SACKS FORCING PRESERVES SELECTIVE ULTRAFILTERS

RALF SCHINDLER

Theorem 0.2 for $n=1$ is a well-known result of (in the words of $[1, \mathrm{p} .562]$) " R. Solovay, and possibly others," and the general case is [1, Theorem 6].

Lemma 0.1. Let U be a selective ultrafilter on ω and let $D \subset{ }^{<\omega} \omega$ and $\left(X_{s}: s \in D\right)$ be such that
(1) $\emptyset \in D$,
(2) for all $s \in D$, s is strictly increasing and $X_{s} \in U$, and
(3) for all $s \in D$ and for all $m \in X_{s}, s \frown m \in D$.

There is then some $Y \in U$ such that if $x: \omega \rightarrow Y$ is the monotone enumeration of Y, then for every $k<\omega, x \upharpoonright k \in D$ and $x(k) \in X_{x \upharpoonright k}$.

Proof. This is basically [2, Problem 9.3.(b)]. There is some $f: \omega \rightarrow \omega$ and some $Z \in U$ such that

$$
\begin{equation*}
Z \backslash f(n) \subset \bigcap\left\{X_{s}: s \in{ }^{<\omega} n \cap D\right\} \tag{1}
\end{equation*}
$$

(See [2, Problem 9.1].) We may assume that f is strictly increasing, and write $b_{n}=f^{n}(0), n<\omega$. Let $Z^{\prime} \in U$ be such that $Z^{\prime} \cap\left[b_{n}, b_{n+1}\right)$ is a singleton for each $n<\omega$, and let Z^{*} be either $Z^{\prime} \cap \bigcup\left\{\left[b_{2 n}, b_{2 n+1}\right): n<\omega\right\}$ or $Z^{\prime} \cap \bigcup\left\{\left[b_{2 n+1}, b_{2 n+2}\right): n<\omega\right\}$, depending on which one of these two sets is in U. Write $Y=Z \cap Z^{*} \cap X_{\emptyset}$. (Cf. [2, Problem 9.3.(a)].)

Let $x: \omega \rightarrow Y$ be the monotone enumeration of Y. Let $k<\omega$ be such that $x \upharpoonright k \in D$. Say $b_{n} \leq x(k)<b_{n+1}$. Then $x \upharpoonright k \in{ }^{<\omega} b_{n-1}$ (or $k=0$ and $x \upharpoonright k=\emptyset$), so that $x(k) \in Z \backslash b_{n}=$ $Z \backslash f\left(b_{n-1}\right) \subset X_{x \upharpoonright k}$ by (1) and $x \upharpoonright k+1 \in D\left(\right.$ or by $\left.x(0) \in X_{\emptyset}\right)$.

Theorem 0.2. Let U be a selective ultrafilter on ω, let $1 \leq n<\omega$, and let \mathbb{S}_{n} be the product of n Sacks forcings. Let g be \mathbb{S}_{n}-generic over V, and let $U^{\prime}=\{x \in \mathscr{P}(\omega) \cap V[g]: \exists y \in U y \subset x\}$. Then U^{\prime} is an ultrafilter in $V[g]$.

Proof. Let $p \in \mathbb{S}_{n}, \tau \in V^{\mathbb{S}_{n}}$, and $p \Vdash \tau \subset \omega$. Suppose that $p \Vdash \forall x \in U x \cap \tau \neq \emptyset$. We aim to construct some $q \leq p$ and some $x \in U$ with $q \Vdash x \subset \tau$.

Let us construct $D \subset{ }^{<\omega} \omega,\left(p_{s}: s \in D\right)$, and $\left(X_{s}: s \in D\right)$.
Set $p_{\emptyset}=p$.
Suppose that $s \in D$ and p_{s} has been constructed, and let $m=\operatorname{lh}(s)$.
Let us write $p_{s}=\left(T_{1}, \ldots, T_{n}\right)$. Let $\left(\vec{t}_{i}: i<2^{m+n}\right)$ enumerate all $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$ such that each t_{l} is an $m^{\text {th }}$ branching node of $T_{l}, 1 \leq l \leq n$. For each $i<2^{m+n}$ and each $l, 1 \leq l \leq n$, pick an extension $s(i, l)$ of $t_{l}\left(\right.$ where $\left.\overrightarrow{t_{i}}=\left(t_{1}, \ldots, t_{n}\right)\right)$ in such a way that if $i \neq i^{\prime}$, then $s(i, l)$ and $s\left(i^{\prime}, l\right)$ are incompatible in T_{l}. For $i<2^{m+n}$ write $\left(p_{s}\right)_{i}$ for $\left(\left(T_{1}\right)_{s(i, 1)}, \ldots,\left(T_{n}\right)_{s(i, n)}\right)$.

Let $i<2^{m+n}$. By hypothesis,

$$
x^{i}=\left\{k<\omega: \exists q \leq\left(p_{s}\right)_{i} q \Vdash k \in \tau\right\} \in U
$$

as otherwise $\left\{k<\omega:\left(p_{s}\right)_{i} \Vdash k \notin \tau\right\} \in U$, but $\left(p_{s}\right)_{i} \leq p$. Let

$$
X_{s}=\bigcap\left\{x^{i}: i<2^{m+n}\right\} \in U .
$$

Let $k \in X_{s}$ be bigger than all the natural numbers from the sequence s. Exactly in this case we will put $s \frown k$ into D. For each $i<2^{m+n}$ pick $q=q_{i}^{s} \leq\left(p_{s}\right)_{i}$ such that $q \Vdash k \in \tau$; writing $q_{i}^{s}=\left(T_{1}^{i}, \ldots, T_{n}^{i}\right)$, we let

$$
p_{s-k}=\left(\bigcup\left\{T_{1}^{i}: i<2^{m+n}\right\}, \ldots, \bigcup\left\{T_{n}^{i}: i<2^{m+n}\right\}\right) .
$$

We will have that $p_{s-k} \in \mathbb{S}_{n}, p_{s-k} \leq p_{s}$, and $\bigcup\left\{T_{l}^{i}: i<2^{m+n}\right\}$ and T_{l} have the same $m^{\text {th }}$ branching nodes. Also, $p_{s-k} \Vdash k \in \tau$.

We have defined $D \subset{ }^{<\omega} \omega,\left(p_{s}: s \in D\right)$, and $\left(X_{s}: s \in D\right)$.

By the above Lemma, there is some $Y \in U$ such that if $x: \omega \rightarrow Y$ is the monotone enumeration of Y, then for every $k<\omega, x \upharpoonright k \in D$ and $x(k) \in X_{s \upharpoonright k}$. For $k<\omega$, write $p_{x \upharpoonright k}=\left(T_{1}^{k}, \ldots, T_{n}^{k}\right)$.

Let

$$
q=\left(\bigcap\left\{T_{1}^{k}: k<\omega\right\}, \ldots, \bigcap\left\{T_{n}^{k}: k<\omega\right\}\right) .
$$

Then $q \in \mathbb{S}_{n}$ and $q \leq p$. Also, $q \Vdash x(k) \in \tau$ for every $k<\omega$, in other words, $q \Vdash Y \subset \tau$.

References

[1] Pincus, David, and Halpern, J. D. (1981), "Partitions of products", Transactions of the American Mathematical Society, 267 (2): 549568
[2] Schindler, R., Set theory. Exploring independence and truth.
Ralf Schindler, Institut für Matematische Logik und Grundlagenforschung, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: rds@wwu.de

