAN) N M =P(\) N M, and p, = P, for i > h.
But:

(3) crit(mf,) > p"*.

Proof. Suppose not. then there is j + 1 <;~ 7 such that x; < ph Tt

Let j be the least such. Let t = TV (5 + 1). Then:

A s b+l el h+1l _ htl _
Kj <Sup Tjy1 Py~ < PNji1 < PN, =Py > Kj-

Contradiction!
QED(3)
Hence:
(4) pby = ph, for i > h. Moreover if p' = pi;, then P(p') N N = P(p') N M
for i > h.

Using this we get:

(5) 0 : M —x+ N.
We first show that o is X*-preserving. By induction on ¢ > h we show:

Claim. o is Egi)—preserving.
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For ¢ = h, this is given. Now let ¢ = k + 1 > h and let it hold for k.
Let A be Zgz)(M). then:

Az «— (H' . B.,....B)) = ¢
where ¢ is a Y1-sentence and:
Bi{zc H': (z,x) € B'},

where B! is ng)(M) forl=1,...,7. Let A’ be Egk)(M) by the same
definition. Then:

Bim < Bi’o_(x) fOI‘ z e H:]L\/{ — H}V

Hence Az +— Alo(z).
QED(5)
But

(6) o is strongly 3*-preserving.

Proof. Let p™ = p* in M and N. Let A be ng)(M) in x such that

ANp™ ¢ M. Let A’ be Egm)(M) in o(x) by the same definition. Then
Anpr=A"Np™ ¢ N, since P(p™) N M =P(p™) N N.

QED(6)
But then o(Pj;) = Pj. Hence Py, = a = o' (Py). We know that

)

a e R%} . Hence M is solid above pu.

QED(Lemma 4.3.5)

4.3.3 Condensation

The condensation lemma for L says that if M is transitive and 7 : M — J,
is a reasonable embedding, then M < J,. It is natural to ask whether the
dame holds when we replace J, by an arbitrary sound mouse. In order to
have any hope of doing this, we must employ a more restrictive notion of
reasonable. Let us call ¢ : M —— N reasonable iff either ¢ = id or o
witnesses the phalanx (N, M, ) and p%;, < A\. We then get:

Lemma 4.3.6. If N, M are sound mice and 0 : M — N 1is reasonable in
the above sense, then M < N.

It ifs not too hard to prove this directly from the solidity lemma and the
simplicity lemma. We shall, however, derive it from a deeper structural
lemma:
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Lemma 4.3.7. Let N be a mouse. Let o witness the phalanz (N, M, \).
Then M is a mouse. Moreover, if M is sound above A, then one of the

following hold:

(a) M = corey(N) and o = o¥.

(b) M is a proper segment of N.

(c) m: N|ly —% M, where F = Fév such that:
(i) A<~ € N such that PNy < A

(i) A = &tV where k = crit(F).

(iii) F is generated by {x}.

Remark. In case (c) we say that M is one measure away from N. Then
7 is maximal such that A is a cardinal in N|[y. Hence pyj, < k. But &
is a cardinal in N and N||y € N. Hence py|y, = k. But 7 [ £ = id and
W(p}‘\,h) = p},;- Hence N||y = core(M) and = is the core map. Clearly, p is

least such that Eﬁ/l # Eév

Remark. Lemma 4.3.6 follows easily, since the possibilities (a) and (c) can
be excluded. (a) cannot hold, since otherwise M = corey(N) = N by the
soundness of N. Hence o3, = id. Contradiction, since crit(oy) = . If (c)
held, then N* = core(M) where N* = N||v, and = is the core map. But M

is sound. Hence M = N* = core(M) and = = id. Contradiction!

Remark. Lemma 4.3.7 has many applications, through mainly in setting
where the awkward possibility (¢) can be excluded (e.g. when A is a limit
cardinal in M). We have given a detailed description of (c¢) in order to
facilitate such exclusions.

We now prove Lemma 4.3.7. We can again assume N to be countable by
Loéwenheim-Skolem argument. We again coiterate against (N, M, \) getting
the iterations:

IN = (N, ..., TNy, IM = (M), ..., TM)

with coiteration indices (v; : ¢ < 7)), where the coiteration terminates at
n < wi. Then 7y, : M —x+« M, and M is a mouse by a copying argument.
Now let M be sound above A\. We again consider three cases:

Case 1. M, = N,, and IV has no truncation on the main branch.

We can literally repeat the proof in cases of Lemma 4.3.5, getting:

o is strongly X*-preserving.
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Hence o(p};) = py where M is sound above X and o = Uﬁ\v.
QED(Case 1)
Case 2. M, is a proper segment of IV,,.

We can literally repeat the proof in Case 2 of the solidity Lemma, getting:
M is a proper segment of V.

Case 3. The above cases fail.

Then M, = N,, and IV has a truncation on the main branch. Let j 4+ 1 be
the last truncation point on the main branch. Then M is a mouse and 7['%7 is

strongly X*-preserving. Hence ﬂ{\/[,](p}‘\/[) = p’jw{. But x; > A for all ¢ < 7.
Hence crit(m,,) > A. Hence:

My
M = corey(M,) and 11, =0, *,

since M is sound above A\. We also know:
ki > Aj > Aor j+1<pnvi+1<pnn.
Hence crit(ﬂﬁlm) > X and Wﬁm(p*zvjﬂ) = Py, = Ph,- Hence:

N; _
M = corex(Njt1) and o) """ = (wﬁlm) Lo ﬂ%.

We consider two cases:
Case 3.1. kj > A\

Then N7 is a proper initial segment of N;, hence is sound. Since k; > A,

it follows as before that M = corey(N*). Hence M = N 7 by the soundness
of N;. But this means that M was not moved in the iteration IM up to
t = TN(j + 1), since if h < t in the least point active in I*, then E,% #+ &

N*
and hence Ei\[f = E,;) =@. Hence N; # M. Contradiction!

Thus My = M = N; is a proper segment of N;. Hence the coiteration
terminates at ¢t < 1. Contradiction!

QED(Case 3.1)
Case 3.2. Case 3.1 fails.

Then x; < A. But 7; > A, since otherwise 7; is a cardinal in N and N; = N.
Hence j + 1 is not a truncation point in IV. Contradiction!
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Thus 7; = A. X is regular in M, since o(\) > A. But then A\ = /@;’ in M
and o(\) = fi;_ in N. Hence A is not a cardinal in N. EM = (), since )\ is a
cardinal in M. But Eﬁ\v = (), since otherwise k;, being regular in N, would

be regular in N||A. Hence N||A would be an active premouse of type 3. By
lemma 3.3.26 in §3.3, contradiction!

But 0 is inactive in IV and v, = the least v such that EM # EY. Hence
v; > 11 > A for all ¢ which are active in IV. Hence no i < t is active in IV,
since otherwise k; < A;. But t = T'(j + 1) is the least ¢ such that ¢ is active
in IV and kj < A¢. Contradiction!

But then N = N; and N} = N* = N||v, where v is maximal such that 7 = A
is a cardinal in N||y. Hence k; = x = the cardinal predecesor of 7 in N*.
K = pR=, since k is a cardinal in N and N* € N. We have:

kKi>Afor 1 <pmi+1<pmun

Hence crit(ﬂ{\’/{?) > \. But:

I{iZ)\tZ)\fOFj+1<TN’L.+].<TN7]

(N :
Hence crit(m}} ;) > A. Hence:

_ N;
M = corex(Nj41), (mhy ) omth =a)7",

PR+ < k. But then p§. = x since x is a cardinal in N and N* € N. Set
= Nj||v;. Then:

. AT *
41t N — % Njp

By closeness we have: F, € Y,(N*). Hence F, € X,(N*) C Nllo(r),
where o(7) is regular in N and v < o(7). Set: Q = N||r. By a standard
construction there is a unique triple (@, F, 7) such that F'is a full extender
at k with base Q, 7: Q — Q is the extension of (Q, F), F is generated by
{k} and F, = Fy. (To see this we note that F is a normal ultrafilter on Q
at k. Hence we can form the ultraproduct 7: Q — 7. Q. Q is well-founded
, since each element of @ has the form 7(f)(k) where feq, fi6—Q

and:
7(f)(k) € 7(g)(r) < {&: f(€) € 9(§)} € Fi
— W%-ﬁ-l(f)(/i) € Wi]Yi+1(g)(’<ﬂ)~

Set: F = 7 | P(k). Then @, F, 7 have the above properties. ) The
construction of @), F', & can be carried out in the ZFC™ model N||o(7), since
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Q.F,. € N||o(r). Then Q,F,% € N. It is easily seen that F is close to N*.
Hence we can form the »* ultrapower:

7 N* —% M.

M’ is transitive, since each of its element has the form 7(f)(x), where f €
I'™(k, N*) and as before:

T(f)(k) € (9)(r) = i1 (F)(K) € Tpi4(9) (k).

There is a Eénil) preserving map o: M’ — N, defined by:

o(m(f)(K)) = meit1(f) (%)

for f € T"(k, N*). Since 7 takes pR,_*l cofinally to pﬁ[,l and 7t,7 + 1 takes
Pt cofinally to p?v;il, we know that o’ takes pi.! cofinally to pf,!. Hence

o is Egn_l)—preserving. Since o [k = id and Kk > p%., it follows easily that
o’ is ¥* preserving.

Claim 1. M’ is sound above 7. Hence M = M’ = core,(Nj1).

Proof. Let p" <k < p" !in N*. Hence k = p" = p* in N*. Let z € M’
Then x = w(f)(k), where f € T™(k, N*).

By the soundness of N* we may assume:

—

f(§) = F(&,a,()

where F' is a good Egn_l)(]\f*) function, a = p%. and (1, ...,({ < k. Hence:

©(f)(r) = F'(k,7(a),C)
(n—1)

where F' is ;" 7/ (M’) by the same good definition, 7(a) = p’};,, and (<.
But x < 7, where p" < 7 < p"~!in M’

QED(Claim 1)
All that remains is to show:
Claim 2. (Q,F) = N||p for a pu <.

Proof. We note that if (Q, F) = N||u, then we automatically have p < ~,
since 7 is then a cardinal in N||p and 7 is maximal s.t. 7 is a cardinal in
Nlly.
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(1)

(@ F) eN.
Proof.(E,],\;”),{ = F, € Nllo(7), where Nl|o(7) is a ZFC™ model.

Hence (Q, F) € N||o(7) since the construction of (@, F) can be carried
out in N||o(7) by absoluteness.
Plor) ST

Proof. Asabove, let 7 : N||o(7) — @ be the extension map given by
F'. By §3.2 we know that 7 is ¥, ((Q, F')) and that (Q, F') is amenable.
But then there is a X;({a, 7)) partial map G of N||7 onto @ defined
by: G(f) =7(f)(k) for f € N||7,: f: x —> N||T.

QED(2)
Define a map ¢ : (Q, F') — N;l||v; by:

o(m(f)(k)) := 7 (f) (k) for f € N|r, f: x — Nl|r,

where 7 = 71'2[1- [(N||7) is the extension of (Njl||T, F).
Then:

7 :(Q, F) —x, Nj||lvj. In fact, it is also cofinal.
Gl7+1=id
Proof. Set:
it =: the least > i such that n =7 > w in Q
pl = (it i < k).
Then 7(pl)(rk) = k19 = wtNills = 7 (pl) (k).
Set:
F={feN|r:f:k—rAf(i)<itfori<k}
<={{f,g) €T :{i: f(i) € g(1)} € Fic}

Then every & < 7 has the form 7(f)(k) fo an f € I". Clearly, f<g +—
7(f)(a) < m(g)(a) for f,g € T'. Hence by <-induction on g € T:

m(9) (k) = {7(r) : f<g}.
N,

But Fi; = (Ey;)x. Hence the same holds for 7 in place of 7. Thus, by
<-induction on g € I":

T(g) (k) = {7 () : f<g} = {m(r) : f<g} =7(f)(K).
Hence 6 |7 = id. But:
a(r) =o(@(pl) (k) =7 (pl) (k) =T
QED(4)

Redoing the proof of (2) with more care, we get:
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(Q.F)
Proof. X C k and X = k are both 3;((Q, F')), since:

X Ckrk+— Xedom(F), X =k +— X € OnNdom(F).

Thus this suffices to show that 7 is X;((Q, F')). We note that if f :
X 2% 4 and u is transitive, then 7(f) : T(X) ont m(u) and 7(u) is
transitive. But 7(X) = F(X) for X C k. Hence y = 7(x) can be

expressed by saying that there are:
XY, fu, XY f
such that:
\Vu /XY €dom(F)Af: X S unz = f(0)
ANNECEX(f(E) € F(Q) ==& (=€)
AX'=F(X)ANY' =FY)Af X' 280/ Ay = £(0)
ANNECEX(F1(€) € '(¢) ==&, ¢ - Y)

QED(5)
We then prove:

One of the following holds:

(a) (@, F) = core-(N,||v;) and & is the core map.
(b) (@, F) is a proper segment of N;||v;
(©) p* > 7in (@, F).

Proof. If 5 = id, (@, F) = Njl|v;, then (a) holds. Now let & # id.
Let A = crit(5). Then A > 7 by (4). We know p* < 7 < X in
(Q, F). Moreover ¢ is Yg-preserving. It follows easily that & verifies

the phalanx (N;||v;, (Q, F'), A). (Q, F) is then a mouse. Moreover, it is
(@ :
We then coiterate Nj||v; against (Nj||v;, (Q, F), A), using all that we
have learned up until now. We consider the same three cases. In case
1, (a) holds. In case 2, (b) holds. We now consider case 3, using what
we have learned up to now. We know that ) is a successor cardinal in
(Q, F) and that its predecessor & is a limit cardinal in (@, F'). Since
T < ) is a successor cardinal in (Q, F), we conclude: 7 < k& = p¥.

sound above 7 since @ ¢ R Hence it is sound above \ since 7 < A.

(Q, F) is a proper segment of N.

Proof. Suppose not. We derive a contradiction. (¢) cannot hold, since
p¥ < 7 in (Q,F). We now show that (b) cannot occur. In fact, we
show:
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Claim. There is no ¢ < 7 such that (Q, F') is a proper segment of Nj.
Proof. Suppose not, Then N; # N. Hence there is a least h < ¢ which
is active in IV. Then thNi = JIELN, where v, > 7 is regular in N;.
But pr’F> < 7. Hence (@, F) is a proper segment of Jlf-zN, hence of
N. Contradiction! QED(Claim)

We now show that (a) cannot occur. If v; € N; then N||v; is sound,
hence sound above 7. Hence:

(Q, F) = core; (Njl|v;) = Njl|v;

is a proper segment of N;. Contradiction! Thus N; = N;||v;. If there
is no truncation on the main branch on IM|j + 1, then N = N;. But
7 then a cardinal in N; and not in N. Contradiction! Hence there is
a least truncation point (i +1) <7 j. Let h =T(i+ 1) and 7 = 7, ;.
Then:
m: N —y+ Nj, K = crit(m),

N; has the form (Jf,F’). Hence N; has the form (JE| F*) where
ki = crit(F*), 7, = 7(F*). But then n(r;) = 7 = 7(F’). Hence
7 € rng(m). Hence k; > 7, since (k;,A;) Nrng(m) = (. Since N/ is
sound, being a proper segment of N;,. Hence it is sound above 7. Since
m(pN,) = p’jvj and 7 [T = id, we conclude:

N; = core(N;) = (@, F).
But then (@, F) is a proper segment of Nj,. Contradiction!

QED(7)
QED(Lemma 4.3.7)

Using the condensation lemma, we prove a sharper version of the initial
segment condition for mice:

Lemma 4.3.8. Let N = (JE F) be an active mouse. Let X\ € N. Let
F = F|X be a full extender. Set:

M = (JE F) where @ : J¥ — JP is the extension of F
. Then M 1is a a proper segment of N.
Proof. Let k = crit(F'). Define T = T, A = Ap,v = v as usual. Hence:

7=k A= F(\). Then 7 = 75, A = A\, 7 = v Let m: JE : JE be the
extension of F. Define: o : JE — JE by:

o(@(f)(a) = 7(f)(a) for a < X, f € JE dom(f) = u.



460 CHAPTER 4. PROPERTIES OF MICE
Then A = crit()\),0()\) and o is Yg-preserving, where:

p"MﬁXand@géRg).

This is because 7 is 31 (M) and each element of M has the form 7(f)(«)
where f € JE and a < X. It follows easily that o witnesses the phalanx
(N, M, ). Applying the condensation lemma, we see that one of the possi-
bilities (a), (b), (c) holds. (c) cannot hold since X is a limit cardinal in M.
(a) cannot hold, since M € N by the initial segment condition. If (a) holds,
we would have: o(p%,) = pk,o | A = id, where o is $*-preserving. But then
% = p%- Let p = p%. Let A be X*(N) in p}, such that ANp ¢ N. Let A
be ¥*(M) in p}, by the same defition. Then:

Anp=Anpe X" (M) CN.
Contradiction! Thus, only the possibility (b) remains.
QED(Lemma 4.3.8)

As a corollary of the proof of Lemma 4.3.7, we obtain a lemma which will
be very useful in the next chapter. We first define:

Definition 4.3.4. Let M be a premouse. Set:

p=pm = pip = pn =1{§ € M | card(§) < pin M}.

Lemma 4.3.9. Let N be a fully iterable premouse. Let M = core(N). Let
p=pnr. Then p= pn and M||lp = N||u.

Proof. If N = M there is nothing to prove, so assume N # M. Let
0 : M — N be the core map. Since o # id, it has a critical point A.
Clearly A > p = payr = pn, since o|p = id. It is easily seen that o verifies the
phalanx (N, M, \). Note that the two possibilities (b), (c¢) in the conden-
sation lemma(4.3.7) cannot hold, since (b) would require: M € N and (c)
would imply that M is unsound. Coiterate (N, M,\), N to get IM IV as
in the proof of lemma 4.3.7. Then the cases 2 and 3 cannot hold, since then
either (b) or (c) would follow. Hence case 1 holds-i.e. My = N and IV has
no truncation on its main branch. We know that I™ has no truncation on
its main branch, where x; > A > p for i on the main branch. Thus p = pn,
and k; > p for all i.

Then p = py = p™ = p™¢ and M||p = N¢||p. Now suppose k; = p,
where 7 4 1 is the first point above 1 on the main branch. Then 7 ;41 :
M —>E£v_fi M; 1 where p = ppg,,, and p =7 = ,0+M. But then 7; = p+Mi+1
and M||7Z'Z = M;41||7. Since k; > A; for j + 1 on the main branch with
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j4+1 >p i+ 1, we conclude: 7; = ptMc = pne and M||7; = N¢l|7i, since
L ¢[Ai = id. We have shown:

Claim 1. p = py, and M|[p = Ne|p.

But since p = p‘K,C we must have x; > p for all ¢ + 1 on the main branch of

IV since otherwise ﬂ(])\é(p) = pTVC > p. Hence we can respect the above proof
on the N-side to get:

Claim 2. Let y = py. Then p = py, and N||p = N¢l|p.
QED(Lemma 4.3.9)

We have defined 1 = pps in such a way that p ¢ M is possible.In fact we
could have: p = u = ht(M). However, by the above proof:

Lemma 4.3.10. Let N be fully iterable and N # M = core(N). Then for
all fully iterable N’ with M = core(N') we have:

Let i/ = pns. Then i/ € N’ and p = p™V'.

We also note:

Lemma 4.3.11. Let J2 be a constructible extension of Jg‘(i.e. B < aand
AC J/g‘), Assume: p = pjflq > . Then J2 = core(JA) and o = id is the
core map.

4.4 Mouselikeness

In §3 we showed that every normally iterable premouse which has the unique
branch property is fully iterable. In the present chapter we have derived
several deep structural properties of fully iterable premice. We shall call a
premouse which has these properites mouselike, be it iterable or not. We
define:

Definition 4.4.1. Let N be a premouse. N is condensable if and only if

(i) N is solid

(ii) Let M = Core(]\f)7 p = p‘]’\J4 = P‘Kr and p = p+N. Then p = p-i-M and
Ml|p = N||p.

(iii) Let o witness the phalanx (N, M, \), where M is sound above A. Then
one of the alternatives (a), (b), (¢) in lemma 4.3.7 hold.
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Definition 4.4.2. N is mouselike if and only if every initial segment N’ <N
is condensible.

Definition 4.4.3. N is precondensible(or pre-mouselike) if and only if every
proper initial segment N’ < N is condensible.

We have seen that every fully iterable premouse W is condensible. Since
every N’ < N is then also fully iterable, we conclude that N is mouselike.

The definition of “condensible” becomes simpler if we assume N to be sound
and solid. The conditions (i), (ii) are then vacuously true. (iii) then says
that, if o witnesses (N, M, \) and M is sound above A, then either (b) or
(c) hold. (If (a) holds, then M = corey(M) and o = o3,. But by soundness,
M = core(M) and o3, = o = id, contradicting the fact that A = crit(o).)

In §4.1 we defined a premouse to be presolid if and only if all of it’s proper
initial segments are solid. Lemma 4.1.13 said that the property of being
presolid is uniformly IT; (M) for premice M. Hence:

Lemma 4.4.1. Let M, N be premice. Then

o If M is presolid and m : M —x, N, then N is presolid.

o If N 1is presolid and m: M —x, N, then M 1is presolid.

We shall prove:

Lemma 4.4.2. The property of being pre-mouselike is uniformly 111 (M) for
premice M.

Hence:

Lemma 4.4.3. Let M, N be premice. Then:

o If M is pre-mouselike and m: M —yx,, N, then N is pre-mouselike.

o If N is pre-mouselike and m : M — s, N, then M is pre-mouselike.

As preparation for the proof of lemma 4.4.2, we list a series of facts which
are implicit in what we have done this far, but may not always have been
made explicit.

Definition 4.4.4. M = (|M|,E,F) is a set model if and only if |M]| is
transitive and E, F C |M].

(Note we can, of course, generalize this to models with more than two pred-
icates.)
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In the following let U be any set which is transitive and closed under rudi-
mentary functions.

Fact 1. The set {M € U : M is a model} is uniformly A;(U).

Models have a first order language IL with predicate symbols E,= E,F.
€, = are interpreted by €, = respectively and E, ' by E, F. We assume an
“arithmetization” of L., whereby the formulae of I are identified with objects
in w or V,, in such a way that the normal syntactic relation and operation
become recursive. (In §1.4.1 we proposed an arithmetization of languages
over an admissible set. If we take the admissible set as V,,, we get a suitable
arithmetization of L.)

Definition 4.4.5. The satisfaction relation is defined as follows: M = ¢|f]
means:

M is a model

e ¢ is a formula of L.

e fis a wvariable interpretation -i.e. f is function such that dom(f) is a
finite set of variables and ran(f) C M

All variables occurring free in ¢ lie in dom( f)

e  becomes a true statement in M if each v € dom(f) is interpreted by

fv).

(Note informally we write: M | plai,...,am/v1,..., 0] for M = @[f]
where dom(f) = {vi,..., v} and a; = f(v;) for ¢ = 1,...,n. When the
context permits, it is customary to omit the list of variables and write:
M = glay,. .., an].)

Fact 2. {{(M,¢,f) | M € UNM = ¢[f]} is uniformly A;(U).

Definition 4.4.6. A model M is amenable if and only if Ax € M(ENz, FN
reM).

Definition 4.4.7. M is a J-model if and only if M is amenable and |M| =
Jo|E] where o = OnN|M]|.

(Note: we write ht(M) for OnN|M|.)
Fact 3. There is a Ils sentence ¢ such that

M is a J-model «— M |= .
(Hence {M € U | M is a J-model} is uniformly A;(U).)
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Definition 4.4.8. M is acceptable if and only if it is a J-model and, when-
ever 1 > w is a cardinal in M (i.e. n < ht(M) and for all £ < 7 there is no
f € M mapping & onto 7.), then:

Né<nP@nMc Il

Fact 4. There is a Iy sentence ¢ such that for J-model M:
M is acceptable <— M |= ¢
(Hence {M € U | M is acceptable} is uniformly Ay (U).)

In §1.6 we expanded the language IL to a many sorted language L* which is
more suitable for analyzing acceptable structures N. L* contains variables
of type n for n < w, two original variables of L being of type 0. Variables
of type i range over N* = Jf}y’ where p' < ht(N) and p” = ht(N). We then

defined an appropriate satisfaction relation for L* formulae. R(xlf, o)
is an L*-definable relation on N(with arity (i1,...,4,)) if and only if there
is an L*-formula ¢(v,...,vir) with:

R(F)) «— N | [#).

We defined a hierarchy Zﬁ{”)(n =0, 1) of L*-formulas and defined a Z%m)(N )
relation to be a relation which is N-definable by a E,(lm)—formula. This hier-

archy is better suited to acceptable structures than the Levy hierarchy.

The following fact is implicit in §2.6. As far as we can tell, however, we have
hitherto not stated it explicitly, although we have made tacit use of it(for
instance in the proof of Lemma 4.1.13).

Fact 5. Let N be acceptable. Let (p(vil, ...,vlm) be any formula in the
many sorted language L* developed in §2.6. There is a formula ¢ in the first
order language IL of N such that

N = olx1,...,zm] «— N = @[z, ..., Tn]
for x; € HJZ\J,(j =1,...,m). Moreover the function ¢ — @ is recursive.

Proof(sketch). Let L™ consist of formulas with variables of type ¢ < m.
By induction on m, we construct the function ¢ — @ for ¢ € L. It clearly
suffices to have p, H' (i < m), since we can then form @ by replacing A v*. ..
by Av(Hw — ...) everywhere. We proceed by induction on m. The case
m = 0 is trivial, since LV is the set of non sorted formulas in the language
of N. Moreover we have: p® = ht(N), H? = |[N|. Now let it hold at m.
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Let T (@, ..., 2o) be the predicate defined in §2.6 preceding the proof of
lemma 2.6.17. Set:

T'(i,2,7) «— <me,Tm’”"’"*1""’“”°> E vilz, Tm)

where T Fm—1%0 = Ly | T"™(y, Xpy_1,...,20)} and (p; | i < w) is a fixed

enumeration of ¥; formulae with two free variables. Thus T” is Egm)(N ).

Moreover, it is universal in the sense that, if D is any Egm)(N) subset of

H™, then there are ¢ < w, & such that
D(z) +— T'(i, 2, T).

But then:
£ < pmtt <—>/\i<w/\f(Tfﬂ£)ﬁ§EN

and:
ze H™ v \[¢<pma e JE.

These definitions of p", H™ are by formulae lying in L”*. That gives us
ﬁerl ﬁ'm+1.

QED(Fact 5)

In §2.6.3 we introduced the class of m-sound acceptable models. N is sound
if and only if it is m-sound for every m < w.

Fact 6. For m < w there is an L-sentence ¢, such that,
N is n-sound +— N = ¢p,.

Moreover m — ¢y, is a recursive function. Hence {N € U | N is sound} is
uniformly II; (U).

