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Abstract

We show that either of the following hypotheses imply that there is an inner model
with a proper class of strong cardinals and a proper class of Woodin cardinals. 1)
There is a countably closed cardinal κ ≥ ℵ3 such that �κ and �(κ) fail. 2) There is a
cardinal κ such that κ is weakly compact in the generic extension by Col(κ, κ+). Of
special interest is 1) with κ = ℵ3 since it follows from PFA by theorems of Todorcevic
and Velickovic. Our main new technical result, which is due to the first author, is a
weak covering theorem for the model obtained by stacking mice over Kc‖κ.

0 Introduction

It is a well-known conjecture that the consistency strength of the Proper Forcing Axiom
is a supercompact cardinal. In this paper, we show that PFA implies the existence of an
inner model with a proper class of strong cardinals and a proper class of Woodin cardinals.
In fact, we get indiscernibles for a proper class model of this large cardinal property. For
the reader interested in determinacy, this is significantly beyond the consistency strength
of ADR by theorems of Woodin.

As one might expect from [11], the only two consequences of PFA that are used to
prove our lower bound are 2ℵ0 = ℵ2 (Todorcevic [1] and Velickovic [22]) and the failure
of �(κ) at all (regular) κ ≥ ℵ2 (Todorcevic [21]). Recall that �κ implies �(κ+). The
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papers Schimmerling [10], Schimmerling-Steel [13] and Steel [18] include steps towards
measuring the large cardinal consistency strength of the existence of a singular cardinal
κ such that �κ fails. In Schimmerling [11], it is shown that if κ ≥ 2ℵ0 · ℵ2 is a regular
cardinal and both �κ and �(κ) fail, then for every n < ω, there is an inner model with n
Woodin cardinals; Steel (unpublished) extended the conclusion to infinitely many Woodin
cardinals. Hypotheses about regular cardinals are more to our taste than singular cardinals
because we need only apply PFA to posets of cardinality (2ℵ0)+ to see 2ℵ0 = ℵ2 and the
failure of �(ℵ2) and �ℵ2 . For technical reasons, the least κ to which the results of this
paper apply is not ℵ2 but ℵ3.

The papers mentioned above use the true core model, K. In the theory of K, one
first builds the background certified core model, Kc, then defines K to be the Mostowski
collapse of a certain elementary substructure of Kc. Many of the basic core model tools
involving K are unknown or false for Kc. In this sense, Kc is less useful than K. On the
other hand, in the current stage of knowledge, the anti-large-cardinal hypothesis under
which one can establish the basic properties of Kc is much less severe than for K. So, in
those instances in which we can make do with Kc, the conclusions are stronger. This was
among our main inspirations.

Our work also builds on Andretta, Neeman and Steel [2] where the theory of Kc was
developed under the assumptions 1) there is a measurable cardinal and 2) all premice
are domestic. A non-domestic premouse N is one that has an initial segment M E N
with a top extender FM such that the strong cardinals of M‖crit(FM ) are unbounded
in crit(FM ) and so are the Woodin cardinals of M . The relevant corollary in [2] is that
if κ is a measurable cardinal and �κ fails, then there is a non-domestic premouse. The
corresponding M from their proof is linearly iterable by its top extender and, in this way,
generates indiscernibles for a proper class model with a proper class of strong cardinals
and a proper class of Woodin cardinals. We will refer to such an M as a sharp.

The main new element in this paper is a technique, due to the first author, for producing
a Kc-like fine structural model with the weak covering property at a given regular cardinal.
We call it “stacking mice.” We shall combine this technique with the argument of [11] to
show the following.

Theorem 0.1 Let κ ≥ ℵ3 be a regular cardinal. Assume that κ is countably closed in the
sense that ηℵ0 < κ for every η < κ. Suppose that �(κ) and �κ both fail. Then there is a
sharp for a proper class model with a proper class of strong cardinals and a proper class
of Woodin cardinals.

Corollary 0.2 PFA implies that there is a sharp for a proper class model with a proper
class of strong cardinals and a proper class of Woodin cardinals.

In subsequent work, cf. [7], the first and fourth authors used the mouse-stacking tech-
nique to develop the theory of K below a Woodin cardinal without assuming that there is
a measurable cardinal or anything other than ZFC. (This was one of the main problems
left open in Steel [17].)
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The effect of the proof of Theorem 0.1 can also be expressed as follows.

Theorem 0.3 Let κ ≥ ℵ3 be a regular cardinal. Assume that κ is countably closed in the
sense that ηℵ0 < κ for every η < κ. Suppose that �(κ) and �κ both fail. If the certified
Kc exists in V Col(κ,κ), then there is a subcompact cardinal in the certified Kc of V Col(κ,κ).

Concerning the phrase “the certified Kc exists” we refer the reader to Definition 2.7.
Another application of the methods developed here is given by the following set of

theorems.

Theorem 0.4 If κ is a weakly compact cardinal in V Col(κ,κ+), then there is a sharp for
a proper class model with a proper class of strong cardinals and a proper class of Woodin
cardinals.

Theorem 0.5 Suppose that κ is a weakly compact cardinal in V Col(κ,κ+). If the certified
Kc exists in V Col(κ,κ+), then there is a superstrong cardinal in the certified Kc of V Col(κ,κ+).

The paper is organized as follows. In the first section, we recall some necessary fine
structural tools (which are taken from [10] and [5]). In the second section, we develop
our Kc construction, the certified Kc; it is constructed by joining the approach of [2] with
the one of [8]. Nothing is really new in the second section. The third section contains
the new technique of producing a fine structural model which satisfies weak covering at a
given regular cardinal κ. The key result will be Theorem 3.4 which says that if κ ≥ ℵ3

is an ω-closed regular cardinal with 2<κ = κ, and if the certified Kc exists, but Kc does
not have a superstrong cardinal, then there is a mouse S end-extending Kc||κ such that
cfV (κ+S) ≥ κ. The results in the third section are due to the first author. Similar in spirit
to [11], the fourth section will then show how the proof of Theorem 3.4 gives a proof of
Theorem 4.1 and thus proofs of Theorems 0.1 and 0.3; this application was discovered by
the second, third, and fourth authors. The last section will produce proofs of Theorems
0.4 and 0.5 by exploiting an argument of the third author.

1 Some fine structure

In this section we summarize key fine structural facts which shall be exploited in the proofs
of Theorems 0.1, 0.3, 0.4, and 0.5.

In much the same way and for the same reason as in [2], we shall work here with the
Jensen premice of [5] (rather than with the Mitchell-Steel premice from [9]).4 In what
follows, the term “extender” will refer to an extender in the sense of [5, §1] (cf. also [24,
2.1, p. 48]), and term “premouse” will refer to a premouse in the sense of [5, §4] (cf. also
[24, 9.1, p. 284]).

4We could have worked with Mitchell-Steel premice as well, but we would then have produced results
which are weaker than Theorems 0.1 and 0.4. Of course, Theorems 0.3 and 0.5 would not have been
affected, though.
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An extender F will thus be a partial map from P(κ) to P(λ), where κ = crit(F ) is the
critical point of F and λ = F (κ) is the length of F . If F is an extender on M with length
λ, and if ξ ≤ λ, then we write F |ξ for {(X,Y ∩ ξ): (X,Y ) ∈ F}; ξ < λ is called a cutpoint
of F (cf. [24, Definition p. 282]) iff for all f ∈ κκ∩M and for all ξ̄ < ξ, iF (f)(ξ̄) < ξ, where
iF is the ultrapower map induced by F . The concept of a “premouse” is defined with the
help of the Initial Segment Condition (ISC) which says that if F is the top extender of
M, and if ξ is a cutpoint of F , then F |ξ ∈ M (cf. [24, p. 283]). If there are no premice
with superstrong extenders, then a potential premouse M (cf. [24, Definition p. 281]) is
a premouse if and only if no extender on the sequence of M has any cutpoints (cf. [24,
Corollary 9.13]). If M is a premouse, say M = (Jα[E];∈, E,Eα), and if β ≤ α, then we
write M||β for M cut off at β, i.e., M||β = (Jβ [E ↾ β];∈, E ↾ β,Eβ), and we write M|β
for (Jβ [E ↾ β];∈, E ↾ β, ∅). If F = EM

γ 6= ∅ is an extender on the sequence of M, then the
index γ of F is equal to

F (crit(F ))+Ult(M|γ;F ).

