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We show that L(R) absoluteness for semi-proper forcings is equiconsistent with the existence of a remarkable
cardinal, and hence by [6] with L(R) absoluteness for proper forcings. By [7], L(R) absoluteness for stationary
set preserving forcings gives an inner model with a strong cardinal. By [3], the Bounded Semi-Proper Forcing
Axiom (BSPFA) is equiconsistent with the Bounded Proper Forcing Axiom (BPFA), which in turn is equicon-
sistent with a reflecting cardinal. We show that Bounded Martin’s Maximum (BMM) is much stronger than
BSPFA in that if BMM holds, then for every X ∈ V , X# exists.
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1 Introduction

The present paper is concerned with principles of absoluteness. Let Γ be a class of posets. We say that boldface
L(R) absoluteness for Γ holds if and only if for each P ∈ Γ and for each G which is P-generic over V there
is an elementary embedding π : L(RV ) −→ L(RV [G]) which is the identity on the ordinals. We say that the
Bounded Forcing Axiom holds for Γ if and only if for each P ∈ Γ and for each G which is P-generic over V ,
HV

ω2
≺Σ1 H

V [G]
ω2 .

By [5, Theorem 1], if there is an iterable inner model with infinitely many Woodin cardinals which are all
countable in V , then boldface L(R) absoluteness holds for proper forcings. On the other hand, boldface L(R)
absoluteness for semi-proper forcings need not be true even in the presence of large cardinals (cf. the discussion
in [5, p. 801]). It was shown in [6] and [8] that boldface L(R) absoluteness for proper forcings is equiconsistent
with a remarkable cardinal, and is hence much weaker than what [5] had used in order to prove boldface L(R)
absoluteness for proper forcings.

Recall that a cardinal κ is remarkable iff for every regular cardinal θ > κ there are π, M , κ̄, σ, N , and θ̄ such
that the following hold:

· π : M −→ Hθ is an elementary embedding,

· M is countable and transitive,

· π(κ̄) = κ,

· σ : M −→ N is an elementary embedding with critical point κ̄,

· N is countable and transitive,

· θ̄ = M ∩ OR is a regular cardinal in N , σ(κ̄) > θ̄, and

· M = HN
θ̄

, i. e., M ∈ N and N � “M is the set of all sets which are hereditarily smaller than θ̄” (cf. [6,
Definition 0.4]).

We shall make use of the key characterization of “remarkability” according to which a cardinal κ is remarkable
iff wheneverG is Col(ω,< κ)-generic over V , then in V [G], for all regular cardinals θ > κ there are stationarily

∗ e-mail: rds@math.uni-muenster.de, http://wwwmath.uni-muenster.de/math/inst/logik/org/staff/rds/

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



528 R. Schindler: Semi-proper forcing, remarkable cardinals, and BMM

many countable X ≺ (HV
θ )[G] such that if H̄ ∼= X is transitive, then H̄ = (HV

θ̄
)[G ∩ Vα] for some regular

V -cardinal θ̄ < κ and α = κ ∩ X (cf. [6, Lemma 0.7].)
We here show the following

Theorem 1.1 If ZFC + “there is a remarkable cardinal” is consistent, then so is

ZFC + “boldface L(R) absoluteness holds for semi-proper forcings”.

In the light of [6] and [8], we thus get:

Corollary 1.2 The following theories are equiconsistent.
(1) ZFC + “boldface L(R) absoluteness holds for proper forcings”.

(2) ZFC + “boldface L(R) absoluteness holds for semi-proper forcings”.

(3) ZFC + “there is a remarkable cardinal”.

The Bounded Proper Forcing Axiom (BPFA) is the Bounded Forcing Axiom for the class of proper forcings,
the Bounded Semi-Proper Forcing Axiom (BSPFA) is the Bounded Forcing Axiom for the class of semi-proper
forcings, and Bounded Martin’s Maximum (BMM) is the Bounded Forcing Axiom for the class of stationary
set preserving forcings. By [3], BPFA is equiconsistent with BSPFA (by the way, this is why one might have
expected Corollary 1.2 to be true), which in turn is equiconsistent with a reflecting cardinal.