In §3.3 we introduced the class of premice and proved:
Fact 7. There is an L-sentence ¢ such that

N is a premouse <+— N |= .
(Hence {N € U | N is a premouse} is uniformly A;(U).)

In §4.1 we defined the class of m-solid premice. We call N solid if and only
if it is m-solid for all m < w. Using Fact 5:

Fact 8. For m < w there is an L-sentence ,, such that

N is m-solid <— N E ppn,.
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Moreover m +— ¢y, recursive. (Thus {N € U | N issolid} is uniformly
IL(U).)

In §4.3.2 we defined what it means for a premouse N to be sound above A,
where A € N. The definition was equivalent to:

Definition 4.4.9. Let A € N. N is m-sound above \ if and only if

e p <A< p™ tand N is i-sound for i < m.

m—1

o Let a € Py, Set b = aﬂpﬁfl, N = N™\?" 7" Then every z € N
has the form h(i, (§,b)) where i < w, & < A and h is the canonical
¥ 1-Skolem function for N.

Definition 4.4.10. N is sound above X if and only if it is m-sound above A
for some m.

By Fact 5 it follows that:

Fact 9. Let A € N. For each m < w there is a formula ¢,, € L such that
N is m-sound above X if and only if N = ¢, [)\].

Moreover, the function m +— ¢y, is recursive. Hence:

Fact 10.

e {(N,)\) € U|N is m-sound above A} is A;(U)
e {(N,\) € U | N is sound above A} is £1(U)

In §4.2 we defined what it means to say that o witnesses the phalanx
(N, M, ). We aim to prove the following lemma, which in turn, implies
lemma 4.4.2:

Lemma 4.4.4. Let N be sound and solid. Let N € U, where U is transi-
twe and rudimentarily closed. ‘N is condensible’ is uniformly Iy (U) in the
parameter N.

The proof will stretch over several sublemmas. U could be quite small-
e.g. it could be the closure of |[N| U {N} under rudimentary functions. We
call (o, M,\) a counterezample to the condensibility of N if o witnesses
(N,M,)\), M is sound above A, and (b), (c¢) both fail. At first glance it
might seem that there could be a counterexample in V' which is not in U.
But this is not so:
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Lemma 4.4.5. Let o witness (N, M, \), where M is sound above \. Then
MeN and o € U.

Proof. Let p" < A < p™ in M, where n = m + 1. Let a € [ht(M)]<* such
that, letting @@ = an p for i =0, ..., m, we have:

o Every x € M™% is ¥ (M"™*%) in parameters a(™), £ such that £ <

o al) ¢ Réu for ¢ < m.
Set: a = o(a), aV) = o(a’)) = anpl. Then o|M™? : M™® —55 N™® and
a, M is the unique pair b, () such that b € Ry and Qb = M™% Moreover

o is the unique o D o|M™® such that o(a) = a and o : M 5y, NV
strictly. We consider two cases:

Case 1. m = 0(Hence N = N"™® M = M"™%)
We consider two subcases:

case 1.1. supo”pQ, < p%. Set:
p= "0 N =N|p=(JE" BN nJEY
p Sup o par; |P < p v P >

where v = p% = ht(N). Then N is amenable and ]Y € N, since N is
amenable. We have: o : M —yx, N cofinally. Let h = hg, h = hy.
Clearly a = (@) € N. Set:

h*(€) = h((£)o, ((§)1,a)) for £ < A,

where £ =: <(§)o, (§)1> . Set:
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Then:

(1) M € N, since N € N. h%hence M) is recoverable from M by the
recursion:

h* (&) = {hP(¢) | CEE} for £ € M.

A is easily seen to be a regular cardinal in M, since o(A) > \. Hence o(}) is
a regular cardinal in N. Hence:

~ N
|M| € PN C JEy,

by acceptability. Hence M can be recovered from M in the ZFC™ model

Jf(j;). Hence:

2) M eN

But then: ) i
o ={(h"(€),h" () | £ € M}
where h®, h% € N. Thus:

B)oeX, (N)CU.
QED(Case 1.1)
Case 1.2. Case 1.1 fails.

Then N = N, h® = h*, where h®(£) ~ hn((€)o, ((§)1,a)) for &€ < A. We have
o : M —y, N cofinally.

Case 1.2.1. )\ < p}.

Then M € N, since <J£JVN,B> is amenable whenever B C J@VN is o*(N).
The rest of the proof is exactly like Case 1.1.

QED(Case 1.2.1)
Case 1.2.2. The above cases fail.
Then p* < A in N. We conclude that:
(4) p* \ A € a, where p* = pj,.

Proof. If not, p¥ Up* C ran(o) <y, N. But then M = N, o = id by the
soundness of N. Contradiction! Since A = crit(o).

QED(4)
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Let n € (p*\ A) \ @ be maximal.(Hence n > ) Then a\n =p*\ (n+1). Let
pitt < n < p'in N.(Since we core in Case 1, we know that i = 0, but we
preserve the more general formulation for later use.) Let X = hpi.avn(nU(a'\
). Let 7 : Q' <=+ X be the transitivation of X. Then 7 : Q' <x, N>\
and by solidity we have: N € N, where N,b are the unique objects such
that N%* = @'. Moreover; there is unique 7 O 7 such that

7: N —r NV and 7(b) = a\ 7.
1

In the present case we know that i = 0 and n > . Let 7 (a) = b/ =
bU (an(A,n)).
7 Ha) = =bU(an (\n)).

Set: h¥(€) ~ hx((€)o, ((€)1,)) for € < A. Then |M| = dom(h"") and:
EEC+— () € h(() for £,C € A,

etc. Thus M € N, since N € N. The rest of the proof is exactly as in Case
1.1.

QED(Case 1)
Case 2. m >0. Let m=7r+1.

There is a good E(lm) (M) function G such that each x € M has the form

G(¢,a) for an ¢ < p7t. Let G be a good Egm)(N) function by the same good
definition. Then:

a(G(¢,a)) = G(o(¢),a) for ¢ < pjy.

Set: Q@ = M™® @Q = N"™“ Then o|Q : Q —r o) Q. Let p=supo”pf.
0
Set:

- EN m,a EN
Q=Qlp=(JE", TR nJE").

Then o : Q — 5 (m) Q cofinally. We now set:
1

o 1) ~ ho((E)o, ()1,a).
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Then o(G%(£)) = G(&) for € < X\. Moreover, each z € M has the form
G%(¢) for an € < \. Set:

e M = dom(G?)

o LEC+— GU(E) € GU(C) for £,¢ < A

o £5C— G(E) = G(Q) for £,C < A

o Bt +— GU&) e EN for £ < A

o F¢+— GU¢) € EN for € < )\, where v = ht(N).
Then M /= is isomorphic to M and the function G® is obtainable from M

by the recursion:

G*(&) ={G"(¢) | c&¢}-
Hence it suffices to prove:

Claim. M € N.

Since just as before we will then have:

M| e P(\) NN c JE,

[

and we can recover M from M in the ZFC™ model J f(]:\]) by the above recur-

sion. But then: o = {(G%(¢),G(€)) | € € [M|}. Hence o € £,(N) C U by
the above Fact. We prove the Claim by cases as before:

Case 2.1. p < py.

Then M € N, since N is amenable.
Case 2.2. Case 2.1 fails.

Case 2.2.1. \ < pR}.

Then M € N for the same reason as before.
Case 2.2.2. The above cases fail.

Just as before we conclude:

(5) p"\ A Z a.

We again let 7 be maximal. Let p*' < n < n’in N. Hence i < m. As
before let:

X = hyiaw(nU(a\n)).
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Let 7' : Q' <= X be the transitivation of X. Then 7’ : Q' <y, N>\,
But then as before, N’ € N, where N’ b are the unique objects such that
N'sb = @', Moreover, there is a unique 7’ O 7 such that

7' N —rs N and 7'(b) = a\ 7.
1

Let 7~'(a) = a’ = bU (aN (\,7)). Now let Q = N"™% Let G'(¢,d’) be
Egm)(N’) by the same good definition as G((,a). Then:

m(G'(¢,a')) = G(7'(¢), a)

1

for ¢ < p,. Let p/ =supn’~' oo’ p}y. Set:

N/ m ’ N/
Q=Ql = (I TN " nJi ).

R (€) = hgr((€)o, ((€)1,a)

for £ < A. Set:
G (&) ~ G'(W(€),d) for € < \.

Then: |M| = dom(G'"), £EC +— G (&) € G'(¢) for £,¢ < A, etc. But
since N € N, we conclude M € N.

QED(Lemma 4.4.5)
Tweaking this proof a bit, we get:

Lemma 4.4.6. For each n < w there is a formula o, € L such that for
all sound and solid N, N |= @,[M, )\, A if and only if there is o witnessing
(N, M, \) such that the following hold:

o ML < ptin M

o M is sound above A

e A=o0(\)
Proof. N |= ¢,[M, A, \] says that there are a,a, b, b such that

o a€[pi]<a e [ph]
e b=anpk,b=anpy

. dEP%+1andp"+1§)\<p”inM
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e M is sound above \

o M™% = <p[§_; b — N™@ |= 4,0[5, S\,b] for all 3y formulas ¢ and all
o, En—1 < A

e A >\

e For m = 0: Let h, h be the Skolem function for N, M respectively. If
h(i,(€,a)) is a cardinal in M, then h(i, (¢,a)) is a cardinal in N (where
E<N).

We see that this can be expressed by an L-formula ¢,, using Fact 5 and the
facts:

e M-satisfaction relation is uniformly A;(N) in M

e N™% gatisfaction relation for Yg-formulae is uniformly ¥, (N™%).
The direction (+—) of an equivalence then follows easily by lemma 4.4.5. To

prove the other direction we note that if h is the canonical Skolem function
for N™% and h is the Skolem function for M™@ then for all £ < A:

(i, (€,0,\)) € dom(h) —> (i, (£,b, X)) € dom(h).

Hence we can define  : M™% —s 5 N™% by:

h(i, (£,b,\)), if h(i, (€,b,))) is defined;

otherwise undefined.

o(h(i, (§,0,A))) = {

Applying the downward extension lemma, we get:

. . / a
There are unique M’,a’ with M™% = M™* and d’ € R},.

By uniqueness we conclude: M’ = M,a’ = a. But then there is a unique
o' D & such that o' : M — ) N and 0’(a) = a. Thus, by uniqueness,
0

o' =o.
QED(Lemma 4.4.6)

Condensability for N says that if o,(N, M, \) are as in lemma 4.4.3, then
one of the conclusions (b), (¢) hold.
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Lemma 4.4.7. Let o,(N, M, \) be as in lemma 4.4.6. Then there is a for-
mula x € L such that

N = x[M,\,a(N)] <— (b) or (c) hold.

Proof. yx says that either \/ « € N(M = N||a), or that there are x,y,u € N
such that

e )\ is the cardinal successor of k in M.
1
® Py = K-
N SNy N :
o u<v, B #0and crit(E,) = x, E, is generated by {x}.
e (N|]\) £ There is m such that 7 : N||y — gy M.
This can be written as an L-formula by Fact 5 and the fact that for Q € N,

Q-satisfaction is uniformly A; (V) in Q. The asserted equivalences then hold
because statements of the form:

\/ T or:iQ—5Q
are absolute in transitive ZFC™ models.

QED(Lemma 4.4.7)

Set:
Py =: /\u/\v/\w(gpn(u,v,w) — x(u, v, w)).

Then obviously:
Lemma 4.4.8. Let N be sound and solid. Then

N =1, <— N is condensable.

It is apparent from the above proofs that the function n — 1, is recursive.
Hence, if N is sound and solid, then:

/\ n N |= 1, «— N is condensable.

But An N = vy, is uniformly II; (U) in N, since N-satisfaction is uniformly
A1(U) in N. This proves lemma 4.4.4.

Lemma 4.4.2 then follows, since it says:

o€ M(Lim(a) — An (N||a) E ¢n).

QED(Lemma 4.4.2)



474 CHAPTER 4. PROPERTIES OF MICE
4.4.1 >;-acceptability

Definition 4.4.11. Let N = (JZ', B) be a J-model. N is ¥-acceptable if
and only if it is acceptable and whenever v > w is a limit cardinal in N,
then J&* <5, J&
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Lemma 4.4.9. Every pre-mouselike premouse is Y1-acceptable.

Proof. We proceed by induction on a = ht(N). If & = w, the assertion is
vacuously true. If « is a limit of limit ordinals, then the assertion is trivial,
since any cardinal v in N is a cardinal in N||5 for 8 > ~. There remains
the case: a =+ w. Let M = (JﬁE,F), where F' = Eg. Then N = (JE ),
where

E'=ExF=FEuU ({8} xF).

Let p = p%;. Then p is the largest cardinal in N. Let v > w be a limit
cardinal in N. Then v < p. If p < 3, then ~, p are cardinals in M. Now let
1 be a ¥ formula such that

JY' = ¥[z] where z € J'.
We must prove:
Claim. JZ' |= [z].
We first note that:
[N| = rud([M|U {M}) = rud(|M|U{E} U {F}),

where rud(Y’) is the closure of Y under rudimentary functions. Let ¢ =
\ v/, where ¢’ is ¥ in the language of N. Then:

(1) NE=y/[t,z] forate N
Since N = JY and E' = E + F, (1) can be equivalently written as:

(2) N E ¢lt,z,|M|, E, F], where ¢ is a ¥y formula containing only the
predicate €.

Let t = f(x,z,|M|, E, F) where f is rudimentary and z € M. Recall that
rudimentary functions are simple in the sense of §2.2. This means that, given
the function f: (2) reduces uniformly to:

(3) N E ¢z, z,|M|, E, F], where ¢/ is a Xy formula containing only the
predicate €.
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But this can easily be converted into an equivalent statement of the form:

(4) M = X'[z, 2], where )/ is a first order formula in the language of M. Set
x =V vx’. Then:

(5) M = x[z].
In order to derive Claim 1, we show:

Claim 2. There is @ < « such that, letting M = M||3, N = M||a,
a =+ w, we have: M = x[z].

But then M = x/[z,2] for a z € M. We then reverse the above chain
of equivalent reductions to get: N |= '[t, x|, where t = f(z, 2, |M|, E, F)
and f is the above mentioned rudimentary function. Thus: N k= ¢[z] and
Jf = 4[], since N < J7E, proving Claim 1.

Our procedure will be to first define M and then, using the condensability
of M, show that M is a proper segment of Jf. We can assume that w.l.o.g.
that the formula x is a X,,-formula for some m < w. Choose n < w such
that n > m and p%; = p}i;. Since M is sound, it has a standard parameter
a. Hence a € Pj;. Hence a € R}, by soundness. Now let ¢’ be the least
cardinal in M such that z € JE. Then ¢’ is a successor cardinal in M (hence
in N). Let 6 be the immediate successor cardinal of ¢ in M (and N). Then
d <. Let X be the smallest X <y, M™® such that (0’ +1)Ua C X. Then
X = k"¢, where
h(=i,&=) ~ h(i, (£,8,a))

and h is the Skolem function for M™®. Let 7 : Q <— X be the transitivation
of X. Then 7 : Q —x, M™*. By the downward extension of embeddings
lemma(Lemma 2.6.32) we conclude:

a) There are unique M,a such that @ € R?, and M™% = Q.
M

(b) There is a unique 7 O 7 such that 7 : M —rm M and 7(a) = a.
1

But M is sound and a is its standard parameter. Hence M, a,n are the
unique objects given by our earlier downward extension lemma and we have:

(6) m: M —>yx, ., M.
We now show:

(7) M € JE.
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Proof. h is Egn) (M) in aU{d'} and is a partial map of ¢ unto X. Thus
h=7"1his Zgn)(M) in @U{¢'} and is a partial map of ¢ onto M™%, Since

a € RYy, there is a partial map g of M™% onto M which is Zgn)(M) in a.

Let g be Egn)(M) in a by the same definition. Then k = gh is a X*(M) map
of ¢ onto ran(w), since g7 = 7g. Set:

e |M|=:dom(k) C .
o 2&y «—: k(z) € k(y) for 2,y € |M]|.

o x=y «—: k(z) = k(y) for z,y € |M].
o Ex+—:k(x) € E, Fx +—: k(z) € F for z € |M|.

Set: M =: (|M|,&,=,E,F). Then M ¢ JE, since (JF, D) is amenable for

all ¥*(M) sets D, and ¢ is a cardinal in Jf. But JF is a ZFC™ model, since
0 is a successor cardinal in JPE . E is well founded. Hence j € Jf , where
j: M — M is defined by the recursion: j(z) = j7€”{x} for x € |M]|.
Hence M € JE.

QED(7)

Set: § = 771(8). Tt follows easily that 7 [§ = id. But 7(8) = & > 4, sicne
§ € JE. Thus 6 = crit(r). Using this, we show:

(8) m verifies the phalanx (M, M, §).
Proof.
e m:M— M.
e T is Egn)—preserving, where § < Pir
o p}jl < 6, since h is a Egn) (M) partial map of 6’ < § onto M™,

e ¢ is a cardinal in M if and only if 7(¢) is a cardinal in M, by (6).

QED(8)

But M is condensable. Hence M satisfies one of the three conditions (a),
(b), (¢) in the condensation lemma. But:

(9) (a) does not hold, since otherwise:

Py =ht(M™) < 6 < p.
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But we can also show:
(10) (c) does not hold.

Proof. Suppose not. Then there is n € M such that p‘jf = Kk < J, where

k is the largest cardinal in Jf. Moreover, there is u < 7 such that o :
JE —p M, where F = E,, and x = crit(F). But then x = ¢ would be a
limit cardinal in M. Contradiction!, since §’ is a successor cardinal.

QED(10)
Thus (b) holds, and M < M. Since 3 = ht(M) < §, we have:
(11) M = M]||3 = (J£, F) where § < 4.
Moreover, if @ = 3+ w and N = M]||a, we have:
(12) N = M||a = JE*F.
By (6) we know: M = x[z], hence:
(13) M = x/[z,2] fora z € M.
Reversing our earlier chain of equivalences, we see that (13) is equivalent to:
(14) N | [z, 2,|M|, E, F).

Set t = f(x,z,|M|, E, F) where f is the rudimentary function used above.
Then (14) is equivalent to:

(15) N = glf, @, |¥1], B, F),
which is, in turn, equivalent to:
(16) ¥ |= /[, .
Hence N | 1[z], where N < JF.
QED(Lemma 4.4.9)

Call a premouse N fully preiterable. If every proper M < N is fully iterable.
By lemma 4.4.9 we of course have:

Corollary 4.4.10. Every fully preiterable premouse 1s X1 -acceptable.

(Hence of course, every fully iterable premouse is X1-acceptable.)



478 CHAPTER 4. PROPERTIES OF MICE
4.4.2 Mouselikeness in 1-small premice

The reader may wonder why we develop theory of mouselikeness and pre-
mouselikeness in such detail, when we already know that these properties
hold for all fully iterable mice. The reason is that we may encounter itera-
tions where we can verify the mouselikeness of a structure without yet know-
ing it to be fully iterable. We give an example involving I1-small premice,
which were introduced in §3.8 and will be our main object of investigation
in the ensuing chapters. We call a 1-small premouse N unrestrained if and
only if

e N = JF is a constructible extension of Jg, where 8 < p%;.

e 3 is Woodin in JZ, , where o = ht(N).

a+tw?

Otherwise we call N restrained. Restrained premice have the unique branch
property-i.e. any normal iteration of limit length has at most one cofinal
well founded branch. Hence, by Theorem 3.6.1 and Theorem 3.6.2 we know
that N is fully iterable if it is normally iterable. Happily, however, it turns
out that if N is unrestrained and pre-mouselike, then it is mouselike. We, in
fact, prove:

Lemma 4.4.11. Let N = JE be 1-small, where 8 < « is Woodin in JE _.

If JBE is pre-mouselike; then N is mouselike.

Proof. Since g is Woodin in J£+w. We have 8 < p%;, N is then a con-

structible extension of J 6E by 1-smallness,

(1) N is sound, by Lemma 2.5.22.

(2) N is solid, by Lemma 4.1.16.

Now let o witness (N, M, A) where M is sound above A. By Lemma 4.4.5:
(3 M e N,oeX,(N).

Claim. One of the conditions (b), (c¢) holds.

(4) If A > j3, the (b) holds.

Proof. )\ # (3, since otherwise o(\) > (3 is Woodin in N. Contradiction!
But then o(8) = B. Hence M is a constructible extension of JF, since
0: M —yx, N. But then M <N is a proper segment of N and (b) holds.
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QED(4)
From now on assume: A < 8. Thus:

E
(5) M € Jg.

Proof. Let v = ht(M). There is f € N such that f: A onte v, since M is
sound above A\. Moreover M is coded by a b C A\. Hence b € Jf, since 3

is a cardinal in N. But 8 is a regular limit cardinal in N. Hence Jg is a
transitive model of ZFC. Hence b can be decoded in JBE. Hence M € JBE.

QED(5)
(6) o(A) < 8

Proof. Otherwise 8 < () is the unique Woodin cardinal in N. Hence
some 3 < A is the unique Woodin cardinal in M. Hence = o(8) = 8 < 3,
and B < \. Contradiction!

QED(6)

Let ¢, € L be the formula in Lemma 4.4.6, where p"*1 < X\ < p™ in
M. Without loss of generality, suppose ., to be X, in the Levy hierarchy.
Pick n > r such that p" = p“ in N. Let a € Py. Let Q = N™% Let
h be the canonical X; Skolem function for Q. Working in JZ,_ . we define
sequences X; <y, @, o < « for i < w as follows: let By < [ such that
M e JBE(; and o(\) < fo if o(A) < B. Set: X; = h(B;) =: {h(3,€) | £ < Bi},
Bit1 =lub BN X;.

Since (8 is a regular limit cardinal in J£+w, it follows that 38; < 8 for i < w,
where the sequence (5; | i < w) is defined from ¢. Hence (§; | i < w) is
N-definable by Fact 5. Hence (3; | i <w) € J¥,,, and

B =:supB; < B.

<w

Set X = h(B) = U;-, Xi- Then X € JE . Let 7 : Q +— X. Thus
T :(Q <y, @ and by the downward extension Lemma there are unique N, a
such that a € R and N™@ = ). Moreover there is a unique 7 O 7 such that
m(a) =aand 7 : N —y, N. Since a € R}, we then get: 7 : N —y, N.
But then N = @n[M, ], where X\ = o(\) if 0(\) < § and X\ = 3 is
o()\) = 3. Hence:

(7) There is & witnessing (N, M, \) where 5(\) = o()) if o(\) < B and
7(\) = Bif o(\) = j.
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Clearly N is a constructible extension of J BE and § is Woodin in N if § < a.
Using this, we get:

(8) NQJE, where ht(N) < 3.

Proof. Since 8 < 3, there is a least v < (3 such that E, # (). But then JF
is a constructible extension of J BE and f3 is not Woodin in JZ by 1-smallness.

Hence & < v, where & = ht(N) and N = J,BEHO_‘-
QED(8)

Since JBE is pre-mouselike, we conclude that N | x[M,\,5(\)]. We can
w.l.0.g. assume n to be chosen so that y is X, in the Levy hierarchy. But
then:

N E x[M, A\, 0(N)], since w(a(A)) = a(A).

Hence (b) or (¢) hold.

QED(Lemma 4.4.11)



Chapter 5

The Model K¢

5.1 Introduction

From now on we make the assumption: There is no inner model with a
Woodin cardinal.(However, we may from time to time, prove individual re-
sults under more general assumptions.) Under this assumption we define
an inner model known as the core model, denoted by "K’, and examine its
properties. K will be a Weasel -i.e. it will be a class K = JZ = (L[E], €, E)
such that F C K and K||n is a premouse for every limit ordinal 7. Thus
it remains quite "L-like" in its internal structure. It also satisfies a set of
propositions which we collectively call the "covering lemma". They say that
the global structure of cardinals and cofinalities in V' is not very different
from K, although huge local differences are possible. In addition, K has a
definition which is absolute in all set generic extensions of V. Finally, K
is normally a-iterable for all & < oco. If M is any (set) premouse which is
oo-iterable, then the coiteration of M and K will terminate below oo and
there will be no truncation on the M-side(hence the K-side "absorbs" M),
K is in this sense "universal".

Before attempting the construction of K, however, we shall construct an
auxiliary model known as K¢ We shall "extract" K from K¢ K°¢s uni-
versal in the same sense as K, but it lacks the covering properties and the
absoluteness properties.

The investigation of K has a long history. The original construction by
Jensen assumed that 0% does not exist, and K was L. The covering lemma
for L had the simple form:

481
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If X is a set of ordinals of cardinality > w, then it is covered by a set
Y € L of the same cardinality.

This implies among other things that successors of singular cardinals are
absolute in L -i.e. if 3 is a singular cardinal in V, then BT = B+ (This
statement will continue to hold for the K constructed here.) Jensen then
went a step further by constructing the core model under the weaker limiting
assumption: There is no inner model with a measurable cardinal. In this
version the covering lemma became somewhat weaker. In the sequel, Tony
Dodd, Bill mitchell and Jensen did a variety of core model constructions,
each with its own limiting assumption. Mitchell was the first to divide the
construction into two parts: The construction of K“followed by the "extrac-
tion" of K from K°. Finally, after the discovery of Woodin cardinals, John
Steel realized that an inner model with the properties listed above could not
exist in the presence of an inner model with a Woodin cardinal. He then took
the nonexistence of an inner model with a Woodin cardinal as his limiting
assumption and proved the existence of the core model. However, he was
still not able to do this within the theory ZFC. He needed a higher order set
theory. Following this, Steel, Mitchell and Schindler, and Jensen indepen-
dently proved the existence of K¢n ZFC, on the above limiting assumption.
Steel and Jensen thereupon proved the full result, which is presented in this
book.

We now develop some consequences of our assumption that there is no inner
model with a Woodin cardinal. We define:

Definition 5.1.1. Let M = (JZ F) be an active premouse. F is w-complete
in M if and only if the following hold:

Let Y € A = A(F), W C P(k) N M be countable sets(where x = crit(F),
A = F(k)). Then there is a g : U — k such that whenever (aq,...,ay) €U
and X € W, then:

<g(@)=€ X < <a> e F(X).

We prove:

Lemma 5.1.1. Let F be w-complete in M. Then:
M = there is no Woodin cardinal.

(Hence M is 1-small and restrained in the sense of §3.8.)

Proof. We first define:
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Definition 5.1.2. M is top iterable if and only if there is a sequence (M; :
i < oo) and (m;; : 1 < j < oo) with:
o M; = (JFi F)
o Mo= M and ;41 : M; —p M1
® ;oM =T, for k<i<j
e if n is a limit ordinal, then:
My, (mipn i <)

is the transitivized direct limit of: (M; : ¢ <n),(m; 11 < j <n).

(Note we have only Xy ultrapowers in this definition.) We first prove:

Claim 1. If M is top iterable, then
M = there is no Woodin cardinal.

Proof. Suppose not. Let v be Woodin in M. Then v = 1y is a cardinal
in M; for ¢ > 0. By acceptability it follows that v is Woodin in M;. Hence
W =U;coo szi is an inner model with a Woodin cardinal. Contradiction!