(This approach to indexing is called Jensen indexing.)
We propose the following use of the word “mouse.”

Definition 1.1 Let M be a premouse. We call M a mouse if and only if the following
holds true. For every n < ω, if

π:N → Cn(M)

is a weak n-embedding (cf. [9, p. 52ff.], [19, Definition 4.1]), where N is a countable
premouse, then N is (n, ω1, ω1 + 1) iterable (cf. [19, Definition 4.4]).

Let M be a premouse. In particular, M is an amenable J-structure; the reducts Mn

for n < ω and the rest of the fine structural concepts may then be defined as in [16]. All
reducts Mn, n < ω, are amenable, and we may take fine ultrapowers “by the Dodd-Jensen
procedure of coding M0 onto ρn(M), taking a Σ0 ultrapower of the coded structure, and
then decoding” (cf. [9, p. 40], cf. also [16, §8]).

If P is an amenable J-structure, then we shall write SP
α for the αth level of the S-

hierarchy which produces P. In particular, SP
P∩OR = P. We shall need the following

well-known fact.

Lemma 1.2 Let M be a premouse. Let κ be a cardinal of M, let M be sound above κ,
and let pM ↾ (n + 1) be solid and universal. Suppose that ρn+1(M) ≤ κ < ρn(M). Then
cfV (ρn+1(M)+M) = cfV (κ+M) = cfV (ρn(M)).

Proof. Write η = cf(κ+M). Let us first show that η = cf(ρn(M)). By hypothesis,
ρn(M) = Mn ∩OR, so that we need to see that cf(Mn ∩OR) = η. Again by hypothesis,

Mn = HullM
n

1 (κ ∪ {pn+1(M)}).
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Let (ξi: i < η) ∈ V be cofinal in κ+M. For each i < η, let αi < Mn ∩ OR be the least
α such that

HullS
Mn
α

1 (κ ∪ {pn+1(M)}) ∩ (ξi, κ
+M) 6= ∅.

We must have that (αi: i < η) is cofinal in Mn ∩ OR, and hence cf(Mn ∩ OR) ≤ η.
On the other hand, let (αi: i < cf(Mn ∩ OR)) ∈ V be cofinal in Mn ∩ OR. For each

i < cf(Mn ∩ OR), let

ξi = sup(Hull
S
Mn
αi

1 (κ ∪ {pn+1(M)}) ∩ κ+M).

Then (ξi: i < cf(Mn ∩ OR)) is cofinal in κ+M, and thus η ≤ cf(Mn ∩ OR).
Now let us verify that cf(ρn+1(M)+M) = η. Let

M̄ = Cn+1(M) = HullMn (ρn+1(M) ∪ {p(M)}),

and let
π:M̄ →rΣn+1 M

be the core embedding. By hypothesis, ρn+1(M)+M̄ = ρn+1(M)+M. Also, π is cofinal at
M̄n. Moreover, M̄ is sound above ρn+1(M), so that by what we proved so far (applied
to M̄ rather than M), cf(M̄n ∩ OR) = cf(ρn+1(M)+M̄). Putting these things together
yields

cf((ρn+1(M)+M)) = cf((ρn+1(M)+M̄)) = cf(M̄n ∩ OR) = cf(Mn ∩ OR) = η.

� (Lemma 1.2)

We now state the Condensation Lemma (cf. [5, §8, Lemma 4]).

Lemma 1.3 Let M be a mouse which does not have a superstrong extender, and let N
be a premouse. Let

π:N →Σ0 M

be such that π 6= id, and set κ = crit(π). Suppose n < ω is such that ρn+1(N ) ≤ κ <
ρn(N ). Suppose further that N is sound above κ and in fact π is weakly rΣn+1 elementary
(cf. [16, Definition 5.12]).5

Then N is a mouse and one of the following holds true.
(a) N is the κ-core of M and π is the core map,6

(b) N ⊳M,
(c) N = Ultk(M||η;EM

γ ), where M|κ = N|κ has a largest cardinal, say µ, EM
γ 6= ∅,

µ = crit(EM
γ ) < κ < γ ≤ η < M ∩ OR, κ = µ+M||γ, η is the least η̄ ≥ γ such that

ρω(M||η̄) ≤ κ, k < ω is least such that ρk+1(M||η) ≤ κ, and in fact EM
γ is generated by

{µ}.

5A weakly rΣn+1 elementary map is Σ
(n)
0 elementary in the language of [5].

6I.e., N is the transitive collapse of the appropriate fine structural hull of κ ∪ {pn+1(M)} taken over
M, and π is the inverse of the transitive collapse which may also obtained by coiterating (M,N , κ) with
M.
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The following is a trivial consequence of the Condensation Lemma 1.3.

Lemma 1.4 Let M be a mouse which does not have a superstrong extender, and let N
be a premouse. Let

π:N →Σω M

be such that π 6= id, and set κ = crit(π). Suppose that ρω(M) = π(κ) and M is sound.
Then N ⊳M (in particular, N is a sound mouse).

Proof. Notice that ρω(N ) = κ and N is sound by the full elementarity of π. But
then (a) of Lemma 1.3 is ruled out because otherwise ρω(M) = ρω(N ), and (c) of Lemma
1.3 is ruled out because otherwise N would not be sound. Therefore N ⊳M by Lemma
1.3.

� (Lemma 1.4)

2 K
c constructions

We need a Kc construction which is an amalgamation of [2] and [8].

Definition 2.1 A Kc construction (also called an array) is a sequence

(Nξ,Mξ: ξ < θ)

of mice,7 where θ ≤ OR + 1, such that for all ξ < θ,
(a) Mξ is the core of Nξ,
(b) if Nξ is active, then ξ = ξ̄ + 1 for some ξ̄, and setting α = Nξ ∩ OR, Nξ|α = Mξ̄,

i.e., Nξ results from Mξ̄ by adding a top extender,
(c) if Nξ is passive and ξ = ξ̄+ 1 for some ξ̄, then setting α = Mξ̄ ∩OR, Nξ||α = Mξ̄

and Nξ ∩ OR = α+ ω, i.e., Nξ results from Mξ̄ by constructing one step further, and
(d) if Nξ is passive and ξ is a limit ordinal, then Nξ is the “lim inf” of the Mξ̄ for

ξ̄ < ξ, i.e., for all N , N ⊳ Nξ iff there is some ξ̄ < ξ such that whenever ξ̄ ≤ i < ξ,
Mi||(N ∩ OR) = N .

A Kc construction is determined by a criterion for which extender to add at a given
stage of the construction. A classical Kc construction is the one which is presented in the
last section of [9]. More liberal Kc constructions are the ones of [2, Section 2], [8, §2], and
[6, §1]. Our criterion for constructing Kc will be “being certified by a collapse” which is a
strengthening of [8, Definition 1.6] for Jensen premice as well as a strengthening of [6, §1,
p. 5].

A cardinal γ is called countably closed (or, ω-closed) iff ηℵ0 < γ for every η < γ.

7We shall not be interested in arrays which contain premice which are not mice.
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Definition 2.2 Let M be a premouse with no top extender, say M = (Jα[E];∈, E), and
let F be an extender with κ = crit(F ) and λ = F (κ) such that (Jα[E];∈, E, F ) is a
premouse. We say that F is certified by a collapse iff for some regular ω-closed cardinal
γ ≥ λ with 2<γ = γ there is some elementary embedding

π:H → Hγ+

such that (the universe of) H is transitive, ωH ⊂ H, γ = π(κ), E ↾ κ ∈ H, and

F = (π ↾ (P(κ) ∩ Jα[E]))|λ,

i.e., F is derived from π. In this situation, we also say that π ↾ (P(κ)∩ Jα[E]) is certified
by a collapse.

A deficiency here is that ZFC does not prove the existence of a regular ω-closed cardinal
γ with 2<γ = γ. However, if γ is regular and ω-closed (for instance, γ = (µℵ0)+ for some
µ), then in V Col(γ,γ) we shall have that γ is regular and ω-closed and 2<γ = γ. This will
suffice for our purposes.

Let us now first verify that being “certified by a collapse” is essentially stronger than
the notion of being “certified” from [8, Definition 1.6].

