Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 10

Due date: Monday, 17.12.12 at 12 noon

1. Let C be a normal proper curve over k and $D \in \text{Div}(C)$. For $U = \emptyset$ define $\mathcal{O}_C(D)(U) = \{0\}$ and for $\emptyset \neq U \subseteq C$ open define

 $\mathcal{O}_C(D)(U) := \{ f \in k(C)^* : \forall P \in U : \operatorname{ord}_P(f) + \operatorname{ord}_P(D) \ge 0 \} \cup \{ 0 \}.$

- (a) Prove that $\mathcal{O}_C(D)$ is a sheaf of abelian groups on C with the property $\mathcal{O}_C(D)(C) = \mathcal{L}(D)$.
- (b) In fact $\mathcal{O}_C(D)$ is an \mathcal{O}_C -module, i.e. for all $U \subseteq C$ open $\mathcal{O}_C(D)(U)$ is an $\mathcal{O}_C(U)$ -module and the restriction maps are linear.

(4 points)

2. Let k be an algebraically closed field and $d \in \mathbb{N}$ such that $d \in k^*$. Find a canonical divisor on the Fermat curve $V_{\mathbb{P}^2}(x^d + y^d - z^d)$.

(4 points)

3. Prove the Theorem of Riemann-Roch for \mathbb{P}^1_k directly: For all $D \in \text{Div}(\mathbb{P}^1_k)$ it holds $\ell(D) - \ell(K - D) = \deg(D) + 1 - g$, where g = 0 and K = -2(1:0) is the canonical divisor.

Hint. For $D = \sum_{i} m_i \cdot (P_i)$ with $P_i = (f_i) \in \operatorname{Spec} k[t] = \mathbb{P}_k^1 \setminus \{(1 : 0)\}$ the multiplication with $\prod_i f_i^{m_i}$ is a k-linear isomorphism between $\mathcal{L}(D)$ und $\{f \in k[t] : \deg(f) \leq \deg(D)\}$

(4 points)

4. \star Let C be a normal proper curve over $k = k^{\text{alg}}$ of genus 0. Prove that $C \cong \mathbb{P}^1_k$. Do you know an analoguous statement about 1-dimensional manifolds?

Hint. Use the Theorem of Riemann-Roch applied to the divisor (P), where $P \in C$ is a closed point.

 $(4^{\star} points)$