QED(Claim 1)
We then show:
Claim 2. If F' is w-complete in M, then M is top iterable.

Proof. Suppose not. Then M, is not defined for some «a. Let 6 be regular
such that o, M € Hy. Let X < Hy be countable with o, M € X. Let
o : H <~ X be the transitivation of X. Let o(a) = «a, o(M) = M.
Then H = “Mg does not exist”. By absoluteness Mg does not exist. But
« is countable. We derive a contradiction by recursively constructing Mg, o¢
(£ < @) such that M exists and o : Mg —>5,) M. We proceed by cases as
follows:

Case 1. My= M, 09 =o| M.

Case 2. M;,o; are given. By w-completeness there is g : \; — &; such that
for all a,...,an < Aj and all X € P(k;) N M;, we have :

<g(@)= € X +— <d> € F;(X).
We know by §3.2 that the transitivized ultrapowers:

Tiir1 : My —p, My
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exists if and only if there are no sequences (v, | n < w), (fn | n < w) such
that oy, < A;, frn € M; maps k; into M;, and:

(@iv1,00) € Fi({(§, Q) | fis1(§) € fi(O)})-

But there can be no such sequence, since otherwise:

fir1(g(ait1)) € fi(g(ay)), for i < w.

Contradiction! We then define 0,11 by:
oi+1(Tiit1(f)(a)) = oi(f)(g())
for oo < N\;, f: ki — My, f € M;.
Case 3. 7 is a limit ordinal and m;, 0; are given for ¢ < n. Let
My, (Tiy | i <n)
be a direct limit of:
(M [ i< n), (T |1 <5 <mn).

We can define o, : Mn —yx, M by: oy = o; for ¢ <n. Hence Mn is well
founded and we can take it as being transitive.

QED(Lemma 5.1.1)

We recall that every 1-small mouse M either has a v € M which is Woodin
in M or is restrained. If M is restrained, it has the unique branches property.
Moreover, if on the other hand, M is not restrained, then it is a constructible
extension of M||p%,. We prove:

Lemma 5.1.2. Suppose that M 1is restrained and countably normally iter-
able. Then M is normally oo-iterable.(Hence M is fully «-iterable for all

)
Note. Since M has the unique branches property, being normally co-iterable

is the same as being normally a-iterable for all a.

Proof. Let I = ((M;), (v;), (mij), T) be a (potential) normal iteration of M.
We must prove:

(A) If I is a potential iteration of length ¢ + 1, then it extends to an actual
iteration of that length.

(B) If I is of limit length, then it has a cofinal well founded branch.



5.1. INTRODUCTION 485

We first prove (A). Let I € H, where H is a transitive ZFC™ model. Let
X < H be countable with I € X. Let o : H <~ X be the transitivation
of X. Let o(I) = I. Then I being countable, does extend to an actual
iteration. Letting:

I= <<Mz>7 <fi>, <ﬁi]’>,T>, be of length 1+ 1,

this means that the ultrapower

—% -— . M.,
m: M, —7 M4, exists, where F' = Eyl.

That is equivalent to saying that there is no pair of sequences
(an |n <w),(fn|n <w)
such that f, € F*(Emﬂn), a, < A\, and

<any1,0n =€ F({ <&, | far1(§) € fu(Q)}).

But the same holds of I.
QED(A)

(B) Let I be of limit length 1. Let H be any transitive ZFC™ model con-
taining I as an element. Let 0 : H < H, o(I) = I be as above. Then T is a
countable normal iteration of limit length 7, where o(7) = 1. Hence it has
a unique cofinal well founded branch b. We consider two cases:

Case 1. H, H can be so chosen that OHME € H. Let M; N On = a. We

consider the following language L on the admissible set H:

Predicate: €

Constants: z (x € H), b

Azioms:

o /FC™

e Nv(vEx— Wov=2z2)forxe H
zex

e bis a cofinal branch in I yielding a limit model Mb such that On ﬁMi) =
!

LL is obviously consistent, since (H,,,, b) is a model. But then the correspond-
ing language L on H is consistent(with o(«) playing the role of @). If we
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force to make H countable, then in the resulting generic extension L' has a
model A. Set b = b*. Then b is a cofinal well founded branch in I. But M
is still restrained. Hence b is the unique such branch. But then

b={i|L'Fieb}eV,

since otherwise there would be a model of I” yielding a different cofinal well
founded branch.

QED(Case 1)

Case 2. Case 1 fails. Let 6 be a regular cardinal such that card(I)* < 6.

Let A = lub\; and JF = UJE". Then ATE" < 6. Let X < Hy be
1 <n i<n ‘

countable such that I € X. Let o : H <=+ X be the transitivation of X.
Let o(I) = I. Since I is countable, it has a unique cofinal well founded
branch b. But OnNH < Onﬂb, where My is the limit model. Hence the

following language L on H is consistent: The predicates and constants are
as before. The axioms are:

o /FC™

e Nv(veEx— Wov=2z2)forze H

zET
e b is a cofinal well founded branch in I

o Let Mb be the limit model. Then § € Mi) for all £ € H.

L is consistent, since if b is the unique cofinal branch, then (H,, ,b) is a
model. By §1.4 however, L then has an ill founded model A such that
OnNH = wicore(A).(This is by lemma 1.4.11) Set & = b*. Then b # b,
since b’ yields an ill founded limit model. Defining X, J% from I and A, J f
from I, we have by theorem 3.8.12:

H = () is Woodin in LE).

Hence:
Hy = (X is Woodin in LF).

But AL” < 6. Hence X is Woodin in (LF)Hs = LY. But we can choose 0
arbitrarily large. Hence A is Woodin in the inner model L¥. Contradiction!

QED(5.1.2)

As a consequence:
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Lemma 5.1.3. Suppose that M is restrained and that whenever o : P < M
and P is countable, then P is countably normally iterable . Then M is
normally iterable.

Proof. Suppose not. Let I be a normal iteration which cannot be continued.
Let I € H = Hy, where 0 is regular. Let X < H be countable such that
I € X. Transitivize X to get o : H <~ X. Let o(I) = I. Then H thinks
that I is an iteration that cannot be continued. Hence, by absoluteness,
it cannot be continued. Contradiction!, since I is a countable iteration of
P=oc"1(M).

QED(5.1.3)

Note that every smooth iterate of a restrained premouse is restrained. Hence
by lemma 3.6.2:

Corollary 5.1.4. Let M be as above. Then M 1is smoothly iterable.

Hence by Lemma 3.6.1:
Corollary 5.1.5. Let M be as above. Then M is fully iterable.

5.2 The Steel Array

In this chapter we employ our machinery to construct inner models of set
theory. These models will present themselves as weasels. We define:

Definition 5.2.1. A weasel is a proper class N = JZ = (|N|, E) such that
N||v is a sound premouse for all limit v € On.

(In other words, a weasel is "a passive premouse of length oo". The minimal
inner model L is a weasel by lemma 2.5.21. A weasel can be defined induc-
tively like the definition of L, except that we allow certain stages to be an
active premouse. If N; = (JF', E. ) is the i-th stage, we have as before:

No = (Jo,, 0).
At successor stages, however, we can have either:
Nip1 = <J£f117®> = (Def(N;), Ei, 0)

or, if possible:

Nit1 = <J£i,F), where <J£i,F> is an active premouse.
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In the choice of F' we are guided by a "background condition" which tells us
whether F' is viable. For smaller weasels, it suffices that F' is w-complete. For
the "fully backgrounded" construction, the requirement is that F' = F*N|N;|,
where ™ is an extender on V at x = crit(F')(hence  is inaccessible in V).
We shall require that (Jfl, F) satisfy a condition called robustness, which is
intermediate between these extremes. However, the use of these background
conditions means that (J,/EZ_ZH,F> = Nit1||v; is not necessarily sound. If for
instance F'is the first extender inserted in the sequence, then w-completeness
requires that N;, 1 is a rather long iterate of 07, hence is unsound. In order
to rectify this, we must, having searched a given N;, ask whether N; is solid.
If so, replace N; with the sound structure:

M; = core(Nj).
If not, we must discontinue the construction.

But this is no longer a linear construction. We are now constructing a double
sequence M;, N;. Given M;, we construct N;;1 from M; by one of the above
two options and then "core down" N;i1 to M1 if necessary. At limit points
A we cannot take:
Ny = UM’L
<A

since M; is not necessarily a submodel of M; for 7 < j < A. Instead we take:

Ny = M|l
i<A

where u; is a carefully chosen point such that
Mz”ﬂz = MjHMi fori <j <A

However, we ensure:
Ne<A VG <A s < .

Thus, if A = & is regular, then N, will have length k. Similarly, Ny, has
length oo and is, therefore a weasel. The succession of models M;, N; gen-
erated by this process is called a Steel array. We now turn to the formal
definition.

We shall, in fact, require that each of the models M;, N; in the array be
not only solid but mouselike in the sence of §4.4. Our construction will
guarantee that N; is pre-mouselike if all previous stages were mouselike.
(Hence N; will be X1-acceptable by §4.4.) If we assume that there is no inner
model with a Woodin cardinal, then all premice are 1-small. If V; is 1-small
and unrestrained, then by §4.4 it will be mouselike. If, on the other hand,
N; is restrained, then it suffices to show that whenever o: P < N; and P is
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a countable premouse, then P is normally w; + 1 iterable. By 1l-smallness
P is then uniquely iterable and hence by §3.8 is fully w; + 1 iterable. If
N; € Hy, where 0 is a regular cardinal and o: H < Hy, o(P) = N;, where
N is countable and transitive, then we can conclude that N; is mouselike,
since P is.

We define:

Definition 5.2.2. Let N be a premouse, n < OnNN. We let:

pn(n) ={a e N|a<nin N}

If N is mouselike, then it is sound. Moreover, if p = p%, p = un(p) and
M = core(N), then u = up(p) and N||p = M||p. We have shown in §4 that
if N is of type 1 or 2 (which we shall always assume in this chapter) and is
fully wy 4 1 iterable, then it is mouselike.

We sometimes write SA for “Steel array”.
Definition 5.2.3. By a quasi SA we mean a sequence (M; | i < ) (£ < 00)
of premice (JE', F') such that

(a) M; is sound and mouselike
(b) Mo = (J5,0)

(c) Let i +1 < Q. Then M;1; = core(NN) where N is mouselike and
satisfies one of the following options:
Option 1. N = (JE, . 0) where:

E=EU{{z,v) |z € F'}.

Option 2. N = (Jlfi, F) is an active premouse, where F' = .
(d) Let i < j < Q. Set:
kij = min{py; |1 <n < g} pig = pog, (Kij)
Let ¢ <n < j. Then K, is a cardinal in M,,. Moreover:

Mi|pij = My||pij
Lemma 5.2.1. Let (M; | i < Q) be a quasi SA. Then:

1. Kij < Kpj, Kin > Kij fori <n <j.
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2. pij < pnj fori <n <j.

Proof. (1) is immediate. We prove (2). If a < ;5 then @ < k;;5 in M;. By
acceptability then: @ < k;; in M;||pij. If ¢ <n < j, it follows that @ < k;j
in Mp||pij, hence @ < k;j in M,,. If Ky < Kpj, then a < /@';;-M” < Knj < pnj-
If Kij = Knj, then o < par, (/ﬁ:nj) = lhnj-

QED(Lemma 5.2.1)

Lemma 5.2.2. Let (M, | n < 1) be a quasi SA. Let N be formed from M,;
as in Option 1 or in Option 2. Suppose that N is mouselike. Set: M; 1 =:
core(N). Then (My, | n <i+1) is a quasi SA.

Proof. (a), (b), (c) in the definition of quasi SA hold trivially. We prove
(d). We must show that if | < n < i+ 1, then x; =: K41 is a cardinal in
M, and M;||pw = My||m, where p =: Hii+1-

Case 1. l =1.

Set: p = pX = piy,,,- Then p < pfy. If N is obtained by Option 1 in (c)
of the definition of quasi SA, then this holds by: M; € N. If Option 2 was
used, then p‘]‘(/[l_ = y; and p < v; is a cardinal in N, hence in M;. But then

p = ki =:Kiiq1. Let p; =: i1 = pag;(p) and p = pn(p). Clearly p; < p.
By mouselikeness we have N||u = M;y1||p. Hence M;||u; = (N||p)||lpi =

(Migil|p)l[ps = Miga||pi-

QED(Case 1)
Case 2. 1l <1
Set: k; =: Ky ir1. Then k; = min{xy;, p}, where p is defined as in Case 1.
Case 2.1. p > Ky

Then k; = k;;. It suffices to show that «; is a cardinal in M; 11 and M| =
M; ||, where p =: 41 = - ki is a cardinal in M;||p where p is a
cardinal in M;41 by acceptability. But then:

M|l = M| = (Mi]|p) || = (Migallp)|[ = Miga||p

QED(Case 2.1)
Case 2.2. p=k;

Then k; = Kki; = p. Ky is trivially a cardinal in M, since p is. Then
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py =: 14 as before. Then:
M|l = M|l = (M| i)l = Mol
since p; = piiv1 = MM, (P)-
QED(Case 2.2)
Case 2.3. p < Ky;

Then k; = p. For | < n < i, we have: p is a cardinal in M,||x;; where ry; is
a cardinal in M,,. Hence p is a cardinal in M,. But:

Millp = (Mif|ri)llp = (Mu|[r0)llp = Mnllp

Now let n = i. Then p = k; = Ki;41 and pa,(p) = i = Hiit1, as
we have seen in Case 1. p = p‘]‘% € M;41 is clearly a cardinal in M;4:
moreover M||p; = Mipa||pi. But w = par(p) < par;(p), since p < x; and
M|k = M;||k;. Hence:

M|\ = M|l = (M;l|pa) |l = (Miga||pa) || = Mg ||

QED(Lemma 5.2.2)

We now consider quasi SA’s of the form (M; | i < n) where n is a limit
ordinal.

Lemma 5.2.3. Let (M; | i < n) be a quasi SA where 1 is a limit ordinal.
Set:

Ri = Riy = min{py, | i <n}

fii = fiy =: png(Ri). Then:

1

m:

i =min{k;; | i < j <n} is a cardinal in M; for i < j <n.

2 = min{p;; | 1 <j <n} is a cardinal in M; fori < j <nm.

7;:

(1)
(2)
(3) fi < iy fori < j <nm.
(4) M| = Mjl|fi for i < j <.
(5)

9) Ni<nVji<n fi; <fij.

Proof. It is easily seen that:

ki = Ki; for sufficiently large j < n.
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Hence
ft; = pi; for sufficiently large j < n.

(1)-(4) follow easily from this and 5.2.2. We prove (5).
Case 1. Ni<nVj<n k;<Rj.

Given i, pick n,j such that #; < &p, < &j. If @ < &;, then @ < &; is M;.
Hence @ < R; in M;||R; by acceptability. Hence @ < &; in Mj||&;, hence M;.
But then @ < &, < &; < fi;, since &, is a cardinal in M;.

QED(Case 1)
Case 2. k; = Rkj for it < j <.

Given ¢ pick j > i such that k; = p‘]‘\’/‘[j. Consider M. If N is derived from
M; by Option 1 of (¢) in the definition of quasi SA, then Pir,,, = Fj, since
pa]\.)/[j+1 < p‘fwj. But then 41 = ,LLN(/%j) =vj+w>v; > i > fi;. Now
suppose that Option 2 of (c¢) was used. Then N = <J£,F>, where F' # ()
and M;||v; = 0. Hence M; is a ZFC model and Py, = Ki = vj. But then
Ry < p‘j’wjﬂ = p% < vj, contradiction!

QED(Lemma 5.2.3)

Jg, () is a premouse. If N is mouselike, we can extend

But then N = ( U
1<n
the sequence (M; | i < n) by setting: M, = core(N).

Lemma 5.2.4. Let (M; | i < n) be a quasi SA, where 1 is a limit ordinal.
Let N be defined as above and let M, = core(N). Then (M; | i < n) is a
quasi SA.

Proof. (a), (b), (c) in the definition of quasi SA hold trivially. We prove
(d). Set:

Ki = Kig, i = iy for i <n

Ri = Rip, i = [ip for i <n

p = pir, = PN
Then k, = p, k; = min{&;, p} for i < n. Clearly:
p=O0nNN and N = M, or pis a cardinal in M,,.

We must show:

Claim. If i < n <, then k; is a cardinal in M,, and M;||pn; = Mp||u.

Proof.
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Case 1. K; < p. Then k; = R; and it suffices to prove the claim for n = 7.
M;||k; = N||R; where &; < p. Hence &; is a cardinal in N||p = M,||p, hence
in M, But ;= i and: Millfis = Nl = (VI|o)ll = (Myllo)lis =
M| .-

QED(Case 1)

Case 2. k; = p. Hence k; = p € N is a cardinal in N, hence in M,, But
then p; = par, (p) = fui. Set:

p= g = pn(p) = par, (p)-
Then M;||fi = Nl = (N||p)||fi = (M)l = My|| -
QED(Case 2)

Case 8. p < R;. Then k; = p < R;. Let i <n <n. If n <n, then p is
a cardinal in M;||k; = M,||R;, where &; is a cardinal in M,,. Hence p is a
cardinal in M,,. But u; = s, (p) < & and:

Mil|pi = (Ml [Ri)||pi = (Mpl[Ri)|| i = My || pi-

Now let n = n. Then p is a cardinal in N, hence in M,. Let u = un(p) =
pn, (n) = M. Then:

Mil|pi = (M [Ri)| i = (NT[R) i = Nllps = (N|)|ps = (M|l )]s = Mi||pi-

QED(Lemma 5.2.4)

We can now define:

Definition 5.2.4. A Steel array is a sequence (M; | ¢ < ) such that Q < co
and:

(1) (M;]i<Q)isa quasi SA.
(2) Let A < Q be a limit ordinal. Set:

N= <iL<J)\ T O

Then N is mouselike and M)y = core(N).

Now suppose that (M; | i < Q) is a Steel array and Q > w is a regular

cardinal. By induction on i we have: M; < Q for i < Q. If we then set:

N = U Ji,, then N = J§ is of height Q. But then:
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Lemma 5.2.5. Let (M; | i < Q), N be as above, where Q > w is regular.
Then N models ZFC™.

Proof. We first show that N satisfies the comprehension axiom: Let u € N
and a={ze€u|N [ ¢(z)}.

Claim. a € N

Proof. Let u € N; =: Jlﬁig. Let X be the smallest elementary submodel
of N with N; C X. By regularity we have X C Nj for a j > i. But by
induction on the formula i we can prove:

X =¢[z] — N; = ¢[z] for z1, ...,z € X.
Hence X < N; and a is N; definable. Hence a € N since N; € V.

QED(Claim)

It follows easily by the regularity of € that the replacement axiom holds in
the form: AxeuVy ¢ = Vo Az cuVyeop. Hence N models ZFC™.

QED(Lemma 5.2.5)

N is then sound with: p%, = €. Hence N is mouselike and we can set:
Mg = N. If Q is inaccessible-i.e. 2% < Q) for k < Q, then N models full
ZFC. By virtually the same argument it follows that if 2 = co, then N is
and inner model of ZFC. We can then set: M, =: N.

Thus the Steel array can be a tool for creating inner models. The simplest
inner model is obtained by using only the first option in (c) of the definition
of quasi SA. We then get (M; | i < oo) with:

M; = (Jui, 0)
Hence N = M, = L.

Larger inner models can be obtained by making judicious use of the second
option(in (c) of the definition of quasi SA). There are two ways of ensuring
that the construction does not break down before co. The first is to ensure
that an extender used in Option 2 satisfy a “background condition” which
normally says that the extender is very large. The second is to restrict the
complexity of the premice M;, which makes it harder to apply Option 2.
This chapter is devoted to the construction of a specific inner model called
K¢ Our background condition is called robustness. We shall require that
all of the premice M; be 1-small.

clearly for every Steel array (M; | i < Q), there is a unique associated
sequence (N; | i < Q) defined by:
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Definition 5.2.5. Let (M; | i < Q) be a Steel array. By recursion on i < §2
we define:

o No=My=(J2,0)

e N,y is defined from M; by Option 1 or Option 2(in (c) of the definition
of quasi SA) and M,11 = core(N;41)

e [f i =7 is a limit ordinal, then:

— E" —
N, = <ngn Jg,.,+0) and M, = core(N,)

Obviously (M; | i < Q) is definable from the associated sequence (N; | i < §2)
and we shall often commit the sin of referring to (INV; | i < Q) as a Steel array.
We also define:

Definition 5.2.6. (N; | i < Q) is a putative Steel array if and only if
(M; | i < Q) is a Steel array, where M; = core(N;), and either Q@ =7+ 1 and
Nq is obtained from M; by Option 1 or 2, or else €2 is a limit ordinal and

Ngq is the canonical completion: Ng = U JE ,0).
i<Q Hi, 0

Thus a putative Steel array (N; | i < ) is a Steel array of length ©Q + 1 if
and only if Nq is mouselike. Nq is obviously pre-mouselike

Let M be a premouse with: v € M, EM £ (). Set:
Definition 5.2.7. B = B(M,v) =: the set of 5 € M such that:

Pirp < v < Band pyy, > phy for all v € [v, B).

Then v € B since p]lV[HV < v. Moreover, if v, 8 € B, then:

¥ <B— rhns < Py
Hence B is finite. Set:
Definition 5.2.8. g = 3(M,v) =: max B(M,v).
Lemma 5.2.6. Lel = 3(M,v). Then poff/l\lﬁ 1s a cardinal in M.

Proof. Suppose not. Let M be a counterexample with ht(M) chosen min-
imally. Then ht(M) > S and ht(M) is not a limit of limit ordinals, since
otherwise pf 5 would fail to be a cardinal in M]|y for a v € (B,ht(M)).
Hence ht(M) = v + w, where v > 5. Since M]||y is sound, we have:

X, (M|ly) = Z*(M]]y).
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But |M]| is the rudimentary closure of |M||y| U {M]||v}. Hence:
P(M|ly) N M = Z,(M]|7).

Since p = p"]f/[lh is not a cardinal in M, there is an f € M mapping an o < p
onto p. But then f € ¥*(M]||vy). Hence p = ’OUMH < a < p. Contradiction!

QED(Lemma 5.2.6)

Using this we prove:

Lemma 5.2.7. Let v € N¢, = B(Ng,v). Then N¢||f = M, for ann <&.

Proof. Suppose not. Let N¢ be a counterexample with § chosen minimally.
We derive a contradiction as follows:

Case 1. £ is a limit ordinal. Then N¢ = UgMiHﬂiE and M;|ftie = M;||flig =
1<
NSH/]’Zf fori <j <&

Case 1.1. There is i < & such that 8 < k; =: Rj¢. Then = B(M;]|R;, v)
since M;||k; = Ne¢||R; and B = B(Ng,v). Hence p = pﬁ’s“ﬁ is a cardinal in
M;||%;. Let o : M; — N; be the core map. Since PRy, = Fi, we conclude that
p is a cardinal in N;. Hence 8 = B(N;,v), where i < & and N;||8 = N¢|B.
Hence £ was not minimal.

Case 1.2. Case 1.1 fails. Pick i such that 8 < fi; =: fi;¢. Then 8 =
B(M;||fis,v), since M;||fi; = Nel|fi; and B = B(Ng,v). Clearly &; < ;. R is
the largest cardinal in M;||f; and p = Piry|p 18 @ cardinal in M;||f;. Hence
p < R;. But pis a cardinal in M; by acceptability since &; is a cardinal in
M;. Let o0 : M; — N; be the core map. Then crit(c) > Pir, = Fi. Hence
p < v is a cardinal in N; and 8 = B(N,||f,v). Hence g = 5(N;,v), where
i < & and Ni||B = N¢||8. Thus, £ was not chosen minimally. Contradiction!

QED(Case 1)

Case 2. £ =1+ 1.

Case 2.1. Option 1 was used at i. Then N = <J7E+Zw,@> where M; =

(sz, E@ Then 3 <, since v is the largest limit ordinal in Ng. If 8 =+,
then N¢||8 = M; where i < £ Hence & is not a counterexample. Contra-
diction! Hence 8 < . But then 8 < p =: par,(p) where p = pUMH,B and let
o : M; — N; be the core map. Then crit(c) > p. Hence p is a cardinal in
N; and M;||p = N;||p. Hence N;||8 = Ne¢||f where i < £. Hence § was not
minimal. Contradiction!

QED(Case 2.1)
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Case 2.2. Option 2 was applied. Then N¢ = <J$Z,F> where M; = (sz,@))
1s a ZFC™ model. Hence N; = M;, since, letting p =: p}. = p},, we have:
pn, (p) = par, (p) = ht(M;). In particular, N;||8 = M;||8 where i < . Hence
7 is not minimal.

QED(Lemma 5.2.7)

Now let (N; | ¢ < Q) be a (putative) Steel array. Let N = Ng and let
EN £ (). Tt seems clear that N||v “originated” at a stage i +1 < Q and
Niy1 = (JE, F) where JE = M;. Using 5.2.5 we can trace back to the origin
in a finite sequence of steps. Following Steel, we call this the resurrection
sequence, since it “resurrects” the original ancestor of N||v.

Definition 5.2.9. Let N = Nq and let N||v be an active premouse. The
resurrection sequence for (N,v) is a finite sequence (n;, v;)(i < p) such that
Ny, ||lvi is active and n;41 < n; for @ < p. We define:

e o=, 1p=v.

e If v; & N, then i = p and the sequence terminates.

o If v; € N, let 8= B(Ny,,v;). Then:

ni+1 =: that 1’ such that Ny, |8 = M.
o Let k: M — N,

Ni+1 Mi+1

k‘(l/@) if y; € ]\4,71‘Jrl
Vit1 =

be the core map. Then

OnnNN\, if not

Ni+1

Nyp||vp is then the origin which we sought. We define:
Definition 5.2.10. 3, = OnNN, 3,,; ~ B(N||3:).

It follows easily that j3; is defined for i < p and that there are unique maps:
ki : N|[B; —s Ny,
defined by ko = id; k;11 = k - k; where:

k: M, — N,

Mt nii1 18 the core map.

ky is then called the resurrection map for (N,v). It is easily seen that if
i < p, then k, = k-k;, where k is the resurrection map for N, ||v;. Moreover,
(Mitns Vign)(n < p — 1) is the resurrection sequence for (N,,, ;).

A proof similar to that of lemma 5.2.7 shows:
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Definition 5.2.11. Let N be a premouse, o € N a limit ordinal. « is
cardinally absolute if and only if for all f < a:

Nl|a = B is cardinal — N = 3 is a cardinal.

Lemma 5.2.8. Let o € N¢ be cardinally absolute such that Eévf = (. Then
there is i < & such that N¢||oo = M; and Niyq is formed by Option 1.

Proof. Suppose not. Let N¢ be a counterexample with § chosen minimally.
We derive a contradiction.

Case 1. £ is a limit ordinal.

