Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 1

Due date: Monday, 15.10.12 at 12 noon

- 1. Let X, Y be topological spaces. We write hom(X, Y) for the set of morphims, i.e. continuous maps $X \to Y$.
 - (a) Prove that $\underline{\text{hom}}(X, Y)(U) := \text{hom}(U, Y)$ defines a sheaf of sets $\underline{\text{hom}}(X, Y)$ on X.
 - (b) Prove the corresponding statement for morphisms between locally ringed spaces.

Hint. This just means that one can glue morphisms between topological spaces, respectively between locally ringed spaces.

(4 Punkte)

- 2. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism between sheaves of sets on a topological space X. Prove the following statements:
 - (a) The maps on stalks $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ are injective for all $x \in X$ if and only if the maps $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ are injective for all open subsets $U \subseteq X$.
 - (b) The corresponding statement with "bijective" instead of "injective" is also true.
 - (c) The corresponding statement with "surjective" instead of "injective" is *false*. For this consider the sheaf $\mathcal{F} = \underline{\mathrm{hom}}(\mathbb{C}, \mathbb{C} \setminus \{0\})$ from exercise 1 and the homomorphism $\varphi : \mathcal{F} \to \mathcal{F}, f \mapsto f^2$.

(6 Punkte)

- 3. Let X be a topological space. Set $C_X := \underline{\hom}(X, \mathbb{R})$.
 - (a) Prove that (X, C_X) is a locally ringed space.
 - (b) To any continuous map $X \to Y$ construct a morphism of locally ringed spaces $(Y, C_Y) \to (X, C_X)$.
 - (c) \star Do all morphisms $(Y, C_Y) \to (X, C_X)$ arise in this way?

 $(4+2^{\star} Punkte)$

4. Let p be a prime. Describe the spectrum $\operatorname{Spec}(\mathbb{Z}_{(p)})$ as a topological space.

(2 Punkte)