Homework sheet 11

Due date: Monday, 7.1.13 at 12 noon

1. Assume $\operatorname{char}(k) \neq 2$. Let $e_{1}, e_{2}, e_{3} \in k$ be pairwise distinct. The projective curve $V_{\mathbb{P}^{2}}\left(Y^{2} Z-\left(X-e_{1} Z\right)\left(X-e_{2} Z\right)\left(X-e_{3} Z\right)\right)$ is normal (you do not have to prove this). Compute for $i=1,2,3$ the principal divisors $\operatorname{div}\left(\frac{X}{Z}-e_{i}\right)$ and $\operatorname{div}\left(\frac{Y}{Z}\right)$, as well as the divisors $\operatorname{div}\left(d \frac{X}{Z}\right)$ and $\operatorname{div}\left(\frac{Z}{Y} d \frac{X}{Z}\right)$.
2. Let $C \subseteq \mathbb{P}_{k}^{2}$ be a curve in Weierstraß normal form over a perfect field k of characteristic 2. Prove that the discriminant Δ vanishes if and only if C is singular. In that case there is only one singular point, which lies in $C(k)$. Hint. In the case $a_{1} \neq 0$ one can assume $a_{3}=a_{4}=0$ after some change of coordinates.
3. Let C be a normal proper curve over k of genus $g=2$. Prove that there is a surjective separable morphism $C \rightarrow \mathbb{P}_{k}^{1}$ of degree 2. Deduce that $k(C) / k(t)$ is a Galois extension of degree 2. Hint. First prove that there is some divisor $D \geq 0$ with $\operatorname{deg}(D)=\ell(D)=2$.
4. \star The genus of a finitely generated field extension K / k of transcendence degree 1 with $\{f \in K: f$ is algebraic over $k\}=k$ is defined as the genus of the corresponding normal proper curve C / k with $k(C)=K$. Assume $\operatorname{char}(k) \neq 2$. What is the genus of $k(x)[y] /\left(y^{2}+x^{4}-1\right)$?