Case 1.1. There is ¢ < £ such that o < R; =: R;¢. Then M;||R; = N¢||R;.
Thus o < &; is cardinally absolute in M; and Eé\l/l = 0. Let 0 : M; — N; be
the core map. Then crit(o) > pf; > £i. Hence a is cardinally absolute in

N; and EYi = (). Moreover, N;||a = M;||a. Thus i is a counterexample and
& was not chosen minimally. Contradiction!

Case 1.2. Case 1.1 fails. Pick i < £ such that o < p; =: fi;¢. Then
Ri < o < fi; and M;||fi; = Nel||fi. Let o : My — N; be the core map.
Then crit(o) > p§; > ki = a. Hence fi; = pn; (fi) and o € Nif|fi; = M| fu;.
Thus N;||a = M;||a. Hence EYi = (). But then i is a counterexample, where
1 < &. Hence £ was not minimal. Contradiction!

Since « is a limit ordinal, we know that o &€ Ny = JB, so there remains only
the case:

Case 2. £ =1+1

Case 2.1. N¢ is formed by option 2. Then N¢ = (M;, F) and a € M;. But
M; = N; is a ZFC™ model. Hence N;||la = M;||a = N¢||a. Hence EXi = 0.
Thus ¢ < £ is a counterexample and £ is not minimal. Contradiction!

Case 2.2. o € M; and N¢ is formed by option 1. Let:
T =sup{f < a | B is a cardinal in N¢||a}.

Then 7 is a cardinal in N¢. Hence 7 < p where p = pf, = px . Let
= s (p) = pn,(p). Then Ni||p = M;||p and o < p, since 7 < p. Clearly
« is then cardinally absolute in N;, since 7 < p is a cardinal in N;. But
ENi = EMi — Eévg = (). Hence i < & is a counterexample.

Case 2.3. The above cases fail. Then o = ht(M;) is the largest limit ordinal
in Ng¢, where E¢ = 0. Then M¢||loe = M;||o, where i < a and Njqg is
formed by option 1. Hence £ is not a counterexample. Contradiction!
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QED(Lemma 5.2.8)

5.3 Robust Premice

5.3.1 The Chang hierarchy

The logician C. C. Chang proposed a modification of the constructible hi-
erarchy in which, when passing to the next level, we include not only the
previous level as a set but also the set:

o =Af|frw—a}

where « is the previous level. There are various ways of organizing this
hierarchy (although any of them ultimately reaches the same inner model).
We shall construct the hierarchy, indexing the level by the limit ordinals.
We define:

Definition 5.3.1. The Chang hierarchy
(Cy | v is a limit ordinal)

is defined inductively by:

C,=J,=H,
Corw =1ud(Cy U {Cy} U a®)
Cun = | Cue for limit

E<A

(Here: rud(X)=the closure of X under rud functions).

Then each C,, is transitive and rudimentarily closed. Moreover, « = OnNC, =

rank(Cy). Using the methods developed in Chapter 2 we get:

e (Cc|¢eLlimnn) ey forn<a
e (C¢ | € € LimNa) is uniformly Cy-definable for
a a limit of limit ordinals. (Hence: Lim=:the class of limit ordinals. )

However, the definition of (C¢ | £ € LimNa) is not necessarily $1(Cy). In
order to remedy this we set:

Definition 5.3.2. C, = (Cy; (C¢ | € € LimNay)).
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Then C, is amenable and we trivially have:
(C¢ | € € LimN ) is uniformly ¥1(Cy).

We shall often write (C¢ | £ < a) as an abbreviation for (C¢ | £ € LimNa).
The condensation lemma for the C-hierarchy has a much stronger hypothesis
than the condensation lemma for L, to wif:

Lemma 5.3.1. Let « be a limit ordinal. Let X < Cy, such that (XNa)¥ C X.
Then X ~ Cg for an a < a.

Note If « is closed under Gédel pairing, we can replace (X Na)¥ C X
by: [X Na]¥ C X, where [Y]¥ =:the set of countable subsets of Y. This
simplification is possible since if f: w — X N, then f is recoverable from:
{<6,& | f(6) =&}, which is a countable subset of X N a.

We leave the proof of Lemma 5.3.1 to the reader. If we wished, we could
define the Chang hierarchy relative to a class E by:

Definition 5.3.3. For limit ordinals « such that:

Q)

w[E} = Jw = Hw
wiwE] = 1ud(Co[E] U {CL[E]} U{E N CL[E]} Ua®)
WwAlE] = | CuelE] for limit A

£<A

We can then define:

CF = (C,[E),ENCy[E),(C¢[E] | € € LimNa)).

We leave it to the reader to formulate the condensation for the C¥-hierarchy.
We shall, however, be more interested in a different modification of the Chang
hierarchy: Let e be a set or class. Let 7, n be limit ordinals with 7 <n. CZ,
then denotes the result of first constructing from e up to 7, getting J¢, and
therefore applying the operations of the Chang hierarchy without reference
to e. We define:

Definition 5.3.4. Let e be any class or set. Let 7 be a limit ordinal. For
limit o > 7 we define C7 , by induction on « as follows:

ce, = e
ce =rud(Cy,, U{Cs } Ua®)

T,0+w

~e _ ~e
T, THwA U CT,Teri'
<A
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Clearly C’ﬁyn is rudimentarily closed and transitive. Moreover:
n=0nnCs, = rank(Cy .
We set:

Definition 5.3.5. C7, = (C7 ,eN JZ, (C’f’é |7 <&<m))

Note When using this notation we will often tacitly assume that e = enJ¢.
In most cases, we will also assume that 7 is much greater than 7.

The condensation lemma for C7, reads:

Lemma 5.3.2. Let X <y, C7, such that 7 € X and (X Nn)® C X. Then

X o~ Cgﬁ fora T <7 and ann <n. Moreover, if T C X, then T = 7 and
e =e. (if n is closed under Gadel pairing we can again replace (X Nn)* C X
by: (XN CcX. )

5.3.2 Robustness

Without further ado we can now define:

Definition 5.3.6. Let N = (JZ F) be an active premouse, as usual set:
k=K, = crit(F), 7 =7, = sV, X =\, = F(k). F is robust in N if
and only if whenever Y C A, W C P(k) N N are countable sets, then there is
g: U — K such that

(a) <g(@) =€ X «—=<are F(X)foray,...,apeU, X e W.

(b) Let 7 = lub(Uf), 7 = lub(g”U). Let ¢ be a ¥; formula. Then for all
V1, ..., Uy CU we have:

CE = o(g"v1, ., 0" vm) 4= CE = (v, .. o).

Remark. It follows easily that if aq,...,a, € U, then:

Crx E 0977, 9(@)) «— Cf [ 0(7, ).

Note. In the following we shall use the notation, if N is a premouse, set:
EY =:that E such that N = (JE F) = (J,[E], E, F).

(Recall that JZ is defined to be (J,[E], E N J,[E]). )
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If v < « is a limit ordinal, we write:

EY = that F such that N||v = (JF F).

Note. If we omitted (b) in the definition of robustness, we would have the
familiar condition of w-completeness.

We now refine our definition as follows:

Definition 5.3.7. Let N = (JE, F) be an active premouse. Let x <y < A,
where k, A are as above. F'is robust up to v in N if and only if whenever
U\, W CP(k)N N are countable, then there is g: Y — & such that

(a) <g(@) =€ X «+—=<ar»e€ F(X) for aj,...,ap, €U, X € W.

(b) Let 7 =lub(U N~), 7= lub(¢” (U N~). Let ¢ be a ¥; formula. Then
T < k for all vy,..., v, CUN~Y we have:

C'T'E:K ): 80(9”'1)17 e 79”1}7”1) A CTE,oo ): 90(’017 s 7vm)'

We then define:

Definition 5.3.8. A premouse M is robust if and only if whenever M||lv =
(JP F)is active and v € [k, Ap] is a cardinal in M, then F is robust up to
v in M||v.

As usual, let: kK = ky, 7 =T7,, A= A,. Let v € [k, A] be a cardinal in N. We
note the following consequences:

(1) Let U C A\, W C P(k) N N be countable and let g: Y — & be as in
the above definition. Let ¢ be a ¥; formula. Let 4 = lub(g”7). Let
Alyeey0 €EUNY, VL, ..., 0, CUN~Y. Then:

N

Ol | 01, 9] +— CF; F (@), 977,
(2) If, in addition, we assume:
wCU,{ e W for £ eUNK,

then
g(§) =¢&for E eUNK.

To see this note that:

9(a) € {6} «— a € F({€}) = {¢} for a € U.
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But then ¢”b = b for b C w. Hence: if by,...,b; C w, then:

CEL = ¢lb, @, 7] «— CE = lb, 9(&), g7 7).

Taking v = k we have:

(3) If k is a cardinal in N and U C k is countable and 4 = lub(i/), then
¥ < k and

CEL Eolb,a@, ) «— CF = [b,a, ]

for b1,...,0 C w, a1,...,a € U N K, v1,...,0, C UN K. Thus
cf(k) > w. Hence every hereditarily countable set x lies in Cy and is
coded by a b C w such that the ¥ statement "b codes " holds in C,.
Hence by (2):

(4) Let x1,...,x, be hereditarily countable. Let the assumption of (2) be
given. Let aq,..., ¢ €U N Y, V1,...,0, CUN~. Then:

CEL Eo[7,a, 1] +— O = o[F, 9(a), g77).
By (3) we have:

Lemma 5.3.3. Let N be robust, F = EN # 0 and let k = K, be a cardinal
in N. Let x1,...,x, be hereditarily countable. Let U C k be countable. Set:

=lub(Uf). Then ¥ < k. Let ay,..., 00, €U, v1,..., 0, CU. Let 1 be a ¥
formula. Then:

CEL Ev[Z, a8 +— CF o[z, a, 1.

In the usual application of robustness, we assume that there is a countable
premouse N = (JJJ\EPF> and a map o: N —yx, N||v such that:

U =rng(c) N\, W =rng(c) NP(k) N N.

Note that the assumptions in (2) are then automatically satisfied. Then by
(4) we have

Lemma 5.3.4. Let N be robust, F = EN £0) and k = k,, T =7,, A=\,
i N. Let: B
o: N —y, Nllv

where N = (JE F) is a countable premouse. Let K = Ky, A = Ay in N.
There is g: X — K such that

(a) Let ai,...,cm, < A

< g(@) =€ o(z) «+—=<d =€ F(x) forr e P(R)NN
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(b) Let vy € [k, A] be a cardinal in N. Let x1,...,xz, be hereditarily count-
able. Let ay,...,am < X such that g(ay) < v (i = 1,...,m). Let
Viyeooy Uy C A such that g”v; C v (i = 1,...,n). Let 1 be a ¥4
formula. Then:

N o d = 9 N = — 9
Clo EV[E 0(d), 0" 1] «+— CF, = ¢l g(d), g 7.
Lemma 5.3.3 and 5.3.4 are our main lemmas on robustness.

Definition 5.3.9. A (putative) Steel array is robust if and only if whenever
Nii1 = <J£l, F) is obtained by Option 2, then F' is robust in N;y.

Lemma 5.3.5. Let (N;) be a (putative) robust Steel array. Then each Nj is

a robust premouse.

Proof. Let ¢ be the least counterexample. Then ¢ > 0.

Case 1. i = j+ 1 and N; is formed according to Option 1. Let N;||v =
(JP F) be active. Let k < v € N;||v, where v is a cardinal in Nj.

Claim. F' is robust up ti vy in N;||v.

We know that v < OnNM;, since N; is passive and OnNN; = (OnNM;)+w.
Hence Mj||lv = Nj||v and v is a cardinal in M;. Hence v < Py, since
otherwise it would not be a cardinal in N;. Let o: M; — N; be the core
map. Then o[y =1id and o(7) is a cardinal in Nj, where

(k) < 0(y) € Njllo(v) = (J5,, F).

Hence F’ is robust up to o(vy) in Nj||o(v), since Nj is robust. It follows
easily that F' is robust up to v in M;||v. QED(Case 1)

Case 2. i = j 4+ 1 and Option 2 applied.

Let N;||v = (JE, F) be active. Let x < v € N;||v where v is a cardinal in
N;.

Claim. F is robust up to vy in N;||v.

If v € N; this is trivial, since Nj||v = N;||v and v is a cardinal in N; = Mj;,
where N; is robust. Now let v = OnNN;. Then N; = (N;, F') where F' is
robust in N;||v. QED(Case 2)

Case 3. i = n is a limit ordinal.

Then N, is passive. Let N,|lv = (JE, F) be active where k < v € N,||v
and v is a cardinal in N,. The definition of N, tells that N,|lv = Nj||v
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and v € Nj||v is a cardinal in N; for sufficiently large j < n (it suffices that
v < fijy and v < Kj,). But then F' is robust up to v, since N; is robust.

QED(Lemma 5.3.5)

We shall prove:

Lemma 5.3.6. Assume there is no inner model with a Woodin cardinal. Let
(N; | i < u) be a putative robust Steel array. Then it is a Steel array (i.e.
N, is mouselike).

It will suffice to show:

Lemma 5.3.7. Let N, be restrained. Let o: P —yx+« N, where P is a
countable premouse. Then P is countably normally iterable.

We first show that Lemma 5.3.7 implies Lemma 5.3.6. Suppose not. Let
be least such that Lemma 5.3.6 fails. Then (N; | ¢ < Q) is a robust Steel
array. Hence Nq is pre-mouselike.

Case 1. Ngq is restrained. We first show that Nq is mouselike. Let N € Hy,
where 0 > Q) is regular. Let X < Hjy be countable such that Ng € X.
Let o: H «+~+ X be the transitivation of X. Let 0(P) = Ng. Then P is
pre-mouselike and restrained. Moreover, o | P: P —y+« Ng. By Lemma
5.3.7, P is then uniquely normally iterable. Hence P is mouselike. Hence,
by absoluteness, P is mouselike in H. Hence Ng is mouselike in Hy. Hence
Ngq is mouselike, by absoluteness. But then Mg = core(Ng) € X and
P' = core(P) € H. Hence o'c: P’ —x+ Ngq, where o/ = oy, is the core
map. Hence P’ is fully iterable by Lemma 5.3.6. Hence P’ is mouselike. But
then Mg = o(P’) is mouselike. QED(Case 1)

Case 2. N = Ngq is unrestrained. Then N is a constructible extension
of Nl|la for an o < ht(N). Moreover, o is Woodin in N/ = JﬁEH, where

N = J§. (Hence p%; > aand E C J7. ) By Lemma 4.4.11 it follows that

N is mouselike. But since N is a constructible extension of JZ and p% > «,
it follows that N is sound and core(N) = N = M. QED(Case 2)

(Note: we can actually prove stronger result. By Corollary 5.1.4 and 5.1.5
we have:

Lemma 5.3.8. Let N, be restrained. Then N, itself is smoothly oo-iterable
and fully a-iterable for all o < co. )

Before tackling this, however, we shall prove a much weaker theorem which
will enable us to display some of our methods:
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Lemma 5.3.9. Let N be a robust premouse which is pre-mouselike. Let
0: P —»s+« N, where P is a countable premouse. Let:

I= <<P1>7 <Ui>7 <7Tl'7j>7T>

be a non truncating normal iteration of P of length w. Then I has a cofinal
well founded branch b. ( In fact, there is a map o': P, —x, N such that
o'mop=0.)

Before beginning the proof of Lemma 5.3.9, we establish the following iter-

ation fact, which we will employ frequently:

Lemma 5.3.10. Let P be pre-mouselike. Let I = (D), (vs), (mi;),T) be
a potential iteration of P. Let i < 1h(I). There is a v such that P}|lv =
(JE F) with F # 0, r; = crit(F), 7; = 7(F).

Proof. We first recall that the statement: P is pre-mouselike is uniformly
IT; (P) by Lemma 4.4.2. Moreover, if P is pre-mouselike, then every Q< P is
trivially pre-mouselike. It follows easily that every P; is pre-mouselike. By
Lemma 4.3.11 it then follows that every P; is Y-acceptable.

Assume the Lemma to be fails. Let I be a counterexample with ¢ chosen
minimally. We derive a contradiction. Let h = T'(i + 1). Then:

(1) h #d.
Proof. If not, take v = v;. Then i is not a counterexample.
(2) v; ¢ P;.
Proof. Ap is a cardinal in P; by (1).
Bil|An = Pal[An = F[|An.
In P, we have:
\/ vV E (B, = F Aki = crit(F) Ay = 7(F) = 7+

This is a X7 statement about k;, m; where k;,7; < Ap. Hence by a ;-
acceptability the statement holds in Pj||A\, = PJ[|\;,. Hence i is not a
counterexample. Contradiction!

(3) 4 is not a limit ordinal.

Proof. Suppose not. Since A\; = lub{x; | j+1 <7 i}, we can choose j+1 <7 i
such that x; > k; and (4,77 has no truncation. F' = E,, is then the top
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extender of P, by (2). Since m;;: P; — P;, k; = crit(m;;), then P; has a
top extender F’. Then r; = crit(F") since x; = m;;(k;) = crit(F). Then i is
not a minimal counterexample, since, letting I’ be defined by I'[j+1 = I|j+1
and v; = ht(P;), then I’ is a counterexample of length j + 2 where j < i.
Contradiction. QED(3)

Now let i =k +1,t=T(k+1). Then m;;: P — P;. Hence P} has a top
extender F™*. Let k* = crit(F™*). Then m;(k*) = K;. But then

(4) K" < Ky

Proof. Suppose not. Let F* = EP¥. Then k; = crit(F*), where v > v; for
all j < t. Define a potential iteration I’ pf length ¢ + 2 by:

I't+1=1It+1, 1=

Then I’ is a counterexample where ¢ < 7. Hence 7 was not minimal. Contra-
diction! QED(4)

But then kj < k¥, since otherwise m ;(k*) = k* < k;. Hence k; = m ;(k*) <
Ak But k; < Ah. Hence h = i. Contradiction! by (1)

QED(Lemma 5.3.10)

5.4 Worlds

Our main tool in the proof of lemma 5.3.6 is the concept of world. Prior to
defining this we let:

Definition 5.4.1. ZFC* is the theory ZFC™ together with the additional
axiom: Az ([z]“ is a set).

Recall that we defined:

—. —. —.

Lifveodn = gliedn = (JU[A], €, Ay N oA, ..., A 0 Ja[A])

-

where (J,[A] | @ < 00) is the constructible hierarchy relative to Ay, ..., A,.

We now define:

Definition 5.4.2. A world of height « is a set W = L4 such that A C «
and:

o W = ZFC*
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e W is reflexive in the sense that there are arbitrarily large 5 < « with:
L§ < Ly
e W € V[G] for some G which is set generic over V.
e [aNW =[a*NV

Remark. We think of a world as being an ideal object, whose properties we
can discuss in V, although it might not actually be present in V. Note that
neither direction of the above final equation is vacuous.

Lemma 5.4.1. Let W be a world of height «. Then:

(a) cf(a) > w in V. Moreover, if 5 € W, then:
cf(f) =w inV «— cf(f) = w in W.
(b) Let e,7 € W. Then C7, = (Cﬁé)w for & € W. (Hence C7, =
(Csoa))

(c) Let a1,...,am € W. Let t C w code the complete theory of (W, €
Q1. .. Q). Thent € W hencet € V).

Proof.

(a) By [a]*NW =[a]* NV
(b) By induction on & € W

(¢) By reflectivity, t codes the complete theory of <L§, €,a) for a f < a.
Hence t € W.

QED(Lemma 5.4.1)
Note. Taking 7 =0 in (b) we have: C¢ = Cg/v for £ € W.

Note. Let coll(w, ) be the canonical set of finite conditions for collapsing ~y
to w. It is known that any complete Boolean algebra is a complete subalgebra
of the algebra generated by the condition coll(w, ) for a sufficiently large ~.
Thus:

W € V[G] for a set generic G

means the same as
W € V[G] where G is coll(w, v)-generic

and ~ is sufficiently large.
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We shall often make statements of the form:
There is a potential world W with property ...,

meaning that, for sufficiently large ~, the existence of such a world is forced
by coll(w,~). It is often convenient to reformulate such statements using
Barwise theory. For instance:

Lemma 5.4.2. Let o < v, where C), is admissible. There is a language
L =L, on C, such that

L is consistent <— there is a potential world of height a.

(Note:“Ly is consistent” will be uniformly 11;(C,) in a.)

Proof. The language IL has:

Predicate: €

Constants: z (x € C), A, W

Azxioms:

(a) ZFC
(b) ANv(véz +— v ==z2) for x € C,

(¢c) W= Jé where A C a
(d) W = ZFC*, W is reflexive.
() [a]* = ([On]*)W (where [a]* = {u C o | T = w}.)

Note. (a), (b) constitute the “standard axioms”. They will be present in
every language on an admissible structures which we consider. (c¢) says that
W has height a. Given (c), (d) and (e) then say that W is a world. Note
that (e) implies: cf(a) > w.

We now prove the lemma. We first prove (—). Let L, be consistent. If
G is coll(w, 7)-generic for a sufficiently large ~y, then C), is countable and L,
has a model M. Set: W = W™, A= A", Then W = J4 € V[G] is a world
of height a. Conversely, suppose W € V[G] to be such a world. Let k > v be
regular. Then L has a model M = (H,[G], W,...)(with 2™ =z for x € C)).
Hence L is consistent.

QED(Lemma 5.4.2)

The proof of lemma 5.4.2 is a template for many similar proofs. For instance:
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Lemma 5.4.3. Let a < v where Cy, is admissible. Let p(vi,...,vp) be a
first order formula. Let x1,...,xy € Cy. There is a language L. = L, z on
Cy such that L is consistent if and only if there is a potential world W of
height o with: W = ¢[Z].

Proof(sketch). L, ; is L, with the additional axiom: W |= ¢[z]. We leave
the details to the reader.

QED(Lemma 5.4.3)

Lemma 5.4.4. Let a < v, where C, is admissible. Let t € C,,. There is a
language . = Loy on C), such that L is consistent if and only if there is a
potential world W of height o with ay,...,ap € W and:

t = the complete theory of (W,ay,...,am).
Proof(sketch). Add to L, the constants a1, ..., a;, and the axioms:

o G1,....apm €W

e t = the complete theory of <W, Alyeey ).

QED(Lemma 5.4.4)

Another variant is:

Lemma 5.4.5. Let v < o <wv. Let C5, be admissible. There is a language

L =15, on Cf, such that L is consistent if and only if there is potentially

a world W of height o such that LS, € W.

Proof(sketch). The standard axiom (b) is now formulated for = € CY,
instead of C,. We add the additional axiom: Lfy € W. The rest is left to
the reader. o

QED(Lemma 5.4.5)

All the lemmas relativize to an arbitrary world W' in place of V. The
relativization of lemma 5.4.2 for instance reads:

Lemma 5.4.6. Let W’ be a world. Let o < v € W' such that C, is admis-
sible. There is a language I = Ly on C, such that

L is consistent if and only if W' = there is a potential world W of height a.

(Note that “L is consistent” is absolute to W'.)
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Proof(sketch). L = I, is defined exactly as before. The direction (—) is

exactly as before. We prove (). Let W € W'[G] be a world of height «.

Then L has a model M = (W'[G], W, ... )(with 2™ = 2 for z € C,).
QED(Lemma 5.4.6)

Note. If W’ has a largest cardinal it might not be possible to find a k > v, v
which is regular in W'.

The other lemmas stated above can be similarly relativized to a world W'.
We leave this to the reader.

5.4.1 Good Worlds

Definition 5.4.3. A world W = L2 is good if and only if there is § < «
such that in W the following hold:

e (3 is the largest cardinal
e = card(Vp), Lg =Vs
] Cf(ﬁ) > w1

f = B" is then uniquely determined.

Definition 5.4.4. Let W be good. Let §; = @W be the monotone enumer-
ation of the v < « such that v > " and W|y =: Lf is a world.(Note that
cf(y) > w if W~ is a world. Hence the sequence (; can be discontinuous at
places.) By the rank of W we mean that i such that g8; = a.

Suppose now that 8 = card(Vj) and cf(8) > w; in V. Choose A C S+ such
that Lg[A] = Vg and 3 is the largest cardinal in Lg+[A]. Then W = L§+
is a good world and BlW is defined for i < BT. However, we shall often be
interested in good worlds which are present in V[G] for a set generic G, but
not necessarily in V.

Lemma 5.4.7. Let o < v where C,, is admissible. Let i < o. Then there is

a language I = L, such that 1L is consistent if and only if there is a potential
good world W such that i < rank(W).

Proof(sketch). Add to L, a constant 3 and the axioms:

o W = is the largest cardinal
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o W E B =card(Vp) /\LB[A] =V Acf(B) > wy

. 5@ exists.

The rest is left to the reader.
QED(Lemma 5.4.7)

We now turn to the proof of lemma 5.3.9.

5.4.2 The Relation R

We are assuming that:
I'=((B), (vi), (miz), T)

is a nontruncating normal iteration of length w. Moreover P = Py is count-
able and there are o, N such that

N is robust and pre-mouselike and ¢ : P —y« N.

From this we wish to derive that I has a wellfounded branch. We define:

Definition 5.4.5. ¢ € D; if and ouly if i < w and the following hold:

eo:P—N

e Let n <pi(hence omy; : P, — N). Let m < w be maximal such that

)

Aj < pp for all j <m. Then omy; is Zém -preserving.

We set: D = J;,, Di.

Note that for each o € D there is a unique ¢ = i(o) such that o € D;.(We
are assuming that Dy # ().) We then define a relation R C D? as follows:

Definition 5.4.6. (¢/,0) € R if and only if for some ¢ we have: ¢’ € D; and

o =0'my for an n <7 1.

It will suffice to prove:

Claim. R is illfounded.
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To see that this suffices, let 0" Ro™ for n < w, where 0" € D; . Set:
b={j|Vnj <rin}.
Then b is a cofinal branch. For j € b such that:
oj =0o"mj,, for j <i,.

Then ojRo; for i < j in b. b is wellfounded, since there is 6 : B, —y, N
defined by:

omy, = o for ¢ € b.

Thus we shall assume R to be well founded and derive a contradiction. This
assumption implies that each ¢ € D has a level defined by:

level(o) = lub{level(¢’) | o' Ro}.

Note. The relation R is easier to think of if we imagine that N, Py are ZFC™
models. Then each P; is a ZFC™ model and 7;; : P; < Pj for i <p j. D;
is simply the set of o such that o : P; < N for some i < w, and ¢'Ro says
that o : P; < N for some i and ¢’ : P, < N for some n < i. In the general
case, the maps ;; will still be ¥*-preserving, but the degree of preservation
of o : P; < N such that ¢ € D; may drop as ¢ increases, and may eventually
fall to ¥g. However, this still will suffice to prove lemma 5.3.9.

Now choose (in V') a cardinal /3 such that
B = card(Vz), N € V3 and cf(83) > w;.

