
Change of the base field

Theorem 2.2.7. Let E be an elliptic curve over a perfect field k, and let K/k be a field
extension. Then EK := E ×k SpecK is an elliptic curve over K. Let P ∈ EK be a
closed point whose image Q ∈ E under the projection prE : EK → E is a closed point of
E and let t be a uniformizing parameter of the discrete valuation ring OE,Q. Then pr∗t is
a uniformizing parameter of the discrete valuation ring OEK ,P .

Proof. We may assume that the curve E = VP2(G) is defined by a Weierstraß equation
G ∈ k[X, Y, Z] with non-zero discriminant ∆(G). Then EK = VP2(G ⊗ 1) is defined by
the Weierstraß equation G⊗ 1 ∈ k[X, Y, Z]⊗k K = K[X, Y, Z] which is a prime element
of K[X, Y, Z] by Lemma 2.1.6. Therefore EK is an integral K-scheme of dimension 1,
in other words, a curve. It is proper over K by Blatt 6, Aufgabe 2. The discriminant
of G ⊗ 1 is ∆(G ⊗ 1) = ∆(G) ⊗ 1 and hence non-zero. Therefore EK is normal and by
Theorem 1.9.7 its genus is 1. Since (0 : 1 : 0) ∈ EK(K) we conclude that EK is an elliptic
curve over K.

To prove the second part we consider the exact sequence of OE,Q-modules

0 −→ OE,Q
· t−−−→ OE,Q −→ κ(Q) −→ 0 . (1)

Since E is of finite type over k and Q is a closed point, the residue field κ(Q) is a
finite separable field extension of k. By the Theorem of the Primitive Element we can
write κ(Q) = k[T ]/(f) for a separable irreducible polynomial f ∈ k[T ]. The polynomial
f ⊗ 1 ∈ k[T ] ⊗k K = K[T ] may decompose into a product f ⊗ 1 = f1 · . . . · fr of
irreducible polynomials fi ∈ K[T ]. But the fi are pairwise relatively prime in K[T ],
because if fi and fj have non-trivial greatest common divisor h, then all zeros α of h in
an algebraic closure Kalg of K are zeros of both fi and fj and hence are multiple zeros of
f in contradiction to the separability of f . Then the Chinese Remainder Theorem implies
that κ(Q)⊗k K ∼= K[T ]/(f ⊗ 1) ∼=

∏r
i=1K[T ]/(fi) is a product of fields Ki := K[T ]/(fi).

From

Specκ(Q)×XXK = Specκ(Q)×XX×kSpecK = Specκ(Q)×kSpecK = Spec(κ(Q)⊗kK)

we see that the fiber Specκ(Q) ×X XK of prX : XK → X above Q is isomorphic to the
spectrum of

∏r
i=1Ki, that is, to the disjoint union of the points SpecKi. One of these

points is the point P ∈ Specκ(Q)×XXK ⊂ XK . Let m ⊂ κ(Q)⊗kK be the maximal ideal
corresponding to P . The closed immersion Specκ(Q) ↪→ SpecOE,Q induces the closed
immersion ϕ : Spec(κ(Q)⊗k K) ↪→ Spec(OE,Q ⊗k K) and we let p := ϕ∗(m) ⊂ OE,Q⊗kK
be the prime ideal corresponding to the image of P .

We now tensor equation (1) over k with K. The resulting sequence

0 −→ OE,Q ⊗k K
· (t⊗ 1)
−−−−−−−→ OE,Q ⊗k K −→ κ(Q)⊗k K −→ 0

remains exact, because the k-module K is a direct sum of copies of k indexed by a k-basis
of K, and tensoring is compatible with taking direct sums. Localizing at the prime ideal
p of OE,Q ⊗k K and observing that (OE,Q ⊗k K)p = OEK ,P and (κ(Q)⊗k K)p = κ(P ) we
obtain the exact sequence

0 −→ OEK ,P

· (t⊗ 1)
−−−−−−−→ OEK ,P −→ κ(P ) −→ 0 .

This shows that pr∗t = t⊗ 1 generates the maximal ideal of OEK ,P as desired.

1



Some conclusions of the theorem are true in more generality. To explain this we consider
k-schemes for a fixed field k which is not necessarily perfect. For a k-scheme X which is
integral we denote by k(X) the function field of X, that is the residue field κ(η) at the
generic point η of X.

Definition 2.2.8. A k-scheme X is called geometrically integral if X×kSpecK is integral
for every field extension K/k. One makes the corresponding definition for the properties
irreducible, reduced, normal, regular instead of integral.

Remark. By taking K = k we see that every geometrically integral k-scheme is integral,
and similarly for the other properties.

Theorem 2.2.9. If k is perfect and X is locally of finite type over k then X is geometri-
cally reduced if and only if X is reduced. The same is true for the properties normal and
regular.

Proof. [GW, Corollary 5.57] for “reduced” and [EGA, IV2, Proposition 6.7.7] for “normal”
and “regular”.

