Homework sheet 10

Due date: Monday, 17.12.12 at 12 noon

1. Let C be a normal proper curve over k and $D \in \operatorname{Div}(C)$. For $U=\emptyset$ define $\mathcal{O}_{C}(D)(U)=\{0\}$ and for $\emptyset \neq U \subseteq C$ open define

$$
\mathcal{O}_{C}(D)(U):=\left\{f \in k(C)^{*}: \forall P \in U: \operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(D) \geq 0\right\} \cup\{0\} .
$$

(a) Prove that $\mathcal{O}_{C}(D)$ is a sheaf of abelian groups on C with the property $\mathcal{O}_{C}(D)(C)=\mathcal{L}(D)$.
(b) In fact $\mathcal{O}_{C}(D)$ is an \mathcal{O}_{C}-module, i.e. for all $U \subseteq C$ open $\mathcal{O}_{C}(D)(U)$ is an $\mathcal{O}_{C}(U)$-module and the restriction maps are linear.
2. Let k be an algebraically closed field and $d \in \mathbb{N}$ such that $d \in k^{*}$. Find a canonical divisor on the Fermat curve $V_{\mathbb{P}^{2}}\left(x^{d}+y^{d}-z^{d}\right)$.
3. Prove the Theorem of Riemann-Roch for \mathbb{P}_{k}^{1} directly: For all $D \in \operatorname{Div}\left(\mathbb{P}_{k}^{1}\right)$ it holds $\ell(D)-\ell(K-D)=\operatorname{deg}(D)+1-g$, where $g=0$ and $K=-2(1: 0)$ is the canonical divisor.
Hint. For $D=\sum_{i} m_{i} \cdot\left(P_{i}\right)$ with $P_{i}=\left(f_{i}\right) \in \operatorname{Spec} k[t]=\mathbb{P}_{k}^{1} \backslash\{(1: 0)\}$ the multiplication with $\prod_{i} f_{i}^{m_{i}}$ is a k-linear isomorphism between $\mathcal{L}(D)$ und $\{f \in k[t]: \operatorname{deg}(f) \leq \operatorname{deg}(D)\}$
4. \star Let C be a normal proper curve over $k=k^{\text {alg }}$ of genus 0 . Prove that $C \cong \mathbb{P}_{k}^{1}$. Do you know an analoguous statement about 1-dimensional manifolds?
Hint. Use the Theorem of Riemann-Roch applied to the divisor (P), where $P \in C$ is a closed point.

