Change of the base field

Theorem 2.2.7. Let E be an elliptic curve over a perfect field k, and let K/k be a field
extension. Then Ex = E X Spec K is an elliptic curve over K. Let P € Eg be a
closed point whose image () € E under the projection pry: Ex — E is a closed point of
E and let t be a uniformizing parameter of the discrete valuation ring Op . Then pr*t is
a uniformizing parameter of the discrete valuation ring Og, p.

Proof. We may assume that the curve ' = Vp2(G) is defined by a Weierstrafl equation
G € k[X,Y, Z] with non-zero discriminant A(G). Then Ex = Vp2(G ® 1) is defined by
the Weierstral equation G ® 1 € k[X,Y, Z] ® K = K[X,Y, Z] which is a prime element
of K[X,Y,Z] by Lemma 2.1.6. Therefore Ex is an integral K-scheme of dimension 1,
in other words, a curve. It is proper over K by Blatt 6, Aufgabe 2. The discriminant
of G®1is A(G®1) = A(G) ®1 and hence non-zero. Therefore Ff is normal and by
Theorem 1.9.7 its genus is 1. Since (0:1:0) € Ex(K) we conclude that E is an elliptic
curve over K.

To prove the second part we consider the exact sequence of Op g-modules

00— Opo —1 Opo — K(Q) — 0. (1)

Since FE is of finite type over k and @ is a closed point, the residue field x(Q) is a
finite separable field extension of k. By the Theorem of the Primitive Element we can
write k(Q) = k[T]/(f) for a separable irreducible polynomial f € k[T]. The polynomial
f®1 € k[T| ® K = K[T] may decompose into a product f® 1 = f; ... f. of
irreducible polynomials f; € K[T]. But the f; are pairwise relatively prime in K77,
because if f; and f; have non-trivial greatest common divisor h, then all zeros « of h in
an algebraic closure K¢ of K are zeros of both f; and f; and hence are multiple zeros of
f in contradiction to the separability of f. Then the Chinese Remainder Theorem implies
that x(Q) @, K = K[T1/(f®1) = [;_, K[T]/(f:) is a product of fields K; := K[T|/(f:)-

From
Spec k(Q) X x X = Spec k(Q) X x X xSpec K = Spec k(Q) X Spec K = Spec(k(Q)®, K)

we see that the fiber Speck(Q) X x Xk of pry: Xx — X above @ is isomorphic to the
spectrum of [[i_, K;, that is, to the disjoint union of the points Spec K;. One of these
points is the point P € Spec k(Q) X x X C Xk. Let m C k(Q)®; K be the maximal ideal
corresponding to P. The closed immersion Spec x(Q) < Spec Op ¢ induces the closed
immersion ¢: Spec(k(Q) @ K) — Spec(Op g @ K) and we let p := ¢*(m) C Op o®, K
be the prime ideal corresponding to the image of P.

We now tensor equation over k with K. The resulting sequence

(t®1)

0— Opo @ K ———2 Opo @, K — w(Q) &, K — 0

remains exact, because the k-module K is a direct sum of copies of k indexed by a k-basis
of K, and tensoring is compatible with taking direct sums. Localizing at the prime ideal
p of Op o @i K and observing that (Og g ®i K), = Op,.p and (k(Q) ®; K), = k(P) we
obtain the exact sequence

(t®1
O—)OEK7p¥>OEK’p—>K(P) — 0.

This shows that pr*t =t ® 1 generates the maximal ideal of O, p as desired. ]
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Some conclusions of the theorem are true in more generality. To explain this we consider
k-schemes for a fixed field £ which is not necessarily perfect. For a k-scheme X which is
integral we denote by k(X) the function field of X, that is the residue field x(n) at the
generic point n of X.

Definition 2.2.8. A k-scheme X is called geometrically integral if X x,Spec K is integral
for every field extension K /k. One makes the corresponding definition for the properties
irreducible, reduced, normal, reqular instead of integral.

Remark. By taking K = k we see that every geometrically integral k-scheme is integral,
and similarly for the other properties.

Theorem 2.2.9. If k is perfect and X is locally of finite type over k then X is geometri-
cally reduced if and only if X is reduced. The same is true for the properties normal and
reqular.

Proof. [GW, Corollary 5.57] for “reduced” and [EGA| IV,, Proposition 6.7.7] for “normal”
and “regular”. O]

To discuss the property “geometrically integral” we make the following
Definition 2.2.10. Let K/k be a field extension. We say that
(a) k is algebraically closed in K if {f € K: f is algebraic over k} = k.