Since card(IN) < 8 and 3 is a limit cardinal, it follows easily that card(D) =
card(R) < (. Hence level(o) < 8 for 0 € D. Then choose A’ C /8 such
that Lg[A'] = V. Pick A” C [B, %) such that § is the largest cardinal in

onto

Lg+[A], where A = A"U A”. (To do this, we could pick f¢ : & — 3 for
€€ [B,8") and set:

A" = {(6,0.0) | feli) < fe() A€ € [8.51)})

We then set: Wy = L?+, No = N. It is easily seen that Wy € V is a good
world of rank 7.

Starting with this, we construct a sequence
(Wi, Ny) | i < w)
such that for all i < w we have:

(A) W; = L4 is a good world
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(B) (Wo, No) = (Wi, Ny)

where = means ’elementarily equivalent’. However, we will not necessarily
have: W;,N; € V. The construction will take place in V[G], where G is
(BT, w)-generic.

Now define (6; | j < rank(W;)) from W; as (8; | j < rank(W)) was defined
from Wy. Set:
1Bl —. 1A
Wil 85 =: Lﬁ;'

Then by reflexiveness:
WilBh, = WilB} (n < j < rank(W5)).
It follows that N; € W;|8} and:
(Wo, No) = (W] 85, N;) for j < rank(W;).

Let R; be defined from W;, N; as R was defined from Wy, Ny. Let

D'=| D

J<w

be defined in W; from N; as D = |J D; was defined in Wy from Np.

J<w

Note that if o : P, —x, V;, then 0 € W;. This is because, letting o =
OnNP, and & = OnNN,, ola € Ci C W;, since o|a is a countable subset
of & x a € C¥i. But o is the unique f : P, —yx, N; such that f|a = ola.

The i-th level function, (level'(c) | o € D?) is defined in W; from N; as
the original level function was defined in Wy from Ny. We shall construct
(0; | i < w) such that

(C) o; € D! and level’(o;) < rank(W;)
(D) a; < ayy, for n < i (where o, = OnNW,,)
(D) gives the desired contradiction. We set:
vi =: the largest v € (k;, \;] which is a cardinal in P;.

Since [ is a nontruncating iteration, 7; will always be a cardinal in P,,, where
n ="T(i+1). But 7; is then a cardinal in P;, since either n =i or 7; < A,
where A, is inaccessible in P;. Hence 7; < ;. We ensure that for i < w:

(E) on|yn = oi|yn for n <

(F) J%N" = J,%Ni for n < i, where 4, =: lubo,,” vs.
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Note. (E) seems paradoxical at first glance. This is because, if we assume:
oo : P[) — N,O’1 : P1 — N,O’lﬂ'()l =0y,

then o1 (ko) < o1m01(ko) = 00(Ko), where kg < 9. In fact, (E), (F) are only
possible because N,,, IV; are different premice in different worlds for n # i.

Wo, No, 0p are given. Moreover (A)-(F) are vacuously true for i = 0. Now let
Wi, N, 0; be given such that (A)-(F) hold. We construct Wit1, Nit1,0i+1
and verify (A)-(F) at i + 1. Let:

t =: the complete theory of (W, Np).
Let k,7,\ = 0i(ki, Ti, Ai). Let v = 0;(v;) if v; € P; and v = Ony if not. By
lemma 5.3.4 there is g : \; — kK such that
(a) Let aq,...,a, < \;. Let X € P(k;) N P;, then

(9(@) € 0i(X) +— (a@) € B} (X).

(b) Let v; € [ki, A;] be maximal such that 7; is a cardinal in P;. Let
A1,y 0 < 7. Let vy,...,v, C . Let x1,...,x, be hereditarily
countable. Let ¥ be 1. Then in W;:

CETL | W[, 04(d),0,77) «— CE | W[z, g(a), g7,

Vi,

where 4; = lubo;”v;, ¥ = lub g”;

Since (C’,%]\(;ZO)WZ = C’,%j\;fi, we have:
ENi EN 9
C5, ; = O[T, 04(d),0:70] «— C5. 0 = [T, 9(d), g77].

Now let n =T(i+1). Let m = my, ;41. Then:

T P—> Pl—l-l

B
It follows easily that:
ki < pp, < X\i < pp,,, form <w.
Every element of P;y; has the form:
m(f)(a) where a < \;, f € I (ky, Pp).
Using this we prove:

(1) There is o : P11 — N, such that
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e 0is E(()m)—preserving for \; < pg’}iﬂ

e glNi=yg

e o =0,

Proof. Let m < w be maximal such that A; < pjp . Let A be E(()m)(PZ-H).

Let A be E(()m)(Pn) by the same definition. Let A be E(()m)(Nn) by the same

definition. Write e.g. A(f(€)) as an abbreviation for A(f1(£1), .- -, fm(Em))-
We make use of lemma 2.7.13. Note that both of the embeddings:

7T:Pn —>P/1:+1,0-n : Pn —)Nn

are E((]m)—preserving.

. < ki | A(F(E)}. Then X € P(k;) N P, = P(k;) N P; and
on(X) = 04(X). Then, if aq, ..., amym < A, we have:
Ar(f)(@) «— (@) e B (X)

«— (9(@)) € on(X)

e Alon(F)(9()))-
Hence there is a unique o : P; — 5 (m) N, defined by:
0

o(m(f)(a)) = on(f)(g(e)) for o < Ai, f € T (ki, P).

The conclusion follows easily.

QED(1).
But then 0 € W,,. Since omy, ;41 = 0, € D" and 0 : P4 —>Ef{") Ny, we
have: o € D}, |, cR"0y,. Hence:
level” (o) < level"(¢™) < rank(W,).
Pick j < rank(W,,) such that level” (o) < j. Set:
of = B W = W, |8y = T
Pick v > o/ such that v € W,, and C%V is admissible, where E = E™V».(Note
that: C’%V = CE" since 4; < k = 0y(k;).) Let ¢ be the complete theory of

ViV ?

(Wo, No). Let I = Lqos 14,97+, be the following language on CZ -
Predicate: €
Constants: xz(x € C%l,), W, A N, &

Azioms:
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Standard azioms:
o /FC™

o Nv(véz «— M =z) forz e CE,

ZEX
W is a world of height o :
o W = JO’?,
o W = ZFC*
o IV is reflexive
o [@']¢ = ([On]*)"
Azioms about &: .
- 0

° O.'7Tn7i+1 I& —)Z(m) N
e 0
° O"”l: g”%

. J% = JiN, where 7; = lub ¢”;
The elementary equivalence axiom:
e ¢ = the complete theory of (W, N)

(By this, it follows that W is a good world and 3 = By is defined
as the largest cardinal in W. Hence rank(W) is defined. Define
D,R in (W,N) as Dy, Ry were defined in (W, Np). It follows
that: “R is wellfounded” holds in W. Hence the level function,
level’ is definable in <W, N ) as level’ was definable in (W, Np).
Our final axioms read:

® 0Tpit1 € D, (Hence ¢ € Di+1)

e level(6) < rank(W).

It is obvious that (W,, Wy|la/; AN a’,0,...) is a model of L. Hence L is
consistent. The statement that there are «a,v such that a < v, C’% v 18
admissible and L/ 14 47+, is consistent, is in W, a El(C’%OO) statement about
I,t,9”v;. By the iteration fact (lemma 5.3.10) there is v > k; such that
EPn o4 () and k; = crit(ELn), where k; is a cardinal in P,. Since N,, is robust
in W,, we have EN 7& ) and Kk = crlt(E T )) where kK = oy, (ki) = 0i(k;) is
a cardinal in N,,. By lemma 5.3.3 it then follows that the same 3; statement
about I,t, g”; is true in C%H = C%,;. Since NV, is robust in W;, it follows by
our assumption on g that the same statement holds in (C%A;)WZ of I,t,0;”;.

N; . . .
Hence there are a,v € W; such that a < v, C%VZ is admissible and (2)
La,1t.0,77; 18 consistent.

S.et: a;r1 = a. Let M be a model of Ly 14 5,7,- Set Wiy = WM, Aip =
AM g0 = M. It is straightforward to see that (A)-(D) hold at i + 1.



518 CHAPTER 5. THE MODEL K¢

i1 N, . .
R Jf, * since in
1

- N,
But ;| = oy for | < i and o;41|y; = 04|y and Jg
Lo 1,07, the axioms:

-9 9 N; N
i =07 Iy =I5
hold. Hence (E), (F) hold at ¢ + 1. This completes the contradiction.

QED(Lemma 5.3.9).

Lemma 5.3.9 proves a special case of Lemma 5.3.7, which says that if N,
is restrained and o: P —x+« N, P being countable, then P is countably
normally iterable i.e. each countable normal iteration I of P of limit length
has a cofinal well foun ded branch. If I happens to have length w and be
truncation free, this follows by applying Lemma 5.3.9 to N = N,,. But what
if I has length w and is not truncation free? We can, in fact, still carry out
a similar proof but we must utilise the entire Steel array N = (V; | i < )
rather than just the model N,. In the old proof, D; was a set of maps
o: P, — N,. For each h <7 i we could then define a unique oj, € Dh by:

Op = O0iThi-

If, however, there is a truncation point in (h,i]7, we cannot recover oy, in
this way, since m,; is only a partial function on Pj,. We shall instead define
D; tobeaset of o = (0 | j <7 i) such that o [ (j+1) € D; for j <pi. Such
o € D; is called a realisation of P; in N. We shall have: o;: P; — N,Uj for
J <t i, where p; is uniquely determined by o < j, given I. We inductively
define D;. For i = 0 we set: po = p and Dy =the set of 0 = {(09,0)} such
that o9: Py —x+ N,. Now let D; be given for j < i. Let h = T(i + 1).
If ¢ + 1 is not a truncation point, we set: p;+1 = pp and D;4q is the set of
o = (oj | j <r 1) such that the following hold:

e 0,11: Py —>Eén) N1 where n < w is maximal such that \; < pTJSZ_H
e olh+1eDy

® Oh = Oit1Th,it1-

Now suppose that ¢ + 1 is a truncation point. Let 0 = (0 | j <r i+ 1) and
suppose that o [ (h + 1) € Dy,. Then P* = P||3, where 5 € P}, is maximal
such that 7; is a cardinal in P,||3. Let 8 = on(B), & = on(r). Clearly
vy € Py, since otherwise Ay, is a cardinal in Py, hence so is 7;, since 7; < Ap,
is a cardinal in J)iph = J/\hpi. Contradiction! Set v, = o1 (vp), B = on(kn)-
We know that oy,: P, —x, N,. 7; is a cardinal in Nuh||5, but not in
N, |13 + w. Hence pruhllﬁ <7< p‘JIJV#hHg for ¢ < B such that &, < €.
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Hence, letting (1;,v;) be the resurrection sequence for (N, 7;), we see that
B = B; for some j < p, where (5}, k;) is the associated sequence defined in
§5.2. Then kj: Ny, [|8 —rs+ Ny,. We set: pip1 = 15, 0f = kj - op. Then

K
o P — s+« Ny, Note that p;11 is defined only from o} and 7, where

7; is given by 1. We then define D;1; as the set of 0 = (0 | j <7 i+1) such
that the following hold:

e 0it1: Piy1 —wmg Ny, where n < w is maximal such that A\; <
PPi
e ol(h+1)€ Dy
® 0% =0 11Thit1-
This defines D; and D = UKW D;. We again have that ¢ € D, there is
exactly one i such that o € D; (since P; = dom(o;)).

Definition 5.4.7. Let b be an infinite branch in 7. We call o = (0; | i € b)
a realization of b if and only if g;1 realizes P; for ¢ € b.

It follows as before that every realizable branch is wellfounded.

Definition 5.4.8. ¢'Ro if and only if for some i, ¢’ realizes P; and o =
o'In+1 for an n <p 1.

It follows as before that if R is illfounded, then I has a wellfounded cofinal

branch.

Thus we again assume R to be wellfounded in order to derive a contradiction.
To this end we again construct(in a suitable generic V[G]) a sequence:

<<Wi,Ni,Ui> | 1< w), where:

o W; is a world

o N, = (N} |l <u')is a Steel array in W;

e 0; = (0! | n <ri) is a realization of P; in N;.
Ng = N is our original array and W) is defined as before, pick £ such that

B = card(V3),N € V3,cf(B) > wi.

The sequence (W;, N;) will satisfy:
(A) W; is a world and N; € W;

(B) (Wo,No) = (W3, Ny)



520 CHAPTER 5. THE MODEL K¢

Thus each W; is a good world and N; is a robust Steel array in W;. Just as
before we define the sequence

B (j < rank(WVi)

such that each W;| ﬁ; is a component world of W; and Bj- = a; = Onyy, for
J =rank(W;). D; is the set of realizations of P; for j < 1h(T'). R; is defined
from N; in W; as R was defined from N in Wy. We ensure that:

(C) oy is a realization of P; in N; and: level’(o;) < rank(W;)

(D) ey < a, for n < i (where a; = OnNW;)

(D) gives the desired contradiction. Now let o; have the form:
o; = (Jfl | n <7 i) where J; P, — NZ%,

ol being Y-preserving where m < w is maximal such that pp, > A for
[ < n. Let:
N; = N;Zi’ﬁl = O‘;(VZ) for i < w.

Set 6; = k - o, where k is the resurrection map for NzHﬁZ Then:
Gi: Pllvi — N; = (JE, F)

where <J£, F) is the origin of Nj||2;. Set A\; = ;(\;). In place of the previous
conditions (E), (F), we have:

(E) 60" A = 65" Ay for n < i
(F) JE" = JE for n < i, where N; = (JE', F') and X; = lub&;" ).

Without going into further detail, we mention that E = ((W;,N;,04) | i < w)
will be what we shall call an enlargement of I. It will enable to essentially
carry out our previous proof in a new setting . In the next section we develop
the theory of enlargement and use it to prove Lemma 5.3.7.

5.5 Enlargements

In this section, we prove Lemma 5.3.7. We are given a putative Steel array
N = (N; | ¢ < p), where N, is a restrained 1-small premouse. Since N is a
putative Steel array, we know that N, is pre-mouselike. We are also given
a countable premouse P and a map o: P — s+ IN,. Hence P is restrained
and pre-mouselike. Because P is restrained, we know that P satisfies the
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unique branch condition —i.e. if I is any countable normal iteration of P of
limit length, then I has at most one cofinal well founded branch. But P is
also pre-mouselike. Hence [ satisfies the “iteration fact” (Lemma 5.3.10). We
must show that P is countably normally iterable — i.e. that any countable
normal iteration I of P can be continued in the following sense:

(*) If I is of length i + 1 and v; such that E}? # 0 is so chosen that it
extends I to a potential iteration of length ¢ + 2, then there is a map
m: P —'% Py where F' = E,f?’ and n < w is maximal such that
p?;z* > K.

(**) If I is of limit length, then I has a cofinal well founded branch.

Lemma 5.3.9 gave a positive answer to that question in the special case that
I has length w and is truncation free. That case is very special. Nonetheless,
the reader should keep that proof in mind, since it contained the seed of the
proof of the full Lemma 5.3.7.

In the proof of Lemma 5.3.9, we defined for ¢ < w the set D; of what we call
realization of P; in N,: Do was the set of all o: Py —rs+ Ny Djiq was
then the set of o: P4 — N, such that o is E((]n)—preserving for all n such
that \; < pjéi+1 and has the further property that omp, ;41 lies in Dy, here

h=T(i+1).

If, however, we drop the requirement that I be drop free, then this definition
will not work, since 7y ;41 is only a partial function on P, if ¢ + 1 is a drop
point. Hence o, ;41 is a partial function on P, and it will not be possible
to recover an element of Dy, from o alone. In fact, in order to handle this
case, we must give up the requirement that o map P; 1 into IV,,. It will map
P11 into some smaller Ny, , where p;11 < p and we shall have:

. p*
OTh,i+1" .P,L —r NMJA.

The right notion of realisation of P;is then a sequence o = ((0j, 1) | j <7 )
such that o;: P; — N,,;. This encompasses not only the map o; but also
its “history”, which cannot be recovered from o; alone. Without further ado
we give the full definition of “realization”

Let I = ((B;), (vi), (mi), T) be any countable normal iteration of P of length
7. By induction on ¢ < 1 we define the set D; of realization of P; in N. Each
o € D; will be a sequence :

o= {0, p5) | J <1 1)
such that o;: Pj — N, for j <ri.

We shall inductively verify:
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o 11; < pj for j <ri.
e 0;: P, — ) N, whenever \; < p'b for all j <.
0 1

e If (j,i|p is drop free, then p; = p; and o = oy7; ;.

We define D; by the cases as follows:

Case 1 i = 0. Dy is the set of 0 = {(o0,10)} such that pop = p and
gp: PO —rx Np/.

Case 2 i =j+ 1. Let h=T(i +1). We split into two subcases:
Case 2.1 j + 1 is not a drop point.

Then o = ({07, 1) | I <7 i) € D; if and only if the following hold:

e olh+1eDy
o y; = pup, and oy, = oy

e 0;: P —>Eg”) Ny, whenever \; < pp.

Case 2.2 j + 1 is a drop point.

Then P} = Py||B where § =the maximal 5 € P}, such that 7; is a cardinal
in Py||8. Set: B = on(B). Then B is the maximal 3 € N,, such that
on(1j) = 0;(r;) is a cardinal in N, ||3. Note that vs € P, since 7; is a
cardinal in Py||Ay, but not in Py. Hence § € B(Pp,vyp) as defined in §5.2.
Hence 3 € B(N,,,on(vn)). Let (m,v;) (I < p) be the ressurection sequence
for (N, ,vn) as defined in §5.2. Let (B, k;) be the auxiliary sequence defined
there. Then (B; | i > 1) is the enumeration of B(N,, ,0,8v4) in descending
order. Let 3= 3,1 > 1. Then k;: N, ||8 —rs+ Ny,. We set:

0'; =: kjop,.
Then o}: P} —=" N,,,. We define: o = ((o¢, p1¢) | € <7 i) € D; if and only
if the following hold:
e olh+1eDy
e u; =m and o} = 0T

e 0;: P _>Eg") Ny, whenever A\; < pp.
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(Note: If the Case 2.1 holds we also set: o = 0. Hence we will always
have: o7 = omp j41 for j+1<n. )

Case 3 i = 7 is a limit ordinal.

Then o = (o; | j <rn) € D, if and only if the following hold:

eolj+leDjforj<rn

e If i <7 n such that (i,n|r is frop free, then p; = py, on: Py — Ny,
and o; = o,m; 4.

The verification is straightforward.

Definition 5.5.1. Let b be a branch in I. We call a sequence o = ((0y, i4;) |
i € b) a realisation of bin N (in symbols o € Dy), if and only if o [ (i+1) € D;
for i €b.

Note that the existence of a realization o for b means that b has only finitely
drop points, since, if i,, (n € w) were an ascending sequence of drop points,
then p;, , < p;,. Contradiction! Hence:

(1) Let b be a realizable branch in I of limit length. Then it is well founded.

Proof. Let j € b such that no 7 € b\ (j + 1) is a drop point. Define
op: By —> Ny, by: opmip = oy for i € b\ (j +1). Then B, is well
founded, since N, is. QED(1)

In the proof of 5.3.9, we assumed that I was of length w and used a natural
relation R on the set D = |J,_,, D; of all realization to prove that I has a
cofinal well founded branch. We now require only that the length 7 of I be
at most countable.

We now define a new relation R on D = (J
similar to that of the old relation R.

i< Di which will play a role

Definition 5.5.2. Let n* be an injection of 1h(/) into w. Set :
n(i) = min{n*(j) | i <r j}

(Hence n(i) =n(j) — i <pjfori<jin I.)
Definition 5.5.3. 7 survives at j if and only if

i <jAn()=n(j) An(h) <n(j) whenever h € [i,j].
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Definition 5.5.4. ¢’ Ro if and only if:

i <1 j Ao realizes PiNo = o' i+ 1 Ai does not survive at j.
Then:

(2) If R is ill founded, then I is of limit length and has a cofinal well
founded branch.

Proof. Let 0y, 41Roy, for n € w. Let o, realize Pj,. Set: b= {h | Anh <p
Jn}, 0 = U, on. Then b is of limit length n = lub{j, | n € w}. Moreover,
o is realization of b. If n = ht(I), we are done. If not, then n < ht(I).
Then b and b = {j | j <r n} are both well founded branches of height 7.
Since P is restrained, I is an iteration by unique branches. Hence b = V.
From this, we derive a contradiction. Let n = n(n). For sufficient ¢ < 7 we
then have: n(i) > n and n(i) = nifi € b = V. Now let i < j,. Then
Jm does not survive at jn+1. Hence either n = n(jy,) < n(jm1) or there is
h € (jms jm+1) such that n(h) < n. Contradiction! QED(2)

From now on we assume:

(***) R is well founded.

If I is of successor length, then (***) is simply true by (2), and we
shall use this in proving (*). If Ih(]) is a limit ordinal, we deliberately
posit (***) in hope of deriving a contradiction. Thus proving (**).

The sequence ((w;, N;, 0;) | ¢ < w) which we constructed in §5.4 was the first
example of a class of structures which we call enlargemnts. We define

Definition 5.5.5. Let P be a set of conditions and let G be a P-generic
over V. Let 0 <! <1h(FE). By an enlargement of I|l in V[G] we mean any
structure:

E = {<Wi,Ni,Ui> ’ 1< l} S V[G]

which satisfies the following conditions:

(A) W; is a good world.

(B) N; = (N} | h < pi) is a putative robust Steel array in the sense of W;
for i <.

(C) o; € W; is a realisation of P; in N; for ¢ < [.

Thus o; = ({0}, p4) | b <r i) where o} : P, — Nfﬂ- for h <7 i. Set:
h

. . NP AL %
Ni = Nuz,UZ—Ui.
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(D)

&i()\;) is a cardinal in N; for j < i < .

Now suppose that i < [ such that i + 1 < 1h(I). Then I gives us
the point v; such that Ell,ji # (). Let k be the resurrection map for

~

(N;, 64(v;)). Then:
ki Ni||6s(vi) —vs= N} = (JZ,F)
where (JZ, F) is the "origin" of N;||64(1;) in N;. Set:
N;y=:Nj, Gi=:1k-6;, X\ =:lub&;"\;.

(Note If v; = ht(F;), we let 6;(v;) denote ht(N;). In this case, we
have: k =: id, Ni = NZ', 5’2‘ = &i, )\z‘ = lub 5’0”)\1'. )

The next axioms read:
oA =6 Ap for h <i <.

ENL  1EN .
JS\h _JS\h for h <1 <.
Note If we define:

(JE )| = JﬁE for limit 8 < a,
we can express (F) by:
Nh|:\h = Nzlj\h for h <i <L

Note The iteration I assigns a v; with E,f:i #(ifand only if i + 1 <

Ih(I). Hence we shall sometimes write “v; exists” or “v; is defined” to
mean: ¢ + 1 < lh(I).

(3) Let h <i <[ such that v; exists. Then: 5 [Ap = ;[ An.

Proof. h =iistrivial. Now let h < i. Then &;()\) is a cardinal in N;.
Thus if k is the resurrection map for (N;, d;, N;), then k[ &;(\,) = id.
Hence ¢ f)\z = 5’1 [)\1 QED(3)

Let R; be defined in W; from N;, I, n* as R was defined in V' form N,

I, n*.

R; is well founded in w;.

But then we can define the level function in W;:
level’ (o) =: lub{level’(¢’) | o' R;o}.

The next axiom reads:
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(H) level(o;) < rank(W;)

We shall impose on E an additional requirement which we did not
impose in the previous section. In order to formulate this requirement
we define:

Definition 5.5.6. For i < [ set:

5 5 (E) ;i [ A if v; exists
[ J i — 04 et
5’1‘ rht(Pl) if not

e t; = t;(E) = the complete theory of
(Wi, Ny, 04, 1,1, [1,t11)
The trace of E is defined by:
trace(E) =: (4,1),

where § = (8; [ i < 1), t = (t; | i < 1).

Our final axiom reads:

(I) trace(E) € V.
This completes the definition of “enlargement”.

Note E is an ideal object, which might not exist V. Its trace, however, does
lie in V and encodes vital information about E.

Note The axiom (I) is only needed in the case that E is of limit length. This
follows by:

Lemma 5.5.1. let E be of length i + 1 satisfying (A)-(H) and let E |1 satisfy
(A)-(I). Then E satisfies ().

Proof.  rng(d;) is a countable set of ordinals in W;. Hence rng(J;) €
V. is countable in V', since W; is a world. Hence §; € V, since §; is the
monotone enumeration of rng(d;). But ¢; € W; by reflexivity, Moreover, t; is
hereditarily countable in W;. Hence t; € Cx[l/i =C, CV. QED(Lemma
5.5.1)

Definition 5.5.7. Let P, G be as above. Let e € V[G]. E € V[G] is an
e-enlargement of I|l if and only if the following hold:

e 1; exists for i <
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e [ is an enlargement of I|

ENi e )
) Jj\i _JL for ¢ < A.

We leave it to the reader to prove the following two lemmas:

Lemma 5.5.2. Let E € VI[G] be an enlargement of I || with trace (6,t).

Let 0 < i < l. Then E | i is an ENi-enlargement of I | i. Moreover,
trace(E [i) = (0 [4,t]1).

Lemma 5.5.3. Let E € V|G| be an enlargement of I [l. Let e € V[G]. Let
i <l such that E|i is an e-enlargement of I [i. Let F € V[G] such that F is
an e-enlargement of I[i and trace(IF) = trace(E [r). Set:

E =FUE[[i,1).

Then E' is an enlargement of Il and trace(E') = trace(E).

Lemma 5.5.3 is called the interpolation lemma. Both lemmas will be used
frequently (though sometimes tacitly).

Definition 5.5.8. (4,t) is a trace if and only if there is a set of conditions
P which forces that , if G is P-generic over V, then there is an enlargement
E € V|G| such that (d,t) = trace(E).

In fact, we only need to consider the sets of conditions Col(y,w) where
Col(y,w) is the set of finite conditions for collapsing v to w. If P is any set
of conditions and + is sufficiently large, Col(ry,w) will force the existence of
a set G which is P-generic over V. Hence we can always take P in the above
definition as being of the for Col(v,w).

The verification that something is a trace is greatly simplified by:

Lemma 5.5.4. There is a X1 formula ¢ such that

(0,t) is a trace «— Cs = [0,t,1,n7].

In order to prove this, we first define:

Definition 5.5.9. An enlargement E = (W;,N;, 0;) | i < 1) is a-bounded if
and only if ht(W;) < a for ¢ < [.

Definition 5.5.10. (4,t) is an a-bounded trace if and only if there is a set
of conditions P which forces the existence of an a-bounded enlargement E
with trace (0,t).
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Definition 5.5.11. (4,t) is a potential trace if and only if §, ¢ are functions
and : 0 < dom(d) = dom(t) < 1h(I) and:
e rng(d;) is a set of ordinals for ¢ < dom(6)

e ¢; is hereditarily countable for i < dom(J).

