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Abstract

Let n ≥ 3 be an integer. We show that it is consistent (relative to
the consistency of n − 2 strong cardinals) that every Σ

1
n-set of reals

is universally Baire yet there is a (lightface) projective well-ordering
of the reals. The proof uses ”David’s trick” in the presence of inner
models with strong cardinals.

1 Introduction.

Let Γ ⊂ Γ′ ⊂ P(R) be pointclasses, where Γ′ is not too far away from Γ.
There is tension between every set in Γ being ”regular” (being Lebesgue
measurable, having the property of Baire, being Ramsey, each of which con-
tradicts certain doses of choice) and Γ′ providing choice-like principles for Γ
(every non-empty set in Γ contains a Γ′-singleton, or there is a well-ordering
of R in Γ′). For example, Woodin has shown that if every projective set of
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reals is Lebesgue measurable and has the property of Baire and every projec-
tive relation on R

2 can be uniformized by a function with a projective graph
then Π1

1-determinacy holds (c.f. [16]).
The present paper also deals with this tension at the projective level. Let

n ≥ 2, Γ = Σ1
n and Γ′ = ∆1

n+1. Of course, if every Γ-set of reals is Lebesgue
measurable then there cannot be a well-ordering of R in Γ. But we may ask
whether nevertheless there can be a projective well-ordering of the reals, or
one in Γ′ for that matter.

An answer to this question can be found in the literature. Moschovakis
(cf. [10]) showed that if Projective Determinacy holds then there is an inner
model Mn with a Σ1

n+1-well-ordering of R and in which ∆1
n−1-determinacy

holds (hence if n is odd then in Mn every set in Γ is Lebesgue measurable
and has the property of Baire). Moreover, if Mn−1 denotes the minimal
sufficiently iterable inner model with n − 1 Woodin cardinals then in Mn−1

there is a ∆1
n+1-well-ordering of R and Π1

n−1-determinacy holds (hence in
Mn−1 every set in Γ is Lebesgue measurable and has the property of Baire;
cf. [14]).

Let us consider the following question.

Question. Let n ≥ 3. Suppose that every Σ1
n-set of reals is Lebesgue

measurable and has the property of Baire, and that there is a lightface pro-
jective well-ordering of the reals. Does ∆1

n−1-determinacy hold?

For the case n = 3 or 4 this is refuted by a couple of theorems due to
the first author of the present paper. He showed (cf. [5]): starting from
a Mahlo cardinal in L (or, alternatively, from an inaccessible cardinal plus
]’s), one can construct a forcing extension with a ∆1

4-well-ordering of R in
which all Σ1

3-sets of reals are Lebesgue measurable and have the property
of Baire; and starting from a Mahlo cardinal plus ]’s, one can construct a
forcing extension with a ∆1

5-well-ordering of R in which all Σ1
4-sets of reals

are Lebesgue measurable and have the property of Baire. (David had earlier
shown that if L has an inaccessible then there is a forcing extension with a
∆1

3-well-ordering of R in which all Σ1
2-sets of reals are Lebesgue measurable

and have the property of Baire; cf. [2].)
We here answer the above question negatively for all n < ω, as follows.

Theorem 1.1 Let n ≥ 3. It is consistent, relative to the existence of n − 2
strong cardinals, that every Σ1

n-set of reals is Lebesgue measurable and has
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the property of Baire, and yet there is a lightface projective well-ordering of
the reals.

Recall that by a theorem of Woodin ∆1
2-determinacy implies the exis-

tence of an inner model with a Woodin cardinal, and hence the existence
of transitive models with infinitely many strong cardinals, so that Gödel’s
second incompleteness theorem shows that 1.1 provides a negative answer to
the above question, granting the consistency of strong cardinals.

Theorem 1.1 is a corollary to the next result.

Theorem 1.2 Let n ∈ ω. Let L[En] denote the minimal inner model closed
under the ]-operation if n = 0, viz. the minimal fully iterable inner model
with n strong cardinals if n > 0.

Then there is a real a (a = 0 if n = 0), set-generic over L[En], such that
in L[En][a] every Σ1

n+2-set of reals is universally Baire, there is a ∆1
n+3(a)-

well-ordering of the reals, and a is a Π1
n+4-singleton (and hence there is a

∆1
n+5-well-ordering of R).

We shall in fact see that a may be chosen in such a way that every Σ1
n+3-

set of reals is Lebesgue measurable and has the property of Baire. Refining
this observation we can also show:

Theorem 1.3 Let n > 0, and let L[En] be the minimal fully iterable inner
model with n strong cardinals. Suppose that in L[En] there is an inaccessible
cardinal above the strong cardinals.

Then there is a set-generic extension of L[En] in which every Σ1
n+2-set

of reals is universally Baire, every Σ1
n+3-set of reals is Lebesgue measurable

and has the property of Baire, and there is a ∆1
n+5-well-ordering of R.

Recall that a set A ⊂ R is called universally Baire iff for every compact
Hausdorff space X and every continuous f :X → R it is the case that f−1′′A
has the property of Baire (in X ). If A ⊂ R is universally Baire then A
is Lebesgue measurable, is Ramsey, and has the Bernstein property (and,
trivially, has the property of Baire, cf. [3] Theorems 2.2 and 2.3). In the
following, as in the statements of 1.2 and 1.3, we shall always suppose that
L[En] as well as enough generics exist.

We don’t know whether the models of 1.2 and 1.3 have a ∆1
n+4-well-

ordering of their reals. We hence have to leave unanswered the strengthening
of the above question in which ”projective” is replaced by ∆1

n+1 (for n ≥ 5).
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We also don’t know whether the large cardinals used for constructing the
models in 1.2 and 1.3 are actually necessary. It is open as how to get more
than an inaccessible cardinal in L from the assumption of the above question.

The paper is organized as follows. Section 2 provides the necessary inner
model theory, and states a crucial technical lemma due to Woodin. Sections
3 and 4 contain proofs of 1.2 and 1.3, respectively, using heavily ideas of R.
David (cf. [1], [2], and also [4]). We shall in fact only prove 1.2 for the case
n > 0, as the case n = 0 is easily seen to be given by [2] (or may be derived
by simplifying the arguments to follow). Section 5 lists three open problems.

2 Preliminaries.

Woodin has seen how strong cardinals may be used to obtain universal Baire-
ness in certain generic extensions. More precisely, he proved the following
theorem which will become crucial for the construction of our models.

Theorem 2.1 (Woodin) Let 0 < n < ω, and let κ1 < ... < κn be strong
cardinals. Let G be P -generic over V for some P ∈ V , and suppose that
(22κn

)V becomes countable in V [G]. Then in V [G], every Σ1
n+2-set of reals is

universally Baire.
In fact, in V [G] there is a definable sequence (Tm, Sm: 2 ≤ m ≤ n + 2) of

proper class sized trees on ω × OR such that:
(a) S2 is the Shoenfield tree for a universal Σ1

2-set of reals in every (set-
generic) extension,

(b) for 3 ≤ m ≤ n + 2, Sm is Tm−1 reorganized so as to have p[Sm] ≈
∃

�

p[Tm−1], and
(c) for 2 ≤ m ≤ n + 2, for all p.o.’s Q ∈ V [G],

Q ||− p[(Tm � α)̌ ] = R \ p[(Sm � α)̌ ]

for all sufficiently large α.

