Change of the base field

Theorem 2.2.7. Let E be an elliptic curve over a perfect field k, and let K/k be a field extension. Then $E_K := E \times_k \operatorname{Spec} K$ is an elliptic curve over K. Let $P \in E_K$ be a closed point whose image $Q \in E$ under the projection $\operatorname{pr}_E : E_K \to E$ is a closed point of E and let t be a uniformizing parameter of the discrete valuation ring $\mathcal{O}_{E,Q}$. Then $\operatorname{pr}^* t$ is a uniformizing parameter of the discrete valuation ring $\mathcal{O}_{E,Q}$.

Proof. We may assume that the curve $E = V_{\mathbb{P}^2}(G)$ is defined by a Weierstraß equation $G \in k[X, Y, Z]$ with non-zero discriminant $\Delta(G)$. Then $E_K = V_{\mathbb{P}^2}(G \otimes 1)$ is defined by the Weierstraß equation $G \otimes 1 \in k[X, Y, Z] \otimes_k K = K[X, Y, Z]$ which is a prime element of K[X, Y, Z] by Lemma 2.1.6. Therefore E_K is an integral K-scheme of dimension 1, in other words, a curve. It is proper over K by Blatt 6, Aufgabe 2. The discriminant of $G \otimes 1$ is $\Delta(G \otimes 1) = \Delta(G) \otimes 1$ and hence non-zero. Therefore E_K is normal and by Theorem 1.9.7 its genus is 1. Since $(0:1:0) \in E_K(K)$ we conclude that E_K is an elliptic curve over K.

To prove the second part we consider the exact sequence of $\mathcal{O}_{E,Q}$ -modules

$$0 \longrightarrow \mathcal{O}_{E,Q} \xrightarrow{\cdot t} \mathcal{O}_{E,Q} \longrightarrow \kappa(Q) \longrightarrow 0.$$
(1)

Since E is of finite type over k and Q is a closed point, the residue field $\kappa(Q)$ is a finite separable field extension of k. By the Theorem of the Primitive Element we can write $\kappa(Q) = k[T]/(f)$ for a separable irreducible polynomial $f \in k[T]$. The polynomial $f \otimes 1 \in k[T] \otimes_k K = K[T]$ may decompose into a product $f \otimes 1 = f_1 \cdot \ldots \cdot f_r$ of irreducible polynomials $f_i \in K[T]$. But the f_i are pairwise relatively prime in K[T], because if f_i and f_j have non-trivial greatest common divisor h, then all zeros α of h in an algebraic closure K^{alg} of K are zeros of both f_i and f_j and hence are multiple zeros of f in contradiction to the separability of f. Then the Chinese Remainder Theorem implies that $\kappa(Q) \otimes_k K \cong K[T]/(f \otimes 1) \cong \prod_{i=1}^r K[T]/(f_i)$ is a product of fields $K_i := K[T]/(f_i)$. From

$$\operatorname{Spec} \kappa(Q) \times_X X_K = \operatorname{Spec} \kappa(Q) \times_X X \times_k \operatorname{Spec} K = \operatorname{Spec} \kappa(Q) \times_k \operatorname{Spec} K = \operatorname{Spec} (\kappa(Q) \otimes_k K)$$

we see that the fiber $\operatorname{Spec} \kappa(Q) \times_X X_K$ of $\operatorname{pr}_X \colon X_K \to X$ above Q is isomorphic to the spectrum of $\prod_{i=1}^r K_i$, that is, to the disjoint union of the points $\operatorname{Spec} K_i$. One of these points is the point $P \in \operatorname{Spec} \kappa(Q) \times_X X_K \subset X_K$. Let $\mathfrak{m} \subset \kappa(Q) \otimes_k K$ be the maximal ideal corresponding to P. The closed immersion $\operatorname{Spec} \kappa(Q) \hookrightarrow \operatorname{Spec} \mathcal{O}_{E,Q}$ induces the closed immersion $\varphi \colon \operatorname{Spec}(\kappa(Q) \otimes_k K) \hookrightarrow \operatorname{Spec}(\mathcal{O}_{E,Q} \otimes_k K)$ and we let $\mathfrak{p} := \varphi^*(\mathfrak{m}) \subset \mathcal{O}_{E,Q} \otimes_k K$ be the prime ideal corresponding to the image of P.

