Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 7

Due date: Monday, 26.11.12 at 12 noon

- 1. Let X, Y be integral schemes with generic points η_X resp. η_Y . A morphism $f: X \to Y$ is called *dominant* when the image $f(X) \subseteq Y$ is dense. Prove that the following assertions are equivalent:
 - (a) The morphism f is dominant.
 - (b) For open subsets $V \subseteq Y$, $\emptyset \neq U \subseteq f^{-1}(V)$ the ring map $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$ is injective.
 - (c) We have $f(\eta_X) = \eta_Y$.
 - (d) We have $\eta_Y \in f(X)$. (4 points)

In the following exercises k will be a field.

- 2. Let $A = k[x, y]/(y^2 x^3)$ and X = Spec(A) be Neil's parabola. You already know from AG1 that $A = k[t^2, t^3] \subseteq k[t]$, where $t = \frac{y}{x}$. Determine
 - (a) the normalization $\pi: \tilde{X} \to X$;
 - (b) the fiber of π over the singular point $(x, y) \in X$.
 - (c) \star Illustrate (a) and (b) by a picture.

 $(4+1^* points)$

3. Given $d \in \mathbb{N}$, find a morphism $\mathbb{P}^1_k \to \mathbb{P}^1_k$ of degree d.

(4 points)

- 4. Let k be an algebraically closed field of characteristic $\neq 2,3$ and consider $K := k(x)[y]/(y^2 x^3 x).$
 - (a) Prove that K/k is a finitely generated field extension with transcendence degree equal to 1.
 - (b) Find the corresponding normal proper curve C/k with k(C) = K. Hint. Prove normality using the Jacobi matrix (AG1, Def. 4.1.1) on both affine charts.
 - (c) Describe the morphism $C \to \mathbb{P}^1_k$ on closed points, which corresponds to the inclusion $k(x) \hookrightarrow K$.

(4 points)