Prof. Dr. Urs Hartl

Homework sheet 9

Due date: Monday, 10.12.12 at 12 noon

1. Let k be an algebraically closed field of characteristic $\neq 2,3$. Consider the curve $C=V_{\mathrm{P}^{2}}\left(Y^{2} Z-X^{3}-X^{2} Z-Z^{3}\right)$ from Example 1.7.13 with function field $k(C)=k(y)[x] /\left(x^{3}+x^{2}+1-y^{2}\right)$. Compute $\operatorname{div}(y)$.
(4 points)
2. Let C be a normal proper curve over k.
(a) Construct a homomorphism of abelian groups deg: $\mathrm{Cl}(C) \rightarrow \mathbb{Z}$ with kernel $\mathrm{Cl}^{0}(C)$.
(b) Prove that deg: $\mathrm{Cl}\left(\mathbb{P}^{1}\right) \rightarrow \mathbb{Z}$ is an isomorphism.
(c) In case that k is algebraically closed, prove that $\operatorname{deg}: \mathrm{Cl}(C) \rightarrow \mathbb{Z}$ is surjective.
3. Prove the converse of Exercise 2: If k is algebraically closed and C is a normal proper curve over k such that deg : $\mathrm{Cl}(C) \rightarrow \mathbb{Z}$ is an isomorphism, then $C \cong \mathbb{P}^{1}$.
Hint. For two closed points $P, Q \in C$ there is some $\varphi \in k(C)$ such that $(P)-(Q)=\operatorname{div}(\varphi)$.
4. Analoguous to Definition 1.8.8. one can define for an A-algebra B the B module $\Omega_{B / A}$ with generators $d(b)$ for $b \in B$ and relations $d(a)=0$ for $a \in A$ and $d\left(b+b^{\prime}\right)=d(b)+d\left(b^{\prime}\right), d\left(b \cdot b^{\prime}\right)=b \cdot d\left(b^{\prime}\right)+b^{\prime} \cdot d(b)$ for $b, b^{\prime} \in B$.
Prove the following: When $B=A\left[x_{1}, \ldots, x_{n}\right]$, then $\Omega_{B / A}$ is a free B-module of rank n. Write down a basis explicitly.
Remark. The corresponding geometric statement is: The tangent bundle of the scheme \mathbb{A}^{n} is trivial. As for the manifold \mathbb{R}^{n}.