Lemma 5.5.4 follows easily from:

Lemma 5.5.5. Let (3,t) be a potential trace. Let wy < o < v such that C,
is admissible and 0,t € Cr. There is a language . = Ly 1 5 on C, such that

L is consistent if and only if (0,t) is an a-bounded trace.

To derive Lemma 5.5.4 from Lemma 5.5.5, we let ¢ be the ¥; formula such
that Cs = ¢[I,0,t] says that there are a, v with C) is admissible, v > a,
(0,t) € Cy is a potential trace, and L, 6, is consistent.

We prove Lemma 5.5.5. We first describe the language L. L has:
Predicate: €
Constants: z (x € C)), E, W, A N, &, &

Axioms:

(1) The standard axioms:

o ZFC™

e Nv(vez+—\, ,v=2z)forzeC,

pASH
(2) E= (W,N,6;) | i <) and dom(W) = dom(N) = dom(5) =1
where [ = dom(d) = dom(¢).
(3) W; is a world for i < [ -ie.
o W, = ZFC* A W, = ini, where ¢&; < o
° WZ is reflexive
e Nz(W; =z € [On]¥) «— (z € [o]“ Az e W))

(4) W; is a good world (i < 1) -i.e. there is f3; such that

o Wi |= B is the largest cardinal
o Wil (Vo, = Ly [Ai] Act(Bi) > wi)
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(5) For i < [ the following hold in W;:

o N; = (Nj | h < ;) is a putative robust Steel array of length ;.
o Each N;L is 1-small

. Nﬁi is restrained
(6) For i < [ the following hold in W;:
e 0; is a realization of P, in N; (where P = (P; | i <).)
o 6i= (G i) |0 <piin )
It follows that:
ph = s, afL:Bn—>Nlié forn <7 iin I.

Set:

~

]\71‘ = N,i;ﬁ? o; = 0-;';7 Ai = lub 6;7 A,
where A = (\; | i < I).

(7) 6i()\p,) is a cardinal in N; h < i <1
For i < I such that i + 1 < Ih(I) let k;: N;||6:(v;) — N;, be the

resurrection map for (Nj,&;(v;)) in the sense of W;, where v = (v |
Jj+1 <1h(1)).

Set: N; = Nji., 6; = kioy, A\ = lub ;" A; where A = (\; | i+1 < Ih(I)).

(8) 64"\, = 67, for h < i <1
(9) Nh|5\h = N1|5\h for h <i<l

(10) R; is well founded
(where R, is defined in WZ from Ni, I,n* as R was defined in V from
N, I, n*. )

(11) level’(&;) < rank(W;) for i <1

(12) e 8, =6\ fori<l
e §,=0;ht(P) fori=1
e t, = the complete theory of: (W;,N;, 64,1,8[4,t]i) for i <1

This describes the language L. If L is consistent and v > card(C,), then
forcing with Col(y,w) yields a model A of L. E = E* is then an enlargement
with (d,t) = trace(E). Moreover, E € V[G] where G is Col(vy,w)-generic.
Conversely, if there is such an E € V[G], then G is set generic over Hy for
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a regular 0. (Hy|[G|,E,---) is a model of L. L is therefore consistent. This
proves Lemma 5.5.5 and with it Lemma 5.5.4.

Many of the arguments we have been making can be carried out if we replace
V with an arbitrary world W. We have seen that:

e If « =ht(W), then CZV = C¢ for £ < a. (Hence CYY =C,. )

o [cW, sincel € C,, CW.

We leave it to the reader to show:

e Let W/ C W. Then:

If G is set generic over W, we can relativize the definition of “en-
largement” to W[G], letting W play the role of V. Axiom (I) in the
definition of “enlargement” thus becomes:

(I) trace(E) € W.

However, by the definition of trace, we know that trace(E) € CY =
CoCV.

Relativizing the definition of “trace” to a world W, we have:

Let W be a world. Let (6,¢t) € W. Them W |= ((J,t) is a trace ) if
and only if there is a set of conditions P € W which forces that if
G is P-generic over W, then there is an enlargement E € WG] with
(0,t) = trace(E).

But then Lemma 5.5.4 and 5.5.5 relativize to an arbitrary world, yielding:

Lemma 5.5.6. Let W be a world. Let (6,t) € W. There is a ¥y formula ¢
such that in W we have:

(0,t) is a trace +— Co = @[0,1,1].

This follows from:

Lemma 5.5.7. Let W be a world. Let (§,t) € W be a potential trace. Let
w1 < a < v e W such that C, is admissible and 6,t € C,. There is a
language . = 1Ly 1 51 on C, such that

L is consistent «— W = (6,t) is an o — bounded trace.

Lemma 5.5.6 follows from Lemma 5.5.7 exactly as before. We prove Lemma
59.5.7:
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(—) in exactly as before. If L is consistent, then in Col(v,w)-generic over
W, then L has a model A in W[G]. E* is then a-bounded enlargement with
trace (4,t) in W[G].

(¢+—) Let G be set generic over W such that there is an enlargement E €
WG] which is a-bounded and (4, t) =! race(E). Then (W|[G],E,...) models
L. Hence L is consistent. QED(Lemma 5.5.7)

The following definition seems natural:

Definition 5.5.12. Let (d,t),e € V. (§,t) is an e-trace if and only if there
is a set of conditions P € V' which forces that, if G is P-generic over V', then
there is E € V[G] which is an e-enlargement with trace (4,¢).

We can of course relativize this definition to an arbitrary world W with
(0,t),e € W. The relativization is then of course in interest, since e is
not necessarily an element of V. We can also state and prove the version
of Lemma 5.5.4 and Lemma 5.5.5 for e-trace. These also relativize to an
arbitrary world. We now state and prove the relativized versions of these
lemmas for e-traces, since the relativized version is the more useful one.

Lemma 5.5.8. There is a X1 formula ¢ such that whenever W is a world,
e,0,t € W, then in W we have:

(6,t) is an e-trace for I|l if and only if C5 ., = »[6,t,I,n]
where | = dom(d) and X\ =lub{\; | i < [}.
Note We have seen that if W is a world and £ € W, then Cg/v = Cg.
Similarly, if W, W’ are worlds, e € WNW’ and A < £ € W N W/, then:
(C5)" = (C5 )™
Lemma 5.5.8 follows in the usual way from:

Lemma 5.5.9. Let (3,t) be a potential trace, where | = dom(d) = dom(?)
and | <1h(I). Let A =lubj<6;"A;. Let A < o <v €W such that C5 s

admissible. There is a language . = 1Ly 1 5+ on C§ . such that L is consistent

if and only if (0,t) is e-trace.

To prove Lemma 5.5.9 we add to our previous language . = L, s; from
Lemma ?? the axiom:

i< li+1<Ih(D),JE =JF" fori<l
The proof is just as before.

In passing, we mention the following lemma:
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Lemma 5.5.10. Let W, W’ be worlds such that e, € W NW'. Let G be
set genetic over W'. Let E € W'[G] such that

o [E is an a-bounded e-enlargement

o (0,t) = trace(E).
Then W = (6,t) is an a-bounded e-trace.

Proof. Let A =lub{); | i <[} in E. Hence A < a. Let v be limit such that
a<v,d,te Cf{’y such that Ci,v is admissible in W. Then v € W’ and

(C5.)" = (C5.)""

But then (W'[G],E,...) models L, s on C5, in W. hence L is consistent.
QED(Lemma 5.5.10)

We have seen that if E is an enlargement of I [[ with trace (d,t), then for
0 < i<l wehave: E[7is an ENi—enlargement of I[i with trace (d[14,t[1).
Since ENi ¢ W;, it is natural to ask whether W; thinks (d [ 4,¢ [ 4) is an
ENi_trace. In general, we do not know the answer to this question, but the
question suggests the following definition:

Definition 5.5.13. Let E be an enlargement of [|l with trace (0,¢). E is
neat (or self justifying) if and only if for 0 < i < [ we have

Wi E (d11,t]1) is an ENi_trace.

Definition 5.5.14. (0,t) is a neat trace if and only if there is a set of
conditions P which forces, if G is P-generic over V, then there is a neat
enlargement E € V[G] with trace (d,t).

It is apparent that any neat trace must satisfy a syntactical condition of the
form: x; € t; for 0 <7 < [.

But then any enlargement with trace (d,¢) will be a neat enlargement. Thus,
(0,t) is neat if and only if it is a trace and satisfies the syntactical condition:
T, €t for 0 < i <.

A similar question is the following: Let E an enlargement of I [i + 1, where
i+ 1 < lh(I). Then v; is given and E is an EVi-enlargement of I [i + 1,
where ENi € W;. Set: (0,t) = trace(E). It follows easily that (d,t) € W;.
Does W; think that (d,t) is an ENitrace? The answer will be yes if W; has
a property which we call pride. We define:
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Definition 5.5.15. Let W be a good world. Let W = Jf and let 8 = gW
be the largest cardinal in W. W is proud if and only if for all v < § there is
W e Jg‘ such that

(a) W =Jg!
(b) W = W is a good world

(¢) rank(W) > min(y, rank(W))

(d) If &, ,&, < and ¢ is any first-order formula, then:

W k= ¢l€] «— W = ¢[d].

5 . . X7 - . . A TA
(Note; (b) implies that W is a good world, (d) implies that J.* = J:%. )

Lemma 5.5.11. Let G be generic over V. Let E € V[G] be a neat enlarge-
ment of I|i + 1 such that W; is proud and i + 1 < lh(I). Let ht(W;) be
collapsed to w in V[G]. Let (0,t) = trace(E). Then:

Wi = (0,t) is an ENi_trace.

Proof. Let e = ENi. For B = B%i we know that Vz = L?"' and cf(8) > wy
in W;. Hence there is v < 8 such that Lfi =V,and N; € V, in W;. Let
W € W; be as above with respect to . It follows easily that:

(D) W = ola] «— W [= o],

whenever ¢ is a first-order formula and x1,...,z, € J:;‘i. Note that among
the elements of L:?i are:

Iv Ni7 Ly Ri7 leveli7 OA_iv &ia Ni7 N’L
where:
Wi k= (z; is the set of all realizations of some P; in N;).

Clearly level’ maps X; into 7. Since level’(o;) < rank(W;) and level’(o;) < 7,
we have:
rank (W) > min(vy, rank(WW;) > level(o;).

Using (1) it follows easily that E’ is an e-enlargement of I [i + 1, where

E'[i=Ei,E, = (W,N,o;)



534 CHAPTER 5. THE MODEL K¢

But E' € V[G]. Clearly (4,t) = trace(E’). Since (d,t) is neat we have:
W = (0]4,t[i) is an é — trace , where é = EN:

Hence there is 6 € W large enough that Col(d,w) forces the existence of an
é-enlargement with trace (0 [4,t [ 7). Since W; is countable in V[G] there is
G € V[G] which is Col(§,w)-generic over W; (hence over W). Let E' € W[G]
be an é-enlargement of I |4 with trace (& [ i,t | i). However, E’ is an e-
enlargement, since we know: :\j = lub ;" \; and J;fj = J;j for j < 4. (This

is because E is an e-enlargement with trace (d,¢). ) Since E e V]G] we can
apply the interpolation lemma to form: E = E'UE'[[0,i+1). Then E € V[G]
is an e-enlargement of I [i+ 1 with trace (d,¢). But E € W;[G] is a-bounded,

where o = ht(W) + 1. Hence by Lemma 5.5.10 we have: W; = (d,¢) is an
a-bounded e-trace.

QED(Lemma 5.5.11)
Note Lemma 5.5.11 relativizes to any world W' in place of V.
Lemma 5.5.12. Let W = Jé‘ be a good world. Let W' be a proper segment
of W (i.e. W =W|a; for a j <rank(W)). Then W' is proud.
Proof. By reflectivity there is an a* < « such that
W*=JL <N and W € W+

Working in W, we define a sequence (X; | i < wj) as follows:

o Xo=1yU{W'}
e Xo9;+1 =the smallest X < W* such that X9; C X.
e Xoiro = Xoip1 U[OnnW’' N X944
o X\ = Uy X for limit A
Then X,,, < W*. Let v < § < 8 such that ¢ is a cardinal in W. By induction

on i < wjp we get:
card(X;) <20 < Bfor i < wi.

Let o: W* <~ X,,,, where W* = JZ'. Then o* < (2°)* < Band W* € Jé‘.
Let (W) =W’. Then W = JZ where A = A* N . But then:

(1) [@)“ = ([On]*)", hence W is a world.
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Proof. We know that X,,, € W, since it was defined in W as a subset of
w'.

(C) Let a € [@]¥. Then W = a € [@]¥ since W is a world and & < ht(W).
Hence W = o(a) € [/]¥, where o/ = o(@) = ht(W’), since o(a) = 0”a and
o € W is bijective. Hence o(a) € [o/], since W is a world. Hence W' =
o(a) € [On]*, since W' is a world and o/ = ht(W'). Hence W = a € [On]*,
since o(W) = W',

(D) Let W = a € [On]®. Then W’ |= o(a) € [On]¥, since o(W) = W',
Hence o(a) € [o/]¥, since W’ is a world. Hence W = o(a) € [o/]¥, since
W is a world and o < ht(W). Hence W = a € [a]*, since o(a) = o and
o(a) = 0”a and o € W is bijective. Hence a € [a]¥, since W is a world.

QED(1)

Hence W is a world. Since o(W) = W’ it follows easily that W’ is a good
world. Moreover, o(rank(W)) = rank(W’) and o |y = id. Hence:

rank(W) < min(y, rank(W’)).
But o [W: W < W'. Hence:
W E old] «— W' ¢ld]
for &1, ,&, < v and ¢ any first-order formula. QED(5.5.12)

Definition 5.5.16. An enlargement E of I|i + 1n is proud if and only if W;
is proud.

Definition 5.5.17. (4,t) is a pride inducing e-trace if and only if there is a
set of conditions P which forces the existence of an enlargement E of 1|l +1,
where:

e [ is a neat proud enlargement (hence | < 1h(T)).

e (0,t) = trace(E 1)

N
° JE J —
Aj

. .
Jj\j for j < L.

This definition can be relativized to any world. as can the following defini-
tion:

Definition 5.5.18. (4,t) is an a-bounded pride inducing e-trace if and only
if there is a set of conditions P forcing the existence of an a-bounded en-
largement E with the above properties.
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Lemma 5.5.13. There is an X1 formula 1 such that, whenever W is a world
with (0,t),e € W., then in W we have:

(0,t) is a pride inducing e-trace <— C;}OO = o, t, I,n"],

where A = lub ;7 67 Aa.

1<l
Lemma 5.5.14. Let W be a world such that e, (0,t) € W where (J,t) is
a potential trace of length | < 1h(I). Let a < v in W such that CY , is
admissible and X\ = lub|J,_;0;\i. There is a language Ly 5¢ on Cf\’y such
that

L is consistent <= W k= (4,t) is an a— bounded pride inducing e — trace.

Proof. We change the language L of Lemma 5.5.5 as follows:

(a) We add the axiom [ < 1h(I).

(b) In (2) we change i <l toi <l[.

(c) In (3)-(11) we change the quantifier domain from ¢ < [ to ¢ <[.
(d) We change (12) to

e t, =the complete theory of: <WZ-,NZ-,<'7¢,LQ li,t]4) for i < [.

(e) We add:

(13) W; &= (d11i,t]4) is an ENitrace for i < L.
(14) W; is proud.

(15) JE = JEY fori <L

If L is consistent, then forcing over W with a sufficient Col(y,w) (y € W)

gives us a model A. Set E = EA. Then E | is an enlargement with trace

(0,t). Moreover, E satisfies (A)— (H) in the definition of enlargement. Hence

E is an enlargement by Lemma 5.5.1. E is neat by (15) and proud by (14).
E |l is an e-enlargement by (15).

Conversely, if
W = (0,t) is a pride inducing trace,

then forcing over W with a sufficient Col(y,w) gives an enlargement E of
length [ 4+ 1 which is neat, proud and such that E [[ has trace (J,¢). Hence
(W[G],E,...) models: L where G is Col(v,w)-generic. Hence L is consistent.
QED(5.5.14)
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Definition 5.5.19. Let GG be set generic over V. An enlargement E is
bounded in V[G] if and only if E € V[G] and E is bounded by an « which is
collapsed to w in V[G].

Lemma 5.5.15. Let E = ((W;,N;,04) | i <n) be a neat, proud enlargement
of I|n + 1 which is bounded in V[G]. Let n+ 1 < 1h(I) (hence vy, ezists in
I). Let v =T(n+1). Then there is a neat enlargement E' of I|n+ 1 such
that E' € V[G] and

E/ = <<WJ/’N970/> |] Z 77+ ].> where:

(a) E'ly=Ey
(b) ht(W}) < ht(W,) for v <j <n

Proof. In W, we have: F' is robust in N, = (J£ F). Hence there is a
g: A\i — K = &y(ky) such that:

(A) Let o, ,an < Ay, X € P(ky) N P,. Then:
< g(@) =€ 6,(X) «—= d =€ B, (X).

B) Let a1, -+ ,a, C Ay. Let 1 be ¥1. Then in W,, we have:
n n

CEN b lg7d, i) +— CE

o e gl )
where u1,...,u,, are hereditarily countable and A = lub 9" Ay, A =
luba,”\,.

Let W =W,, N=N,. Then:
(1) g € W,

Proof. g”), is a countable set of ordinals in W,,, hence in V', hence in W.
But g is the monotone enumeration of g” \,,. QED(1)
Define Ny, op in W as follows: If Py = Py, set: Ny = Nw oy = Oy
Otherwise P = P,||8 where 8 € P, is maximal such that 7, is a cardinal in
P,||8. Then v, < B € P,, since 7, is a cardinal in P, ||\, hence in P, ||v,.
Let ((ni,vi) | i < p) be the resurrection sequence for (Ny,d(v,)) with the
associated sequence ((k;, 8;) | i < p). Let B = 6,(B). As we have seen, it
follows that 8 = 3; for a j > 0. We set: N;* = Ny, o, = k;d,. Then:

0';2 P;; —

s N;;, where n < w is maximal such that &, < p%.
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(2) Let & = G,(ky), K = 0y (ky). Then & = ™.

Proof. Let k € W be the resurrection map for (Ny,op(vy)). (If vy =

ht(P,), we let o) (vy) denote ht(N,’) and we have: k = id. ) Then & =
Gy(ky) = 0~(ky) since 6, [ Ay = &, [ A\y. Hence:

k= 0y(ky) = koy(ky) = oy (ky) = K7

QED(2)
(3) Let e = BN in W, e* = ENi in W. Then: J§ = Jg € W.

Proof. Let k: Ny|lop(vy) — N,, be the resurrection map. Then k [y =

id, since k; is a cardinal in Ny. But koj = &,. Hence:

o = Nyllsy = Nyl = Nyllfg = Jg, .

QED(3)

(4) Let n < w be maximal such that &, < p?;i. There is 0: Ppy1 s Ny
such that

Oy 1 = 0y, 0 [ Ay = g.
Let m = my y41. 0 is defined by

o(m(f)(@)) = oy(f)(9(a))

for f € I (ky, Py), a < Ay

Proof. Let o bea E(()n) formula. Let f1,..., fm € ["(ky, Py) and ag, ..., am <

Ap. Set: X = {=< 5>< kg | P*E @[fi(&), s fm(Em)]}- Let 1= mypp1>
Then:

Py [ oln(f)(@)] <= < d € B,(X)

— <g(d) e X

= Ny = oloy(f)g(a@)]-
QED(4)
But o is definable in W, since g,0; € W. Hence
(5) o e W.
Define, in W, a realization ¢’ of P4 by:

o' v+ 1=0y,0,,1 = (0, ) where N = N,
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Let (0,t) = trace(E). Since W), is proud, we know by Lemma 5.5.11 that:
(6) Wy, = (6,t) is an e-trace.

This means that in W, we have:

ce E st I n’]

where A = lub 577” Ap and ) is a certain X1 formula. But this can be rewritten

as:
Cs w0 Ayt 10"

where t, I, n* are hereditarily countable. Hence:
Cf{’k EY'[g" M\, t, I,n’]
which transforms back into:
Cs - E ot I,n"].
But since C§ _=C¢ . € W we have:
R A K
(7) W = (0, t) is an e*-trace.

This means that if P = Col(§,w) for a sufficiently large § € W, then P
forces that, if G is P-generic over W, there is an E” € W[G] which is an e*-
enlargement of I [n+ 1 with trace (¢',t). We now extend E” to a structure
of length n + 2 by setting:

E" =E" U {{((W,N,o'),n)}.
We claim:
(8) E” is an enlargement of I [n+ 1.

Proof. We verify (A)—(I) is the definition of “enlargement”. (A)-(C) hold
trivially for @ < n+ 1. (D) holds trivially for i < n. We prove (D) for
i =n+ 1. It is enough to see that 6,41()\,) is a cardinal in ]\77,“, since the
rest follows by acceptability. We have:

N _on+l _ Y _AT* %
Op1 =0y = 0yp1 and Ny = Ny where o7y 41 = 0.
Thus:
* *
o(A) = oy pri1(ky) = an(ﬁn) =K

is a cardinal in N = Ny 1. QED(D)



540 CHAPTER 5. THE MODEL K¢

(E) is trivial for ¢ <n. Now let i =n+ 1, h <n. Then
(Afn_;,_l f)\h =0 F)\h =g f)\ = 52 = (}Z f/\h.
QED(E)

(F) is trivial for i < n. We prove it for i =n+1, h <n. E"[n+ 1is an
e*-enlargement of I [ 1+ 1, where e* = EV1. But Ny = Npii1. Hence for
h < n we have:

ENh _ ger _ qENnHl .
Jj\h _Jih_JS\h in E”.

QED(F)
(G) is immediate since R = R, 41 = R, is well founded in W. But this gives

us the level function:

level = level” = level™t!

defined by:
level(o) = lub{level(¢’) | o' Ro}.

(H) is trivial for ¢ < n. Now let i = n+ 1. If v does not survive at n + 1,
then ¢’ Ro. Hence:

level(o’) = level(o, < rank(W).

If however, v does survive at n+ 1, it follows easily that j <7 n+ 1 does not
survive at n + 1 if and only if j <« and j does not survive at . Hence:

level(o’) = level(o) < rank(W).
QED(H)
But it then follows by Lemma 5.5.1 that E” is an enlargement. QED(8)
Now let: (6”,t) = trace(E").
(9) (8”,¢') is a neat trace in W.

Proof. (6" [n+1,t'[n+ 1) is neat, since x; € t; for i <n. But xy1 € t; 44
by (7), since:

WE@[n+1,t[n+1)is an e* — trace,
where e* = ENi = EFrt1, QED(9)
We now note that:

(10) g(ov) = ayy(v) for o < Ky,
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Proof.
g((a) € Gy(a) < a € E."({a}).

Hence g(«o) € 6, ({a}) = {F,(a)}. QED(10)
But then for j < ~, we have:
5; :g[)\j = 5'77 f)\J = 5j,

since \j < kj. Hence (0 [ v,t[~v) = (6 [ 7,t ). Hence E [ v is an
e*-enlargement of I [ with trace(E[v) = trace(E” | ). Hence we can form:

E' =E[yUE"I[y,n+2),
which has the desired properties. QED(Lemma 5.5.15)

The proof of Lemma 5.5.15 is actually more revealing than the statement,
and we shall return to it later. One apparent weakness of Lemma 5.5.15 is
that we need that proudness of E to prove it, but it does not follow that E’
is proud. In fact, E will be proud if and only if E [y + 1 was proud, since

7;+1 = W,,. Later we shall apply Lemma 5.5.15 only if  survives at n + 1.
If not, we shall apply the following lemma:

Lemma 5.5.16. Let E be as in Lemma 5.5.15. Assume that v does not
survive at n+ 1. Then E extends to a neat, proud enlargement E' of I|n + 2
such that E' is bounded in V|G] and:

(a) E[n+1=E

(b) ht (W) <ht(Wy).

Proof. Let E” be as in the proof of Lemma 5.5.15. E” was obtained by
forcing over W = W, with a P = Col(d,w) where § € W was sufficiently
large. But since W is collapsed in V[G], there is a G € V[G] which is P-

generic over W. Hence E” is bounded in V[G], since E” € W[G]. We can
form:

E" =E" U {{(W,N,d")n + 1)}.

E” is then a neat enlargement of I [ 7+ 2 which is bounded in V[G]. But v
does not survive at n + 1, where:

o'lv+1l=0yy=T(y+1).
Hence o'Ro~ in . Hence:

level(o”) < level(o,) < rank(W) in W.
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Let j < rank(W) with level(c) < j. Then W =: Wla; is a proper segment
of W. Hence W € W. Set:

E"=E" U {{(W,N,o'),n+ 1)}

Since E” was a neat enlargement of I [n 4+ 2, it follows easily that E” is a
neat, proud enlargement of I [+ 2. Moreover,

trace(E” [n + 1) = trace(E") = (&', 1).
Since E” € WG], we have shown:
W = ((§,t) is a pride inducing trace ).
This is expressed in W by:
C5 o Ewld ¢, 1,n"),

where 1 is a certain Y; formula. Since 53 = g | Aj for j < n, this can be
rewritten as:

Cf oo E Vg7 Ayt 1,0,

where t,I,n* are hereditarily countable. We now recall the Iteration Fact,
which says that there is v such that Py|[v # 0 and,

crit(BLT) = crit(E" = k.

*

. N, . . . . & .
Hence crit(E ) . = k*. Since k* is a cardinal in N = N//,; and N/ is a
o) n n+ n
robust premouse, we conclude:

S . <x, C5_ in W.
Hence Cf{;* = ' [g" A\, t, I,n*]. But we know that C;TH* = Cf{’k, where
e = £ — N,. Hence in W, we have by (B):
CE’OO = ', Ay, t, L, n],

which transforms into:

C;,OO ‘: ,gzj[é? t7 I? n*:l?
since ; = 0, [ Aj for 7 < 7. But this means that:
W, = (4,t) is a pride inducing trace.

Hence, if we force over W, with a sufficient P* = Col(8,w), there is E* €
W[G*] such that E* is a neat, proud enlargement of I [n+ 2 and E* [+ 1
is an e-enlargement of I [n+ 1. Since W, is collapsed to w in V[G], there is
a G* € V[G] which is P*-generic over W,. Hence E* € V[G]. But E € V[G],
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trace(E* [ n + 1) = trace(E) and E is an e-enlargement of I [+ 1. Hence
we can set: B = EUE* | [n+ 1,17+ 2), which has the desired properties.
QED(Lemma 5.5.16)

We now return to the proof of Lemma 5.5.15 in order to glean more infor-
mation from it. In the following, let V[G] be a set generic extension of V.
We say that an enlargement E is bounded in V[G] if and only if E C V[G] is
a-bounded for an a which is collapsed to w in V[G]. Similarly, we say that
a world W is bounded in V[G] if W € V[G] and ht(WW) is collapsed to w in
VI[G].

