Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 9

Due date: Monday, 10.12.12 at 12 noon

1. Let k be an algebraically closed field of characteristic $\neq 2, 3$. Consider the curve $C = V_{\mathbb{P}^2}(Y^2Z - X^3 - X^2Z - Z^3)$ from Example 1.7.13 with function field $k(C) = k(y)[x]/(x^3 + x^2 + 1 - y^2)$. Compute div(y).

(4 points)

- 2. Let C be a normal proper curve over k.
 - (a) Construct a homomorphism of abelian groups deg : $\operatorname{Cl}(C) \to \mathbb{Z}$ with kernel $\operatorname{Cl}^0(C)$.
 - (b) Prove that deg : $Cl(\mathbb{P}^1) \to \mathbb{Z}$ is an isomorphism.
 - (c) In case that k is algebraically closed, prove that deg : $Cl(C) \rightarrow \mathbb{Z}$ is surjective. (4 points)
- 3. Prove the converse of Exercise 2: If k is algebraically closed and C is a normal proper curve over k such that deg : $\operatorname{Cl}(C) \to \mathbb{Z}$ is an isomorphism, then $C \cong \mathbb{P}^1$.

Hint. For two closed points $P, Q \in C$ there is some $\varphi \in k(C)$ such that $(P) - (Q) = \operatorname{div}(\varphi)$.

(4 points)

4. Analoguous to Definition 1.8.8. one can define for an A-algebra B the Bmodule $\Omega_{B/A}$ with generators d(b) for $b \in B$ and relations d(a) = 0 for $a \in A$ and d(b+b') = d(b) + d(b'), $d(b \cdot b') = b \cdot d(b') + b' \cdot d(b)$ for $b, b' \in B$.

Prove the following: When $B = A[x_1, \ldots, x_n]$, then $\Omega_{B/A}$ is a free *B*-module of rank *n*. Write down a basis explicitly.

Remark. The corresponding geometric statement is: The tangent bundle of the scheme \mathbb{A}^n is trivial. As for the manifold \mathbb{R}^n .

(4 points)