Notice that the existence of the sequence (Tm, Sm: 2 ≤ m ≤ n + 2) im-
plies that every Σ1

n+2-set of reals is universally Baire (in every set-generic
extension) by the main characterization of universal Baireness from [3].

We now turn to the inner model theory. We shall presuppose that the
reader is familiar to a certain extent with [15]. In order to compute the
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complexity of the canonical well-ordering of the reals in the models we are
about to construct, we shall also have to use some of the machinery of [8].

In the sections to follow we shall make heavy use of the fact that the
ground model we are starting with will be the core model of all of its set-
generic extensions. This is true if the ground model is a minimal fully iter-
able inner model for a given large cardinal assumption (roughly) below one
Woodin cardinal. In particular, it will be true if the ground model happens
to be L[En], some n < ω, the minimal fully iterable inner model with n
strong cardinals.

In what follows we shall work with the core model theory of [13]. In partic-
ular, our premice will be Friedman-Jensen premice rather than Mitchell-Steel
premice. This choice becomes technically significant in the proof of 2.5. The
referee pointed out that at the cost of slightly modifying the statement of
2.5 and the constructions in our proofs of 1.2 and 1.3 we probably could also
have worked with Mitchell-Steel premice instead (they were invented earlier,
cf. [12] and [15]). However, our choice of building upon [13] is natural as we’ll
also have to exploit [8], a paper which also uses Friedman-Jensen premice.

Suppose that 0 |• does not exist (cf. [13, Definition 2.3]; the non-existence
of 0 |• is consistent with the existence of an inner model with a proper class of
strong cardinals). Then the core model K exists (cf. [13]). Throughout this
section (except for in the discussion before 2.3), the letter K will be reserved
for denoting the object constructed in [13].

Now let n be a positive integer, and suppose that there are n strong
cardinals but 0 |• does not exist. Let 0n¶ denote the “sharp” for an inner
model with n strong cardinals. If 0n¶ /∈ K then we let L[En] denote K;
otherwise we let L[En] denote the inner model obtained by iterating the top
measure of 0n¶ out of the universe. As a matter of fact, L[En] is then a fully
iterable inner model with n strong cardinals. Moreover, in this case L[En]
satisfies V = K. (This reduces to some absoluteness of iterability fact. This,
and in fact a more general result, is due to Steel.) Also, KV [G] = K for any
G being set-generic over V . (Cf. [15].)

Let n < ω. For our purposes, a premouse M is called n-full iff there is
a universal weasel W . M having the definability property (see [15] 4.4) at
all κ ∈ M such that JM

κ |= ”there are < n many strong cardinals.” It is
straightforward to verify that if W . M witnesses that M is n-full then W
has the hull-property (see [15] 4.2) at all κ ∈ M such that JM

κ |= ”there
are ≤ n many strong cardinals” (cf. [8] 1.3). One of the main results of [8],
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Corollary 2.18 (a), is that the set of reals coding n-full premice is Π1
n+3. (The

informed reader will notice that the concept of ”n-fullness” of [8] is just a bit
stronger than the one defined above.)

In order to arrive at a neat formulation of 2.2, 2.3, and 2.4, let us ad hoc,
for n < ω, denote by ¶+

n the assertion that there is a measurable cardinal κ
and there are n cardinals < κ which are each strong up to κ.

Lemma 2.2 Let 1 ≤ n < ω, and suppose that there is no inner model in
which ¶+

n holds. Let α be an infinite cardinal of K, and let M D J K
α be a

premouse with M |= ”α is the largest cardinal.”
Then M E J K

α+K iff M is (n − 1)-full. Moreover, the set of reals coding
J K

α+K is Π1
n+3 in any code for J K

α .

Proof. As to the first part, ”⇒” is trivial, so let us show ”⇐. Let W .M
witness that M is (n − 1)-full, and let K ′ be a very soundness witness for
J K

α+K . Let Q denote the common coiterate of W , K ′.

Claim. The iteration is above α along the main branch on the W -side.

Proof. Suppose not. Let πWQ and πK′Q be the respective maps obtained
from the main branches on the W - and K ′-side. Set κ = c.p.(πWQ), so that
κ < α by assumption. Let Γ be a class of fixed points under both πWQ and
πK′Q which is thick in W , K ′, and Q (see [15] 3.8 through 3.11).

Of course, J W
κ has < n many strong cardinals, because otherwise we

would end up with an inner model in which ¶+
n holds. By the above remarks,

W hence has the hull- and definability property at all κ̄ < κ which are strong
in JW

κ , and W has the hull property at κ. Moreover, K ′ has the hull- and
definability property at all γ < α+K.

Suppose κ̄ = c.p.(πK′Q) < κ, so that κ̄ is easily seen to be strong in
J K′

κ = J W
κ . Then κ̄ = τW [a, b] where τ is a term, a ∈ [κ̄]<ω, and b ∈ [Γ]<ω.

Hence κ̄ = τW [a, b] = τQ[a, b] ∈ ran(πK′Q). Contradiction!
Repeating the same argument with κ = τK′

[a, b] for some term τ , a ∈
[κ]<ω, and b ∈ [Γ]<ω shows that we must actually have κ = c.p.(πK′Q). This
readily implies that W , Q, and K ′ all have the same P(κ), just written P(κ)
in what follows.

Let X ∈ P(κ). As W has the hull-property at κ we have X = τW [a, b]∩κ
where τ is a term, a ∈ [κ]<ω, and b ∈ [Γ]<ω. For ξ < κ we have that
ξ ∈ τW [a, b] iff ξ ∈ τQ[a, b] iff ξ ∈ τK′

[a, b], so that also X = τK′
[a, b]∩κ. But
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then for β < min{πWQ(κ), πK′Q(κ)} we get that β ∈ πWQ(X) iff β ∈ τQ[a, b]
iff β ∈ πK′Q(X). This finally would mean that the two first extenders used
for getting πWQ and πK′Q are compatible. Contradiction!

� (Claim)

In particular, M E J W
α+W = J Q

α+Q, as α is the largest cardinal of M.
Hence we are done in the case that Q = K ′.

Otherwise let ν be the index of the first extender used along the main
branch on the K ′-side. Of course, ν > α, and because ν will be a cardinal
in Q we have that ν ≥ α+Q, and thus M E J Q

α+Q E J Q
ν = J K′

ν . But

α+K = α+K′
≥ α+Q, so that in fact M / K, as desired.