Definition 5.5.20. (W,N) is a good pair if and only if the following hold:

e W is a good world bounded in V[G]
e N=(N;|i<h)eW such that
W = N is a putative Steel array.
Define R € W from N, I, n* in the usual way:

o' Ro if and only if for some j, o'realizes P; in N and
o realizes an iTj in , where o’ [i +1 =0

and i does not survive at j.
Then:

e R is well founded.
But then the level function level € W is defined in W by:

level(o) = lub{level(¢’) | o' Ro}.
Definition 5.5.21. Let (W,N) be a good pair. (0,d,t) € W is a good triple
for (W,N) at ~,1h(]) if and only if
(a) o realizes Py in N and level(o) < rank(W)
(b) Let o, = (6,p1). Set N = N,. (Hence 6: P, — N. )
Let e = EN. Then:
W = (d,t) is a neat e — trace for I [~.

Lemma 5.5.17. Let (0,4,t) be a good triple for (W,N) at . Let E be an
e-enlargement of I [~ which is bounded in V[G] and (6,t) = trace(E). Set:

E'=EU{{{(W,N,0),7)}.

Then ' is a neat enlargement of I | y+1 (and in obviously bounded in V[G]).
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Proof. This is just like the proof of (8) in Lemma 5.5.15. The verification
of (A)—(F) is straightforward. (G) is immediate, since R is well founded. (H)
holds by (a). Since E is an enlargement with trace (d,¢) and E’ satisfies (A)-
(H), it follows by Lemma 5.5.1 that E’ is an enlargement of I [y+1. E =E' [~
is neat, since (,t) is neat. But then E is neat by (b). QED(Lemma 5.5.17)

Lemma 5.5.18. There is such an E.

Proof. By (b), if P = Col(B,w) for a sufficiently large 3 € W and G is

P-generic over W, then in W[G] there is an E with the above properties.
But there is a P-generic G in V[G], since ht(W) is collapsed to w in V[G].
Hence E € V[G] is bounded in V[G]. QED(Lemma 5.5.18)

Conversely, we have:

Lemma 5.5.19. Let E' be a neat enlargement of I~ + 1 which is bounded
in V[G]. Let E' = (W,N,o). Let (6,t) = trace(E'[v). Then (W,N) is good
and {(0,0,t) is a good triple at ~y.

Now let (W,N) be good and let (o,d,t) € W be a good triple for (W,N) at
~v. Let v =T(n+ 1). To make things simple, we also suppose that n + 1 is
not a deop point of I (i.e. Py = P,). (,0,d',t) € W is a good continuation
of (0,0,t) at n+ 1 if and only if the following hold:

(a) (o/,d',t') € W is a good triple for (W,N) at n + 1.
(b) o'[y=06,t[v=t.
(c) dly+1=o0.

It follows that if 0 = (6,u), N = N,, o/ = (¢',1/), N' = N, then

~ A

' my 1 =0, p=p', N =N'. Moreover:
6" (Ay)06 Ty i1 (Kn) = 6(Kp)-
Hence 6;” Ay = 6"\ C G (k).

Lemma 5.5.20. Let (W,N) be good. Let (0,6,t) be good at . Let v =
T(n+1) where n+1 is not a drop point in I. Let (o’,0',t) be a continuation
of (0,0,t) at n+1. Let e = EN = EN'. There is a < 8 = W such that

W = (8, t') is a a-bounded e-trace for I|n+ 1.

Proof. We know:

W = (&, t') is a neat e-trace for I [n+ 1.
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But this is expressed in W by:
Cioo =l ¢, I, n]
where 9 is a X7 formula and:
A = lub 6" Ay < & (Ky).
Since §; = d,, [ A; for i < n we can rewrite this as:
C5 oo =6, Ayt In"],

where t/, I, n* are hereditarily countable. But N is a robust premouse in N
and 6(ky,) = 6¢'(ky) is an inaccessible cardinal in N. Hence cf(6(ky)) > w1
in W. Hence X < (k). By the robustness of N, we conclude that in W:

C¢

€
)‘7&(K/’V]) _<21 C_

A,00°

Hence:
C;,&(;g,]) ): 77[)[0'7/7”)\77, tla I> TL*]

which translates easily into:
C’f\’&(xn) =l ¢, I,n"].

But this says there are o, v such that A < o < v < &(ky) such that Cs ) is
admissible and the language L. = L, 5+ on C§ y is consistent. Hence:

W = (§',¢) is an a-bounded e-trace,
where a < g = V. QED(Lemma 5.5.20)

But the proof of Lemma 5.5.15 then gives us:

Lemma 5.5.21. Let E be a neat, proud enlargement of I [n+ 1. Let v =
T(n+1), where n+ 1 is not a drop point. Let:

(W,N) = (W,,N,),0 =0, and (0,t) = trace(E[~).

Hence (W,N) is good and (0,0,t) € W is a good triple for (W,N) at . Then
there exists a (0',0',t")y € W which is a good continuation of (o, 9,t).

In the proof of Lemma 5.5.21 we constructed a very specific good contin-
uation which had strong properties (as witnessed by the proof of Lemma
5.5.16). However, there can be other continuations of (o, d,t) in W, and we
are free to choose which one we shall employ.
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Without further ado, we turn to the proof of Lemma 5.3.7. In V we are
given a putative Steel array N = (N; | i < p). We are also given a map
o: P — s« N, where P is a countable and restrained premouse. We want
to show that P is countably iterable. To this end, we consider a countable
normal iteration I = ((M;), (), (mi;), T) of I. We must prove (*), (**). We
define the relation R and assume that R is well founded. We shall construct
a sequence (E | i < 1h(I)) such that

EO — <<W](i)’N§i)7UJ(i)> | j <)

is a neat proud enlargement of I [i 4+ 1. Our first enlargement E(©) is found
in V: Let 8 be such that

B = card(V3),N € Vz,cf(f) > w;.

In V we can then find an A C 5T such that

o Lg[A]=Vj

e Lgi+[A] = B is the largest cardinal.

Set W = L§+. Then W is a world of rank 8T, where 8 = . Moreover,
N e W|gs.

We set:
E® = {((W,N,"),0)} where o’ = {(o, )}

Now let G be set generic over V such that 87 is collapsed to w in V[G]. The
rest of the construction takes place in V[G] and each E® will be bounded
in VIG].

We verify inductively that E( is bounded in V[G] and:

—~

D= w N oWy for j <.

(a) E®@ is neat and proud, where E ;0

J
(b) If h < i and np, < n; for all j € (h,i], then:

EOh+1=E®h+1and ht(W") < ht(WM).

(¢) If h survives at 4, then E® b = E® [ h and

W}Eh) — W}E'L)’Néh) — N;Z)’O-(Z) rh +1= O'(h).
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We define E®) by cases as follows:

Case 1i=0. EO = {((W,N,c(®) 0)} as above. (a)—(c) then hold trivially.
Case 2i=n+1. Let v =T(n+ 1). We split into two subcases:

Case 2.1 v does not survive at n + 1.

By Lemma 5.5.16, there is a proud, neat enlargement E’ of I [ n + 2 such
that E' [+ 1 = E", and:

ht(W; ) < ht(W"),E" € V[G].

Hence E' is bounded in V[G]. We set: E""! = E’ and verify (a)-(c). (a) is
immediate.

(b) If b < i and ny, < n; for all j € (h,i), then E® [ A+ 1 = EM and
ht(N(h),,) > ht(W'") for j € (h,4). But EO [A+1=E(CDh+1=E"
and ht(W") > he(W YY) > ht(W ).

(¢) is vacuously true.
Case 2.2 v survives at  + 1.

By Lemma 5.5.15, there is an E’ € V[G] such that E’ is a neat enlargement
of In+ 2 and:

Iy = B (W) < V) for < 5 <

and:
7;+1 = W§7),N2+1 — N»(y’Y)aU%H v+ 1= a,(ﬂ)

We shall let E"! be such an E’. Then it is clear that E"! is bounded in
V[G]. We verify (a)—(c)

(a) E"! is neat. But Wéf{l) = Wﬁgﬂ/. Hence E7*! is proud.

(b) Let h < n+ 1 such that ny, < n; for j € (h,n]. Then EW) [h 41 =
E™ [h 41 for j € (h,n]. But then we have h < v and:

e ED h+1=E®™|h+1
o (W, THY) = ne(WA”) < ne(w).

(c) holds trivially at n + 1, since it holds at v and no h € (,n) survives
at p+ 1.
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However, we must specify ET1 more carefully than we just did, if we are
not to run into trouble at limit points of the induction. We therefore consider
the subcase:

Case 2.1.1 v =T(n+ 1), v survives at n + 1, and n+ 1 is not a drop point
(ie. Py = P,). We apply Lemma 5.5.20 and Lemma 5.5.21. W = WW(W)
has a definable well ordering. Let (0’,¢’,t’) be the W-least triple which is a
good continuation of (¢(),§,t) at n+1, where (4, t) = trace(E™ |+). Such a
(o',d',t') exists by Lemma 5.5.21. By Lemma 5.5.20, if we force over W with
P = Col(B,w) (B = "), getting a P-generic G, then in W[G] there is an E’
which is an e-enlargement of (¢, ). But there is such a G € V[G], since W is
bounded in V[G]. Hence E' € V[G]. Set E+Y) = E U {((W,N,o’),n + 1)}.
By Lemma 5.5.17, E*D is then a neat, proud enlargement of I(n+ 2).
QED(Case 2)

Case 3 i = 7 is a limit ordinal.

Let n = n(n). For each m < n there is i, < n such that n(j) # m for
all 7, < j < n, since otherwise there would be unboundedly many j < n
such that n(j) = m. But n(j) = m means that j <p h, where n*(h) = m.
Hence, by closure, n lies on the branch {j | j <pr n}. Hence n(n) < m < n.
Contradiction! Hence there is v < 7 such that n(i) > n for all i € [y,n]. We
can assume without loss of generality that v <7 n and that [y,n)7 does not
contain a drop point. Set b = [y,n)7. Set W =W N=NO. If jkecb
and j < k, then:

EY 1j=E® |j and EY = (W,N,01)
where: 0 | j +1 = ¢U). By definition, we have:
) — (U(j))g: P; — NU)
where N is an element of N. Since there are no drops in b, we have:
Wi =60 and N® = NU) = N.

Set: B/ = EU) | j for j € b. Set: E = Ujebej. It follows easily that
E satisfies (A)—(H) in the definition of “enlargement”. We must prove (I).
Clearly, trace(E) = (4,t) where:

(614, 14) = trace(E?) for i € b.
If we set: s; = (00,8 ]i,t]4) for i € b, then (s; | i € b) can be recursively

defined in W as follows:

e 5; is given
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e If i + 1 immediately succeeds h in b (hence i +1 = T'(h)). Then s;+1
is the W-least good continuation of sp at ¢ + 1.

e If u € bis a limit point, then:
o= oritin="J t1i,
1€bNp i€bNp

and:

o= ) o,

i€hNp

61 = (o(M)h is then defined by:

W\ (x) = 6@ (x) for i € b p.

Then (s; [ i <n) € W. Hence (4,t) € W. Hence E satisfies (T) in W. Hence
E is an enlargement of I [n. But

JEY = Je fori e b,

where e = EN, since N = Ni for all i € b. Then F is an e-enlargement
of I [n. Clearly E is neat, since every E° is neat. We now define in W a
realization o of P, by:

o(n)In= Ua(i) and 6(’7)7rl-m(gg) = o (x)
i€b
for 1 € b. Set: i
E® = E Ut ((W,N, a(n)), n)}.

We claim that E™ is an enlargement of I [7+1. (A)—(F) is the definition of
“enlargement” follows easily from the fact that each E® is an enlargement

of Ili+1 and EZ@ = (Wi, Ny, o@). (G) is clear, since we know that R is
well founded. The level function for W is then defined by:

level(o) = lub{level(¢’) | o' Ro}.

It is easily seen that if A <7 7 and it does not survive at 7, then h <p v and
h does not survive at . Hence:

level(c(M) = level(si®") < rank(W),

and (H) holds. By Lemma 5.5.1 it follows that E( is an enlargement of

In+1. E™ is proud, since W = Wygn) is proud. However, we must still
show that E( is neat. The trace (J,t) of E is neat, since the syntactical
condition x; € t; is satisfied. We must show that x,, € ¢, or in other words:

W = (0,1) is an e-trace.
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This says that if we force over W with a sufficient P = Col(6,w) and G is
P-generic over W, then there is an E € W[G] which is an e-enlargement if
I[n+1, where e = EN. Let P = Col(B,w) where B = Y. Let G be
P-generic over W. Then WG] is a ZFC™ model, although all sets in WG|
are countable. Since W = JZ has a definable well ordering, W[G] has a well
ordering definable in the parameter G. For i € b set:

Definition 5.5.22. «(i) =:the least « such that

W = (§]4,t[4) is an a-bounded e-trace.

Then (i) < a(j) for i < j in b, since if E is an e-enlargement of I | j with
trace (0 [j,t[j), then E|iis an e- enlargement of I [i with trace (6 [4,t[4).
But E |i is bounded by «a(j). hence a(i) < a(j). But then «(7) < g for all
i €b,since a(i+1) < B fori+1 € by Lemma 5.5.20. We now successively
define E? (i € b) such that

e £ € W[G] is an a(i)-bounded e-enlargement of I |i with trace (6 4, |
i) for i € b,

e B/ i = fori<jinb.

We let E, = the W[G]-least e-enlargement of I | v which is a(y)-bounded
and has trace (6 [vy,t[7). If EP is given and ¢+ 1 is the immediate successor
of hin b (hence h = T(i+1)), we first let E’ be the W[G]-least e-enlargement
of 14+ 1 which is a(i + 1)-bounded with trace (§ |7+ 1,¢]¢+ 1). We then
set:
EFL ERUR [ [h,i+1).

It follows as before that E*! is an e-trace of I [i + 1-bounded. Now let p
be a limit point of b (hence y < n = lubb). Set: E* = Uieunn E’. It follows
as before that E* satisfies (A)—(H) in the definition of enlargement. But
(OTp,tlpy = trace(E“) where (6|, t[p) € W. Hence E* is an enlargement

of I|p. But since E is an e- enlargement for ¢ < p, it follows that E* ids an
e-enlargement. Clearly:

E* is a = sup{a(i) | i < p}-bounded.

Hence a(u) = sup{a(i) | i < p}. This gives m, in particular, E=FE" ¢
W[G]. This proves that (5,t) is an e-trace in W. Hence E(™ is neat and
proud.

This completes the constrcution of E® (i < ) in V[G]. We now turn to the
proof of (*) and (**). We first prove (*). In this case, lh(I) = n + 1. Hence
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it is certainly right that R is well founded. Let v, € P, be arbitrarily chosen
such that £, # 0 in P, and v, > v; for i < 7. This determines v = T'(n+1)
and with it Py. We claim that the transitive ultrapower:

m: Pf —% P'(F = E,")

exists where n < w is maximal such that , < pb.. But by §3.2 this is
n
equivalent to saying that there is no sequence ({«;, f;) | i < w) such that

< Qip1, 0 =€ B (X;) where X; = {< &,¢ | fir1(é) € £i(Q)}}

for i < w. Suppose not. Let k be the resurrection map for (N, 500 (1,)).
Hence: X 3
k- (N(n)H&(n)(,/n) — v N®@

where N = (JDE, F) and F is robust on N. But then there is g: A, —
6™ (k,) such that whenever a1, ..., am < A, and X € P(k,) N P, then:

< g(@) =€ 6M(X) = <d e B, (X).

Hence:
< glai), glag) =€ 6 (X;) for i < w.
Hence:
fi+1(g(aiy1)) € fi(g(aw)) for i < w.
Contradiction! QED(*)

We now prove (**). We have: 1h(7) is a limit cardinal. We assume that R
is well founded. Recall that n* injects lh(I) into w. Define a sequence jj,
(n € w) by:

n*(jo) is minimal in n*” lh(I)

n*(Jn+1) is minimal in {n*(h) | h > j,}.
Then n(h) > n(jy) for all h > j,. Hence:
ht(W,") < ht(W") for b > j,.

Hence: ‘ '
ht(W7m ) < ht(W™) for m € w.

This is a contradiction. Hence we were mistaken in assuming that R is well
founded. Hence R is ill founded and I has a cofinal well founded branch.

QED(Lemma 5.3.7)

Note: In this proof we have strongly used the assumption that there is no
inner model with a Woodin cardinal. It may be of interest to see what is left
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of the proof if we relax this assumption. We still require of a putative Steel
array N = (V; | ¢ < p) that N; be mouselike for ¢ < p. Hence Ny, is pre-
mouselike. Assume that o: P —y« N, where P is a countable premouse
which has the unique branch property for countable normal iterations (I.e.
a countable iteration of limit length has at most one cofinal well founded
branch. ) This is a much weaker assumption than our previous one. Since
P is pre-mouselike, we still know that the Iteration Fact holds. Thus our
proof still shows that P is countably normally iterable. However, we have
not shown that P is wi 4+ 1 normally iterable, which is what we would need
to conclude that P is fully iterable and that N, is mouselike.

5.6 The Bicephalus

By lemma 5.3.6 the construction of a robust Steel array can be continued up
to oo, using:

(*x) If possible, we apply Option 2 at i + 1, if not we apply Option 1.

At limit points 7 we fomr IV, as usual. This includes the point oco. It
is easily seen that if Kk < oo is regular in V, then N, is of height &, is
a ZFC™ model, and K = kg, for all n > k. (cf. lemma 5.2.5.) Hence:
N =( U N 0). Note that we had a choice for N; only at successor

K is regular
i, and we restricted this choice by (xx). The structure N4 is then a weasel,

having the form (JZ,0) and is an inner model of ZFC™. It is denoted by
K¢nd is a preliminary to the construction of the core model K. However,
we have not yet shown that K¢ is uniquely defined. What if, in applying
Option 2 at i+ 1, we have an embarrassment of riches and have two different
robust mice (JF, F), (JF F') such that J¥ = M;, which could be applied.
In this section, we show that that eventuality cannot occur.

(JP F,F') is an example of what we call a bicephalus. This is defined by:

Definition 5.6.1. A bicephalus is a structure (JZ, FO, F') such that (JE, F™)
is an active premouse for n = 0, 1.

Definition 5.6.2. A precephalus is a structure which is either a bicephalus
or a premouse.

In §3.8.4 we noted that if M = (JE FO F') is a bicephalus and 7 : M —¢
M, then M’ = (JE', F'0 F'') is a bicephalus. (Note that here we are taking
the X ultrapower.) We also saw that, if My is a bicephalus and m; j : M; —
M; (i <j <n) such that
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o Tiit1: M; —q, Miy
e M; is transitive and the m; ; commute
o If A <nis a limit ordinal then:
My, (mix |1 < A)
is the transitivized direct limit of:

(Mi | i < A),(mij [ i < j<A)

then each M; is a bicephalus.

We then defined the notion of a normal iteration of a bicephalus P. This
has the form:

I'=((By), i), (Fi), (mij), T).

Where [(JE, F)| = [(JE, F,F")| = JF. I is like a normal iteration except
that:

o If P, = (|P|,F?,F}) is a bicephalus and v; = ht(P;), then F; €
{FP, EY

o If P; is a premouse or v; € P;, then F; = E,il
The choice of F; determines x; = crit(F;) and with it:
e T'(i+ 1) = the least n such that x; < A\, V n =1.

Let 7;, A\; be defined as usual, P* is defined by:

(2

e If 7; is a cardinal in P,, where n = T'(i 4+ 1), then P* = P,.

e If 7; is not a cardinal in P,, then P = P,||3, where 8 € P, is maximal
such that 7; is a cardinal in P,||3.

F; is then applied to P;. However:

e If P* = P, and P, is a bicephalus, then
Tnit1 - P —E Pig1.

(This is the Xg-ultrapower.)
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e If P’ is a premouse, then:
Tyl Pf —F Pyt
where n < w is maximal such that x; < p..
By a precephalus we mean a premouse or bicephalus. It follows by induction
on ¢ that:

Lemma 5.6.1. If I is a normal iteration of a bicephalus, then:

P; is a bicephalus <— [0,i)7 has no drop point.

If I is an iteration of length ¢ + 1, we can extend it to a potential iteration
of length ¢ + 2 by appointing appropriate v;, F; with v; > v for | < 4. This
determines T'(i+1), P*. (However, we do not know whether P* is extendable
by F;.) Then:

Lemma 5.6.2. Eztend I of length i + 1 to a potential iteration of length
i+ 2 by appointing appropriate v;, F;. Then F; is close to Py .

The proof is virtually the same as that of Theorem 3.4.4, and we take it
here as given. Applying this to ¢ + 1 < lh([), it follows that if P’ is a

(2
premouse, then ;1 @ P —7% Piy1, where n = T+ 1). If, on the

other hand, P = P, is a bicephalus, we ignore Lemma 5.6.2 and take the
Yo-ultrapower.

Definition 5.6.3. Let P be a precephalus. [ is a padded iteration of P of
length p if and only if

I'= (P |i<p),(vilieA)(FiliecA) (mli<ri),T)
where the above holds with:
T(i+ 1) = the least n € A such that k; < A, ori=mn, forie A
and:
If n <jand [n,j)NA=0, then nTj, P, = Pj Amp; =id.
Lemma 5.6.2 continues to hold for padded iterations. Using padded iterations

we can do a comparison iteration of a bicephalus with a premouse, another
bicephalus, or even itself. We call the latter an autoiteration.
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Definition 5.6.4. Let P = (|P|, F°, F!) be a bicephalus. Let FO # F'. Let
card(P) < 0, where 6 is regular. Suppose that P is § + 1-normally iterable.
The autoiteration of P is a pair I°, I' of padded iterations of P of length
p < 6+ 1 and coiteration indices (v; | i < p) such that

o P =P, vy =ht(Fy), F{ = F" for n =0, 1.

e Let P?, P! be given. For v < ht(P?) Nht(P}) we define:

By = {E,I,Dﬁ}, if v € P or v = ht(P/") and P is a premouse
’ {F° F'} if v = ht(P") and P = (|P"|, F°, F') is a bicephalus.

Call v critical at i if and only if P?lv = P!|v and there exist 2" €
F?(v)(n = 0,1) such that 2% # x!. If so we set v; = v. If 2 = (), then
217" # () and we let F'™" = z'~"(hence v; € A'™), and v; ¢ A™. If
20, ! £ 0 we set, F' = z" for n = 0,1. This gives us P{, |, P} .

e If there is no critical v, then u = i+ 1 and the autoiteration ferminates
at <.

Imitating the proof of Lemma 3.5.1 we get:

Lemma 5.6.3. Let P = (|P|,F°,F') be a bicephalus. Let card(P) < 0
where 0 is regular. If P is 0 + 1 normally iterable, then the autoiteration of
P terminates below 6.

However, if the autoiteration (IY, I') terminates at i, it could happen that
both I° and I! have a truncation on the main branch. In this case, the result
would tell us little about the original bicephalus P. If we assume, however,
that P is presolid we get a better result. By the proof of lemma 4.1.14 we
get:

Lemma 5.6.4. Let P, 0 be as above, where P is presolid. Let (I° I') be
the autoiteration of P, terminating at i +1 < 0. Then one of I°,I' has no
truncation on its main branch.

But then:

Corollary 5.6.5. If P,0 are as above and P = (|P|, F, F'), then FO = F'.

Proof. Suppose not. Then the autoiteration terminates at i + 1 < 6, where
0 < 7. By lemma 5.6.4, we know that P! is bicephalus for an n = 0,1 and

(2

ht(P") < ht(P}~™). Take e.g. n = 0. Then P?|v = P}|v, since otherwise we
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could continue the coiteration. Let P = (|P'|, F"°, F''). Then F" = F',
since otherwise there is x € FY = {F"0, F''} such that = # y for a y € F}.
Hence:

FO — 7.[.0—73.77}7/0 — 7_‘_0—73.77F/1 — Fl

Contradiction!
QED(Corollary 5.6.5)

An even stronger property than presolidity is pre-mouselikeness. As in the
case of solidity, if P = (JF, F) is a premouse or P = (JF FO,F') is a
bicephalus, then pre-mouselikeness is a II; property of JZ. Hence, if I is a
normal iteration of P, then every P; in I will be pre-mouselike. By a virtual
repetition of the proof of Lemma 5.3.10 we get:

Lemma 5.6.6 (ILteration Fact). Let I be a normal iteration of P, where P is

) . . +gEhi
pre-mouselike. Let n =T(i+1). Let k; = crit(F;) and 7 = k; . There

Py
is v such that Pf||lv = (JF,F), F # 0 and k; = crit(F), 7, = ﬁjJ’? .

We call a bicephalus (|P|, F°, F') one-small if and only if (|P|, F™) is one-
small for n = 0, 1. Note that in this case (|P|, F") is restrained for n = 0, 1.
The proof of Lemma 5.1.2 can be adapted to show:

Lemma 5.6.7. Let P be a one-small bicephalus. If P is countably normally
sterable, then it is co-normally iterable.

We now return to our original question. Let N = (N; | i < u) be a Steel
array(hence every N; is mouselike). Can there be two different extenders
FO F! such that F™ is robust in (M, F™) for n = 0,1.(Hence M,, = N,, is
a ZFC™ model.) We want to show that this cannot occur, so we argue by
contradiction. Set N1 = (M, F',F'). Then N,4; is a bicephalus. We
then call N = (N; | i < pu+ 1) a putative two headed Steel array. Let us
define:

Definition 5.6.5. Let P = (|P|, F°, F'), P' = (|P'|, F'°, F"') be bicephali.
We set:

o: P —, P'ifand only if o : (|P|, F") —x, (|P'|, F™) for n =0, 1.

The nonexistence of a two headed Steel array follows from:

Lemma 5.6.8. Let N = (N; | i < p+ 1) be a putative two headed Steel
array. Let P be a countable bicephalus such that o : P —4 Ny11. Then P
is countably normally iterable.
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We first show that this implies the nonexistence of a two headed Steel array
N. N1 is pre-mouselike, since M), is mouselike. Hence P is pre-mouselike,
since pre-mouselikeness is a II; property. Hence P is solid. By lemma 5.6.7,
P is wy + 1 iterable. Hence, if P = (|P|, F°, F'), then F' = F!. But
Nyt1 = (|N,|, FO, F') and F° £ F!. Hence we could easily choose P, o such
that FO # ', Contradiction!

We shall closely imitate the proof of Lemma 5.3.7 in order to prove lemma
5.6.8. Fix Nand let 0 : P —, N,41, where P is countable. We again prove:

(¥) If I has length n + 1, and we appoint vy, F;, such that F}, € F,, and
vy > v; for all i < 7, then letting v = T'(n + 1), we have:
e If P} is a premouse then the n-ultrapower
™ Py —T, Py exists,
where n < w is maximal such that x; < p’p..
n
o If Py = P, is a bicephalus, then the ¥y ultrapower 7 : Py —p Py
exists.
(#) If T has limit length, then I has a cofinal, well founded branch.

