Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 4

Due date: Monday, 5.11.12 at 12 noon

1. Let R be a PID. Write down all the prime ideals of R[X] explicitly. For that purpose compute all the fibers of the natural morphism $\mathbb{A}^1_R \to \operatorname{Spec}(R)$.

(4 points)

- 2. Consider the morphism $f : \operatorname{Spec}(\mathbb{Z}[i]) \to \operatorname{Spec}(\mathbb{Z})$.
 - (a) Prove that f is finite.
 - (b) Compute the fibers of f. Count their elements and describe these as prime ideals explicitly. Which fibers are reduced?

You may use without proof that $X^2 + 1 \in \mathbb{F}_p[X]$ for a prime p is reducible if and only if p = 2 or $p \equiv 3 \pmod{4}$.

(4 points)

- 3. Let \mathcal{P} be one of the properties finite / of finite type / locally of finite type. Prove that \mathcal{P} is stable under composition and base change, i.e.:
 - (a) When two morphisms $f : X \to Y$ and $g : Y \to Z$ satisfy \mathcal{P} , then the same is true for $g \circ f : X \to Z$.
 - (b) Let $\pi : S' \to S$ be a morphism. If a morphism $f : X \to S$ satisfies \mathcal{P} , then so does the projection $p_2 : X \times_S S' \to S'$.

Hint. First deal with the case that all schemes are affine.

(4 points)

- 4. The *n*-dimensional affine space over an arbitrary scheme S is defined to be the S-scheme $\mathbb{A}^n_S := \mathbb{A}^n_{\mathbb{Z}} \times_{\operatorname{Spec}(\mathbb{Z})} S$.
 - (a) Prove that $\mathbb{A}^n_S \times_S \mathbb{A}^m_S \cong \mathbb{A}^{n+m}_S$.
 - (b) Is the projection $p : \mathbb{A}^n_S \to S$ of finite type, or even finite?
 - (c) \star Prove: When S is an integral scheme, then so is \mathbb{A}^n_S .

 $(4+2^{\star} points)$

5. * Let k be an algebraically closed field and $n \ge 2$. The morphism of varieties $\mathbb{P}^1(k) \to \mathbb{P}^1(k), (x : y) \mapsto (x^n : y^n)$ induces a finite morphism of schemes $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$. Describe the fibers of f.

 $(4^{\star} points)$