This proves the first part. But now we have that M = J K
α+K iff M .J K

α ,
M |= ”α is the largest cardinal,” and M is (n − 1)-full, and for all N such
that N .J K

α , N |= ”α is the largest cardinal,” and N is (n− 1)-full we have
that N E M. As (n − 1)-fullness is Π1

n+2 in the codes (cf. [8, Corollary 2.18
(a)]), this proves the second part.

� (2.2)

As a simple corollary to 2.2 we get that under the hypotheses of 2.2
K ∩ HC is Σ1

n+4. (This generalizes a result of Jensen and Mitchell, cf. [15]
p. 85f.) Both 2.2 and this corollary are new.

Suppose that Steel’s K exists (which we take to mean Ω is measurable
and there is no inner model with a Woodin cardinal; cf. [15]). The paper [7]
shows that if ωV

1 = β+K where β is a limit cardinal of K or else a double
successor cardinal of K and if there are at most n ordinals κ < β with J K

β |=
“κ is strong” then K ∩ HC is Σ1

n+3(x) for any real x coding J K
β (cf. [7,

Corollary 3.5]). Also, if for every β < ωV
1 which is is a limit cardinal of K

or else a double successor cardinal of K there are at most n ordinals κ < β
with J K

β |= “κ is strong” then K ∩ HC is ∆1
5. (These bounds were implicit

in earlier unpublished work of Steel.) These results were improved in [8].
If ωV

1 = β+K is a successor cardinal of K and J K
ωV

1

has at most n strong

cardinals then K ∩HC is ∆1
n+3(x) for any real x coding J K

β (cf. [8, Theorem
3.6] and the remark on [8, p. 141]). If ωV

1 is inaccessible in K and J K
ωV

1

has

at most n strong cardinals then K ∩ HC is ∆1
n+5. The following Corollary

says that if ¶+
n fails in every inner model then K ∩ HC is Σ1

n+4.
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Corollary 2.3 Let 1 ≤ n < ω, and suppose that there is no inner model in
which ¶+

n holds.
Then M / J K

ωV
1

and M∩ OR is a cardinal in K iff [ M is (n − 1)-full,

and IF α < M ∩ OR is a cardinal of M and N . JM
α is (n − 1)-full with

largest cardinal α THEN N E M ].
In particular, the set of all reals coding some M/J K

ωV
1

with M∩OR being

a K-cardinal is Π1
n+3. Moreover, K ∩ HC is Σ1

n+4 in the codes.

Proof. Straightforward, using 2.2 and the fact that (n − 1)-fullness is
Π1

n+2 in the codes.

� (2.3)

We shall need later:

Corollary 2.4 Let n < ω, and suppose that there is no inner model in
which ¶+

n holds. Assume that K has n strong cardinals κ1 < ... < κn such
that λ = κ++K

n < ωV
1 .

Then the set of reals coding J K
λ is Π1

n+4.

Proof. It is clear that that J K
λ is the longest initial segment of K with

height a K-cardinal and satisfying ”there are n strong cardinals, the largest
of which is the second largest cardinal.” But then 2.3 easily gives the result.

� (2.4)

We shall be able to arrange later that under certain circumstances there
is a Π1

n+4-singleton coding J K
λ .

We shall also need a condensation result. In general, the condensation
properties provable for K are much weaker than the ones provable for L.
However, in the very special case that K = L[En] for some n < ω we get
that K satisfies an ”L-like” condensation lemma. We state it in the form in
which we shall need it. Its proof builds upon the proof of [12, 8.2].

Lemma 2.5 Let 0 < n < ω, and set E = En. Let κ1 < ... < κn denote
the strong cardinals of L[E]. Let α > κ

+L[E]
n be s.t. Jα[E] is cardinal-correct

in L[E], i.e., all cardinals < α in Jα[E] are also cardinals in L[E]. Let

σ:M →Σ1
Jα[E] where M is transitive and σ � κ

+L[E]
n + 1 = id.

Then M = Jᾱ[E] for some ᾱ ≤ α.
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Proof. In fact 2.5 is a consequence of the argument for Lemma 8.1 of
[12]. We may of course assume w.l.o.g. that σ 6= id, and let δ denote the
critical point of σ. Using σ, any iteration of the phalanx P = ((Jα[E],M), δ)
can be copied onto Jα[E] to give an iteration of Jα[E], so that in particular
P is iterable.

We may hence coiterate P with Jα[E], getting iteration trees T̄ on P and
U on Jα[E]. By copying T̄ onto Jα[E] we get T on Jα[E] together with an
embedding σ̃:MT̄

∞ → MT
∞. In the case that πT̄

0∞ exists and MT̄
∞ is above

Jα[E] we also have that πT
0∞ = σ̃ ◦ πT̄

0∞.

Claim 1. MT̄
∞ is above M.

Proof. Suppose not, so MT̄
∞ is above Jα[E]. If MT̄

∞.MU
∞ or there were

a drop on the main branch of the P-side then there wouldn’t be a drop on the
main branch of the Jα[E]-side and the map σ̃◦πU

0∞ would give a contradiction
with the Dodd-Jensen Lemma. Similarily, if MT̄

∞ /MU
∞ or there were a drop

on the main branch of the Jα[E]-side then there wouldn’t be a drop on the
main branch of the P-side and the map πT̄

0∞ would give a contradiction with
Dodd-Jensen.

Hence MT̄
∞ = MU

∞ and there’s no drop on the main branch of either
side. Let ξ be an ordinal. We now have πU

0∞(ξ) ≤ πT̄
0∞(ξ) by Dodd-Jensen.

Similarily, we have πT
0∞(ξ) ≤ σ̃ ◦πU

0∞(ξ) by Dodd-Jensen; but πT
0∞ = σ̃ ◦πT̄

0∞,
so σ̃ ◦πT̄

0∞(ξ) ≤ σ̃ ◦πU
0∞(ξ), and hence πT̄

0∞(ξ) ≤ πU
0∞(ξ). We have shown that

πT̄
0∞ = πU

0∞, giving the usual contradiction.

� (Claim 1)

Claim 2. πT̄
0∞ exists, and in fact MT̄

∞ = M.

Proof. If there were a drop on the main branch of the P-side of the
comparison then πU

0∞ would exist and the map σ̃ ◦ πU
0∞ would contradict the

Dodd-Jensen Lemma. Hence πT̄
0∞ exists.

Now suppose that MT̄
∞ 6= M, let F be the first extender used along

[0,∞]T̄ , and let µ be its critical point. By Claim 1 and what has been shown
so far we have that F is applied to M, i.e., µ ≥ δ and µ is a cardinal in
M. Then σ(µ) is a cardinal in Jα[E], hence in L[E] by cardinal-correctness,
which implies that every κi, 0 < i ≤ n, is strong in Jσ(µ)[E]. So using σ every
κi, 0 < i ≤ n, is strong in JM

µ .
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But this is now easily seen to imply that the model where F is taken from
provides a sharp for an inner model with n strong cardinals. This contradicts
the choice of L[E] as the minimal (fully iterable) inner model with n strong
cardinals.