In order to define being “certified,” let us assume that V = L[A], where A ⊂ OR. We
may assume that P(κ) ⊂ L2κ [A∩2κ] and ωκ ⊂ Lκℵ0 [A∩κℵ0 ] for all infinite cardinals κ. If
α is an ordinal, then we write H̄α for the structure (Lα[A∩α];∈, A∩α). If κ is an infinite
cardinal with 2<κ = κ, then (the universe of) H̄κ is Hκ, i.e., the collection of sets which
are hereditarily smaller than κ.

The class of Σ1+ formulae is defined in [8, Definition 1.3]; it is a class which is strictly
between Σ1 and Σ2. A formula is said to be Σ1+ (cf. [8, Definition 1.3]) iff it is of the form

∃v0 ∃v1 ∃v2(
ωv0 ⊂ v0 ∧ v2 = A ∩ v3 ∧ ϕ(v0, v1, v2, v3, v4)),

where ϕ is Σ0 (cf. [8, Definition 1.3]).
If F is an extender with κ = crit(F ) and λ = F (κ), and if U is a countable set, then F

is called countably complete with respect to U iff there is a map τ such that U∩λ ⊂ dom(τ),
τ ↾ U∩λ:U∩λ→ κ is order-preserving, and for all ξ ∈ U∩λ and for every X ∈ dom(F )∩U
we have that if ξ ∈ F (X), then τ(ξ) ∈ X (cf. [8, Definition 1.1]).

The following is a reformulation of [8, Definition 1.6] to the context of Jensen premice.

Definition 2.3 Let F be an extender with κ = crit(F ) and λ = F (κ). We say that F is
certified iff, letting δ be the least regular cardinal such that δ ≥ (Card(λ)ℵ0)+, 2<δ = δ, and
δ is countably closed, we have that for all countable U ≺Σ1+ H̄δ there is some τ :U →Σ1+ H̄κ

witnessing that F is countably complete with respect to U .

We emphasize that if there is no regular countably closed cardinal δ > λ such that
2<δ = δ, then F cannot be certified. We also emphasize that whether a given extender is
certified may depend on the choice of A.

7



Lemma 2.4 Let F be an extender with κ = crit(F ) and λ = F (κ). If F is certified by a
collapse, witnessed by π:H → Hγ+ , where A ∩ π(κ) ∈ ran(π), then F is certified in the
sense of Definition 2.3.

Proof. This is by the proof of [8, Lemma 3.6]. Let

π:H → Hγ+

witness that F is certified by a collapse, where A ∩ π(κ) ∈ ran(π). Notice that if δ
is as in Definition 2.3, then λ < π(κ) = γ yields that in fact δ ≤ γ. Also, H̄δ ≺Σ1+

H̄γ ≺Σ1+ V (cf. [8, Lemma 1.5]). Let U ≺Σ1+ H̄δ be countable and let σ: Ū ∼= U , where
Ū transitive. Let (an,Xn:n < ω) be a list of all pairs (a,X) such that a ∈ [U ∩ λ]<ω,
X ∈ P([κ]Card(a)) ∩H ∩ U , and a ∈ π(X). Let ān = σ−1(an) = σ−1”an for n < ω. Notice
that (ān,Xn:n < ω) ∈ H.

Now σ witnesses that in Hγ+ there is some ϕ: Ū →Σ1+ H̄π(κ) such that ϕ”ān ∈ π(Xn)
for all n < ω. By elementarity of π, there is hence some ϕ ∈ H, ϕ: Ū →Σ1+ H̄κ, such
that ϕ”ān ∈ Xn for all n < ω. Let ϕ0 ∈ H be a witness, and set τ = ϕ0 ◦ σ−1. Then
τ :U →Σ1+ H̄κ, and moreover τ(an) ∈ Xn for all n < ω, i.e., τ witnesses that F is countably
complete with respect to U . Hence the map τ is as desired.

� (Lemma 2.4)

Without the hypothesis that A ∩ π(κ) ∈ ran(π) we wouldn’t get that H̄π(κ) ∈ ran(π)
in the proof of Lemma 2.4, so that we couldn’t pull the existence of the map ϕ back to H.

We may now use a similar argument to show that being “certified by a collapse” is
stronger than being “robust.” In order to define “robustness,” we need the Chang model.

If B is any set, then we recursively define C0(B) = TC({B}), Cα+1(B) = Def(Cα(B))∪
[α]ω , where Def(Cα(B)) is the set of all subsets of Cα(B) which are definable over Cα(B)
with parameters from Cα(B), and if λ is a limit ordinal, then Cλ(B) =

⋃
{Cα(B):α < λ}.

If Jβ [E] is a J-model, and if η ≤ β and µ are ordinals, then we write C̄E
η,µ for

Cµ((Jη [E], E ↾ η))

and CE
η,µ for the structure

(C̄E
η,µ;∈, (C̄E

η,µ̄: µ̄ < µ)).

Notice that “v = CE
η,µ” is Σ1+ in the parameters E ↾ η and µ.

Definition 2.5 Let M be a potential premouse with top extender F such that κ = crit(F )
and λ = F (κ). Then F is called robust iff for all U ⊂ λ and W ⊂ P(κ)∩M which are both
countable, there is some order preserving τ :U → κ which witnesses that F is countably
complete with respect to U ∪W and such that for all U ′ ⊂ U , setting β = sup(U ′) and
β̄ = sup(τ”U ′), if ϕ is a Σ1 formula, then

CE
β̄,κ

|= ϕ(τ”U ′, τ”U) ⇐⇒ CE
β,∞ |= ϕ(U ′, U).
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Lemma 2.6 Let F be an extender with κ = crit(F ) and λ = F (κ). If F is certified by a
collapse, then F is robust.

Proof. This is by the proof of [6, §1, Lemma 4.1]. Let

π:H → Hγ+

witness that F is certified by a collapse. Let U ⊂ λ and W ⊂ P(κ)∩M both be countable,
let g:ω → U be bijective, let ~a = (aξ: ξ < 2ℵ0) be an enumeration of P(ω), let

T = {(ϕ, ξ):ϕ is Σ1, ξ < 2ℵ0 , and CE
sup(g”aξ),∞ |= ϕ(g”aξ , U)},

and let U∗ ≺Σ3 Hγ+ be countable and such that U ∪W ∪ {U,W, g,~a, T} ⊂ U∗. In much
the same way as in the proof of Lemma 2.4 we may construct a map τ :U∗ →Σ3 H which
witnesses that F is countably complete with respect to U∗ such that τ(~a) = ~a, τ(T ) = T ,
τ(γ) = κ, τ(A ∩ γ) = A ∩ κ, and τ(E ↾ γ) = E ↾ κ.

The point now is that “v = CE
η,µ” is Σ1+ in the parameters E ↾ η and µ (and A is not

needed). Therefore,

∀ϕ ∈ Σ1 ∀ξ < 2ℵ0 ((ϕ, ξ) ∈ T ⇐⇒ CE
sup(g”aξ),∞ |= ϕ(g”aξ , U))

is a true Π3 statement, and because H̄γ ≺Σ1+ V and by the choice of U∗ and τ , we get

∀ϕ ∈ Σ1 ∀ξ < 2ℵ0 ((ϕ, ξ) ∈ T ⇐⇒ CE
sup(τ(g)”aξ),κ |= ϕ(τ(g)”aξ , τ(U)))

to hold true.
Let U ′ ⊂ U and write β = sup(U ′) and β̄ = sup(τ”U ′). If U ′ = g”aξ , where ξ < 2ℵ0 ,

then τ(g)”aξ = τ”U ′. Also, τ(U) = τ”U . We therefore get that

CE
β,∞ |= ϕ(U ′, U)) ⇐⇒ (ϕ, ξ) ∈ T ⇐⇒ CE

β̄,κ
|= ϕ(τ”U ′, τ”U)),

as desired.
� (Lemma 2.6)

The maximal certified Kc construction will now be defined via the concept of extenders
which are “certified by a collapse.”

Definition 2.7 The maximal certified Kc construction is the unique Kc construction

(Nξ,Mξ: ξ < θ)

such that
(a) for all ξ < θ, Nξ is active with top extender F if and only if there is some ξ̄ such

that ξ = ξ̄ + 1 and F is the unique extender G such that (Mξ̄;∈, E
Mξ̄ , G) is a premouse

and G is certified by a collapse, and
(b) θ is largest such that such a Kc construction exists.
If θ = OR+ 1, and if for every ξ̄, if there is an extender G such that (Mξ̄;∈, E

Mξ̄ , G)
is a premouse and G is certified by a collapse, then there is a unique such G, then we
write Kc for MOR and say that the certified Kc exists, or simply: Kc exists.
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The following theorem is a version of [17, Theorem 9.14], which produced such a
theorem for the first time. (Cf. also [2, Theorem 2.28] and [6, §1, Theorem 1].)