Shelah has shown that the Semi-Proper Forcing Axiom (SPFA) is equivalent with Martin’s Maximum (MM)
(cf. [10]). Asperó and Welch (cf. [1, Theorem 3.5]) have shown that this is not true for the bounded versions of
these forcing axioms: BSPFA does not imply BMM. It was an open problem, however, to decide whether BSPFA
does imply BMM at least consistency-wise. It wasn’t even known if ωL

1 = ωV
1 is consistent with BMM. In this

paper we shall prove the following

Theorem 1.3 Suppose that BMM holds. Then for every X ∈ V , X# exists.

The key technical lemma which will give Theorem 1.3 is Lemma 3.3; this lemma is shown by designing a
refined version of Jensen’s “reshaping”.1)

Our Theorem 1.3 can also be construed as a negative result on iterating stationary preserving forcings. (Such
negative results have also been proven long ago by Shelah.)

Theorem 1.3 still leaves the question on the consistency strength of BMM wide open. Woodin has shown the
following (cf. [12])

Theorem 1.4 (Woodin) If ZFC+“there are (in order type) ω + 1 many Woodin cardinals” is consistent, then
so is ZFC + BMM.

We still do not know, though, how “the” natural model of BMM looks like.
On the other hand, Theorem 1.3 is “optimal” in the following sense: by [4], if V is closed under the

#-operation (and hence by Theorem 1.3, if BMM holds), then V is (2-step) Σ1
3 absolute. On the other hand,

the proof of Theorem 1.4 shows that BMM does not imply that V is Σ1
4 absolute. It is tempting to conjecture that

BMM is in fact fairly weak in consistency strength.
The author has shown in subsequent work that BMM implies that there is an inner model with a strong cardinal

(cf. [9]).

2 Semi-proper forcing and remarkable cardinals

The following criterion for the construction of models of absoluteness is part of the folklore (cf. [3, p. 1384f.] or
[6, p. 181f.]).

Let Γ be a definable class of posets, and let κ be an inaccessible cardinal. Let us write W = V Col(ω,<κ).
Suppose that if P ∈ ΓW , then every real in W P is “small generic” over V , i. e., if x ∈ R ∩ W P, then there is
some poset P̄ ∈ Vκ such that x is P̄-generic over V . Then W is a model of “boldface L(R) absoluteness holds
for Γ”.

In the light of this criterion, in order to verify Theorem 1.1 it suffices to prove the following. Notice that by
[8, Lemma 1.7], if κ is remarkable, then κ is remarkable in L. Moreover, it is easy to see that if κ is remarkable
and λ > κ is inaccessible, then κ is remarkable in Vλ.

1) The author would like to thank David Asperó for a pivotal discussion about BMM.
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Lemma 2.1 Suppose that V = L. Let κ be remarkable and assume further that there is no inaccessible
cardinal above κ. Write W = V Col(ω,<κ). Let P be semi-proper in W . Then every real in W P is “small
generic” over V , i. e., if x ∈ R ∩ W P, then there is some poset Q ∈ Vκ = Lκ such that x is Q-generic over
V = L.

P r o o f . We may pick some A ⊂ κ such that W = L[A]. Notice that there is no inaccessible cardinal in W
by our hypothesis.

Let τ ∈ W P be a name for a real. We aim to prove that

P �W “there is some Q ∈ Lκ̌ such that τ is Q-generic over L”.

Let us assume that this is not the case. We shall eventually derive a contradiction.
Let θ be a large regular cardinal such that all (dense) subsets of P in W are in Lθ[A], and let p ∈ P be such

that p �W “there is no Q ∈ Lκ̌ such that τ is Q-generic over L”. As κ is remarkable in L, we may pick some
π : (Lβ[A ∩ α] ;∈, P̄, p̄, τ̄) ∼= X ≺ (Lθ[A] ;∈,P, p, τ) such that β < ω

L[A]
1 = κ is a cardinal in L[A ∩ α]. (This

uses the key charactrization of remarkable cardinals, cf. [6, Lemma 0.7].) Let q ≤ p be (P, X)-semi-generic, and
let G be P-generic over L[A] such that q ∈ G.