In a normal iteration of a bicephalus extenders are sometimes applied in a
different way than in a normal iteration of a premouse. For this reason we
must revise the definition of realization:

Definition 5.6.6. Let N = (N; | i < u+ 1) be a two headed putative Steel
array. Let P be a countable bicephalus and let I be a countable normal
iteration of P. By induction on i < Ih(/) we define the set D; of realizations
of P; in N. Each element of D; is a sequence:

o= ({0, p5) | J <1 1)

such that o; : P; — N, for j <7 i. We inductively verify:

pi < g for j <

If P; is a bicephalus, then o; : P; —, N, 41.

If P; is not a bicephalus, then pu; < p and

i+ By —> o) Ny, whenever Aj < pp, for all j <
0

e If (j,i|r is drop free, then p; = p; and 0 = oy7j ;.
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We again define D; by cases:

Case 1. i = 0. Dy is the set of 0 = {(o0, o)} such that up = p+ 1 and
ag P—, NH+1'

Case 2. 1 =7+ 1.
We again split into two cases:

Case 2.1. j + 1 is not a drop point. Thne o = ((op, pn) | n <7 i) € D; if
and only if the following hold:

on+1€D,ifn<pi.

Wi = ppn and o, = o7y, for n <r 1.

If P; is a bicephalus, then o; : P; —4 Nyq1.

If P; is a premouse, then o; : P; —>2ék) N, whenever \; < p’f;i.
Case 2.2 is then exactly as before, as is Case 3.

As before we pick an injection n* of 1h(/) into w. We then define n(7)
(i < 1Ih(I)) as before. We define “i survives at j” as before. We then define
the relation R on D(where D = J; y,(;) Ds) as before.

Definition 5.6.7. ¢'Ro if and only if there are 7, j such that i <7 j, 0’ € D;;,
o € D;, 0 =0d'|i+ 1, and i does not survive at j.

As before, it turns out that, if R is ill founded then I has limit length and
there us a cofinal well founded branch in I. As before, we assume that R is
well founded. We can then literally take over the definition of ‘enlargement’,
using the revised notion of realization. In fact, we can literally take over all
the ensuing definitions and proofs in the proof of lemma 5.3.7, thus proving
lemma 5.6.8.

This shows that at any point in the construction of a Steel array there is at
most one possible application of Option 2, assuming that there is no inner
model with a Woodin cardinal.

5.7 The model K¢

We continue to assume that there is no inner model with a Woodin cardinal.
In the previous section we showed that there is a unique sequence N = (N; |
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i < oo) with the properties

e N is a robust Steel array.

e N, is formed by Option 2 if possible; otherwise by Option 1.

Thus, the function (N; | i < oo is defined recursively. In order to distinguish
it from other Steel arrays, we may sometimes write:

N¢ = (N | i< o0).
As we noted in §5.1 (following Lemma 5.2.5), the structure

<00
is a weasel and an inner model of ZFC™. Since it is a weasel, we also denote
by LY or LE°. We set:

K = Kflla = (J3", E¢)

for limit ordinals a. Whenever « is a limit ordinal and fi; o < a for i < o,
then LX = N,. Hence:

Lemma 5.7.1. {a| K5 = N&} is club in oc.

Using this we get:
Lemma 5.7.2. K is fully B-iterable for all (.

Proof. Let 8 > « such that Kg = N¢. Let Ng, denote the constructible

extension of Ng of length f+wn. (Thus Ngg = Ng. Forn >0, Ng; = ngrwi,
where E' = EU{(z,0) | « € Eg} and Ng = <L§,EB>. ) There is a least n
such that either pf\,ﬁm < [ or else p‘]‘{,ﬁm = 8 and 3 is not Woodin in Ng,,.
(Otherwise 3 would be Woodin in Ng . ) But Ng, is then a restrained one
small mouse. Moreover, by induction on ¢ < n we can prove: Ng; = Ng;
and Mpg; = Mg, for i < n. (In successor points in the induction we use
that Option 2 is not available. ) By §5.4 it follows that Ng, is uniquely
normally iterable up to co. Hence Ng,,, is fully y-iterable for all v < oo.
Hence K is fully ~-iterable for v < oo, since K§ = Ngyy||a. QED(Lemma
5.7.2)

We now turn to the main result of this section, which says that K¢ is uni-
versal in the sense that K¢ “out iterates” any normally iterable mouse. We
shall prove this using methods that we employed in the proof of the basic
comparison lemma Lemma 3.5.1. However, we must apply them to a less
wieldy situation. The precise statement we wish to prove is:
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Theorem 5.7.3. Let 6 > 22° be a reqular cardinal such that o < 6 for all
a <. LetQ = K§. Let P be a premouse of height < 0. Let S be a successful
0+1 normal iteration strategy for P and S’ a successful 0+1 normal iteration
strategy for Q. Coiterate P, Q using S, S’. Then the coiteration terminates
below 6.

Note that there are arbitrarily large § with these properties. If a > 22 is any
cardinal, then § = (a“)" satisfies the condition. Before proving Theorem
5.7.3, we develop some methodology. By the condensation lemma for the
Chang hierarchy (Lemma 5.3.1), it follows that:

Fact 0. CTy <5, CF  for all e and all v < 6.
(We leave this to the reader. )

Our proof will make use of the condensation lemma for mouselike premice.
However, we shall restrict ourselves to the application of the following weaker
consequence:

Lemma 5.7.4. Let N be a mouselike sound premouse. Let o: M —x_ N
with pY, = crit(o) and o(p%;) = p%. Then M < N.

Proof. It follows easily that o witnesses the phalanx (N, M, \), where \ =
P45 M is sound above A, since N is sound above (). There are three
possibilities. The first is that M = core(N). This is impossible, since p%; <
p%- Thus M is a proper segment of N unless the third possibility (c) arises.
If \ is a cardinal in N, then (c) is excluded, since it would require that
p‘;{,H7 < Aforaye N with v > A. If A is not a cardinal in N, let k be the
largest k < A which is a cardinal in N. (c) then requires:

w: N||y — M where F:EfLV

for some p < 7 such that x = crit(F) and A = 4TV 7. Since p‘fVH,Y = K, we
have p%;, = k < A. Contradiction! Thus (c) fails. QED(Lemma 5.7.4)

We now introduce a concept which will be needed in the proof of Theorem
5.7.3 and will also play a large role in the next chapter, where we introduce
the core model K.

Definition 5.7.1. Let f > w be a regular cardinal. Let ) be a mouselike
premouse of height 6. By the stack over Q (S = S(Q)) we mean the set of
all mouselike premice N such that Q@ <N, @ € N, N is sound and p%, = ©.

Lemma 5.7.5. Let S = S(Q). Let NN’ € S. Then either NN’ or N'<N.



5.7. THE MODEL K¢ 961

Proof. Let Q > 6 be regular. Let X < Hq such that NN’ € X and
6 = X N6 is an ordinal < #. (Such X clearly exists, since  is regular. )
Let 0: H <~ X. Thus 0: H < H,,. Let o(N) = N,o0(N') = N’. Then
N < N, where ht(N) < . Hence N 9@ = N||f. Similarly N’ < Q. Hence
N<N'VN'<aN. Hence N<N'V N' < N. QED(Lemma 5.7.5)

It follows that the union:

S=5(Q) =Js@
is a premouse extending Q.

We now again assume that 0 > w is regular. Let () be a premouse satisfying
ZFC™ such that either ht(Q) = 0 or 0 € Q. In either case Q||6 is a ZFC™
model, since 0, being a cardinal, cannot index and extender. We ask what
happens when we apply a weakly amenable extender F' pf length less than
0 to Q. Since @ is a ZFC™ model, the Yg-ultrapower is the same as the
s-ultrapower. We assume that F' is a weakly amenable extender at k < 6 on
Q and that m: Q —p Q' exists. Let Q = JF, Q' = Jg,/. Then F has base
|JE|, where 7 = k79 < 0 and extension (|JZ'|, 7 | |JE|), where n(7) = v.
Every element of JF has the form 7(f)(c), where f € JF is a map defined
on k£ and o < Ih(F'). The collection of such pair (f,«) is a set in Q. In V,
however, the function (f, ) — 7(f)(«) maps this set onto v. Hence v < 6,
since 6 is regular in V.

We ask whether 7 takes 0 to itself. If 7760 C 6 and ht(Q) = 0, it follows
that ht(Q') = 0, since each ordinal element of @' has the form 7(f)(«),
where o < Ih(F) and f: Kk — ON in Q. Thus 7(f)(a) < 7(7), where
v=1lub f"1h(F) < 6. If 6 € Q, it follows for the same reason that () = 6.
Since 6 is regular in V' we know that Q||0 is a ZFC™ model. If arbitrarily
large o < 0 are cardinals in the sense of @, then Q|| is a full ZFC model. If
not, there is a largest ;1 < 6 which is a cardinal in Q||f. Then:

Fact 1. If Q||0 models ZFC, then 776 C 0.

Proof. Let n € Q'. Each £ < n has the form: 7(f)(«), where o < Ih(F)
and f € @ such that f: kK — 7. The set of such pairs is a set in Q)||6, hence
in V. Thus there is in V' a map of this set onto . Hence card(n) < 6. Hence
n < 6, since 0 is regular. QED(Fact 1)

Fact 2. Let p be the largest cardinal in Q||6. Set i = lub#” . Then i < 6.

Proof. By a virtual repetition of the proof of Fact 1 we have: n < uy —
7(n) < 0. But then i < 6, since 0 is regular. QED(Fact 2)

Fact 3. If p is as in Fact 2 and k # cf(p) in @, then 7(u) = f.
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Proof. If k < cf(p) in @, then each £ < m(u) has the form 7(f)(«) where
a < Ih(F) and f € @ such that f: Kk — p. But then 7(f)(a) < 7(8),
where

B =Tub{f(&) | £ < x}.

Hence 7(p) = Un"pu = 1. Now let k > cf(p) in Q. Let v = cf(u) in
Q. There is ¢ € @Q such that g: v — p and p = lubg”y. But then
m(g): v — m(p) and w(pu) = lubw(g)”y = fi. QED(Fact 3)

Fact 4. If p is as above and k # cf(u), then 7760 C 6.

onto

Proof. Let u < & < 6. Then there is g € @ such that g: p — £. Hence
m(g): () ontg 7(§), where 7(§) > £. Hence 7(§) < 0, since 0 > 7(u) is
regular. QED(Fact 4)

If, however, x = cf(p) in @, then things are very different:

Fact 5. If p is as above and k = cf () in @, then 7(u) > 0. Moreover, fi is
the largest cardinal in Q’[|6.

Proof. Let u € Q||0 such that w C {f | f: Kk — u} in Q. Then there is a
g € @ such that g: Kk — p and

m(f)(k) # w(g)(k) for all f € u.

To see this, let (f; | i < p) enumerate u in Q. Let (u; | i < k) be monotone
such that lub{p; | i < K} = p. Choose g(i) ¢ {f;(i) | j < p;} for i < k.
Then: f;(i) # g(i) for j > p;. Hence f(i) # g(i) for sufficiently large 4, if
f € u. Hence:

7(9) () # m(f)(x) for f € u.
Using this, we see that there is a sequence g¢(§ < /) such that

m(g¢) (k) # m(gc) (k) for € # .

Hence m(u) > 6, since m(ge)(r) < m(p) for £ < 0. 6 is regular V, hence in
Q', whereas

cf(m(p)) =n(k) < 6in Q.
Hence 7(p) > 6. It remains to show that fi is the largest cardinal in Q'||6.
Let 7 > fi be a cardinal in Q’'||6. We derive a contradiction. Then P(2)NQ" C

JfQ/ by acceptability. Now suppose that X,Y € P(u)N@Q such that X # Y.
Then X, Y have a point of difference £ < p, i.e.:

feXwicy.
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But then m(§) < i is apoint of difference of 7(X), 7(Y). Hence the map
X — m(X)Nfinjects P(u) NQ into P() NQ'. This is a contradiction, since
card(P(u) N Q) = 6 and card(P(p) N Q') < 7 < 6. QED(Fact 5)

We now turn to the proof of Theorem 5.7.3. Suppose not. Then P, () have
the coiteration (I”, I?) of length 6 + 1, where:

1" = ((P), (i | i € AT), (w]), TT),
19= ((Qu), (vi | i € A9), (%), T9),
where (v; | i < 0) is the sequence of coiteration indices. (Hence APUA® = 4.)
Let ©Q > card(Hp) be regular such that
S.8 17 I9,S € Hg,
where S, S’ are the iteration strategies for P, @ respectively and S = S(Q)
is the stack over ). Pick X < Hgq such that
e card(X) < ¢
e 0= X N4 is transitive and 22° < @
e 5,8 IP I Se X.
This is possible by the regularity of 6. Let o: ﬁ% X be the transitiviza-
tion of X. Then o: H < Hq, 6 = crit(c) and o(f) = 6. Let:
oIty =17, 0(I9) = I?,

where:

I_P = <<]51>7 <Di>7 <ﬁfj>’ TP>
¢ = <<Ql>7 <77i>7 <’ﬁ’zQ,j>¢TQ>
Set: H = oc~!(Hy). Then o | H = id. Hence on both sides of the coiteration
we have:
()(a) i<pO<+—i<pOfori<o

(b) i<pj—i<gpjforij<

But then

(1)(c) 0 <1 6,
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since § < @ is a limit point of the branch {i | iT@}. (Note This does not
presuppose that there are cofinally many active points below 0. As we shall
see, it is possible that there are no active points on the ()-side. Recall that
if no j > i1is active, then ¢ <7 j and m; ; = id for j > 4i.) We now specifically
consider the P-side of the coiteration. Since ht(P) < 6, a straightforward
induction on ¢ shows:

(2) ht(P;) < 6 for i < 0.
(Hence v; < ht(P;) < 6.) Since o [ H = id we have:
(3)]5Z~:Piand7’rfj:7rfjfori§;pj<0.

The branch {i [ i <pr 6} has at most finitely many drop points. Hence
the last drop point, if it exists, must lie below 6. Exactly as in the proof of
Lemma 3.5.1 we then get:

(4) Py, (ﬁfe— | i <pp 0) is the transitivised direct limit of:

(P i< 0),(n]; |i<pp j <pr 0).

But then:
(5) Py = Py, 7?59— = Wfé for i <pr 0.
Hence:

(6) o | Py = ﬂé—::e.

Proof. Let z € P;. Then x = m; 3(z) for some i <pr 0. Thus,
o) = 0(715(2)) = mia() = 7497, () = Mg (a).
QED(6)
Exactly as in Lemma 3.5.1 we then get:

(7) Let i be least such that § <pr i <pp 6 and P; # P;. Then i = j + 1
where j is active in I*. Moreover:

EJ(X)={a<)j|aca(X)}for X € P(0) N F.

We now turn to the @-side. Here things are more complicated, since @ is
not smaller than 0. It is therefore not clear that any ¢ < 6 is active on the
I®9-side. If, however, a truncation occurs on the main branch {§ | § <p¢ 6},
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then the @Q;’s on this branch would be small from this point on. We could
then repeat the proof of Lemma 3.5.1, obtaining a contradiction. Hence:

(8) The @-side has no truncation on the main branch.

Proof(sketch). Suppose not. Then the last truncation point g + 1 on the
branch lies below 6. By induction on ¢ it then follows that:

ht(QZ') < 0 for ig < 1 <7Q 6.

Hence:
ht(Q;) < 0 for ig < i <pq 0.

Since o [ H = id, we can repeat the proof of (2)-(7) on the @)-side, getting

. ht(Qi) < @ for ig <1 <TQ 0

° QZ‘:Qiand’ﬁ'-Q~:7T%fOI'7;0<7;§TQj<TQ§

Z?]
° Qg = Qg ﬁ'ge— :Wge— for ip <@ <pq 0
. J[ngﬂ(?ﬂ

e Let 7/ be least such that 8 <;q i <pq 6 and Q; # Q. Then ¢ = j' +1
where j' is active in I<. Moreover:

B, (X)={a <\ |a€a(X)}for X € P(f)N Q.

Hence, letting 4, j be as in (7) we cannot have j = j, since otherwise E,?ij =
Eij and v; is not a point of difference. Repeating the rest of the proof of
Lemma 3.5.1, we can then use the initial segment condition to show that
j # 7’ is also impossible. Contradiction! QED(8)

From this it follows by induction on j that:
(9) 7%+ Qi —s,, Q; cofinally for i <rq j <7a 0.

However, it is not clear that ﬂ?j”ﬁ C 0 fori < Tj <y 0. We leave it to the
reader to verify:

(10) Let i <7 j <7 0 such that m; ;70 C 6 in I9. Then:

o If h <7 i and 7Ti7j”9 C 0, then 7Th,j”9 cé.

o If j < h <7y 0and 7”0 C0, then m ;"0 C 0.
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o if i <p h <7 j, then 7Ti,h”0 C 6 and ’/ThJ”Q cé.

Call j <pq 0 is tipping point of I? if and only if there is i <;q j such that

7270 ¢ 0 and 75,70 C 6 for i <pq h <qo 0.

(11) There are at most finitely many tipping points.

Proof. Suppose not. Let j, be the n-th tipping point (n < w). Then
0 € Qj, and 7}, ;... (0) > 6. Hence:

T5n0(0) = T 1,6(Tj inir (0)) > 75, 1,0(0).
Contradiction! QED(11)
(12) Every tipping point is a successor ordinal.

Proof. Suppose not. Let n be an exception. Then 7 is a limit ordinal and
there is ¢+ <7 1 such that m; ;760 C 0 for i <7 j <7 1. Pick £ < 0 such that
Tin(§) > 6. Then:

min(€) = {mjm mi(€) | i <1 § <o n}.

Since n < 0 and m; ;(£) < 6 for ¢ <r j <7 1, it follows that card(m;,(£)) < 6.
But 6 is a cardinal in V. Hence m; ,(§) < 6. Contradiction! QED(12)

(13) Let i’ + 1 be a tipping point. Let h = T(i + 1) in I¢. Then there is
@ < 0 such that

e 1 is the largest cardinal in Qp||0

o = of() in Qull6
o Tpiv1(p) >0

o ji=Ilubmy ;11”1 is the largest cardinal in Q;41]|6.

This follows by the application of Fact 1-Fact 5. We leave this to the reader.

(14) Let v = sup{i | 7 is a tipping point }. Then

. wﬁi”e C 0 (Hence my;: Q4]|0 — 5, Q|6 cofinally for v <p i <r 6.
e If Q is a ZFC model, then v = 0 and each @; is a ZFC model for i < 6.

e If @ is not a ZFC model, then Q,||# is not a ZFC model. (Hence Q|0
has the largest cardinal in Q;||0 for v < i <;¢ 0. )
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This follows from (12), again applying Fact 1-Fact 5. If v is as in (14) it is
clear that v < 6. But then

(15) 72,70 C 0.

Proof. Suppose not. Then there are arbitrarily large j such that v <p
j <7 0in I9 and j is active in I9. (otherwise there would be j such that
v <7 j<rtand Q; = Qy. Hence 7y = id. Hence:

»wn »
Ty 0 =1y ;70 C 0.

Contradiction! ) Now let § be least such that § > v, § <pq 0, and 759”60 ¢ 6.
Then there is a least @ < 6 such that m50(p) > 6. But then p is a cardinal in
Q@s, since otherwise # would not be a cardinal in @y, hence not in V. Clearly
5,1 < 6., Set:

Q; . .
Wi = ng(u),Q; = Qilp = in for 6 <p i <rp 6 in I€.

and:
W;m‘ = 77}?,1 1Q), for v <r h <riin 19,

Set:
(@i lv<pi<p0) =0 '((Qi|v<ri<0))
(T | v <71 <p ) =0 ((mh | ¥ <r b <ri<r0)).
Since o [ H = id, we get:
Q.= Q;,ﬁ;j = 7r£7j for v <pi<pj <.
But then exactly as before we get:

Q= Qg =01Qpm5=m15

for i <7 0. If i is least such that i is active in I€ and § <7 i+ 1 <7 Q in
19, then it follows as before that:

7T5i+1(X) = J(X) N\ for X € P(HZ’) N Qé.
(Note that X € QF, since pg is a cardinal in Qp. )

Hence:
EQ(X)={a< X |a€o(X)}for X € P(§) N Q5.

We can the repeat the proof of Lemma 3.5.1, getting a contradiction. QED(15)
(16) @ is a ZFC model.

Proof. Suppose not. Let v be as before. Then there is u < 6 such that

Q+||0 = 1 is the largest cardinal.
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Hence:
Qol|0 |= 1’ is the largest cardinal,

where p/ = 7, 9(1t). But Qp||0 = Pp||0 and:

k; is a cardinal in Py for active ¢ <pq 6.
Hence Qy||6 is a ZFC model. Contradiction! QED(16)
Thus wf?j”e C 6 and:

ﬁf’?j: Qi —x,, Qj cofinally

for i <pq j <pq 6. Now let:
Def. Q =: (JF)"
(17) Q = (J5)".
Proof. Let i be least such that § <7 i+1 <7 6 in I” and i is active in I*.
Let h =T(i +1). Then h is active I” and Ph = P;. Moreover, 7; = 0%1%.
Hence: (J£)% = (JE )P+ = Q. QED(17)
But then:
(18) G = (JE)% = (JE ).

Proof. Q = (Jéb:L)Q@, since Qgl|0 = Py||#. We must show: (Jéz)% =
(JO—E;)Q@. If Q7 = Qg, this is trivial. If not, there is a least ¢ such that

0 <7i+1 <76 and iis active in I9. We can then repeat the proof of (17)
on the @ side. QED(18)

We now set: Def. Q' =: (JG—E;)Q, T=Tygl Q"
Clearly 7: Q' —s,, Q. Moreover:

(19) 7 Qo = To,0-

Proof. Let x € Qo C H. Since o | Hid, we have:

Tog(z) =y <= mop(r) =0(y) = m54(v)
— mgg(x) =y

QED(19)
But then:

(20 Q' c H



5.7. THE MODEL K¢ 569

Proof. If X € P(6)NQ’, then, letting X = #(X) we have: X = 7?079*”)2' € H,
since X, T0,bard € H. Hence X € H. But each z € Q' os canonically coded

by an X € PO N Q’. Since H is a ZFC™ model, z can be recovered from X
in H. Hence z € H. QED(20)

Hence:
(21) Q' € H.

Proof. Each z € Q' lies in a Q'|v = (JF'| F) where Q'||v has size < 0 in Q'
and pgy, = 6 and Q'||v is mouselike. It follows easily that Q’||v € S, where
S = 07X(S). Hence Q'||v < S, where ¢(S) = S = |JS. Hence Q' < S, where
S € H. Hence Q' € H. QED(21)

Now let: Q" = JF = o(Q’). Then Q" is a premouse extending Q = o(Q).
Set:
F=0ol(PO)NQ")

Then F is an extender with base ' and extension (Q”, o [ Q’). The length

of F'is @ = 0(f). Then F is a full extender. F' is weakly amenable since
P(0) N Q' =P(f) NQ". Then the structure (JF, F) satisfies all conditions
for being an active premouse except the initial segment condition. We can
remedy this by shortening F'. Since 6 is regular, there is a least A such that
ht(Q') < A < 0 and:

o(f)(a) < X whenever a < X\, f € Q’, and f: § — 0.

Set F* = F|\. Then F* is a full extender with base @' and extenstion
(Q*,0%), where 0*: Q' —p Q*. Let Q* = JE'. Each x € JE has the
form: o*(f)(), where a < A and f € @’ such that f: § — @Q'. Hence we
can define 6: Q* —y, Q" by:

(" (f)(a) = o(f)(@)

for all such «, f. Then A = crit(¢) and 5(\) = 6. Moreover 6o* = o [ Q'.
Hence:

(22) Q*H)\ = Q”H)\ = J)\E where Q” = JTE
However, we can improve this to:
(23) Q* — Q”HV*-

Proof. Let o < v*, Then a € o*(Q’||n) for an n € Q' such that Porin = 0.
Hence o*(Q'||n) = Q*||c*(n) where PG40 (n) = A- Moreover:

5(Q"llo(n) = o(Q'lln) = Q"o (n),
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where pg’llo(n) = 6. By the condensation Lemma 5.7.4 it follows that:

Q*[|lo*(n) = Q"|lo™ (n). QED(23)
However, we can then conclude:
(24) EY =

Proof. Suppose not. Then Q”|v* is a sound premouse and p‘é,, < A

[l
since A is the largest cardinal in JﬁQ . But A is, in fact, a cardinal in Q".
Hence p“é,,HV* = A. But then Q||v* is not 1-small by Lemma 3.8.9. Hence
@ = Q"]|0 is not 1-small. Contradiction! QED(24)

By this and Lemma 5.2.8, we then conclude:
(25) F* is not robust in (JE, F*).

Proof. Suppose not. Q = Ny = Mpy in the Steel array which constructs K¢,
since 6 > w is regular in V. But A\ is a cardinal in @ and:

Jf*Q = A is the largest cardinal.

Hence v* is cardinally absolute in . Since Eg = (). We conclude by
Lemma 5.2.8 that Jﬁ = M; for an ¢ < 0 such that N;1; is formed by Option
1. But if F’* were robust in (JE, F*), we would be obligated to use option

v*

2. Contradiction! QED(25)
We now produce the ultimate contradiction by proving:
(26) F* is robust in (JZ, F*).

Proof. The condition "F* is robust in (JZ, F*)’ can be reformulated as

follows: let g: w — X and let X = (X, | 7 € w) map w into P(0) N Q". Set:
D = {<Z17 7in7j> |i17"' 7in7j < WA < g(’él), ,g(Zn) ~€ F*(XJ)}
A={{a1, - ,an,¥) | ¢ is a ¥ formula Aa, -+ ,a, C w/\CfOO Eelg’al, -, 9 an]}

where ¢ = lub ¢”w. Then there is §: w — 6 such that

(a) For all i1, -+ ,ip, <w and j < w:
(b) Forall aj,---,a, Cw and all 3; formula ¢:

CEE’é ): @[g”al)' o 7§7’an] S <ala’ T 7ana@> €A

where ¢ = lub " w.
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(We leave it to the reader to verify this formulation. ) We first note that A,
D are subsets of P(H,, )""!. But then H contain an enumeration of all such
subsets by 227 since Hy does. Hence o(A) = A, o(D) = D, since o | H = id.

The existence statement that there is §: w — 0 satisfying (a), (b) is a
statement about X,0,Q' = JF, A, D holding H. Hence it suffices to show
that the same statement holds of o(X) = (F(X;) | i € w),0(0) = 0,0(Q*) =
Q",A=0(A),D =o(D) in Hg. This is, in fact trivial if we take g as being

our original g. Then ¢g: w — 6 and:

(a’) For all i1, ,ip <w and j < w:

< g(i1), -+ ,g(in) =€ Xj = (i1, -+ ,in,mj) € D.
(b’) For all aj,---,a, C w and all ¥; formula ¢:

Cly Elomar, - g"an] <= (a1, an, ) € A

(a’) holds since F*(X;) = AN F(Xj;). (b’) holds because Cfé/ <5, C’fgo
QED(26)

This completes the proof of Theorem 5.7.3.
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