Homework sheet 13

Due date: Monday, 21.1.13 at 12 noon

1. Let $\operatorname{char}(k) \neq 2$ and let $a, b \in k, \tilde{a}:=-2 a, \tilde{b}:=a^{2}-4 b$ with $b \neq 0, \tilde{b} \neq 0$. Let E and \tilde{E} be given in Weierstraß equations

$$
E: y^{2}=x^{3}+a x^{2}+b x \quad \text { and } \quad \tilde{E}: \tilde{y}^{2}=\tilde{x}^{3}+\tilde{a} \tilde{x}^{2}+\tilde{b} \tilde{x}
$$

Consider the isogenies:

$$
\begin{array}{lll}
\varphi: E \rightarrow \tilde{E}, & \varphi^{*}(\tilde{x})=\frac{y^{2}}{x^{2}}, & \varphi^{*}(\tilde{y})=\frac{y\left(x^{2}-b\right)}{x^{2}} \\
\psi: \tilde{E} \rightarrow E, & \psi^{*}(x)=\frac{\tilde{y}^{2}}{4 \tilde{x}^{2}}, & \psi^{*}(y)=\frac{\tilde{y}\left(\tilde{x}^{2}-\tilde{b}\right)}{8 \tilde{x}^{2}}
\end{array}
$$

(a) Prove that φ and ψ are separable. Hint: $\varphi^{*} \omega \neq 0$.
(b) Determine $\operatorname{ker} \varphi, \operatorname{ker} \psi, \operatorname{deg} \varphi$ as well as $\operatorname{deg} \psi$.
(c) Prove that $\psi \circ \varphi=[2]: E \rightarrow E$ and $\varphi \circ \psi=[2]: \tilde{E} \rightarrow \tilde{E}$.
(d) Let $P \in E\left(k^{\text {alg }}\right)$ with $\varphi(P) \in \operatorname{ker} \psi, \varphi(P) \neq 0$, e.g. $P=(\alpha: 0: 1)$ for $\alpha \in k^{\text {alg }}$ with $\alpha^{2}+\alpha a+b=0$. Prove that

$$
E[2]\left(k^{\mathrm{alg}}\right)=\{0, P\} \oplus \operatorname{ker} \varphi \cong(\mathbb{Z} / 2)^{2} .
$$

2. Find integral group schemes E, E^{\prime} over k with neutral elements $0 \in E(K)$ and $0^{\prime} \in E^{\prime}(k)$, as well as a morphism $\varphi: E \rightarrow E^{\prime}$ of k-schemes, which satisfies $\varphi(0)=0^{\prime}$, but is not a homomorphism of group schemes. Insofar Proposition 2.4.4 is a special property of elliptic curves resp. more generally proper integral group schemes.
(2 points)
3. The elliptic curve E over F_{2} is given by the Weierstraß equation $y^{2}+y=x^{3}+a_{6}$ with $a_{6} \in \mathbb{F}_{2}$.
(a) Prove that $[2]=\varphi \circ \mathrm{Fr}_{4}$ and $\widehat{\mathrm{Fr}}_{2}=\varphi \circ \mathrm{Fr}_{2}$ for a suitable $\varphi \in \operatorname{Aut}(E)$.
(b) Use that to determine $E[2]\left(k^{\mathrm{alg}}\right)$ (cf. Exercise 3, sheet 12).
(c) Compute $\operatorname{deg}\left(1-\operatorname{Fr}_{2^{r}}\right)$ for $r=1, \ldots, 8$ with the help of $\widehat{\operatorname{Fr}}_{2^{r}}$. Check your result by computing $\# E\left(\mathbb{F}_{2^{r}}\right)$ directly.
(6 points)
4. \star Figure out where you encounter elliptic curves in everyday life. You won't believe it. A possible keyword is $E C C$.
5. Welche Zusammenhänge, Details, Inhalte oder Fragen sollen in der Übung am 23.1. besprochen werden?
(2 points)
