Change of the base field

Theorem 2.2.7. Let E be an elliptic curve over a perfect field k, and let K / k be a field extension. Then $E_{K}:=E \times_{k} \operatorname{Spec} K$ is an elliptic curve over K. Let $P \in E_{K}$ be a closed point whose image $Q \in E$ under the projection $\operatorname{pr}_{E}: E_{K} \rightarrow E$ is a closed point of E and let t be a uniformizing parameter of the discrete valuation ring $\mathcal{O}_{E, Q}$. Then $\operatorname{pr}^{*} t$ is a uniformizing parameter of the discrete valuation ring $\mathcal{O}_{E_{K}, P}$.

Proof. We may assume that the curve $E=\mathrm{V}_{\mathbb{P}^{2}}(G)$ is defined by a Weierstraß equation $G \in k[X, Y, Z]$ with non-zero discriminant $\Delta(G)$. Then $E_{K}=V_{\mathbb{P}^{2}}(G \otimes 1)$ is defined by the Weierstraß equation $G \otimes 1 \in k[X, Y, Z] \otimes_{k} K=K[X, Y, Z]$ which is a prime element of $K[X, Y, Z]$ by Lemma 2.1.6. Therefore E_{K} is an integral K-scheme of dimension 1, in other words, a curve. It is proper over K by Blatt 6 , Aufgabe 2. The discriminant of $G \otimes 1$ is $\Delta(G \otimes 1)=\Delta(G) \otimes 1$ and hence non-zero. Therefore E_{K} is normal and by Theorem 1.9.7 its genus is 1 . Since $(0: 1: 0) \in E_{K}(K)$ we conclude that E_{K} is an elliptic curve over K.
To prove the second part we consider the exact sequence of $\mathcal{O}_{E, Q^{-}}$-modules

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{E, Q} \xrightarrow{\cdot t} \mathcal{O}_{E, Q} \longrightarrow \kappa(Q) \longrightarrow 0 \tag{1}
\end{equation*}
$$

Since E is of finite type over k and Q is a closed point, the residue field $\kappa(Q)$ is a finite separable field extension of k. By the Theorem of the Primitive Element we can write $\kappa(Q)=k[T] /(f)$ for a separable irreducible polynomial $f \in k[T]$. The polynomial $f \otimes 1 \in k[T] \otimes_{k} K=K[T]$ may decompose into a product $f \otimes 1=f_{1} \cdot \ldots \cdot f_{r}$ of irreducible polynomials $f_{i} \in K[T]$. But the f_{i} are pairwise relatively prime in $K[T]$, because if f_{i} and f_{j} have non-trivial greatest common divisor h, then all zeros α of h in an algebraic closure $K^{\text {alg }}$ of K are zeros of both f_{i} and f_{j} and hence are multiple zeros of f in contradiction to the separability of f. Then the Chinese Remainder Theorem implies that $\kappa(Q) \otimes_{k} K \cong K[T] /(f \otimes 1) \cong \prod_{i=1}^{r} K[T] /\left(f_{i}\right)$ is a product of fields $K_{i}:=K[T] /\left(f_{i}\right)$. From

Spec $\kappa(Q) \times{ }_{X} X_{K}=\operatorname{Spec} \kappa(Q) \times{ }_{X} X \times_{k} \operatorname{Spec} K=\operatorname{Spec} \kappa(Q) \times{ }_{k} \operatorname{Spec} K=\operatorname{Spec}\left(\kappa(Q) \otimes_{k} K\right)$ we see that the fiber $\operatorname{Spec} \kappa(Q) \times_{X} X_{K}$ of $\operatorname{pr}_{X}: X_{K} \rightarrow X$ above Q is isomorphic to the spectrum of $\prod_{i=1}^{r} K_{i}$, that is, to the disjoint union of the points Spec K_{i}. One of these points is the point $P \in \operatorname{Spec} \kappa(Q) \times_{X} X_{K} \subset X_{K}$. Let $\mathfrak{m} \subset \kappa(Q) \otimes_{k} K$ be the maximal ideal corresponding to P. The closed immersion $\operatorname{Spec} \kappa(Q) \hookrightarrow \operatorname{Spec} \mathcal{O}_{E, Q}$ induces the closed immersion $\varphi: \operatorname{Spec}\left(\kappa(Q) \otimes_{k} K\right) \hookrightarrow \operatorname{Spec}\left(\mathcal{O}_{E, Q} \otimes_{k} K\right)$ and we let $\mathfrak{p}:=\varphi^{*}(\mathfrak{m}) \subset \mathcal{O}_{E, Q} \otimes_{k} K$ be the prime ideal corresponding to the image of P.
We now tensor equation (1) over k with K. The resulting sequence