Setting X [G] = {σG : σ ∈ X}, we have that X [G] ≺ Lθ[A,G], because for each ϕ(v, �σ) there is some σ0

such that P �W ∃v ϕ(v, �σ) → ϕ(σ0, �σ). Moreover, X [G] ∩ κ = X ∩ κ, as q ∈ G is (P, X)-semi-generic.
We therefore get π̃ : Lβ̃[A ∩ α, Ḡ] ∼= X [G] ≺ Lθ[A,G], where β̃ ≥ β and Ḡ = π̃−1(G). We then also have
π̃ � Lβ̃ [A ∩ α] : Lβ̃[A ∩ α] −→ Lθ[A], where of course X [G] ∩ Lθ[A] = ran(π̃) ∩ Lθ[A] ⊃ ran(π) = X .
Setting ψ = π̃−1 ◦ π, we may thus write ψ : Lβ[A ∩ α] −→ Lβ̃[A ∩ α].

Claim ψ is the identity, and β̃ = β.

P r o o f . Let us first show that ψ = Id. Suppose otherwise. Set µ = crit(ψ). Then µ is a regular cardinal in
Lβ [A ∩ α]. As β is a cardinal in L[A ∩ α], µ is then also a regular cardinal in L[A ∩ α]. Assume that µ were a
successor cardinal in L[A ∩ α], say µ = +L[A∩α]. Then µ = +Lβ [A∩α], and hence

µ < ψ(µ) = +Lβ̃[A∩α] ≤ +L[A∩α] = µ,

using the elementarity of ψ. Contradiction!
We have shown that µ would have to be an inaccessible cardinal in L[A ∩ α], and hence in Lβ[A ∩ α] as

well. But then by elementarity π(µ) is inaccessible in Lθ[A], and hence in L[A]. However, in L[A] there is no
inaccessible cardinal. Therefore, ψ = Id, in other words, Lβ[A ∩ α] ≺ Lβ̃[A ∩ α]. Because θ is regular in
L[A], and because L[A] doesn’t have an inaccessible cardinal, θ must be a successor cardinal. Hence Lβ[A ∩ α]
has a largest cardinal, call it . As β is a cardinal in L[A ∩ α], we must have β = +L[A∩α]. But  must also be
the largest cardinal in Lβ̃[A ∩ α] by Lβ [A ∩ α] ≺ Lβ̃[A ∩ α], and hence β ≤ β̃ ≤ +L[A∩α] = β, i. e., β̃ = β.

� (Claim)

Now Ḡ is P̄-generic over Lβ̃[A ∩ α] = Lβ[A ∩ α] by the elementarity of π̃. But all the (dense) subsets
of P̄ in L[A ∩ α] are in Lβ [A ∩ α], by the fact that β is a cardinal in L[A ∩ α] and by the choice of θ, so
that Ḡ is in fact P̄-generic over L[A ∩ α]. Set x = τ̄ Ḡ ∈ Lβ[A ∩ α, Ḡ]. Let Ṗ ∈ X ∩ Lθ be a Col(ω,< κ)-
name for P and ˙̄P = π̃−1(Ṗ) = π−1(Ṗ). We have that x is Q-generic over L, where Q = Col(ω,< α) ∗ ˙̄P ∈ Lκ.
Because x is a real, x = π̃(x) = τG ∈ Lθ[A,G]. Therefore, L[A,G] � “x = τG is Q-generic over L”, in partic-
ular, L[A,G] � “τG is Q-generic over L”. But G was arbitrary with q ∈ G, so that

q �W “τ is Q̌-generic over L, where Q̌ ∈ Lκ̌”.