Theorem 2.8 Let (Nξ,Mξ: ξ < θ) be the certified Kc construction, and let ξ < θ. Let
n < ω, and let

π:P → Nξ

be a weak n-embedding, where P is countable. Let T be a countable putative n-bounded
normal iteration tree on P. Let β be the length of T . Then exactly one of the following
holds.

(a) β = β̄ + 1 for some β̄ and for some ξ̄ ≤ ξ and some k < ω there is a weak
k-embedding

σ:MT
β̄
→ Nξ̄.

Moreover, if there is no drop along [0, β̄]T , then ξ̄ = ξ, k ≤ n, and π = σ ◦ πT
0β̄

.

(b) there is a maximal branch b through T such that for some ξ̄ ≤ ξ and some k < ω,
there is a weak k-embedding

σ:MT
b → Nξ̄.

Moreover, if there is no drop along b, then ξ̄ = ξ, k ≤ n, and π = σ ◦ πTb .

Proof. By Lemma 2.6, every certified extender is robust. The theorem therefore
follows immediately from [6, §1, Theorem 1], which shows what we aim to see from the
hypothesis that (Nξ,Mξ: ξ < θ) is a “robust Kc construction.” � (Theorem 2.8)

[2, Theorem 2.28] states a more detailed version of what may be shown along these
lines.

We want to stress that we could not have used [8, §2] in the proof of Theorem 2.8
because (as we observed after the proof of Lemma 2.4) we need A ∩ π(κ) as a hypothesis
in Lemma 2.4. Because of this, our use of [6] rather than [8] avoids problems in arguments
later in the paper. However we show in the last section that these problems can be
surmounted in such a way that the main results of this paper can be based on [8] after all.

In order to show now that the certified Kc exists, we need an anti large cardinal
hypothesis. The following definition is from [2, Definition 3.1].

Definition 2.9 Let M be a premouse. Then M is called domestic iff there is no α ≤
M∩ OR such that

(a) M||α is active, and if κ = crit(F ), then
(b) κ is a limit of ordinals δ such that M|α |= “δ is a Woodin cardinal,” and
(c) κ is a limit of ordinals µ such that M|κ |= “µ is a strong cardinal.”

The following theorem is the main result of [2], cf. [2, Theorem 3.2]. (Cf. [2] on the
concepts which are used in this statement.)

10



Theorem 2.10 Let (Nξ,Mξ: ξ < θ) be the maximal certified Kc construction, and let
ξ < θ. Let n < ω, and let

π:P → Nξ

be a weak n-embedding, where P is countable. Assume ξ to be the least ξ̄ such that there
is some weak n-embedding π̄:P → Nξ̄, and let π be the leftmost π̄ such that π̄:P → Nξ is
a weak n-embedding. Let T be a countable n-bounded normal iteration tree on P of limit
length.

If Nξ is domestic, then there is at most one cofinal branch b through T which is super-
realizable.

As explained in [2] (cf. [2, Corollary 3.3]), Theorem 2.8 and Theorem 2.10 show the
following.

Corollary 2.11 If there is no non-domestic premouse, then the certified Kc exists and is
a mouse.

We shall need below that there is no “sharp” for Kc in the sense of the following lemma
which was shown in [5].

Lemma 2.12 Suppose that the certified Kc exists, but there is no superstrong cardinal in
Kc. Let κ < λ be cardinals of Kc, and let τ = κ+Kc

and η = λ+Kc
.

There is no
π:Kc|τ →Σ0 K

c|η

such that κ = crit(π), π(κ) = λ, and π ↾ (P(κ) ∩Kc) is certified by a collapse.
Moreover, if λ is regular in V , then there is no mouse S ⊲Kc|λ such that there is some

π:Kc|τ →Σ0 S

such that κ = crit(π), π(κ) = λ, and π ↾ (P(κ) ∩Kc) is certified by a collapse.

Proof. Let us first prove the first statement. Assume that there is some such π. Let
F be the extender on Kc derived from π, i.e., F = π ↾ (P(κ)∩Kc). Set η̃ = sup(π”τ) ≤ η.
Notice that π:Kc|τ →Σ1 K

c|η̃. We may consider the potential premouse M = (K|η̃, F )
which results from K|η̃ by adding F as its top extender.

Let α < λ be the least cutpoint of F (cf. [24], i.e., if f ∈ κκ ∩ Kc and ξ < α, then
π(f)(ξ) < α) such that F |α /∈ Kc|η̃, or α = λ if there is no such cutpoint. We may factor
π as

Kc|τ →π̄ N = Ult0(K
c|τ, F |α) →k Kc|η̃,

where crit(k) = α and k(α) = λ. By the Condensation Lemma 1.3, N ⊳Kc|η̃ and of course
α is a cardinal of Kc. Set θ = N ∩ OR = sup(π̄”τ).

Notice that (Kc|θ, F |α) is now a premouse (by the choice of α), and of course F |α is
certified by a collapse.
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Let (γi: i < θ) be increasing and cofinal in θ such that for all i < θ, ρω(Kc||γi) = α.
For each i < θ, let ξi be least such that ρω(Mξ) ≥ α as well as Kc||γi E Mξ for all
ξ ≥ ξi. (Here and in what follows, (Nξ,Mξ: ξ ≤ OR) is the certified Kc construction). By
thinning out the sequence (γi: i < θ) if necessary, we may and shall also assume that for
each i < θ, (P(α) ∩ Kc||(γi+1 + 1)) \ Kc||(γi + 1) 6= ∅, so that Kc||γi+1 is not an initial
segment of Mξi

. Setting ξ∗ = sup({ξi: i < θ}), ξ∗ is a limit ordinal and Kc|θ E Nξ∗ . But
we cannot have that Kc|θ ⊳Nξ∗, as otherwise Kc|θ E Nξ for all sufficiently large ξ < ξ∗,
and hence for all sufficiently large i < θ, Kc||γj E Mξi

for all j < θ.
Therefore, Kc|θ = Nξ∗ = Mξ∗ . Because F |α is certified by a collapse, this means that

Nξ∗+1 = (Mξ∗ , F |α), i.e., Nξ∗+1 results from Mξ∗ by adding F |α as its top extender. But
we must now in fact have Nξ∗+1 ⊳ K

c.
However, ρ1((Mξ∗ , F |α)) < α, because F |α is not superstrong. Thus α is not a cardinal

in Kc. Contradiction!
The second statement is shown in exactly the same way. Notice that if λ is regular in

V , then α, the least cutpoint of F , must actually be strictly smaller than λ, so that the
proof still goes through.

� (Lemma 2.12)

3 Stacking mice

We now turn to the key ingredient for the proofs of Theorems 0.1 and 0.3, a “covering
lemma” for stacks of mice.

Throughout this section, we work under the hypothesis that the certified Kc exists
and that there is no premouse with a superstrong extender. The aim is now to stack mice
over Kc||κ, where κ is a regular cardinal (in V ).

Lemma 3.1 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ be an uncountable regular cardinal. For h ∈ {0, 1}, let Mh be a sound
mouse such that Kc||κ E Mh and ρω(Mh) = κ.8 Then M0 E M1 or M1 E M0.

Proof. This is an immediate consequence of Lemma 1.4. Let

π:H → Hθ,

where θ > κ is regular, H is transitive, {κ,M0,M1} ⊂ ran(π), and crit(π) = π−1(κ).
Set κ̄ = π−1(κ), M̄0 = π−1(M0), and M̄1 = π−1(M1). By Lemma 1.4, for h ∈ {0, 1},
M̄h ⊳Mh, so that in fact M̄h ⊳ Kc||κ, as ρω(M̄h) = κ̄ < κ. Therefore, M̄0 E M̄1 or
M̄1 E M̄0, so that M0 E M1 or M1 E M0 by elementarity.