We now tensor equation (1) over k with K. The resulting sequence

$$0 \longrightarrow \mathcal{O}_{E,Q} \otimes_k K \xrightarrow{\cdot (t \otimes 1)} \mathcal{O}_{E,Q} \otimes_k K \longrightarrow \kappa(Q) \otimes_k K \longrightarrow 0$$

remains exact, because the k-module K is a direct sum of copies of k indexed by a k-basis of K, and tensoring is compatible with taking direct sums. Localizing at the prime ideal \mathfrak{p} of $\mathcal{O}_{E,Q} \otimes_k K$ and observing that $(\mathcal{O}_{E,Q} \otimes_k K)_{\mathfrak{p}} = \mathcal{O}_{E_K,P}$ and $(\kappa(Q) \otimes_k K)_{\mathfrak{p}} = \kappa(P)$ we obtain the exact sequence

$$0 \longrightarrow \mathcal{O}_{E_K,P} \xrightarrow{\cdot (t \otimes 1)} \mathcal{O}_{E_K,P} \longrightarrow \kappa(P) \longrightarrow 0.$$

This shows that $\operatorname{pr}^* t = t \otimes 1$ generates the maximal ideal of $\mathcal{O}_{E_K,P}$ as desired.

Some conclusions of the theorem are true in more generality. To explain this we consider k-schemes for a fixed field k which is not necessarily perfect. For a k-scheme X which is integral we denote by k(X) the function field of X, that is the residue field $\kappa(\eta)$ at the generic point η of X.

Definition 2.2.8. A k-scheme X is called *geometrically integral* if $X \times_k \text{Spec } K$ is integral for every field extension K/k. One makes the corresponding definition for the properties *irreducible, reduced, normal, regular* instead of integral.

Remark. By taking K = k we see that every geometrically integral k-scheme is integral, and similarly for the other properties.

Theorem 2.2.9. If k is perfect and X is locally of finite type over k then X is geometrically reduced if and only if X is reduced. The same is true for the properties normal and regular.

Proof. [GW, Corollary 5.57] for "reduced" and [EGA, IV₂, Proposition 6.7.7] for "normal" and "regular". \Box

To discuss the property "geometrically integral" we make the following

Definition 2.2.10. Let K/k be a field extension. We say that

- (a) k is algebraically closed in K if $\{f \in K : f \text{ is algebraic over } k\} = k$.
- (b) K is separable over k if for every field extension L/k the tensor product $K \otimes_k L$ is a reduced ring.

Proposition 2.2.11 If k is perfect (that is, if every finite field extension of k is separable) then every field extension K/k is separable in the sense of Definition 2.2.10(b).

Proof. [Bos, §7.3, Korollar 7].

Proposition 2.2.12. Let X be a k-scheme. Then the following assertions are equivalent.

- (a) X is geometrically integral.
- (b) For every integral k-scheme Y the product $X \times_k Y$ is integral.
- (c) X is integral, k(X) is separable over k, and k is algebraically closed in k(X).
- (d) There exists an algebraically closed extension Ω of k such that $X \times_k \operatorname{Spec} \Omega$ is integral.
- (e) For every finite extension L of k the product $X \times_k \text{Spec } L$ is integral.

This proposition is formulated in [GW, Proposition 5.51]. Their proof includes several references to [Bou]. Therefore we give a different proof which is based on the following two lemmas.

Lemma 2.2.13. Let k be a field and let X and Y be two integral k-schemes. Then $k(X) \otimes_k k(Y)$ is an integral domain if and only if $X \times_k Y$ is integral. If this is the case then $k(X \times_k Y) = \text{Quot}(k(X) \otimes_k k(Y))$.

Proof. Consider open subsets $\emptyset \neq \text{Spec}(A) \subseteq X$ and $\emptyset \neq \text{Spec}(B) \subseteq Y$. Then we have k(X) = Quot(A) and k(Y) = Quot(B). Moreover, the tensor product $A \otimes_k B$ is a subring of $\text{Quot}(A) \otimes_k \text{Quot}(B)$ and

 $\operatorname{Quot}(A) \otimes_k \operatorname{Quot}(B) = \left((A \smallsetminus \{0\}) \otimes 1 \right)^{-1} \left(1 \otimes (B \smallsetminus \{0\}) \right)^{-1} (A \otimes_k B)$

is a localization of $A \otimes_k B$.