However, q ≤ p. Contradiction! � (Theorem 1.1)

The reader will have noticed that whereas our proof does exploit a minimality assumption on the ground
model V , it does not really need V = L + “there is no inaccessible cardinal above κ”. We might have shown
ψ = Id as follows. We have ψ ∈ L[A ∩ α], as π̃−1”X (and hence ψ) can be assumed to be definable over
Lβ̃ [A ∩ α] in much the same way as X is definable over Lθ[A] (as the least submodel containing the sets of

interest, say). But β is a regular cardinal in L[A ∩ α]. As 0# /∈ L[A ∩ α], this gives ψ = Id. (β̃ = β is not
really needed.) We did not attempt to analyse how one might further weaken this smallness assumption.
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3 Bounded Martin’s Maximum and sharps

Definition 3.1 Let f , g both be functions from ω1 to ω1. We shall write f <∗ g iff there is some club C ⊂ ω1

such that for all ν ∈ C, f(ν) < g(ν).

Of course, <∗ is a well-founded relation on the set of all f : ω1 −→ ω1. We shall prove Theorem 1.3 by
showing that BMM gives an infinite <∗-descending chain of such functions unless every set has a sharp.

Definition 3.2 Let a ⊂ ω. We aim to define some ξa ≤ ω1, a function fa : ξa −→ ω1, a sequence
(di

a : i < ξa), and some Aa ⊂ ξa. Suppose that fa � ν, (di
a : i < ν), and Aa ∩ ν have been defined for

some ν ≤ ω1. If ν = ω1 or if ν < ω1 and ν is uncountable in L[Aa ∩ ν], then we set ξa = ν and finish the
construction. Otherwise we let fa(ν) = the least β < ω1 such that Lβ+1[Aa ∩ ν] � “ν is countable”. We let dν

a

be the L[Aa ∩ ν]-least d ⊂ ω which is almost disjoint from all elements of {di
a : i < ν}, and we put ν into Aa

if and only if dν
a ∩ a is finite. We say that a codes a reshaped subset of ω1 if and only if ξa = ω1.

Obviously, a given a ⊂ ω can only code a reshaped subset of ω1 if ωL[a]
1 = ωV

1 . Our key lemma is the
following

Lemma 3.3 Let a ⊂ ω be such that a codes a reshaped subset of ω1. There is then a stationary preserving
set-generic extension of V in which there is some b ⊂ ω such that b codes a reshaped subset of ω1 and fb <

∗ fa.

P r o o f o f T h e o r e m 1.3 f r o m L e m m a 3.3 . Suppose that BMM holds but that for some X ∈ V , X#

does not exist. We have shown in [7] that there is then a stationary preserving set-generic extension of V in which
there is some a ⊂ ω with X ∈ Hω2 = Lω2 [a] (where ω2 denotes the ω2 of the extension).2) In this extension,
thus

∃a∃M (M is a transitive model of ZFC−, ω1 ∈ M, and M � “a codes a reshaped subset of ω1”).

By BMM, the displayed statement holds in V . If a0, M ∈ V witness this, then by absoluteness a0 really codes a
reshaped subset of ω1.

Now let a ∈ V code a reshaped subset of ω1. By Lemma 3.3, there is a stationary preserving set-generic
extension of V in which there is some b ⊂ ω such that b codes a reshaped subset of ω1 and fb <

∗ fa. In this
extension, thus

∃b∃M (M is a transitive model of ZFC−, ω1 ∈ M, and

M � “b codes a reshaped subset of ω1 and fb <
∗ fa”).

By BMM, the displayed statement holds in V . If b0, M ∈ V witness this, then by absoluteness b0 really codes a
reshaped subset of ω1 and fb0 <

∗ fa really holds true.
But this shows that <∗ is not well-founded (in a strong sense: all a start an infinite descending <∗ chain).