� (Claim 2)

Notice that the second part of Claim 2 immediately gives that MU
∞ D M:

this is clear if there is a drop on the main branch of U ; but if not we have
MU

∞ ∩ OR ≥ α ≥ M∩ OR.

Claim 3. MU
∞ = Jα[E].

Proof. Suppose not, and let F be the first extender used along [0,∞]U ,
and let µ be its critical point.

Let us first assume that µ < δ. Using a ”minimality of L[E]” argument
as above it is then straightforward to check that µ = κi for some 0 < i ≤ n.
Let λ = iF (κ), i.e., the image of κ under the ultrapower map given by F .
Let ε + 1 be least in (0,∞]U , and let ν be the index of F ; i.e.,

F = EU
ε = EMU

ε
ν .

It is easy to verify that µ is not strong in JMU
ε

λ . Otherwise we would get
that, for any ζ < µ,

Ult(JMU
ε

ν ; F ) |= ∃κ̃ > ζ ( κ̃ is strong up to λ )

(as witnessed by µ), and hence

JMU
ε

ν |= ∃κ̃ > ζ ( κ̃ is strong up to µ ).

As this would be true for all ζ < µ, we would get that JMU
ε

µ thinks that
there is a proper class of strong cardinals. This certainly contradicts the
minimality of L[E]. (This is the point where we have exploited the fact
that we work with Friedman-Jensen premice rather than with Mitchell-Steel
premice.)

We now have that JM
λ = JMU

∞
λ = JMU

ε

λ . Hence JM
λ does not satisfy that

µ is strong. Therefore, using σ, Jσ(λ)[E] does not satisfy that µ is strong.
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However, λ is a cardinal in MU
∞, and hence in M by MU

∞ D M. So σ(λ)
is a cardinal in Jα[E], and hence in L[E] by cardinal-correctness. Thus after
all µ = κi must be strong in Jσ(λ)[E]. Contradiction!

We have shown that µ ≥ δ. But we can now again just vary the ”mini-
mality of L[E]” argument from above. We shall have that µ is a cardinal in
MU

∞, and hence of M by MU
∞ D M. Thus σ(µ) is a cardinal in Jα[E], and

hence of L[E] as well. But then every κi, 0 < i ≤ n, is strong in Jσ(µ)[E], and
hence is strong in JM

µ as well. But then the model where F is taken from
provides a sharp for an inner model with n strong cardinals. Contradiction!

� (Claim 3)
� (2.5)

The reader will have noticed that by the above proof the hypothesis of
2.5 can be further weakened.

3 Proof of 1.2.

Throughout this section we fix some n < ω, n > 0, and we assume L[En], the
minimal fully iterable inner model with n strong cardinals, exists. We shall
write L[E] = L[En]. Let κ1 < ... < κn be the strong cardinals of L[E], and

set λ = κ
++L[E]
n . As explained above, L[E] is the core model of all set-generic

extensions of L[E].
To a certain extent, the construction to be described closely follows [1].

However, there are some complications here, as we force over L[E] rather
than L.

Proof of 1.2. To begin with, we define a sequence (Tk: k < ω) of λ+-
Suslin trees inside L[E]. Given a tree T and an ordinal α we write T α for the
αth level of T . We define the Tk’s by simultaneously constructing all T α

k ’s by
induction on α < λ+L[E]. We shall have that T α

k ⊂ α2, and Tk =
⋃

α<λ+ T α
k

(where λ+ = λ+L[E]), ordered by ⊂.
Work inside L[E] until further notice. We set x ∈ T 0

k iff x = ∅, and
x ∈ T α+1

k iff x = y∩0 or = y∩1 for some y ∈ T α
k . If α is a limit ordinal of

cofinality < λ then we let x ∈ T α
k iff x � β ∈ T β

k for all β < α (noticing that
we only get ≤ λ<λ = λ many branches).
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Now suppose that α is a limit ordinal of cofinality λ. Let η = ηα be least
such that (T β

k : k < ω,β < α) ∈ Jη[E], every set has cardinality ≤ λ in Jη[E],
cf(η) = λ, and Jη[E] |= ZF−. Inside Jη[E], let us consider the forcing

Pα = {p: dom(p) ⊂ ω×λ, |dom(p)| < λ, p(k, ξ) ∈
⋃

β<α

T β
k for all (k, ξ) ∈ dom(p)},

ordered by p′ ≤Pα
p iff p′(k, ξ) ⊃ p(k, ξ) for all (k, ξ) ∈ dom(p). In V (which

is L[E] for the moment), we may pick some Pα-generic over Jη[E] (notice
<λJη[E] ⊂ Jη[E], and Pα is < λ-closed). Any such generic gives λ many

branches for each
⋃

β<α T β
k . We let (T α

k : k < ω) be the result of adding these
branches at level α, for the <L[E]-least Pα-generic over Jη[E].

This defines (Tk: k < ω). For X ⊂ ω we write P X for
∏

k∈X Tk, and we
write P = P ω. So forcing with P adds cofinal branches thru the Tk’s.

Claim 1. Let X ⊂ ω. Then P X is < λ-closed and has the λ+-c.c. In
particular, Tl is a Suslin tree in L[E]P

ω\{l}
for any l < ω.

Proof. < λ-closedness is trivial. Let A ⊂ P X be a maximal antichain
in P X . Let σ: Jτ [E] → Jλ++[E] be elementary such that σ � λ = id, τ < λ+,
and A ∈ ran(σ). (Such a map exists by 2.5.) Let α = c.p.(σ). We may
assume that cf(α) = λ.

It is easy to see that (T β
k : k < ω, β < α) ∈ Jτ [E]. But also η = ηα > τ ,

because α = λ+ in Jτ [E], whereas every set has size ≤ λ in Jη[E]. In
particular, Pα ∈ Jη[E], and using the elementarity of σ we get that every

f ∈
∏

k∈X

⋃
β<α T β

k in Jτ [E] is compatible with some element of σ−1(A).
So if p ∈ Pα, we can easily find a q ≤Pα

p with the same domain as
p such that for all sequences 〈(k, ξk): k ∈ X〉 with each (k, ξk) ∈ dom(p),
〈q(k, ξk): k ∈ X〉 extends some element of σ−1(A). Thus by a straightfor-
ward density argument, every element of prodk∈XT α

k extends some element
of σ−1(A).

Thus σ−1(A) is maximal, A = σ−1(A), and A has size ≤ λ.

� (Claim 1)

Stepping out of L[E], we now force with (P, Q), where Q = Col(ω, λ).
Fix a P -generic over L[E], and let B = (Bk: k < ω) be the sequence of cofinal
branches obtained from the generic (essentially, B is the generic). Pick G

12



being Q-generic over L[E][B]. Then λ+L[E] = λ+L[E][B] = ω
L[E][B][G]
1 , which

we shall from now on denote by ω1.
Claim 1 easily gives:

Claim 2. Let X ⊂ ω, X ∈ L[E]. Then P X has the c.c.c. in L[E][G]. In
particular, forcing with (Q, P ω\{l}) over L[E] does not destroy Suslinness of
Tl, for any l < ω.