(b) K is separable over k if for every field extension L/k the tensor product K ®j L is
a reduced ring.

Proposition 2.2.11 If k is perfect (that is, if every finite field extension of k is separable)
then every field extension K/k is separable in the sense of Definition 2.2.10(b).

Proof. [Bosl, §7.3, Korollar 7]. O

Proposition 2.2.12. Let X be a k-scheme. Then the following assertions are equivalent.
(a) X is geometrically integral.
(b) For every integral k-scheme Y the product X XY is integral.
(c) X is integral, k(X) is separable over k, and k is algebraically closed in k(X).
(d) There exists an algebraically closed extension 2 of k such that X X Spec € is integral.
(e) For every finite extension L of k the product X Xy Spec L is integral.

This proposition is formulated in [GW, Proposition 5.51]. Their proof includes several
references to [Bou|. Therefore we give a different proof which is based on the following
two lemmas.

Lemma 2.2.13. Let k be a field and let X and Y be two integral k-schemes. Then
E(X) @k k(YY) is an integral domain if and only if X Xy Y is integral. If this is the case
then k(X %, Y) = Quot(k(X) ® k(Y)).



Proof. Consider open subsets () # Spec(A) C X and () # Spec(B) C Y. Then we have
k(X) = Quot(A) and k(Y') = Quot(B). Moreover, the tensor product A®y, B is a subring
of Quot(A) ®; Quot(B) and

Quot(A4) @ Quot(B) = (A~ {0} @1) " (1@ (B~ {0})) (4@ B)

is a localization of A ®;, B.

If A®y B is an integral domain then also its localization Quot(A)®;Quot(B) is an integral
domain and Quot(A ®; B) = Quot(Quot(A) @, Quot(B)).

Conversely if Quot(A) ®; Quot(B) is integral, then its subring A ®; B is also integral
and again Quot(A ®, B) = Quot(Quot(A) ®; Quot(B)). It remains to show that X x;, Y
is irreducible. We consider the morphism Spec Quot(k(X) ®; k(Y)) — X X, Y which
factors through any open subset Spec(A ®; B) C X x; Y for A and B as above. The
image of this morphism is a single point n € X x; Y. That n is the generic point of
X X1 Y can be tested locally on all the open sets Spec(A®y B). Since the homomorphism
A®r B — Quot(k(X)®x k(Y)) is injective, n corresponds to the zero ideal in A ®j B and
is indeed the generic point. O]

Lemma 2.2.14. Let K/k be a field extension. Then the following assertions are equiva-
lent.

(a) For every field extension L/k the tensor product K ®y L is an integral domain.
(b) For every finite field extension L/k the tensor product K ® L is an integral domain.

(c) There is an algebraically closed extension Q2/k such that the tensor product K ®j, Q
15 an integral domain.

(d) K is separable over k and k is algebraically closed in K.

Proof. |Bosl, §7.3, Satz 14] proves the equivalence of (a), (b) and (d). Clearly (a) implies
(c). To see that (c) implies (b) we choose a k-imbedding L — Q and use that K ®, L is
a subring of K ®;, (2. O]

Proof of Proposition 2.2.12. By Lemma 2.2.13 the statements in Proposition 2.2.12 can
be phrased in terms of the integrality of tensor products k(X) ®; L, where L is arbitrary
in (a), L=k(Y) in (b), L = in (d), and L is finite over k in (e).

To see that (a) and (b) are equivalent we may take Y = Spec L in (b). Also (a), (¢), (d)
and (e) are equivalent by Lemma 2.2.14. O

We end this section with an example that was used in the proof of Theorem 2.6.3(c). Let
E and E be elliptic curves over a perfect field k. Then k(E) and k(E) are separable over
k by Proposition 2.2.11. Moreover, k is algebraically closed both in k(E) and in k(E).
Therefore E and E are geometrically integral over k. Let K := k(E) and K = k(E).
Then E xj, E and Er = SpecK X E are integral schemes. Let () # Spec A C E be an
open subset. Then Spec(K ®rA) C Ej is open. Therefore, by Lemma 2.2.13 the function
field of E x, E is

k(E x), E) = Quot(K @, K) = Quot(K @ A)

which by definition equals the function field K (E =) of E.
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