Contradiction! � (Theorem 1.3)

P r o o f o f L e m m a 3.3 . Fix a ⊂ ω as in the statement of Lemma 3.3. By [7] there is an ω-closed Q ∈ V
such that in V Q there is some A ⊂ ω1 with Hω2 = Lω2 [A] (where ω2 denotes the ω2 of V Q). We now want
to work in V Q and “reshape” A in such a way that we shall be able to code the reshaped object by a real b with
fb <

∗ fa. Of course, the reshaping should better be stationary preserving.
Let us fix some A ∈ V Q such that A ⊂ ω1 and Hω2 = Lω2 [A].
Let P ∈ V Q be the set of all (f, c) such that there is some ν < ω1 with:

· f : ν −→ 2,

· c ⊂ ν + 1 is closed,

· for all ν̄ ≤ ν, L[A ∩ ν̄, f � ν̄] � “ν̄ is countable”,

· for all ν̄ ∈ c, Lfa(ν̄)[A ∩ ν̄, f � ν̄] � “ν̄ is countable”.

2) The paper [7] in fact just assumes that there is no inner model with a strong cardinal containing X and obtains a stationary preserving
set-generic extension of V in which there is some a ⊂ ω with X ∈ Hω2 = K(a)‖ω2 .
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If p = (f, c) ∈ P, then we shall write p(1) for f and p(2) for c. A condition q is stronger than p iff

q(1) � dom(p(1)) = p(1) and q(2) ∩ (max(p(2)) + 1) = p(2).

The following is easy to verify.

Claim 1 (Extendability) Let p ∈ P. If ν < ω1, then there is some q ≤ p such that dom(q(1)) ≥ ν. In fact, if
ν < ω1, then there is some q ≤ p such that q(2) \ ν = ∅.

Whereas it can be shown that P is not semi-proper in general3) the following does hold true.

Claim 2 P is stationary preserving.

P r o o f . Suppose that p � Ċ ⊂ ω̌1 is club, and let S ⊂ ω1 be stationary. We aim to find some q ≤ p with
q � Ċ ∩ Š = ∅.

Let n0 ∈ ω be large enough. Let us first pick a fully elementary embedding π : N −→ Lω2 [A] such that
N is countable and transitive, crit(π) ∈ S, and {a,A,P, p, Ċ} ⊂ ran(π). Set ν = crit(π), P̄ = π−1(P), and

Ċ = π−1(Ċ). Working in N (a model of ZFC−), we may pick some N̄ ≺Σn0
N such that the nth

0 projectum

n0(N̄ ) of N̄ is equal to ν, and {a,A ∩ ν, P̄, p, Ċ} ⊂ N̄ . (We may for instance let N̄ be the Σn0 hull of

ν ∪ {a,A ∩ ν, P̄, p, Ċ} formed inside N .) Set β = N̄ ∩ OR. Of course, N̄ = Lβ[A ∩ ν].

Subclaim β ≤ fa(ν).

P r o o f . Of course, ν is uncountable in N̄ . Moreover, it is easy to see that Aa ∩ ν ∈ N̄ , so that ν is
uncountable in Lβ [Aa ∩ ν] ⊂ N̄ . Hence β ≤ fa(ν). � (Subclaim)

We shall now imitate an argument of [11]. Let (Ei : i < ν) ∈ N be an enumeration of all the sets which are
club in ν and which exist in N̄ , and let E be the diagonal intersection of (Ei : i < ν). Notice that E \ Ei is
bounded in ν whenever i < ν. Let us pick an external sequence (νn : n < ω) of ordinals smaller than ν which is
cofinal in ν.4) Also, let {Dn : n < ω} be the set of all sets in N̄ which are open dense in P̄.

We now construct a sequence (pn : n < ω) of conditions such that p0 = p, pn+1 ≤ pn, and pn+1 ∈ Dn for
n < ω. Simultaneously, we’ll construct a sequence (δn : n < ω) of ordinals.