We may fix some recursive bijection e: ω → <ω2. We have (<ω2,⊂) ∈ Jω+ω

is a tree, any two cofinal branches of which give a pair of almost disjoint (a.d.)
subsets of ω via e. Let us fix (ak: k < ω) ∈ L, obtained from the first (in <L)
ω many branches in L thru (<ω2,⊂). Then (ak: k < ω) is definable (without
parameters) inside any transitive structure S ⊃ Jω+ω.

Let x ⊂ ω be any real. We then let

xdec = {k < ω: x ∩ ak is finite }.

For S as above and x ∈ S we have that (xdec)S = xdec. We also want to have
a notation at hand for a second decoding device. Given x ⊂ ω, we define
E ⊂ ω × ω by (k, l) ∈ E iff Γ(k, l) ∈ x (Γ being Gödel’s pairing function),
and we let

Mx = the transitive collapse of (ω, E),

provided that E is well-founded and extensional (if not, we let Mx be unde-
fined). Hence if S is admissible and x ∈ S then (Mx)

S = Mx (if it exists).
We shall also have to deal with the function sending x to Mxdec. Let us write
M?

x for Mxdec.
Now pick a real g ⊂ ω (inside L[E][B][G]) such that Mg = Jλ[E]. We

may and shall assume that L[E][B][G] = L[E][B][g]. We want to force over
L[E][B][g] to obtain a real a such that g = adec (hence M?

a = Jλ[E]), and a
is a Π1

n+4-singleton inside L[E][a]. It will then be easy to see that L[E][a] is
as desired.

Let us fix (ai: i < ω1) ∈ L[E][g], obtained from the first (in <L[E][g])
ω1 many branches in L[E][g] thru (<ω2,⊂). (Here and in what follows, by
<L[E][g] we just mean the order of constructibility of L[E][g] = L[E, g].)
Notice that for k < ω, ak has now been defined twice, but the point is that
both definitions yield the same object. In particular, the ai’s form a family
of a.d. subsets of ω. The forcing R (for adding a) consists of conditions

13



p = (l(p), r(p)) where l(p): k → 2 for some k < ω and r(p) is a finite subset
of ω1. We set q = (l(q), r(q)) ≤R p = (l(p), r(p)) iff l(q) ⊃ l(p), r(q) ⊃ r(p),
and the following holds true:

∀k [k < dom(l(p)) ∧ k ∈ g ⇒

{m ∈ dom(l(q)) \ dom(l(p)): l(q)(m) = 1} ∩ ak = ∅],

∀k ∀α [k < dom(l(p)) ∧ l(p)(k) = 1 ∧ α ∈ r(p) ∩ B2k ⇒

{m ∈ dom(l(q)) \ dom(l(p)): l(q)(m) = 1} ∩ aω·(1+α)+2k = ∅], and

∀k ∀α [k < dom(l(p)) ∧ l(p)(k) = 0 ∧ α ∈ r(p) ∩ B2k+1 ⇒

{m ∈ dom(l(q)) \ dom(l(p)): l(q)(m) = 1} ∩ aω·(1+α)+2k+1 = ∅].

Let H be R-generic over L[E][g][B], and let a ⊂ ω be such that
⋃

p∈H l(p)
is its characteristic function. Clearly:

Claim 3. ∀k (k ∈ g ⇔ a ∩ ak is finite ), i.e., g = adec, and Jλ[E] = M?
a.

Setting Dk = {α: a ∩ aω·(1+α)+k is finite }, we also easily get

Claim 4. ∀k (k ∈ a ⇒ D2k = B2k ∧ D2k+1 = ∅),

and

Claim 5. ∀k (k /∈ a ⇒ D2k = ∅ ∧ D2k+1 = B2k+1).

As in [1], the following two claims are crucial.

Claim 6. ∀k (k ∈ a ⇒ T2k+1 is Suslin in L[E][a] ).

Claim 7. ∀k (k /∈ a ⇒ T2k is Suslin in L[E][a] ).

Proof. We give the proof of Claim 6, that of Claim 7 being identical
modulo notational changes. Suppose that l ∈ a, but T2l+1 is no longer a
Suslin tree in L[E][a]. Set T = T2l+1. Essentially, (G, (Bk: k 6= 2l + 1))
is (Q, P ω\{2l+1})-generic over L[E]. Moreover, there is a canonical forcing
R′ ∈ L[E][G][(Bk: k 6= 2l+1)] such that a is generic over L[E] for the forcing

[(Q, P ω\{2l+1}) ? Ṙ′] ? Ṫ .

14



(R′ is defined exactly as R except that we require that l(p)(l) = 1 and rewrite
the definition of ≤R so as not to mention B2k+1.) It now suffices to show
that T is still Suslin in L[E][(G, (Bk: k 6= 2l + 1), a)].

By Claim 2, T is still Suslin in L[E][(G, (Bk: k 6= 2l+1))]. It hence remains
to show that forcing with R′ over this model does not add an antichain A ⊂ T
of size ω1.

So let Ȧ be a name for a maximal antichain A in T , and let p ∈ R′ be
such that

p ||− Ȧ is a maximal antichain in T̂ .

Let A′ = {x ∈ T : q ||− x̂ ∈ Ȧ, some q ≤R′ p}. As A′ ⊃ A, it suffices to show
that A′ is countable in L[E][G][(Bk: k 6= 2l + 1)].

Let us work in L[E][G][(Bk: k 6= 2l +1)], and suppose that A′ is uncount-
able. For any x ∈ A′ we may pick qx ≤R′ p with qx ||− x ∈ Ȧ. Of course,
Q = {qx: x ∈ A′} cannot be countable, as otherwise there would be an un-
countable A′′ ⊂ A′ such that qx = qx′ for all x, x′ ∈ A′′. But such A′′ would
also be an antichain in T .

So Q is uncountable. But then there is an uncountable A? ⊂ A′ such that
l(qx) = l(qx′) for all x, x′ ∈ A?. In particular, any two conditions qx, qx′ in
A? are compatible, which implies that x, x′ itself are incompatible. But now
we get that {x ∈ T : qx ∈ A?} is an uncountable antichain. Contradiction!

We have thus shown that A′ and hence A must be countable, so that T
is still Suslin in L[E][(G, (Bk: k 6= 2l + 1), a)].

� (Claims 6, 7)

We are now going to write down a formula showing that a is a Π1
n+4-

singleton inside L[E][a]. In order to do this we have to relativize the con-
struction of (Tk: k < ω), our sequence of Suslin trees in L[E], as well as
(ai: i < ω1), our sequence of pairwise a.d. subsets of ω.

