Homework sheet 12

Due date: Monday, 14.1.13 at 12 noon

1. Let E be an elliptic curve over a perfect field k with $\operatorname{char}(k) \neq 2,3$. Without loss of generality E is in Weierstraß normal form $y^{2}-x^{3}-a_{4} x-a_{6}=0$. Compute the group $\operatorname{Aut}_{k}(E)$ in terms of $j(E)$ and k.
2. For the following elliptic curves in Weierstraß normal form over k compute the groups $E(k)$ and $\operatorname{Aut}_{k}(E)$, as well as the numbers \# $\operatorname{Aut}_{k^{\mathrm{alg}}}(E)$ and $j(E)$.
(a) $E: y^{2}+y-x^{3}=0$ over $k=\mathbb{F}_{2}$. Also Compute $\# E\left(\mathbb{F}_{4}\right)$.
(b) $E: y^{2}-x^{3}+x=0$ over $k=\mathbb{F}_{3}$.
3. Let E be an elliptic curve in Weierstraß normal form over a perfect field k. Find an explicit description of the doubling map $[2]: E \rightarrow E$ and compute the number of $k^{\text {alg }}$-valued points of its kernel $\operatorname{ker}[2] \subseteq E$. Differentiate the cases $\operatorname{char}(k)=2$ and $\neq 2$.
