Algebraic Geometry 2 WiSe 2012/13 Prof. Dr. Urs Hartl Martin Brandenburg

Homework sheet 13

Due date: Monday, 21.1.13 at 12 noon

1. Let char(k) $\neq 2$ and let $a, b \in k$, $\tilde{a} := -2a$, $\tilde{b} := a^2 - 4b$ with $b \neq 0$, $\tilde{b} \neq 0$. Let *E* and \tilde{E} be given in Weierstraß equations

 $E: y^2 = x^3 + ax^2 + bx \qquad \text{and} \qquad \tilde{E}: \ \tilde{y}^2 = \tilde{x}^3 + \tilde{a}\tilde{x}^2 + \tilde{b}\tilde{x}.$

Consider the isogenies:

$$\varphi: E \to \tilde{E}, \quad \varphi^*(\tilde{x}) = \frac{y^2}{x^2}, \quad \varphi^*(\tilde{y}) = \frac{y(x^2 - b)}{x^2}$$
$$\psi: \tilde{E} \to E, \quad \psi^*(x) = \frac{\tilde{y}^2}{4\tilde{x}^2}, \quad \psi^*(y) = \frac{\tilde{y}(\tilde{x}^2 - \tilde{b})}{8\tilde{x}^2}$$

- (a) Prove that φ and ψ are separable. Hint: $\varphi^* \omega \neq 0$.
- (b) Determine $\ker \varphi$, $\ker \psi$, $\deg \varphi$ as well as $\deg \psi$.
- (c) Prove that $\psi \circ \varphi = [2] : E \to E$ and $\varphi \circ \psi = [2] : \tilde{E} \to \tilde{E}$.
- (d) Let $P \in E(k^{\text{alg}})$ with $\varphi(P) \in \ker \psi$, $\varphi(P) \neq 0$, e.g. $P = (\alpha : 0 : 1)$ for $\alpha \in k^{\text{alg}}$ with $\alpha^2 + \alpha a + b = 0$. Prove that

$$E[2](k^{\text{alg}}) = \{0, P\} \oplus \ker \varphi \cong (\mathbb{Z}/2)^2.$$
 (8 points)

- 2. Find integral group schemes E, E' over k with neutral elements $0 \in E(K)$ and $0' \in E'(k)$, as well as a morphism $\varphi : E \to E'$ of k-schemes, which satisfies $\varphi(0) = 0'$, but is not a homomorphism of group schemes. Insofar Proposition 2.4.4 is a special property of elliptic curves resp. more generally proper integral group schemes. (2 points)
- 3. The elliptic curve E over \mathbb{F}_2 is given by the Weierstraß equation $y^2 + y = x^3 + a_6$ with $a_6 \in \mathbb{F}_2$.
 - (a) Prove that $[2] = \varphi \circ \operatorname{Fr}_4$ and $\widehat{\operatorname{Fr}}_2 = \varphi \circ \operatorname{Fr}_2$ for a suitable $\varphi \in \operatorname{Aut}(E)$.
 - (b) Use that to determine $E[2](k^{alg})$ (cf. Exercise 3, sheet 12).
 - (c) Compute deg $(1 Fr_{2^r})$ for r = 1, ..., 8 with the help of Fr_{2^r} . Check your result by computing $\#E(\mathbb{F}_{2^r})$ directly. (6 points)
- 4. \star Figure out where you encounter elliptic curves in everyday life. You won't believe it. A possible keyword is *ECC*.
- 5. Welche Zusammenhänge, Details, Inhalte oder Fragen sollen in der Übung am 23.1. besprochen werden? (2 points)