Let N be a premouse with a largest cardinal η which actually happens
to be a double successor cardinal in N . We may then, working inside N ,
construct a sequence (TN

k : k < ω) of trees of height η by using a word for
word repetition of how (Tk: k < ω) was constructed in L[E], but with every
occurence of ”L[E]” replaced by ”N ,” and with ”λ” replaced by ”the prede-
cessor of η in N .” Further, if x is any real with N [x] admissible such that

ω
N [x]
1 exists then we shall write (aN ,x

i : i < ω
N [x]
1 ) for that sequence of pairwise

a.d. subsets of ω obtained from the first (along <N [x]) ω
N [x]
1 many branches

15



in N [xdec] thru (<ω2,⊂). (Here and in what follows, by N [x] we just mean
Jε[F ][x] = Jε[F, x] if N = Jε[F ], and by <N [x] we just mean the order of
constructibility of N [x].)

We now consider the following formula, abbreviated Φ(x):

”M?
x = Jλ[E], and

IF (a) N is (n − 1)-full, N . M?
x,

(b) M?
x ∩ OR is the second largest cardinal of N ,

(c) N [x] |= ZF−,

(d) (TN
n : n < ω) and (aN ,x

i : i < ω
N [x]
1 ) are as described above, and

(e) (BN ,x
n : n < ω) is such that BN ,x

k = {α: x ∩ aN ,x

ω·(1+α)+k
is finite },

THEN we have that:
(a’) if k ∈ x then BN ,x

2k is a cofinal branch thru TN
2k , and

(b’) if k /∈ x then BN ,x
2k+1 is a cofinal branch thru TN

2k+1.”

Claim 8. {x: Φ(x)} is a Π1
n+4-set of reals.

Proof. This readily follows from 2.4.

� (Claim 8)

Claim 9. In L[E][a], for all x ∈ R we have that Φ(x) iff x = a.

Proof. We work inside L[E][a]. First let x ∈ R be given such that Φ(x)
holds. Suppose that x 6= a, and suppose w.l.o.g. that there is l < ω such
that l ∈ x, yet l /∈ a, so that in particular T2l is a Suslin tree by Claim 5.
(Otherwise we can pick l ∈ a \ x and consider T2l+1, being Suslin by Claim
4.)

We may now pick σ:N [x] → Jω2
[E][x] with N being countable and

c.p.(σ) > λ. By 2.5 we have that N = Jτ [E] where λ < τ < ω1. Notice
that λ+N = c.p.(σ), which is sent to ω1 by σ.

We have that M?
x = Jλ[E] by the first part of Φ(x), so that N and x

certainly satisfy the IF part of Φ(x). We have that σ(T
Jτ [E]
2n ) = T2n.

By (a’) we now get that BN ,x
2l ∈ N [x] is a cofinal branch thru T N

2l , so
that by the elementarity of σ there is a cofinal branch (in Jω2

[E][x]) thru T2l.
Contradiction!
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Conversely, we want to show that Φ(a) holds. Well, the first part of Φ(a)
is fulfilled by Claim 3. Moreover, for any N as in (a) through (c) of the IF
part of Φ(a) we have by 2.2 that N = Jτ [E] where λ < τ < ω1.

But then (aN ,a
i : i < ω

N [a]
1 ) = (ai: i < ω

N [a]
1 ) and BN ,a

k = Bk ∩ N are
clear. Moreover, we claim that TN

2n = T2n ∩ N , in fact that (TN
k : k < ω) =

(Tk ∩N : k < ω).
To verify this, one has to show (T α

k )N = T α
k for all k < ω and all α <

ω
N [a]
1 = λ+N by induction on α. Notice that <λα ∩ L[E] ⊂ N , so that the

only non-trivial case is when α has cofinality λ (both in N and in L[E]). But
then ηα < λ+N is easily seen, so that (T α

k )N = T α
k follows from the choice of

T α
k .

But now (a′) and (b′) are clear.

� (Claim 9)

Now by virtue of 2.1 and Claims 8 and 9, in order to finish the proof of
1.2 it suffices to show:

Claim 10. In L[E][a], there is a ∆1
n+3(a)-well-ordering of R.

Proof. Using the fact that (P, Q) ∗ Ṙ has the λ+-c.c., it is easily seen
that R ⊂ Jω1

[E][a]. Setting P = Jω1
[E][a], the reals of L[E][a] may hence be

well-ordered by <P , the order of constructibility of P.
As Jλ[E] = M?

a, 2.2 gives that for any x, y ∈ R ∩ L[E][a], x <P y iff

∃N (N is (n − 1)−full, ρω(N ) = OR ∩M?
a

N D Ma, and x <N [a] y).

This is a Σ1
n+3(a)-relation. Hence <P is a ∆1

n+3(a)-well-ordering of R ∩
L[E][a].

� (Claim 10)
� (1.2)

4 Proof of 1.3.

As in the last section we fix n < ω, n > 0, and we assume L[En], the minimal
fully iterable inner model with n strong cardinals, to exist. However, we shall
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now assume that L[En] has an inaccessible cardinal above its strong cardinals.
(This is for example the case if in V there is an inaccessible cardinal above
the strong cardinals of L[En].) Again, we shall write L[E] = L[En], we let
κ1 < ... < κn be the strong cardinals of L[E], and we let η > κn be the least
inaccessible in L[E] above κn.

The construction to follow will absorb the construction of the previous
section, and it will heavily use the key idea of [2] (for a general formulation
of David’s trick, cf. [4]). We shall make use of the following little lemma
(which is well-known).

Lemma 4.1 Let A ⊂ R, and suppose that there is an inner model W with
countably many reals and a tree (on ω × κ say, for some ordinal κ) T ∈ W
such that A = p[T ] (in V ). Then A is Lebesgue measurable and has the
property of Baire.

Proof. For a real x we have that x ∈ A iff x ∈ p[T ] iff W [x] |= x ∈ p[T ],
so A is Solovay over W (cf. [9, p. 544f.]). But the set of all reals not being
random over W is null, and the set of all reals not being Cohen over W is
meager (by Card(R ∩ W ) = ℵ0), and hence A is Lebesgue measurable and
has the property of Baire.

� (4.1)

It is a simple observation that 4.1 can be used to get a real a, set-
generic over L[E] such that in L[E][a] every (lightface) Σ1

n+3-set of reals
is Lebesgue measurable and has the property of Baire whereas there is a
∆1

n+3(a)-well-ordering of the reals. (For example, just let a be a code for some

Col(ω, κ
+++L[E]
n )-generic over L[E].) Being familiar with the methods of the

preceding section one may then find some such a being a Π1
n+4-singleton.

This idea can be exploited a bit further to give a

Proof of 1.3. This time, we have to start from a sequence (T i
k: i <

η ∧ k < ω) of η+-Suslin trees inside L[E]. In fact, we construct this sequence
in exactly the same way as we had constructed (Tk: k < ω) in the proof of 1.2,
except that λ is replaced by η, and we want to obtain η many trees instead
of just ω many. We shall not repeat the details of the construction here.

For X ⊂ η × ω we write P X for
∏

(i,k)∈X T i
k, and we write P = P η×ω.