$$
0 \longrightarrow \mathcal{O}_{E, Q} \otimes_{k} K \xrightarrow{\cdot(t \otimes 1)} \mathcal{O}_{E, Q} \otimes_{k} K \longrightarrow \kappa(Q) \otimes_{k} K \longrightarrow 0
$$

remains exact, because the k-module K is a direct sum of copies of k indexed by a k-basis of K, and tensoring is compatible with taking direct sums. Localizing at the prime ideal \mathfrak{p} of $\mathcal{O}_{E, Q} \otimes_{k} K$ and observing that $\left(\mathcal{O}_{E, Q} \otimes_{k} K\right)_{\mathfrak{p}}=\mathcal{O}_{E_{K}, P}$ and $\left(\kappa(Q) \otimes_{k} K\right)_{\mathfrak{p}}=\kappa(P)$ we obtain the exact sequence

$$
0 \longrightarrow \mathcal{O}_{E_{K}, P} \xrightarrow{\cdot(t \otimes 1)} \mathcal{O}_{E_{K}, P} \longrightarrow \kappa(P) \longrightarrow 0
$$

This shows that $\mathrm{pr}^{*} t=t \otimes 1$ generates the maximal ideal of $\mathcal{O}_{E_{K}, P}$ as desired.

Some conclusions of the theorem are true in more generality. To explain this we consider k-schemes for a fixed field k which is not necessarily perfect. For a k-scheme X which is integral we denote by $k(X)$ the function field of X, that is the residue field $\kappa(\eta)$ at the generic point η of X.
Definition 2.2.8. A k-scheme X is called geometrically integral if $X \times{ }_{k}$ Spec K is integral for every field extension K / k. One makes the corresponding definition for the properties irreducible, reduced, normal, regular instead of integral.

Remark. By taking $K=k$ we see that every geometrically integral k-scheme is integral, and similarly for the other properties.

Theorem 2.2.9. If k is perfect and X is locally of finite type over k then X is geometrically reduced if and only if X is reduced. The same is true for the properties normal and regular.

Proof. [GW, Corollary 5.57] for "reduced" and [EGA, IV_{2}, Proposition 6.7.7] for "normal" and "regular".

To discuss the property "geometrically integral" we make the following
Definition 2.2.10. Let K / k be a field extension. We say that
(a) k is algebraically closed in K if $\{f \in K: f$ is algebraic over $k\}=k$.
(b) K is separable over k if for every field extension L / k the tensor product $K \otimes_{k} L$ is a reduced ring.

Proposition 2.2.11 If k is perfect (that is, if every finite field extension of k is separable) then every field extension K / k is separable in the sense of Definition 2.2.10(b).

Proof. [Bos, §7.3, Korollar 7].
Proposition 2.2.12. Let X be a k-scheme. Then the following assertions are equivalent.
(a) X is geometrically integral.
(b) For every integral k-scheme Y the product $X \times_{k} Y$ is integral.
(c) X is integral, $k(X)$ is separable over k, and k is algebraically closed in $k(X)$.
(d) There exists an algebraically closed extension Ω of k such that $X \times{ }_{k} \operatorname{Spec} \Omega$ is integral.
(e) For every finite extension L of k the product $X \times_{k} \operatorname{Spec} L$ is integral.

This proposition is formulated in [GW, Proposition 5.51]. Their proof includes several references to Bou . Therefore we give a different proof which is based on the following two lemmas.

Lemma 2.2.13. Let k be a field and let X and Y be two integral k-schemes. Then $k(X) \otimes_{k} k(Y)$ is an integral domain if and only if $X \times_{k} Y$ is integral. If this is the case then $k\left(X \times_{k} Y\right)=\operatorname{Quot}\left(k(X) \otimes_{k} k(Y)\right)$.