� (Lemma 3.1)

8Notice that we in fact require ρω(Mh) = κ rather than ρω(Mh) ≤ κ. On the other hand, we allow

Mh to have extenders EM
h

ν on its sequence which “overlap” κ, i.e., such that crit(EM
h

ν ) ≤ κ and ν > κ.
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In the light of Lemma 3.1, we may let S denote the “stack” of sound mice M D Kc||κ
with ρω(M) = κ.

Definition 3.2 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ be an uncountable regular cardinal. Let S = S(κ) denote the unique
premouse such that N E S iff there is some sound mouse M D Kc||κ with ρω(M) = κ
such that N E M.

In the situation of Definition 3.2, Kc|κ+Kc
E S. However, Kc|κ+Kc

⊳S seems possible.
We are now going to show that S does not have a “last mouse” and that it is in fact itself
a mouse:

Lemma 3.3 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ be an uncountable regular cardinal, and let S = S(κ). For all M E S with
ρω(M) = κ there is some N ⊳ S such that N ⊲M. In particular, S |= ZFC

− and κ is the
largest cardinal of S. Moreover, S is a mouse.

Proof. Suppose first that S = M, where M is a sound mouse with M D Kc||κ
and ρω(M) = κ. Let β > M ∩ OR be least such that ρω(Jβ [M]) ≤ κ.9 (In fact,
β = (M∩ OR) + ω.)

Let us suppose that ρω(Jβ [M]) = κ. Then Jβ[M] cannot be a mouse, as otherwise
Jβ [M] E S. Pick a countable N and some k:N → Jβ [M] such that N is not ω1 + 1
iterable. Pick a fully elementary π:Jβ̄ [M̄] → Jβ [M] such that crit(π) = ran(π) ∩ κ and
ran(π) ⊃ ran(k). Then M̄ ⊳M by Lemma 1.4, and therefore in fact Jβ̄ [M̄] ⊳ Kc||κ, so
that N is ω1 + 1 iterable after all. Contradiction!

Therefore, ρω(Jβ [M]) < κ. An application of the Condensation Lemma 1.3 then gives
a contradiction as follows.

Let
π:H → Hθ,

where θ > κ is regular, H is transitive, {κ,M, β} ⊂ ran(π), and crit(π) = π−1(κ) >
ρω(Jβ [M]). Set κ̄ = π−1(κ), M̄ = π−1(M), and β̄ = π−1(β). By Lemma 1.4, M̄ ⊳ Kc||κ,
so that Jβ̄ [M̄] cannot be the crit(π)-core of Jβ [M] (using the fact that there are no
extenders above M̄ on the sequence of Jβ̄[M̄]); similarily, Jβ̄[M̄] cannot be an ultrapower
of an initial segment of Jβ[M]. We also certainly cannot have that Jβ̄ [M̄] ⊳ Jβ[M], as
otherwise the witness to ρω(Jβ [M]) = ρω(Jβ̄ [M̄]) would be an element of Jβ [M]. This
gives a contradiction with Lemma 1.3.

We have shown that for all M E S with ρω(M) = κ there is some N ⊳ S with M ⊳N .
We are left with having to verify that S is a mouse.

Well, if not, then there is some countable N and some k:N → S such that N is not
ω1 + 1 iterable. Pick a fully elementary π: S̄ → S such that crit(π) = ran(π) ∩ κ and

9We here use the following notation. If N = (Jδ [E];∈, E,Eδ) is a premouse, and if δ′ > δ, then
Jδ′ [N ] = (Jδ′ [E

⌢Eδ];∈, E⌢Eδ).
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ran(π) ⊃ ran(k). By Lemma 1.3 applied to cofinally many initial segments of S̄ we get
that S̄ ⊳ S and in fact S̄ ⊳ Kc||κ. Therefore, N is ω1 + 1 iterable after all. Contradiction!

� (Lemma 3.3)

The above argument in fact shows that in the situation of Lemma 3.3, L[S] is a mouse
and S ∩ OR is the cardinal successor of κ in L[S].

The following “weak covering lemma” for stacks is the key fact. It is due to the first
author. The fact that κ is regular is used heavily in its proof.

Theorem 3.4 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ ≥ ℵ3 be an ω-closed regular cardinal with 2<κ = κ, and let S = S(κ).
Suppose that κ is a limit cardinal in Kc. Then cfV (S ∩ OR) ≥ κ.

Proof. Let us write η = cfV (S ∩ OR). Let (Mi: i < η) be such that for every i < η,
Mi is a sound mouse with ρ1(Mi) = κ (in particular, Mi⊳S), Mi⊳Mi+1, and (Mi: i < η)
is cofinal in S, i.e, for every N ⊳ S there is some i < η with N E Mi. (Such a sequence
exists by Lemma 3.3.)

Let us now suppose that η < κ. Let θ >> κ. We may then pick a continuous chain
(Xα:α < κ) of elementary substructures of Hθ of size < κ such that {S, κ} ∪ {Mi: i <
η} ⊂ X0 and for all α < κ, Xα∩κ ∈ κ, Xα ∈ Xα+1, and ωXα+1 ⊂ Xα+1. Set κα = Xα∩κ,
and let

πα:Sα → S

be the inverse of the transitive collapse ofXα, restricted to the preimage of S. In particular,
πα has critical point κα. By Lemma 1.4, for every α, Sα E Kc||κ+S

α , i.e., if we let
λα = Sα ∩ OR, then Sα = S||λα = Kc||λα or Sα = S|λα = Kc|λα and λα ≤ κ+S

α = κ+Kc

α .
Of course, cfV (λα) = η, as being witnessed by (π−1

α (Mi): i < η).
Let E0 be the set of all α < κ such that α is a successor ordinal or a limit ordinal of

uncountable cofinality. We must in fact have λα < κ+S
α = κ+Kc

α whenever α ∈ E0. This is
because if α ∈ E0 and λα = κ+Kc

α , then because Xα is countably closed, κ is ω-closed, and
2<κ = κ, then the extender derived from πα is certified by a collapse. This contradicts
Lemma 2.12.

For α ∈ E0, let Pα be the least P such that Kc||λα E P ⊳ Kc and ρω(P) ≤ κα. In
particular, λα = κ+Pα

α . Because κ is a limit cardinal in Kc, there must be a club C ⊂ κ
such that for all α ∈ C, κα = α and α is a cardinal in Kc. In particular, ρω(Pα) = κα

(rather than ρω(Pα) < κα) whenever α ∈ E0 ∩ C.
Write E = E0 ∩ C. Notice that E is stationary, and in fact E is closed at points of

uncountable cofinality. Now let, for α ∈ E,

π̃α:Pα → Qα = ultn(Pα, πα),
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where n is least such that ρn+1(Pα) = κα < ρn(Pα). Notice that Qα is a mouse because
πα is certified (by a collapse).10

In order to get a contradiction, it suffices to see that there is some α ∈ E such that
ρω(Qα) = κ, because then S ⊳ Qα would contradict the definition of S. Let us assume
that for all α ∈ E we have that ρω(Qα) < κ, and work towards a contradiction.

For α ≤ β < κ we may set παβ = π−1
β ◦ πα. Let

π̃αβ :Pα → Qβ
α = ultn(Pα, παβ),

where n is least such that ρn+1(Pα) ≤ κα < ρn(Pα). Notice that Qβ
α is a mouse due to the

existence of the canonical factor map k:Qβ
α → Qα which sends [a, f ]παβ

to [σβ(a), f ]πα ,

where a ∈ [λβ]<ω, f : [δ]Card(a) → Pα for some δ such that παβ(δ) > max(a), and f comes
from a level n Skolem term over Pα (cf. [9, p. 34]).

Fix α ∈ E for a while. Let (Yβ:β < κ) be a continuous tower of elementary substruc-
tures of Hθ of size < κ such that Pα ∪{Pα,S,Qα, π̃α} ∈ Y0 and for all β < κ, Yβ ∩OR ∈ κ
and Yβ ∈ Yβ+1. There is a club Cα ⊂ C such that for all β ∈ Cα, ran(πβ) ∩ S = Yβ ∩ S.
For β ∈ Cα, let σβ: H̄β → Hθ be the inverse of the transitive collapse of Yβ. Let β ∈ Cα.
We may define

ϕ:Qβ
α → σ−1

β (Qα)

by setting
ϕ(π̃αβ(f)(a)) = σ−1

β ◦ π̃α(f)(a)

for a ∈ [λβ]<ω, f : [δ]Card(a) → Pα for some δ such that παβ(δ) > max(a), and f comes
from a level n Skolem term over Pα. This is well-defined by the following reasoning. Let
a, f , . . . be as just described, and let ψ be rΣn. Then we have that

Qβ
α |= ψ(π̃αβ(f)(a), . . .) iff

a ∈ παβ({(u, . . .):Pα |= ψ(f(u), . . .)}) iff

σβ(a) = πβ(a) ∈ πα({(u, . . .):Pα |= ψ(f(u), · · ·)}) iff

Qα |= ψ(π̃α(f)(σβ(a)), . . .) iff

σ−1(Qα) |= ψ(σ−1 ◦ π̃α(f)(a), . . .).