Suppose that pn is given. Notice that, setting γ = dom(p(1)
n ), γ < ν (as pn ∈ N̄ ). Work inside N̄ for a

second. Using Claim 1, for all δ with γ ≤ δ < ν we may easily pick some pδ ≤ pn such that: pδ ∈ Dn,
dom((pδ)(1)) > max({νn, δ}), and for all limit ordinals λ with γ ≤ λ ≤ δ, (pδ)(1)(λ) = 1 iff λ = δ. There is
some Ē ∈ P(ν) ∩ N̄ club in ν such that for any η ∈ Ē, δ < η implies dom((pδ)(1)) < η.

Now working inside N , we may pick some δ ∈ E such thatE \ Ē ⊂ δ. Let us set pn+1 = pδ, and put δn = δ.
Of course, pn+1 ≤ pn and pn+1 ∈ Dn. Moreover, dom((pn+1)(1)) < min(E \ (δn + 1)), so that for all limit
ordinals λ ∈ E ∩ (dom((pn+1)(1)) \ dom((pn)(1))) we have that (pn+1)(1) = 1 iff λ = δn.

Now let us define an object q = (q(1), q(2)) as follows. We set

q(1) =
⋃

n<ω(pn)(1) and q(2) =
⋃

n<ω(pn)(2) ∪ {ν}.

Let us verify that q ∈ P. Well, by Claim 1, dom(q(1)) = ν and q(2) ∩ ν is unbounded in ν. Hence to prove that
q ∈ P boils down to having to show that Lfa(ν)[A ∩ ν, q(1)] � “ν is countable”. However, by the construction of
the pn’s we have that

{λ ∈ E ∩ (dom(q(1)) \ dom(p(1))) : λ is a limit ordinal and q(1)(λ) = 1} = {δn : n < ω},
which is cofinal in ν. But E ∈ N̄ = Lβ[A ∩ ν]. Therefore, Lβ[A ∩ ν] ∪ {q(1)} ⊂ Lβ [A ∩ ν, q(1)], and hence
{δn : n < ω} ∈ Lβ[A ∩ ν, q(1)] witnesses that ν is countable in Lβ[A ∩ ν, q(1)]. However β ≤ fa(ν) by the
above Subclaim.

It is now easy to see that q � ν̌ ∈ Ċ ∩ Š. � (Claim 2)

3) As we can iterate semi-proper forcings, if P were semi-proper in general, then we would be able to construct a model in which there is
some sequence (an : n < ω) with fan+1 <∗ fan for all n. We do not know if P can ever be semi-proper.

4) I.e., (νn : n < ω) ∈ V .
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The rest is smooth. Because forcing with P does not collapse ω1, it adds a pair B, C such that B ⊂ ω1, C is a
club subset of ω1, for all ν < ω1, L[A ∩ ν,B ∩ ν] � “ν is countable”, and for all ν ∈ C,

Lfa(ν)[A ∩ ν,B ∩ ν)] � “ν is countable”.

Let us fix such a pair (B,C) ∈ V Q∗P, and let us write D = A ⊕ B. Let us code D down to a real in the usual
way (cf. [7]). In order to do this, let us write (aβ : β < ω1) for that sequence of subsets of ω such that for each
β < ω1, aβ is the L[D ∩ β]-least subset of ω which is almost disjoint from every member of {aβ̄ : β̄ < β}.

Specifically, let A consist of all pairs (l(p), r(p)), where l(p) : n −→ 2 for some n < ω and r(p) ⊂ ω1 is
finite. A condition q is stronger than p iff l(q) extends l(p), r(p) is a subset of r(q), and for all β ∈ r(q), if
β ∈ D, then {n ∈ dom(l(q)) \ dom(l(p)) : l(q)(n) = 1} ∩ aβ = ∅. The forcing A has the c. c. c., and forcing
with A adds a real b such that for all β < ω1, β ∈ D iff b ∩ aβ is finite. Obviously, we have found a
b ∈ V Q∗P∗A as desired. � (Lemma 3.3)

We do not know if BMM implies that 0¶, i. e., the sharp for an inner model with a strong cardinal, exists.
This might be related to the problem of getting 0¶ from the assumption that the theory of L(R) is absolute for
stationary preserving forcings (cf. [7]).
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