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Set Theory and Cantor’s Continuum Hypothesis

I Set theory started with the following theorem of Georg Cantor.

I Cantor (Nov 11, 1873, in a letter to R. Dedekind): R is uncountable.
I.e., there are uncountably many real numbers.

I Cantor’s first proof of this used nested intervals.

I But how many real numbers are there?

I Continuum Hypothesis (CH): For every uncountable A ⊂ R there is a
bijection f : R→ A.

I Cantor’s Program: Show CH by “induction on the complexity” of
A ⊂ R.
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I Cantor–Bendixson (1883): Every uncountable closed A ⊂ R contains
a perfect subset.

I Young (1906): Every uncountable Gδ– oder Fσ–set A ⊂ R contains a
perfect subset.

I Aleksandrov/Hausdorff (1916): Every uncountable Borel set A ⊂ R
contains a perfect subset.

I Suslin (around 1917): Every uncountable analytic set A ⊂ R contains
a perfect subset.

I At this level, people got stuck.
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Cantor’s Generalized Continuum Hypothesis

I In addition to sets of natural numbers, of reals, of sets of reals, etc.,
Cantor started considering sets in general.

I “By a ‘set’ we understand any gathering-together M of determined
well-distinguished objects m of our intuition or of our thought, into a
whole.” (Cantor, 1995)

I This idea leads to the cumulative hierarchy of sets.

I For every set x whatsoever, the power set P(x) exists.

– – Ralf Schindler – Recent insights concerning the continuum problem – Università degli Studi di Palermo, April 03, 12 – – 4 | 16
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Cantor’s Generalized Continuum Hypothesis

I In addition to sets of natural numbers, of reals, of sets of reals, etc.,
Cantor started considering sets in general.

I “By a ‘set’ we understand any gathering-together M of determined
well-distinguished objects m of our intuition or of our thought, into a
whole.” (Cantor, 1995)

I This idea leads to the cumulative hierarchy of sets.

I For every set x whatsoever, the power set P(x) exists.

– – Ralf Schindler – Recent insights concerning the continuum problem – Università degli Studi di Palermo, April 03, 12 – – 4 | 16



I Cantor’s Theorem (1892): Let x be any set. There is no surjection
f : x → P(x).

I This time, Cantor’s proof uses a diagonal argument.

I How big is P(x) in comparison to x?

I Generalized Continuum Hypothesis (GCH): For every infinite set x
and every A ⊂ P(x), there is either a surjection f : x → A or else a
bijection f : P(x)→ A.

I We need to talk about axiomatizations of set theory in order to
discuss CH and GCH.
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The axiom system ZFC (Zermelo–Fraenkel with choice)

I Any two sets with the same elements are equal.

I For all x and y , {x , y},
⋃

x , and P(x) exist.

I There is an infinite set.

I Separation. For all x and for all formulae ϕ(y), {y ∈ x : ϕ(y)} exists.

I Replacement. For all x and for all formulae ϕ(y , z) such that for all
y ∈ x there is a unique z with ϕ(y , z), {z : ∃y ∈ xϕ(y , z)} exists.

I Every x with ∅ /∈ x admits a choice function.

I Every nonempty set has an ∈–least element.
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I ZFC formalizes the idea (albeit somewhat indirectly) that the universe
of set theory arises from nothing (∅) through the operations
x 7→ P(x) and x 7→

⋃
x in a cumulative fashion:

I If we define Vα =
⋃
{P(Vβ) : β < α} for ordinals α, then ZFC proves

that every x is an element of some Vα. The Vα’s are called ranks.

I Provably, there is no set of all sets. (By Cantor’s Theorem: if v were
such a set, then there would be a surjection from v onto P(v).)

I However, we may introduce a new category of objects, classes
(“inconsistent multiplicities” in the language of Cantor), and there
will be a class of all sets.
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Back to Cantor’s Program.

