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Set Theory and Cantor’s Continuum Hypothesis

I Set theory started with the following theorem of Georg Cantor.

I Cantor (Nov 11, 1873, in a letter to R. Dedekind): R is uncountable.
I.e., there are uncountably many real numbers.

I Cantor’s first proof of this used nested intervals.

I But how many real numbers are there?

I Continuum Hypothesis (CH): For every uncountable A ⊂ R there is a
bijection f : R→ A.

I Cantor’s Program: Show CH by “induction on the complexity” of
A ⊂ R.
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I Cantor–Bendixson (1883): Every uncountable closed A ⊂ R contains
a perfect subset.

I Young (1906): Every uncountable Gδ– oder Fσ–set A ⊂ R contains a
perfect subset.

I Aleksandrov/Hausdorff (1916): Every uncountable Borel set A ⊂ R
contains a perfect subset.

I Suslin (around 1917): Every uncountable analytic set A ⊂ R contains
a perfect subset.

I At this level, people got stuck.
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Cantor’s Generalized Continuum Hypothesis

I In addition to sets of natural numbers, of reals, of sets of reals, etc.,
Cantor started considering sets in general.

I “By a ‘set’ we understand any gathering-together M of determined
well-distinguished objects m of our intuition or of our thought, into a
whole.” (Cantor, 1995)

I This idea leads to the cumulative hierarchy of sets.

I For every set x whatsoever, the power set P(x) exists.
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I Cantor’s Theorem (1892): Let x be any set. There is no surjection
f : x → P(x).

I This time, Cantor’s proof uses a diagonal argument.

I How big is P(x) in comparison to x?

I Generalized Continuum Hypothesis (GCH): For every infinite set x
and every A ⊂ P(x), there is either a surjection f : x → A or else a
bijection f : P(x)→ A.

I We need to talk about axiomatizations of set theory in order to
discuss CH and GCH.
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The axiom system ZFC (Zermelo–Fraenkel with choice)

I Any two sets with the same elements are equal.

I For all x and y , {x , y},
⋃

x , and P(x) exist.

I There is an infinite set.

I Separation. For all x and for all formulae ϕ(y), {y ∈ x : ϕ(y)} exists.

I Replacement. For all x and for all formulae ϕ(y , z) such that for all
y ∈ x there is a unique z with ϕ(y , z), {z : ∃y ∈ xϕ(y , z)} exists.

I Every x with ∅ /∈ x admits a choice function.

I Every nonempty set has an ∈–least element.
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I The usual formulation of ZFC allows the formulae ϕ in Separation
and Replacement to contain parameters.

I It may be shown, though, that these parameters are not needed:

I Levy (1971): If in the formulation of Separation and Replacement, the
formulae ϕ are required to be lightface (parameter free), then we get
a system which is as strong as ZFC.
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I ZFC formalizes the idea (albeit somewhat indirectly) that the universe
of set theory arises from nothing (∅) through the operations
x 7→ P(x) and x 7→

⋃
x in a cumulative fashion:

I If we define Vα =
⋃
{P(Vβ) : β < α} for ordinals α, then ZFC proves

that every x is an element of some Vα. The Vα’s are called ranks.

I Provably, there is no set of all sets. (By Cantor’s Theorem: if v were
such a set, then there would be a surjection from v onto P(v).)

I However, we may introduce a new category of objects, classes
(“inconsistent multiplicities” in the language of Cantor), and there
will be a class of all sets.
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Classes and Truth

I The introduction of classes is tantamount to adding a truth predicate
to the language of set theory.

I BGC (Bernays–Gödel with choice) results from ZFC by adding a new
sort of variables, class variables X , Y , ..., and demanding that the
universe of all classes is closed under the logical oprations; instead of
talking about formulae in Separation and Replacement we now talk
about classes.

I A philosophical credo. In contrast to sets, classes do not exist de re,
they just exist de dicto. Otherwise the collection of all classes would
just be another rank of the set theoretical universe, and what
appeared to be classes are in fact sets.
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they just exist de dicto. Otherwise the collection of all classes would
just be another rank of the set theoretical universe, and what
appeared to be classes are in fact sets.
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I Tarski (1936)/Mostowski (1950): Whereas the truth predicate for set
theory cannot be defined in the language of ZFC, it may be defined in
the language of BGC in a ∆1

1 fashion. All instances of the Tarski
schema

ϕ←→ pϕq is true

for set theoretical ϕ may be proven in BGC.