We shall leave it to the reader to formulate and verify analogues to Claims
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1 and 2 in the previous section. They play the same role here as they played
there.

Forcing with P {(i,k)} over L[E] gives a generic Bi
k, a cofinal branch thru

the tree T i
k. We want to code Bi

k ”nicely” by Ai
k, a certain bounded subset of

η. Before actually doing this we want to illustrate the method by describing
a simplified version of the forcing which is to come.

Fix (ai: i < η+) ∈ L[E], a canonical sequence of pairwise a.d. subsets of
η, obtained in a fashion as in the previous section. Let Q̄i

k be the standard
a.d. forcing for coding Bi

k by a subset of η, using (ai: i < η+). Forcing with
Q̄i

k over L[E][Bi
k] adds Āi

k ⊂ η coding Bi
k in the sense that

ξ ∈ Bi
k ⇔ aξ ∩ Āi

k is bounded in η,

and Q̄i
k is < η-closed and has the η+-c.c.

We now let Θ+ denote ZF−+ ”there is an inaccessible cardinal κ which
is also the second largest cardinal, and there are (exactly) n strong cardinals
< κ.” If N |= Θ+ we denote by ηN its second largest cardinal. We may
also denote by (aN

i : i < (ηN )+N ) ∈ N a canonical sequence of pairwise a.d.
subsets of ηN . Moreover, as in the previous section, we may let ((T i

k)
N : i <

ηN , k < ω) denote the sequence of (ηN )+N -Suslin trees being defined in N
in exactly the same way as (T i

k: i < η, k < ω) is defined in L[E].
We now consider a forcing Qi

k for adding Âi
k, defined as follows. We let

conditions be functions p: δ → 2 for some δ < η and such that the following
holds true:

∀N ( [ Jκ++
n

[E] / N / L[E] ∧N |= Θ+ ∧ N [Āi
k ∩ ηN , p � ηN ] |= Θ+∧

i < ηN ≤ dom(p) ∧ p(η̄) 6= 0 for cofinally many η̄ < ηN ] ⇒

{ξ ∈ (T i
k)

N : aN
ξ ∩ Āi

k is bounded in ηN}

is a cofinal branch thru (T i
k)

N ).

Claim 1. For all p ∈ Qi
k and all δ < η there is some q ≤Qi

k
p with

dom(q) ≥ δ.

Proof. Easy. Just pick q ∈ <η2 such that dom(q) = max{δ, dom(p)}
and q(η̄) = 0 for all η̄ ∈ [dom(p), δ).
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� (Claim 1)

Claim 2. Qi
k is < η-distributive (in L[E][Āi

k]).

Proof. Let (Dα: α < η̄ < η) ∈ L[E][Āi
k] be a sequence of open dense

subsets of Qi
k, and let p ∈ Qi

k. Notice that {p, (Dα: α < η̄)} ⊂ Jη+ [E][Āi
k].

We define (Xα: α ≤ η̄) by the following recursion: X0 = the smallest
X ≺ Jη++[E][Āi

k] with {κ+
n , i, p, (Dα: α < η̄)} ⊂ X and η∩X being transitive,

Xα+1 = the smallest X ≺ Jη+ [E][Āi
k] with Xα ∪ {Xα} ⊂ X and η ∩X being

transitive, and Xλ =
⋃

α<λ Xα for a limit ordinal λ ≤ η̄. By 2.5, all Xα’s
condense to models of the form Jγ [E][Āi

k ∩ β]. I.e., we get

σα : Nα = Jγα
[E][Āi

k ∩ βα] ' Xα ≺ Jη++[E][Āi
k],

where βα is the critical point of σα, and σα(βα) = η. Notice βα = ηNα.
Next, we aim to define a sequence (pα: α ≤ η̄) of conditions such that

p0 = p, pα+1 = the least q ≤Qi
k

pα with q ∈ Xα+1, dom(q) ≥ βα, and q ∈ Dα,
and for limit ordinals λ ≤ η̄, pλ =

⋃
α<λ pα.

It remains to show that this latter recursion does not break down, i.e.,
that pη̄ ∈ Qi

k is well-defined. Well, the successor step does not cause any
problems due to Claim 1 above. So let λ ≤ η̄ be a limit ordinal such that
pα ∈ Qi

k is defined for all α < λ. Notice that βα ≤ dom(pα+1) < βα+1 for
α < λ, so that dom(pλ) = βλ.

Let N / L[E] be as in the definition of what a condition is. The only
problematic N ’s are the ones with ηN = βλ, so let us assume that this holds.
Then N ∩ OR ≤ γλ, because (βα: α < λ) is definable over Nλ and hence
if N ∩ OR > γλ then (βα: α < λ) ∈ N [Āi

k ∩ βλ] would witness that βλ is
singular in N , contradicting N [Ai

k ∩ βλ, pλ] |= Θ+.
But then ηN = ηNλ = βλ, and (T i

k)
N = (T i

k)
Nλ ∩ N by a reasoning as in

the proof of Claim 9 of the previous section. Moreover, we clearly also have
aN

i = aNλ

i for i < β+N
λ .

By elementarity, {ξ ∈ (T i
k)

Nλ : aNλ

ξ ∩ Āi
k is bounded in βλ} is a cofinal

branch thru (T i
k)

Nλ, from which we may conclude by the previous paragraph
that {ξ ∈ (T i

k)
N : aN

ξ ∩ Āi
k is bounded in ηN} is a cofinal branch thru (T i

k)
N ,

as desired.

� (Claim 2)
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The proofs of Claims 1 and 2 can easily be varied to give that if G is
Qi

k-generic over L[E][Bi
k] then there are arbitrarily high N / Jη[E] as in the

definition of what a condition is such that

(
⋃

G)(η̄) 6= 0 for cofinally many η̄ < ηN ,

for which N ’s we then have that there is a cofinal branch thru (T i
k)

N in
N [Āi

k ∩ ηN ].

We now have to turn towards the forcing which we shall actually use for
constructing our model. Because we have to eventually code B i

k ”down to a
real” without destroying the inaccessibility of η (to be able to apply 4.1), we
have to incorporate more advanced Jensen-like coding techniques, due to the
first author, to vary the above forcing construction. However, whereas Jensen
coding itself achieves a ”coding into L,” we have to code into K instead -
otherwise we would end up with a ∆1

2-well-ordering of the reals!
Let (κi: i < η) enumerate the cardinals of L[E] in the half-open interval

[κ++
n , η). By applying the above approach inside L[E][Bi

k] there is a forcing
Si

k adding a subset Ai
k of [κi+1, κi+2) such that the following holds true:

Claim 3. For all N with Jκi+1 [E] / N / L[E] and N |= Θ+ as well as
N [Ai

k ∩ (κi+1)+N ] |= Θ+ we have that if Ai
k ∩ (κi+1)+N is decoded inside

N [Ai
k ∩ (κi+1)+N ] then a cofinal branch thru (T i

k)
N is obtained.