But ϕ is easily seen to be surjective: we have that Qα = the set of all π̃α(f)(a), where
a ∈ [S ∩ OR]<ω, f : [δ]Card(a) → Pα for some δ such that παβ(δ) > max(a), and f comes
from a level n Skolem term over Pα, so that σ−1(Qα) = the set of all σ−1 ◦ π̃α(f)(a),

10Qα is a premouse and not a protomouse. For this, we must show that FQα is a total extender over Qα.
Suppose otherwise. Let µ = crit(FPα). Then π̃ is discontinuous at (µ+)Pα . It follows that (µ+)Pα = κα.
Via the elementarity of π, this his leads to the contradiction that κ is a successor cardinal in Kc.
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where a ∈ [λβ]<ω, f : [δ]Card(a) → Pα for some δ such that παβ(δ) > max(a), and f comes
from a level n Skolem term over Pα. We have shown that

Qβ
α = σ−1

β (Qα).

In particular, we now have that for all β ∈ Cα, ρω(Qβ
α) < κβ = β.

Now pick β ∈ E ∩ △α<κCα such that cfV (β) 6= η. As κ ≥ ℵ3, this choice is possible.

We have that β ∈ Cα for each α ∈ E ∩ β, so that ρω(Qβ
α) < κβ = β for each α ∈ E ∩ β.

We now claim that there is some α ∈ E ∩ β such that

Qβ
α = Pβ.

As ρω(Pβ) = κβ , this gives a contradiction.
Let n < ω be such that ρn+1(Pβ) = κβ = β < ρn(Pβ). By Lemma 1.2, η =

cfV (β+Pβ ) = cfV (λβ) = cfV (ρn(Pβ)). Let us pick a sequence (δi: i < η) of ordinals
cofinal in ρn(Pβ) = Pn

β ∩ OR. Let us write P = Pn
β .

For i < η, let

σ̄i: N̄i
∼= Hull

SP
δi

1 (β ∪ {pn+1(Pβ)}),

where N̄i is transitive. We may construe σ̄i as a Σ0-elementary map from N̄i to P. So
by the Downward Extension of Embeddings Lemma (cf. [16, §§3 and 5]), there is some
transitive Ni such that N̄i = N n

i and there is a weakly rΣn+1 elementary embedding

σi:Ni → Pβ

with σi ⊃ σ̄i. By the Condensation Lemma 1.3, Ni ⊳ Pβ|β
+Pβ .

Let us write Mα
i = π−1

α (Mi), for every α < κ and i < η. Because cfV (β) 6= η, there is
some α < β and sets T , T ′ ⊂ η which are both cofinal in η such that

i ∈ T =⇒ Mβ
i , pMβ

i

∈ HullP1 (α ∪ {pn+1(Pβ)})

and
i ∈ T ′ =⇒ Ni, σ

−1
i (pn+1(Pβ)) ∈ ran(παβ).

We claim that

HullP1 (α ∪ {pn+1(Pβ)}) ∩ λβ = ran(παβ) ∩ λβ.(1)

Well, first let ξ ∈ ran(παβ) ∩ λβ . Let παβ(ξ̄) = ξ. Then ξ̄ ∈ Hull
Mα

i

1 (α ∪ {pMα
i
}) for

some i ∈ T . But then

ξ ∈ Hull
Mβ

i

1 (α ∪ {p
Mβ

i

}) ⊂ HullP1 (α ∪ {pn+1(Pβ)}).

Now let ξ ∈ HullP1 (α∪{pn+1(Pβ)})∩λβ. We must then have ξ ∈ Hull
SP

δi

1 (α∪{pn+1(Pβ)})
for some i ∈ T ′. Fix such i ∈ T ′, and pick a Σ1 Skolem term τ and a parameter ~ǫ ∈ [α]<ω
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such that ξ = τ
SP

δi (~ǫ, pn+1(Pβ)). We have that β ∈ HullP1 (α ∪ {pn+1(Pβ)}) by (1), “⊃.”

We may therefore assume i ∈ T ′ to be such that β ∈ Hull
SP

δi
1 (α ∪ {pn+1(Pβ)}). But

then Hull
SP

δi
1 (β ∪ {pn+1(Pβ)}) |= “There is a surjection from β onto ξ,” and therefore

we must have that ξ + 1 ⊂ Hull
SP

δi

1 (β ∪ {pn+1(Pβ)}). This implies that ξ ∈ HullN̄i

1 (β ∪

{σ−1
i (pn+1(Pβ))}), and in fact that ξ = τ N̄i(~ǫ, σ−1

i (pn+1(Pβ)). We therefore also get that

ξ ∈ HullN̄i
1 (α ∪ {σ−1

i (pn+1(Pβ))}) ⊂ ran(παβ).

We have shown (1). Now let

σ̄: P̄ ∼= HullP1 (α ∪ {pn+1(Pβ)}).

By the Downward Extension of Embeddings Lemma (cf. [16, §§3 and 5]), there is some
transitive P∗ such that P̄ = (P∗)n and there is a weakly rΣn+1 elementary embedding

σ:P∗ → Pβ

with σ ⊃ σ̄. By the Condensation Lemma 1.3, P∗ ⊳ Pβ . By (1), P̄|α+P̄ = Sα = Pα|α
+Pα ,

so that in fact P∗ = Pα. But then again by (1), we must have that

Qβ
α = ultn(Pα;παβ) = ultn(P∗; σ̄ ↾ P∗|λα) = Pβ .

Contradiction!
� (Theorem 3.4)

In the situation of Theorem 3.4, there can be no mouse Q D S with ρω(Q) ≤ κ, by the
definition of S and by Lemma 1.2. We do not know, though, if there can be some mouse
Q ⊲ Kc||κ such that ρω(Q) < κ.

Corollary 3.5 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ be an ω-closed regular cardinal with 2<κ = κ, and let S = S(κ). Suppose
that κ is a limit cardinal in Kc. Then there is no mouse M ⊲S such that ρω(M) < κ and
M is sound above κ.

Proof. Suppose that there were such a mouse M. We may and shall assume that
M is a least counterexample, so that S ∩ OR = κ+M. Let n < ω be least such that
ρ = ρn+1(M) < κ ≤ ρn(M). If ρn(M) = κ, then cf(ρn+1(M)+M) = κ by Lemma 1.2,
and thus in fact ρn+1(M)+Kc

= ρn+1(M)+M = κ. If ρn(M) > κ, then cf(ρn+1(M)+M) =
cf(κ+M) = κ by Lemma 1.2, and thus again ρn+1(M)+Kc

= ρn+1(M)+M = κ. Hence in
both cases κ is a successor cardinal in Kc. Contradiction!

� (Corollary 3.5)
The proof of Theorem 3.4 also shows the following.
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Theorem 3.6 Assume that Kc exists and that there is no premouse with a superstrong
extender. Assume CH, and let S = S(ℵ2). Suppose that ℵ2 is a limit cardinal in Kc. Then
cfV (S ∩ OR) > ω.

Proof. Otherwise we may pick β with cfV (β) + ω1 6= ω = η in the proof of Theorem
3.4.

� (Theorem 3.6)

4 K
c and �(κ)

A sequence (Cν : ν < α) is coherent iff for all limit ordinals ν < α, Cν ⊂ ν is club in ν and
Cν̄ = Cν ∩ ν̄ whenever ν̄ is a limit point of Cν . Here, α is allowed to be a successor ordinal,
say α = λ + 1, where λ is a limit ordinal, in which case Cλ is called a thread through
(Cν : ν < λ). We say that �(λ) holds iff there is some coherent sequence (Cν : ν < λ)
without a thread through it. It is easy to see that �κ implies �(κ+).