To discuss the property “geometrically integral” we make the following

Definition 2.2.10. Let K/k be a field extension. We say that

(a) k is algebraically closed in K if {f ∈ K : f is algebraic over k} = k.

(b) K is separable over k if for every field extension L/k the tensor product K ⊗k L is
a reduced ring.

Proposition 2.2.11 If k is perfect (that is, if every finite field extension of k is separable)
then every field extension K/k is separable in the sense of Definition 2.2.10(b).

Proof. [Bos, §7.3, Korollar 7].

Proposition 2.2.12. Let X be a k-scheme. Then the following assertions are equivalent.

(a) X is geometrically integral.

(b) For every integral k-scheme Y the product X ×k Y is integral.

(c) X is integral, k(X) is separable over k, and k is algebraically closed in k(X).

(d) There exists an algebraically closed extension Ω of k such that X×kSpec Ω is integral.

(e) For every finite extension L of k the product X ×k SpecL is integral.

This proposition is formulated in [GW, Proposition 5.51]. Their proof includes several
references to [Bou]. Therefore we give a different proof which is based on the following
two lemmas.

Lemma 2.2.13. Let k be a field and let X and Y be two integral k-schemes. Then
k(X) ⊗k k(Y ) is an integral domain if and only if X ×k Y is integral. If this is the case
then k(X ×k Y ) = Quot(k(X)⊗k k(Y )).
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Proof. Consider open subsets ∅ 6= Spec(A) ⊆ X and ∅ 6= Spec(B) ⊆ Y . Then we have
k(X) = Quot(A) and k(Y ) = Quot(B). Moreover, the tensor product A⊗kB is a subring
of Quot(A)⊗k Quot(B) and

Quot(A)⊗k Quot(B) =
(
(Ar {0})⊗ 1

)−1(
1⊗ (B r {0})

)−1
(A⊗k B)

is a localization of A⊗k B.

If A⊗kB is an integral domain then also its localization Quot(A)⊗kQuot(B) is an integral
domain and Quot(A⊗k B) = Quot(Quot(A)⊗k Quot(B)).

Conversely if Quot(A) ⊗k Quot(B) is integral, then its subring A ⊗k B is also integral
and again Quot(A⊗k B) = Quot(Quot(A)⊗k Quot(B)). It remains to show that X ×k Y
is irreducible. We consider the morphism Spec Quot(k(X) ⊗k k(Y )) → X ×k Y which
factors through any open subset Spec(A ⊗k B) ⊂ X ×k Y for A and B as above. The
image of this morphism is a single point η ∈ X ×k Y . That η is the generic point of
X×k Y can be tested locally on all the open sets Spec(A⊗kB). Since the homomorphism
A⊗kB → Quot(k(X)⊗k k(Y )) is injective, η corresponds to the zero ideal in A⊗kB and
is indeed the generic point.

Lemma 2.2.14. Let K/k be a field extension. Then the following assertions are equiva-
lent.

(a) For every field extension L/k the tensor product K ⊗k L is an integral domain.

(b) For every finite field extension L/k the tensor product K⊗kL is an integral domain.

(c) There is an algebraically closed extension Ω/k such that the tensor product K ⊗k Ω
is an integral domain.

(d) K is separable over k and k is algebraically closed in K.

Proof. [Bos, §7.3, Satz 14] proves the equivalence of (a), (b) and (d). Clearly (a) implies
(c). To see that (c) implies (b) we choose a k-imbedding L ↪→ Ω and use that K ⊗k L is
a subring of K ⊗k Ω.

Proof of Proposition 2.2.12. By Lemma 2.2.13 the statements in Proposition 2.2.12 can
be phrased in terms of the integrality of tensor products k(X)⊗k L, where L is arbitrary
in (a), L = k(Y ) in (b), L = Ω in (d), and L is finite over k in (e).

To see that (a) and (b) are equivalent we may take Y = SpecL in (b). Also (a), (c), (d)
and (e) are equivalent by Lemma 2.2.14.

We end this section with an example that was used in the proof of Theorem 2.6.3(c). Let

E and Ẽ be elliptic curves over a perfect field k. Then k(E) and k(Ẽ) are separable over

k by Proposition 2.2.11. Moreover, k is algebraically closed both in k(E) and in k(Ẽ).

Therefore E and Ẽ are geometrically integral over k. Let K := k(E) and K̃ := k(Ẽ).

Then Ẽ ×k E and EK̃ := Spec K̃ ×k E are integral schemes. Let ∅ 6= SpecA ⊂ E be an

open subset. Then Spec(K̃⊗kA) ⊂ EK̃ is open. Therefore, by Lemma 2.2.13 the function

field of Ẽ ×k E is

k(Ẽ ×k E) = Quot(K̃ ⊗k K) = Quot(K̃ ⊗k A)

which by definition equals the function field K̃(EK̃) of EK̃ .

3



References.

[Bos] S. Bosch: Algebra, Springer-Verlag, 2009.

[Bou] N. Bourbaki: Algebra II, Chapters 4–7, Springer-Verlag, Berlin, 2003.
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