Proof. Code relative to L[E] as one codes relative to L, using the ”al-
most disjoint codes” provided by the natural wellordering of L[E]. ”Coding
structures” are initial segments of L[E]. We require that our coding struc-
ture at an ordinal α < η+ be tall enough to construct the restriction of our
branch Bi

k to α, relative to E. These coding structures are cardinal-correct
initial segments of L[E]. We also use conditions with support bounded in η,
which gives our forcing the η+-cc.

We must verify distributivity for the forcing. Our only concern is that
we have enough condensation to do so. However the only condensations that
take place are within our coding structures, which are cardinal-correct initial
segments of L[E], using hulls which contain κ

+L[E]
n +1. Condensation of this

form follows from 2.5.

� (Claim 3)
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Let
S =

∏

i<η,k<ω

P i
k ? Ṡi

k,

so that S adds (Bi
k: i < η, k < ω), a sequence of branches thru the T i

k’s,
together with codes Ai

k ⊂ [κi+1, κi+2) for i < η and k < ω. Then the proof
of Claim 3 shows that S preserves cofinalities, and the analogues to Claims
1 and 2 in the previous section are still valid.

Next we want to add reals ri by forcings Ri in such a way that ri col-
lapses κi+1 to ω and such that ri ”codes” (Ai

k: k < ω) in much the same
way as we had that a ”codes” (Ak: k < ω) in the previous section. We
let Ri be Col(ω, Jκi+1[E])? (the forcing R from the previous section), but
with ω1 replaced by κi+2 and with g being canonically obtained from the
Col(ω, Jκi+1[E])-generic (and naturally called gi now). We shall denote

R =
∏

i<η

Ri.

We denote by (ri: i < η) the sequence of reals obtained by forcing with R over
L[E][(Ai

k: i < η, k < ω)]. Our model witnessing 1.3 shall be L[E][(ri: i < η)].

Claim 4. In L[E][(Ai
k: i < η, k < ω)][(ri: i < η)], for any i < η there are

gi ⊂ ω and (Di
k: k < ω) with:

(a) (ri)dec = gi, and M?
ri = Jκi+1[E], in fact gi is Col(ω, Jκi+1[E])-generic

over L[E][(Ai
k: i < η, k < ω)], and

(b) if (al: l < κi+2) is the ”least” sequence of pairwise a.d. subsets of ω
in L[E][gi] then, setting Dl = {α: ri ∩ aω·(1+α)+l is finite }, we have that

∀l(l ∈ ri ⇒ D2l = Ai
2l ∧ D2l+1 = ∅) and

∀l(l /∈ ri ⇒ D2l = ∅ ∧ D2l+1 = Ai
2l+1).

We now consider the model L[E][~r], where we write ~r = (ri: i < η). We
again have the following:

Claim 5. ∀i ∀k (k ∈ ri ⇒ T i
2k+1 is Suslin in L[E][~r]).

Claim 6. ∀i ∀k (k /∈ ri ⇒ T i
2k is Suslin in L[E][~r]).
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These two claims are verified in the same fashion as were Claims 6 and 7
of the previous section. In fact, the proof also shows that η = ω

L[E][~r]
1 , which

we shall denote by ω1 from now on.

Claim 7. For any x ∈ R∩L[E][~r] there is some α < ω1 with x ∈ Jα[E][~r �

α], and η is inaccessible in L[E][x].

Proof. Let x ∈ Jρ[E][~r], where ρ > ω1 is a cardinal of L[E]. By 2.5 we
may pick some

π: Jα[E][~r � τ ] → Jρ[E][~r]

with τ < α < ω1, c.p.(π) = τ , and π(τ) = ω1. But then x ∈ Jα[E][~r � α].
That η is still inaccessible in Jα[E][~r � α] (and hence in L[E][x]) fol-

lows from the fact that ~r � α is obtained by forcing with
∏

i<α Ri over
L[E][(Bi

k: i < η, k < ω)].

� (Claim 7)

Now Claim 7 together with 4.1 immediately buys us that in L[E][~r], every
Σ1

n+3-set of reals is Lebesgue measurable and has the property of Baire.
Moreover, 2.1 tells us that in L[E][~r], every Σ1

n+2-set of reals is universally
Baire.

We are hence left with having to verify that L[E][~r] has a ∆1
n+5-well-

ordering of its reals. The key for being able to do this is the following claim.
We let Θ denote the theory ZF−+ ”there is exactly one inaccessible cardinal,
which is also the second largest cardinal.”

Claim 8. For any i < ω1, ri is uniformly Π1
n+4 in any code for Jκi[E].

Proof. We consider the following formula, abbreviated Φ(x, Jκi [E]):

”M?
x = Jκi+1[E], and

IF N is such that (a) M?
x / N / L[E], and

(b) N |= Θ+ and N [x] |= Θ
THEN we have that
(a)’ if k ∈ x then there is a cofinal branch in N [x] thru (T i

2k)
N , and

(b)’ if k /∈ x then there is a cofinal branch in N [x] thru (T i
2k+1)

N .”
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By 2.2, ”M?
x = Jκi+1[E]” can be written uniformly as a Π1

n+3-formula in
any code for Jκi[E], and by 2.3, the second conjunct is certainly uniformly
Π1

n+4 in any code for Jκi[E].
Using Claim 3 above we can then verify that Φ(x, Jκi [E]) holds iff x = ri

in much the same way as we had verified Claim 9 in the last section, but this
time by using Claim 3 above.

� (Claim 8)

We finally obtain the following:

Claim 9 In L[E][~r], there is a ∆1
n+5-well-ordering of R.

Proof. Set P = Jω1
[E][~r]. By Claim 7, R ∩ L[E][~r] ⊂ P, so that we

may well-order the reals by <P , the order of constructibility of P.
Well, we now clearly have that for any x, y ∈ R ∩ L[E][~r], x <P y iff

∃N0 ∃N ∃(si: i < N ∩ OR) [ N0 = Jκ0 [E] ∧N0 / N / Jω1
[E]∧

Φ(s0,N0) ∧ ∀i < N ∩ OR Φ(si+1,M?
si) ].

Here, Φ(−,−) is the formula from the proof of Claim 8.
An inspection shows that, using 2.4 and 2.3 together with Claim 8, the

displayed formula can be rewritten in a Σ1
n+5-way. Hence <P is a ∆1

n+5-well-
ordering of R ∩ L[E][~r].

� (Claim 9)

This finishes the proof of 1.3.

� (1.3)

5 Open problems.

We want to finish this paper by stating three key open problems.
(1) Let n < ω. Starting only from an inaccessible, can you construct

a model in which every Σ1
n+3-set of reals is Lebesgue measurable and has

the property of Baire, yet there is a (lightface) projective (ideally, ∆1
n+4)

well-ordering of the reals?
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(2) Do the conclusions of 1.2 and 1.3 imply the consistency of strong
cardinals? (Cf. [3].)

(3) Is there a ∆1
n+4-well-ordering of R in the model of 1.3 or a variant

thereof?
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