Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 11

Due date: Monday, 7.1.13 at 12 noon

1. Assume char(k) $\neq 2$. Let $e_1, e_2, e_3 \in k$ be pairwise distinct. The projective curve $V_{\mathbb{P}^2}(Y^2Z - (X - e_1Z)(X - e_2Z)(X - e_3Z))$ is normal (you do not have to prove this). Compute for i = 1, 2, 3 the principal divisors div $\left(\frac{X}{Z} - e_i\right)$ and div $\left(\frac{Y}{Z}\right)$, as well as the divisors div $\left(\frac{dX}{Z}\right)$ and div $\left(\frac{Z}{Y} d\frac{X}{Z}\right)$.

(4 points)

2. Let $C \subseteq \mathbb{P}^2_k$ be a curve in Weierstraß normal form over a perfect field k of characteristic 2. Prove that the discriminant Δ vanishes if and only if C is singular. In that case there is only one singular point, which lies in C(k). *Hint*. In the case $a_1 \neq 0$ one can assume $a_3 = a_4 = 0$ after some change of coordinates.

(4 points)

3. Let C be a normal proper curve over k of genus g = 2. Prove that there is a surjective separable morphism $C \to \mathbb{P}^1_k$ of degree 2. Deduce that k(C)/k(t)is a Galois extension of degree 2. *Hint*. First prove that there is some divisor $D \ge 0$ with $\deg(D) = \ell(D) = 2$.

(4 points)

4. * The genus of a finitely generated field extension K/k of transcendence degree 1 with $\{f \in K: f \text{ is algebraic over } k\} = k$ is defined as the genus of the corresponding normal proper curve C/k with k(C) = K. Assume char $(k) \neq 2$. What is the genus of $k(x)[y]/(y^2 + x^4 - 1)$?

 $(4^{\star} points)$

