Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 12

Due date: Monday, 14.1.13 at 12 noon

1. Let *E* be an elliptic curve over a perfect field *k* with $char(k) \neq 2, 3$. Without loss of generality *E* is in Weierstraß normal form $y^2 - x^3 - a_4x - a_6 = 0$. Compute the group $Aut_k(E)$ in terms of j(E) and *k*.

(4 points)

- 2. For the following elliptic curves in Weierstraß normal form over k compute the groups E(k) and $\operatorname{Aut}_k(E)$, as well as the numbers $\# \operatorname{Aut}_{k^{\operatorname{alg}}}(E)$ and j(E).
 - (a) $E: y^2 + y x^3 = 0$ over $k = \mathbb{F}_2$. Also Compute $\#E(\mathbb{F}_4)$.
 - (b) $E: y^2 x^3 + x = 0$ over $k = \mathbb{F}_3$.

(4 points)

3. Let *E* be an elliptic curve in Weierstraß normal form over a perfect field *k*. Find an explicit description of the doubling map $[2] : E \to E$ and compute the number of k^{alg} -valued points of its kernel ker $[2] \subseteq E$. Differentiate the cases $\operatorname{char}(k) = 2$ and $\neq 2$.

(4 points)