I Sch (2002): The Tarski sentence of negation,

∀pϕq (p¬ ϕq is true ←→ ¬ pϕq is true )

is not provable in BGC, though (unless BGC is inconsistent). The
Tarski schema of negation is provable in BGC plus Σ1

1 induction.
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I Sch (1993): We may in fact define a Tarskian hierarchy of
meta–languages for the language of set theory.

I Each language Lα comes with a new sort of variables for classes of
type α. We demand that if ϕ(x) is from Lβ, some β < α, then

{x : ϕ(x)}

exists as a class of type α.

I The truth predicate for
⋃
β<α Lβ may then be defined in Lα, and we

may formulate natural theories BGCα which prove the appropriate
Tarski schemas.
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Back to Cantor’s Program.

I Gödel (1938)/Cohen (1963): It is consistent with ZFC that all
coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy
CH and even more that GCH holds true, and it is also consistent that
there is a coanalytic counterexample to CH. This is shown using
Gödel’s constructible universe L and Cohen’s method of forcing.

I So what is true?

I Gödel’s Program: Decide statements which are independent from ZFC
with the help of well–justified large cardinal axioms!
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Large cardinals

I Replacement may be construed as a “large cardinal axiom.” It says
that for every formula ϕ there is a rank Vα which refects ϕ, i.e.,

ϕ(x1, ...xk)←→ Vα |= ϕ(x1, ..., xk)

for all x1, ..., xk ∈ Vα.

I The exploitation of this idea leads to stronger and stronger reflection
principles: “If V has a certain property, then there is a rank Vα which
also has this property.”
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I Here is a list of some of the large cardinal concepts which are on the
market nowadays.

I Inaccessible < Mahlo < weakly compact < measurable < strong <
Woodin < subcompact < supercompact < I0 < ...

I Shelah/Woodin (1990): If there are infinitely many Woodin cardinals,
then CH holds for all projective sets.

I Aside: Woodin (1990), Claverie/Sch (2008): On the other hand,
under MM, or just under BMM plus NSω1 is precipitous, there is a Σ1

3

definable counterexample to CH.
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I Solovay/Levy (196?): It is consistent with ZFC plus large cardinals
that GCH holds true, and it is also consistent with ZFC plus large
cardinals that there is (possibly very complicated) counterexample to
CH.

I Even if large cardinals don’t settle CH, they are useful for Cantor’s
Program.
But do they exist?

I Can we prove their existence from well–justified reflection principles?
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Bernays’ System of Class Theory

I Bernays has formulated a system of class theory which proves the
existence of inaccessible and Mahlo cardinals via reflection principles.

I Bernays’ System Brefl is BGC together with the following schema of
reflection. For every formula ϕ in the language of BGC with no class
quantifiers,

∀Xϕ(X )→ ∃ a transitive u∀x ⊂ uϕu(x ∩ u).

I Brefl thus expresses that the class of all ordinals is a weakly compact
cardinal.
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I Bernays (1961): Brefl proves the existence of inaccessible and in fact
Mahlo cardinals.

I Sch (1995): Brefl proves ∆1,BGC
1 class comprehension.

I Sch (1995): ∆1,BGC
1 class comprehension implies the existence of

non–predicative classes.

I Sch (1995): If κ is weakly compact in L, then (Lκ; ∆1,L
1 (Lκ)) is a

model of Brefl.
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A dilemma in the philosophy of set theory

I Our only apparently good arguments for the existence of large
cardinals are based on reflection principles.

I The weakest successful system which expoits this idea, namely
Bernays’ Brefl, presupposes the existence of non–predicative classes.

I There are no non–predicative classes, as classes only exist de dicto.

I Hence ... ?
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The Consistency of Large Cardinals

I On the other hand, there are many statements which imply the
consistency of the existence of large cardinals with ZFC, in fact the
existence of canonical inner models with such large cardinals.

I One example is given by a violation of GCH:

I Gitik/Sch (2001): Suppose that 2ℵn = ℵn+1 for all n < ω, but
2ℵω > ℵω1 . Then for all n < ω there is an inner model of ZFC with n
Woodin cardinals.

I Whereas inner models with large cardinals are ubiquitous in set
theory, arguments in favor of the existence of large cardinals tend to
be flawed.
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Cantor’s Continuum Hypothesis, revisited

I Where should the journey go?

I Non–option: Forget about the question.

I 1st option: Woodin’s “Ultimate L.” (Yields CH.)

I 2nd option: Forcing Axioms, e.g., PFA, MM, MM++. (Yield ¬CH, in
fact 2ℵ0 = ℵ2.)

I 3rd option: Woodin’s Axiom (∗). (Yields ¬CH again.)

I Conjecture: MM++ =⇒ (∗).
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