Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 8

Due date: Monday, 3.12.12 at 12 noon

- 1. Let p be a prime number and $k = \mathbb{F}_p$. Find the relative Frobenius morphism $X \to X^{(p)}$ for:
 - (a) $X = \mathbb{A}_k^n$
 - (b) $X = \mathbb{P}_k^n$
 - (c) $X = \operatorname{Spec}(k(t))$

(4 points)

Let k be a field. For a homogeneous ideal $I \subseteq k[x_0, \ldots, x_n]$ let $V_{\mathbb{P}^n}(I) \subseteq \mathbb{P}^n_k$ be the corresponding projective k-scheme (from Example 1.2.13). In the following exercises k is assumed to be algebraically closed.

2. Let $d \in \mathbb{N}$ satisfy $d \in k^*$. Consider the fermat curve $X = V_{\mathbb{P}^2}(x^d + y^d - z^d)$. Let $\varphi : X \to \mathbb{P}^1$ be the morphism which is given on the function fields by $k(\mathbb{P}^1) = k(t) \to k(X), t \mapsto \frac{y}{z}$. Find the degree, the ramification points as all as the ramification indices of φ .

Hint. First compute φ over the two affine charts of \mathbb{P}^1 and use the solution to exercise 4, sheet 6.

(4 points)

3. Let $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ be the morphism corresponding to the homomorphism of function fields $\varphi^* : k(\mathbb{P}^1) = k(t) \to k(x) = k(\mathbb{P}^1), t \mapsto x^2(x+1)^2$. Find the degree, the ramification points as all as the ramification indices of φ . Is φ separable?

(4 points)