Proof. Consider open subsets $\emptyset \neq \operatorname{Spec}(A) \subseteq X$ and $\emptyset \neq \operatorname{Spec}(B) \subseteq Y$. Then we have $k(X)=\operatorname{Quot}(A)$ and $k(Y)=\operatorname{Quot}(B)$. Moreover, the tensor product $A \otimes_{k} B$ is a subring of $\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)$ and

$$
\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)=((A \backslash\{0\}) \otimes 1)^{-1}(1 \otimes(B \backslash\{0\}))^{-1}\left(A \otimes_{k} B\right)
$$

is a localization of $A \otimes_{k} B$.
If $A \otimes_{k} B$ is an integral domain then also its localization $\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)$ is an integral domain and $\operatorname{Quot}\left(A \otimes_{k} B\right)=\operatorname{Quot}\left(\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)\right)$.
Conversely if $\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)$ is integral, then its subring $A \otimes_{k} B$ is also integral and again $\operatorname{Quot}\left(A \otimes_{k} B\right)=\operatorname{Quot}\left(\operatorname{Quot}(A) \otimes_{k} \operatorname{Quot}(B)\right)$. It remains to show that $X \times_{k} Y$ is irreducible. We consider the morphism $\operatorname{Spec} \operatorname{Quot}\left(k(X) \otimes_{k} k(Y)\right) \rightarrow X \times_{k} Y$ which factors through any open subset $\operatorname{Spec}\left(A \otimes_{k} B\right) \subset X \times_{k} Y$ for A and B as above. The image of this morphism is a single point $\eta \in X \times_{k} Y$. That η is the generic point of $X \times_{k} Y$ can be tested locally on all the open sets $\operatorname{Spec}\left(A \otimes_{k} B\right)$. Since the homomorphism $A \otimes_{k} B \rightarrow \operatorname{Quot}\left(k(X) \otimes_{k} k(Y)\right)$ is injective, η corresponds to the zero ideal in $A \otimes_{k} B$ and is indeed the generic point.

Lemma 2.2.14. Let K / k be a field extension. Then the following assertions are equivalent.
(a) For every field extension L / k the tensor product $K \otimes_{k} L$ is an integral domain.
(b) For every finite field extension L / k the tensor product $K \otimes_{k} L$ is an integral domain.
(c) There is an algebraically closed extension Ω / k such that the tensor product $K \otimes_{k} \Omega$ is an integral domain.
(d) K is separable over k and k is algebraically closed in K.

Proof. [Bos, §7.3, Satz 14] proves the equivalence of (a), (b) and (d). Clearly (a) implies (c). To see that (c) implies (b) we choose a k-imbedding $L \hookrightarrow \Omega$ and use that $K \otimes_{k} L$ is a subring of $K \otimes_{k} \Omega$.

Proof of Proposition 2.2.12. By Lemma 2.2.13 the statements in Proposition 2.2.12 can be phrased in terms of the integrality of tensor products $k(X) \otimes_{k} L$, where L is arbitrary in (a), $L=k(Y)$ in (b), $L=\Omega$ in (d), and L is finite over k in (e).

To see that (a) and (b) are equivalent we may take $Y=\operatorname{Spec} L$ in (b). Also (a), (c), (d) and (e) are equivalent by Lemma 2.2.14.

We end this section with an example that was used in the proof of Theorem 2.6.3(c). Let E and \widetilde{E} be elliptic curves over a perfect field k. Then $k(E)$ and $k(\widetilde{E})$ are separable over k by Proposition 2.2.11. Moreover, k is algebraically closed both in $k(E)$ and in $k(\widetilde{E})$. Therefore E and \widetilde{E} are geometrically integral over k. Let $K:=k(E)$ and $\widetilde{K}:=k(\widetilde{E})$. Then $\widetilde{E} \times_{k} E$ and $E_{\widetilde{K}}:=\operatorname{Spec} \widetilde{K} \times_{k} E$ are integral schemes. Let $\emptyset \neq \operatorname{Spec} A \subset E$ be an open subset. Then $\operatorname{Spec}\left(\widetilde{K} \otimes_{k} A\right) \subset E_{\widetilde{K}}$ is open. Therefore, by Lemma 2.2.13 the function field of $\widetilde{E} \times_{k} E$ is

$$
k\left(\widetilde{E} \times_{k} E\right)=\operatorname{Quot}\left(\widetilde{K} \otimes_{k} K\right)=\operatorname{Quot}\left(\widetilde{K} \otimes_{k} A\right)
$$

which by definition equals the function field $\widetilde{K}\left(E_{\widetilde{K}}\right)$ of $E_{\widetilde{K}}$.

References.

[Bos] S. Bosch: Algebra, Springer-Verlag, 2009.
[Bou] N. Bourbaki: Algebra II, Chapters 4-7, Springer-Verlag, Berlin, 2003.
[EGA] A. Grothendieck: Élements de Géométrie Algébrique, Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32, Bures-Sur-Yvette, 1960-1967; see also Grundlehren 166, Springer-Verlag, Berlin etc. 1971.
[GW] U. Görtz, T. Wedhorn: Algebraic Geometry, Part I: Schemes, Vieweg + Teubner, Wiesbaden, 2010.