Our proofs of Theorems 0.1 and 0.3 will need a result of Todorcevic (cf. [21]) which
says that if PFA holds, then for all κ with cf(κ) ≥ ω2, �(κ) fails. Another ingredient for
the proofs of Theorems 0.1 and 0.3 is a result of Zeman and the second author (cf. [14])
according to which if M is a mouse, then in M, �κ holds for all cardinals κ which are
not subcompact.

Theorem 4.1 Suppose there is no non-domestic premouse, or just suppose that Kc exists
and there is no subcompact cardinal in Kc. Let κ ≥ ℵ3 be regular and countably closed. If
2<κ > κ, then let us also suppose that the Kc of V Col(κ,κ) exists and there is no subcompact
cardinal in the Kc of V Col(κ,κ). Then one of the following is true:

(a) �(κ),
(b) �κ.

Proof. Let us first prove this under the additional hypothesis that 2<κ = κ.
If κ is a successor cardinal in Kc, say κ = ν+Kc

, then �ν and hence also �(κ) holds
true in V by [14]. Let us thus assume κ to be a limit cardinal in Kc, and let us also assume
that �κ fails. Let S = S(κ). Since �κ holds in S by [14], we shall have that κ+S < κ+V .
In the light of Theorem 3.4, we must then have that κ = cf(S ∩ OR).

By Corollary 3.5, there is no mouse M ⊲ S such that ρω(M) < κ and M is sound
above κ.

Claim. The �κ-sequence of S, as defined by Zeman and the second author cannot be
threaded.

Proof. Suppose otherwise. Say D threads the canonical �κ-sequence of S. Let
λ = (κ+)S . (I.e., λ is the set of ordinals of S.) Then D is club in λ. By [11, Lemma 4.6],
there is a unique premouse Q such that Q extends S and collapses λ. For this, we use
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that λ has uncountable cofinality. As written, [11, Lemma 4.7] applies to K not S but its
proof shows that Q is iterable. In that proof, substitute S for K and our Theorem 4.4 for
the weak covering theorem for K, and stop at line 19 on page 110. By the definition of S
and as there is no mouse M ⊲ S such that ρω(M) < κ and M is sound above κ, Q is a
proper initial segment of S. This is a contradiction.

� (Claim)

This shows Theorem 4.1 under the additional hypothesis that 2<κ = κ.
Let us now drop the hypothesis that 2<κ = κ, so that we may no longer directly apply

Theorem 3.4. However, inside V Col(κ,κ) we do have that κ is regular, countably closed, and
2<κ = κ. We may thus run the above argument with the Kc and the S(κ) of V Col(κ,κ).
Let us write

(Kc)∗ = (Kc)V
Col(κ,κ)

and
S∗ = (S(κ))V

Col(κ,κ)
.

So S∗ is the stack over (Kc)∗|κ produced inside V Col(κ,κ). Notice that S∗ ∈ V by the
homogeneity of Col(κ, κ).

We may now argue as above to get either �(κ) or else �κ. Notice that the �-sequences
of S∗ are in V by S∗ ∈ V , that S∗∩OR ≤ κ+V , that S∗∩OR < κ+V implies cfV (S∗∩OR) =
κ, and that the unthreadability of the �κ-sequence of S∗ in V Col(κ,κ) trivially implies the
unthreadability of the �κ-sequence of S∗ in V .

� (Theorem 4.1)

Proofs of Theorems 0.1 and 0.3 and of Corollary 0.2. Theorem 0.1 is immediate.
To show Corollary 0.2, suppose PFA to hold. This implies ℵℵ0

2 = ℵ2, so that if the
conclusion of Corollary 0.2 were to fail, Theorem 4.1 would give �(ℵ3) or else �ℵ3 (which
implies �(ℵ4)). On the other hand, by [21], both �(ℵ3) as well as �(ℵ4) fail under PFA.
Contradiction! Theorem 0.3 is also immediate. � (Theorems 0.1, 0.2, and 0.3)

5 Weak covering at weakly compact cardinals

In this section, we prove Theorems 0.4 and 0.5.
The following Lemma is due to the third author.

Lemma 5.1 Assume that Kc exists and that there is no premouse with a superstrong
extender. Let κ be a weakly compact cardinal, and let S = S(κ) (cf. Definition 3.2). Then
S ∩ OR = κ+V .

Proof. Set η = S ∩ OR. Suppose that η < κ+. We aim to derive a contradiction.
Let θ > κ be a < κ-closed regular cardinal. Let

σ:M →Σ100 V
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be such that M is transitive, Card(M) = κ, S ∪ {θ} ⊂ ran(σ), and <κM ⊂M . Inside M ,
there is some

χ:P →Σω H
M
σ−1(θ)

such that P is transitive, Card(P ) = κ in M , S ⊂ ran(χ), and <κP ⊂ P (in M , and
therefore also in V ).

Because κ is weakly compact, there is some

π:M →Σω N,

where N is transitive, <κN ⊂ N , and crit(π) = κ. Let us write W = (Kc)N , so that
π(S) = (S(π(κ)))N is the stack of sound mice end-extending W ||π(κ) and projecting to
π(κ) from the point of view of N . Let us also write λ = π(κ).

Notice that π(S) is a mouse, as π is countably complete.

Claim 1. S = W |κ+W .

Proof. By the Condensation Lemma 1.3, S ⊳ π(S), and therefore S E W |κ+W . If
S ⊳W |κ+W , then there is some M⊲S such that M⊳W |κ+W and ρω(M) = κ. But because
any such M is a sound mouse, this contradicts the definition of S. Hence S = W |κ+W .

� (Claim 1)

Claim 2. π ↾ P ∈ N .

Proof. This is by Kunen’s old argument. As P(κ) ∩M ⊂ N , every set in M which
is hereditarily of size ≤ κ in M is also an element of N . In particular, P ∈ N , and if
f :κ → P is bijective, f ∈ M , then f ∈ N . For x ∈ P , say x = f(ξ), we have that
π(x) = π(f(ξ)) = π(f)(ξ), so that π ↾ P may be computed inside N from f , π(f).

� (Claim 2)

Let us define an extender F by F = π ↾ S. Of course, F = (π ↾ P ) ↾ S, so that F ∈ N
by Claims 1 and 2.

Claim 3. N |= “F is certified by a collapse.”

Proof. Set k = π(χ) ◦ (π ↾ P ). By Claim 2, k ∈ N . We have that

k:P →Σω π(HM
σ−1(θ)) = HN

π◦σ−1(θ),

where π ◦ σ−1(θ) is a < κ-closed cardinal in N and <κP ⊂ P in N (as well as in V ).
Because F = k ↾ S, k witnesses that F is certified by a collapse inside N (cf. [8]).

� (Claim 3)
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Let us consider the potential premouse S∗ = (π(S);F ) which results from π(S) by
adding F as its top extender. For all we know, S∗ need not satisfy the Initial Segment
Condition (cf. [24, p. 283]), though. Let α ≤ λ be the least cutpoint of S∗, i.e., α is least
such that if f ∈ κκ ∩ S and ξ < α, then iF (f)(ξ) < α. We then have that

S∗∗ = (π(S)|α+π(S);F |α)

does satisfy the Initial Segment Condition and is hence a premouse. Notice that S∗∗ ∈ N .

Case 1. α < λ.

Then π(S)|α+π(S) = W |α+π(S). However, F |α is certified by a collapse inside N by
Claim 3, so that we may apply Lemma 2.12 inside N to get a contradiction.

Case 2. α = λ, i.e., S∗∗ = S∗.

Notice that the generators of F must be unbounded in λ, as λ is an inaccessible cardinal
of N . Therefore, S∗ is a premouse with a superstrong extender. Using [3], S∗ can in fact
easily be verified to be a mouse. Contradiction!

� (Lemma 5.1)

Proofs of Theorems 0.4 and 0.5.11 Suppose one of the conclusions of Theorems 0.4
or 0.5 to fail. Let S denote S(κ) as constructed in V Col(κ,κ+). We may apply Lemma 5.1
inside V Col(κ,κ+) to see that κ+V has size κ in S. However, S ∈ V by the homogeneity of
Col(κ, κ+). Contradiction!