If $A \otimes_k B$ is an integral domain then also its localization $\operatorname{Quot}(A) \otimes_k \operatorname{Quot}(B)$ is an integral domain and $\operatorname{Quot}(A \otimes_k B) = \operatorname{Quot}(\operatorname{Quot}(A) \otimes_k \operatorname{Quot}(B))$.

Conversely if $\operatorname{Quot}(A) \otimes_k \operatorname{Quot}(B)$ is integral, then its subring $A \otimes_k B$ is also integral and again $\operatorname{Quot}(A \otimes_k B) = \operatorname{Quot}(\operatorname{Quot}(A) \otimes_k \operatorname{Quot}(B))$. It remains to show that $X \times_k Y$ is irreducible. We consider the morphism $\operatorname{Spec} \operatorname{Quot}(k(X) \otimes_k k(Y)) \to X \times_k Y$ which factors through any open subset $\operatorname{Spec}(A \otimes_k B) \subset X \times_k Y$ for A and B as above. The image of this morphism is a single point $\eta \in X \times_k Y$. That η is the generic point of $X \times_k Y$ can be tested locally on all the open sets $\operatorname{Spec}(A \otimes_k B)$. Since the homomorphism $A \otimes_k B \to \operatorname{Quot}(k(X) \otimes_k k(Y))$ is injective, η corresponds to the zero ideal in $A \otimes_k B$ and is indeed the generic point. \Box

Lemma 2.2.14. Let K/k be a field extension. Then the following assertions are equivalent.

- (a) For every field extension L/k the tensor product $K \otimes_k L$ is an integral domain.
- (b) For every finite field extension L/k the tensor product $K \otimes_k L$ is an integral domain.
- (c) There is an algebraically closed extension Ω/k such that the tensor product $K \otimes_k \Omega$ is an integral domain.
- (d) K is separable over k and k is algebraically closed in K.

Proof. [Bos, §7.3, Satz 14] proves the equivalence of (a), (b) and (d). Clearly (a) implies (c). To see that (c) implies (b) we choose a k-imbedding $L \hookrightarrow \Omega$ and use that $K \otimes_k L$ is a subring of $K \otimes_k \Omega$.

Proof of Proposition 2.2.12. By Lemma 2.2.13 the statements in Proposition 2.2.12 can be phrased in terms of the integrality of tensor products $k(X) \otimes_k L$, where L is arbitrary in (a), L = k(Y) in (b), $L = \Omega$ in (d), and L is finite over k in (e).

To see that (a) and (b) are equivalent we may take $Y = \operatorname{Spec} L$ in (b). Also (a), (c), (d) and (e) are equivalent by Lemma 2.2.14.

We end this section with an example that was used in the proof of Theorem 2.6.3(c). Let E and \tilde{E} be elliptic curves over a perfect field k. Then k(E) and $k(\tilde{E})$ are separable over k by Proposition 2.2.11. Moreover, k is algebraically closed both in k(E) and in $k(\tilde{E})$. Therefore E and \tilde{E} are geometrically integral over k. Let K := k(E) and $\tilde{K} := k(\tilde{E})$. Then $\tilde{E} \times_k E$ and $E_{\tilde{K}} := \operatorname{Spec} \tilde{K} \times_k E$ are integral schemes. Let $\emptyset \neq \operatorname{Spec} A \subset E$ be an open subset. Then $\operatorname{Spec}(\tilde{K} \otimes_k A) \subset E_{\tilde{K}}$ is open. Therefore, by Lemma 2.2.13 the function field of $\tilde{E} \times_k E$ is

$$k(\widetilde{E} \times_k E) = \operatorname{Quot}(\widetilde{K} \otimes_k K) = \operatorname{Quot}(\widetilde{K} \otimes_k A)$$

which by definition equals the function field $\widetilde{K}(E_{\widetilde{K}})$ of $E_{\widetilde{K}}$.

References.

- [Bos] S. Bosch: Algebra, Springer-Verlag, 2009.
- [Bou] N. Bourbaki: Algebra II, Chapters 4–7, Springer-Verlag, Berlin, 2003.
- [EGA] A. Grothendieck: Élements de Géométrie Algébrique, Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32, Bures-Sur-Yvette, 1960–1967; see also Grundlehren 166, Springer-Verlag, Berlin etc. 1971.
- [GW] U. Görtz, T. Wedhorn: Algebraic Geometry, Part I: Schemes, Vieweg + Teubner, Wiesbaden, 2010.