I Gödel (1938)/Cohen (1963): It is consistent with ZFC that all
coanalytic sets of reals (in fact, all sets of reals whatsoever) satisfy
CH, and it is also consistent that there is a conanalytic
counterexample to CH. This is shown using Gödel’s constructible
universe L and Cohen’s method of forcing.

I So what is true?

I Gödel’s Program: Decide statements which are independent from ZFC
with the help of well–justified large cardinal axioms!
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Large cardinals

I Replacement may be construed as a “large cardinal axiom.” It says
that for every formula ϕ there is a rank Vα which refects ϕ, i.e.,

ϕ(x1, ...xk)←→ Vα |= ϕ(x1, ..., xk)

for all x1, ..., xk ∈ Vα.

I The exploitation of this idea leads to stronger and stronger reflection
principles: “If V has a certain property, then there is a rank Vα which
also has this property.”
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principles: “If V has a certain property, then there is a rank Vα which
also has this property.”
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I Here is a list of some of the large cardinal concepts which are on the
market nowadays.

I Inaccessible < Mahlo < weakly compact < measurable < strong <
Woodin < subcompact < supercompact < I0 < ...

I Shelah/Woodin (1990): If there are infinitely many Woodin cardinals,
then CH holds for all projective sets.

I On the other hand, by results of Cohen, Solovay, and others, both
GCH as well as the negation of CH is compatible with the existence
of any large cardinal.
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I Even if large cardinals don’t settle CH, they provide a good
framework for Cantor’s Program.

I In order to decide CH, we need to search for new and plausible
axioms.

I There are two types of candidates out there: (1) V is “constructible,”
and (2) V is “saturated with respect to forcings.”
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V is constructible

I 1st candidate: V = L.

I Problem: “V = L” is refuted by large cardinals.

I Refined candidate: V = L[E ], where E is an extender sequence.

I Problem (Woodin): “V = L[E ] + there is a Woodin cardinal” is
incompatible with the idea that V should not be a forcing extension
of an inner model.
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V is constructible

I 1st candidate: V = L.

I Problem: “V = L” is refuted by large cardinals.

I Refined candidate: V = L[E ], where E is an extender sequence.

I Problem (Woodin): “V = L[E ] + there is a Woodin cardinal” is
incompatible with the idea that V should not be a forcing extension
of an inner model.

– – Ralf Schindler – Recent insights concerning the continuum problem – Università degli Studi di Palermo, April 03, 12 – –12 | 16



V is constructible

I 1st candidate: V = L.

I Problem: “V = L” is refuted by large cardinals.

I Refined candidate: V = L[E ], where E is an extender sequence.

I Problem (Woodin): “V = L[E ] + there is a Woodin cardinal” is
incompatible with the idea that V should not be a forcing extension
of an inner model.

– – Ralf Schindler – Recent insights concerning the continuum problem – Università degli Studi di Palermo, April 03, 12 – –12 | 16
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I Hyper–refined candidate (Woodin, 2009): V is elementarily eqivalent
to the HOD of a determinacy model, cut off at its θ, V = L[E ,Σ].
(“V is a hod mouse.”)

I “V = L,” “V = L[E ],” and “V = L[E ,Σ]” all imply CH.
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V is saturated with respect to forcings

I (Foreman, Magidor, Shelah) MAω1 , PFA, MM, MM++.

I These forcing axioms formulate the idea that “whatever can be forced
already holds true.”

I PFA implies the negation of CH, in fact 2ℵ0 = ℵ2.
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I Woodin has a competing candidate: (∗) = ADL(R) plus L(P(ω1)) is a
Pmax–extension of L(R).

I (∗) is Π2–maximal. Also, (∗) implies the negation of CH, in fact
2ℵ0 = ℵ2.

I Conjecture: MM++ implies (∗).

I According to this conjecture, the two big competing theories which
refute CH would actually be compatible.
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I There are no reasonable theories which give 2ℵ0 > ℵ2.

I We still don’t know how many reals there are.
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