� (Theorems 0.4 and 0.5)

6 An amendment

In the proofs of our main Theorems, we cannot directly work with the Kc construction of
[8], as the definition of the Kc of [8] makes reference to some A ⊂ OR such that V = L[A].
If 2<κ > κ in the situation of the proof of Theorem 4.1, then for the Kc of V Col(κ,κ) as [8]
would define it, Kc||κ will be defined by way of some A ∩ κ ⊂ κ which in V Col(κ,κ) codes
all of Hκ and can therefore not exist in V , so that there is no reason for Kc||κ to be in V .
A similar problem arises in the proof of Theorems 0.4 and 0.5. We also refer the reader
to the discussion right after the proof of Theorem 2.8.

In this final section, we describe how to manage using the Kc construction of [8] (and
thereby avoid having to cite [6]) in order to arrive at proofs of our main theorems.

Let κ ≥ ℵ3 be regular and countably closed, but possibly 2<κ > κ. The goal is to
isolate some A ⊂ κ and use it to locally define a Kc||κ, which we shall denote by Kc,A||κ,

11The third author thanks Gunter Fuchs for pointing out to him that in order to prove these theorems
one would just need to prove weak covering at a weakly compact cardinal for a hereditarily ordinal definable
inner model.
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in a fashion as in [8] such that even in V Col(κ,κ) and also in V Col(κ,κ+), Kc,A||κ will have
the key “universality” properties which are needed so as to arrive at proofs at our main
theorems.

To commence, we need a localization of the concept of being “certified” from [8].
Let us from now on fix a regular and countably closed cardinal κ ≥ ℵ3.

Definition 6.1 Let A ⊂ κ. Let F ∈ Hκ be an extender with µ = crit(F ) and λ = F (κ).
We say that F is A-certified iff for all countable u ⊂ λ and for all countable Y ⊂ dom(F ),
there is some order-preserving τ :u → µ such that for all α ∈ u and X ∈ Y , α ∈ F (X) iff
τ(α) ∈ X, and

(Lκ[A];∈, (α:α ∈ u)) ≡Σ1+ (Lµ[A];∈, (τ(α):α ∈ u)).

Cf. [8, Lemma 1.8] for a formulation of “being certified” which also uses types as does
Definition 6.1.

Definition 6.2 Let A ⊂ κ The maximal A-certified Kc||κ construction is the unique Kc

construction
(Nξ,Mξ: ξ < θ)

such that
(a) for all ξ < θ, Nξ is active with top extender F if and only if there is some ξ̄ such

that ξ = ξ̄ + 1 and F is the unique extender G ∈ Lκ[A] such that (Mξ̄;∈, E
Mξ̄ , G) is a

premouse and G is certified by a collapse, and
(b) θ ≤ κ+ 1 is largest such that such a Kc construction exists.
If θ = κ+ 1, then we write Kc||κ for Mκ and say that the A-certified Kc||κ exists.

The arguments of [8] show the following. (Compare with Corollary 2.11.)

Lemma 6.3 If there is no non-dometic premouse, then for every A ⊂ κ the A-certified
Kc||κ exists and is a mouse.

We now want to pick an A ⊂ κ so that we have the appropriate version of Lemma 2.12
for the A-certified Kc||κ. Let us assume that for every A ⊂ κ the A-certified Kc||κ exists.

In order to find an A as desired, let us construct a sequence

((Aξ : ξ < κ), (γξ : ξ < κ), (Nξ ,Mξ: ξ < κ))

such that the following hold true for every ξ < κ.

1. Aξ ⊂ γξ and if ξ̄ ≤ ξ, then Aξ̄ = Aξ ∩ γξ̄.

2. For every A ⊂ κ with Aξ = A ∩ γξ, Lγξ
[Aξ] ≺Σ1+ Lκ[A].

3. Lγξ
[Aξ] |= “(Ni,Mi: i ≤ ξ) is the sequence consisting of the first ξ + 1 models from

the maximal Aξ-certified Kc||κ construction.”
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4. If ξ = ξ̄ + 1, where Mξ̄ does not have a top extender, and if there are γ ≥ γξ̄,
B ⊂ γ, and F ∈ Hκ such that Aξ̄ = B ∩ γξ̄, Lγ [B] ≺Σ1+ Lκ[A] for every A ⊂ κ with

B = A ∩ γ, and setting M = (Mξ̄;∈, E
Mξ̄ , F ) and N = the core of M, Lγ [B] |=

“(Ni,Mi: i < ξ)⌢(M,N ) is the sequence consisting of the first ξ + 1 models from
the maximal B-certified Kc||κ construction,” then there is an F ∈ Lγξ

[Aξ] such that

Mξ = (Mξ̄;∈, E
Mξ̄ , F ) and Nξ = the core of Mξ.

There is no problem with this construction. The second item can be arranged by
having γξ = sup{γi

ξ|i < ω1}, where each Lγi
ξ
[Aξ ∩ γ

i
ξ] is closed under ω-sequences (here we

use Card(α)ℵ0 < κ) and each L
γi+1

ξ
[Aξ ∩ γ

i+1
ξ ] contains witnesses to all Σ1+ statements

with parameters in Lγi
ξ
[Aξ ∩ γ

i
ξ] which are true in some Lκ[A], where A ⊂ κ is such that

A ∩ γi
ξ = Aξ ∩ γ

i
ξ.

Let A ⊂ κ be given by (Aξ: ξ < κ), i.e.,

A =
⋃

ξ<κ

Aξ.

Let us write Kc,A||κ for the premouse of height κ which is produced by (Nξ,Mξ: ξ < κ).
We shall now prove the following version of Lemma 2.12.

Lemma 6.4 Let A and Kc,A||κ be defined as above, and suppose that there is no inner
model with a superstrong cardinal. Let S denote the unique premouse such that N E S iff
there is some sound mouse M D Kc,A||κ with ρω(M) = κ and N E M. There is then no
elementary embedding

π:H → Hκ++

such that H is transitive and ωH ⊂ H, µ = crit(π) < κ = π(µ), {A,S} ⊂ ran(π), and
P(µ) ∩Kc,A||κ ⊂ H.

Proof. We imitate the proof of Lemma 2.12. Suppose there were some such embed-
ding π. Let F = π ↾ P(µ) ∩Kc,A||κ. As in the proof of Lemma 2.12, there is then some
α < κ and some ξ∗ < κ such that (Mξ∗ , F |α) would be a premouse. The proof of Lemma
2.4 shows that F |α is A-certified in the sense of Definition 6.1.

We claim that with ξ̄ = ξ∗, F |α witnesses that the hypothesis in the last item of the
above recursive definition of

((Aξ : ξ < κ), (γξ : ξ < κ), (Nξ ,Mξ: ξ < κ))

is satisfied. This will finish the proof of Lemma 6.4, because there will then be some
G ∈ Lκ[A] such that Mξ∗+1 results from Mξ∗ by adding G as a top extender, which – as
in the proof of Lemma 2.12 – contradicts the fact that α must be a cardinal in Kc,A||κ.

Let ((uk, Yk): k < Card(α)ℵ0) be a list of all pairs (u, Y ) such that u ⊂ α is countable
and Y ⊂ P(µ) ∩ Kc,A||κ is countable. As Lγξ∗

[A ∩ γξ∗ ] ≺Σ1+ Lκ[A] and because F |α
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is A-certified, we may let (τk: k < Card(α)ℵ0) be such that for all β ∈ uk and X ∈ Yk,
β ∈ F |α(X) iff τk(β) ∈ X, and

(Lγξ∗
[A ∩ γξ∗ ];∈, (β:β ∈ uk)) ≡Σ1+ (Lµ[A ∩ µ];∈, (τ(β):β ∈ uk)).

We may then pick γ ≥ γξ∗ and B ⊂ γ with B ∩ γξ∗ = Aξ∗ such that Lγ [B] ≺Σ1+ Lκ[A∗]
for every A∗ ⊂ κ with B = A∗ ∩ γ and

((uk, Yk, τk): k < Card(α)ℵ0) ∈ Lγ [B].

(Again, notice that Card(α)ℵ0 < κ.) This is easily seen to show that F |α indeed witnesses
that the hypothesis in the last item of the above recursive definition is satisfied. �

(Lemma 6.4)

The reader will happily verify that Lemma 6.4 will still be true in any forcing extension
of V which does not add any bounded subsets of κ. We could therefore have used Kc,A||κ
to run the arguments in the preceeding sections to arrive at proofs of our main theorems.
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