Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 5

Due date: Monday, 12.11.12 at 12 noon

- 1. Which elements of $\mathbb{Q}[\sqrt{5}]$ are integral over \mathbb{Z} ? (4 points)
- 2. Let k be a field and $n \ge 1$.
 - (a) Prove that \mathbb{P}_k^n is proper over k.
 - (b) Is \mathbb{A}^n_k proper over k?

Hint. You can use the valuative criterion.

3. Let G be a group scheme over a field k and $n \in \mathbb{N}$.

- (a) Prove that for every k-scheme T the set $\hom_k(T, G)$ is endowed with a natural group structure. *Remark:* This is the only way how to produce an ordinary group out of a group scheme.
- (b) Determine these groups in the cases $G = \mathbb{G}_a, \mathbb{G}_m, \mu_n$ explicitly.
- (c) \star Find an affine group scheme G over k with the following property: For every k-algebra A we have $\hom_k(\operatorname{Spec}(A), G) \cong \operatorname{GL}_n(A)$. *Remark:* Because of this property one writes $G = \operatorname{GL}_n$.

 $(4+2^{\star} points)$

(4 points)

4. Let G be an ordinary group. Endow the scheme $(G)_k := \coprod_{g \in G} \operatorname{Spec}(k)$ with the structure of a group scheme over k. Then determine the group $\hom_k(T, (G)_k)$, when T is a connected k-scheme.

(4 points)