Homework sheet 8

Due date: Monday, 3.12.12 at 12 noon

1. Let p be a prime number and $k=\mathbb{F}_{p}$. Find the relative Frobenius morphism $X \rightarrow X^{(p)}$ for:
(a) $X=\mathbb{A}_{k}^{n}$
(b) $X=\mathbb{P}_{k}^{n}$
(c) $X=\operatorname{Spec}(k(t))$

Let k be a field. For a homogeneous ideal $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ let $V_{\mathbb{P}^{n}}(I) \subseteq \mathbb{P}_{k}^{n}$ be the corresponding projective k-scheme (from Example 1.2.13).
In the following exercises k is assumed to be algebraically closed.
2. Let $d \in \mathbb{N}$ satisfy $d \in k^{*}$. Consider the fermat curve $X=V_{\mathbb{P}^{2}}\left(x^{d}+y^{d}-z^{d}\right)$. Let $\varphi: X \rightarrow \mathbb{P}^{1}$ be the morphism which is given on the function fields by $k\left(\mathbb{P}^{1}\right)=k(t) \rightarrow k(X), t \mapsto \frac{y}{z}$. Find the degree, the ramification points as all as the ramification indices of φ.
Hint. First compute φ over the two affine charts of \mathbb{P}^{1} and use the solution to exercise 4 , sheet 6 .
3. Let $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be the morphism corresponding to the homomorphism of function fields $\varphi^{*}: k\left(\mathbb{P}^{1}\right)=k(t) \rightarrow k(x)=k\left(\mathbb{P}^{1}\right), t \mapsto x^{2}(x+1)^{2}$. Find the degree, the ramification points as all as the ramification indices of φ. Is φ separable?

