
ar
X

iv
:1

81
1.

07
08

4v
2 

 [
m

at
h.

N
T

] 
 1

0 
M

ar
 2

02
0

CRYSTALLINE CHEBOTARËV DENSITY THEOREMS

URS HARTL AND AMBRUS PÁL

Abstract. We formulate a conjectural analogue of Chebotarëv’s density theorem for convergent F -
isocrystals over a smooth geometrically irreducible curve defined over a finite field using the Tannakian
formalism. We prove this analogue for several large classes, including direct sums of isoclinic convergent
F -isocrystals and semi-simple convergent F -isocrystals which have an overconvergent extension and such
that the semi-simplification of their pull-back to a sufficient small non-empty open sub-curve has abelian
monodromy. In order to prove the latter, we also prove an overconvergent analogue of Chebotarëv’s
density theorem for semi-simple overconvergent F -isocrystals.
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1. Introduction

Let U be a smooth, geometrically irreducible, non-empty curve over a finite field Fq having q elements
and characteristic p. Let k = Fq(U) be the function field of U , let k̄ be a separable closure of k, and let
|U | be the set of closed points in U . For every x ∈ |U | let Fx, deg(x) and qx denote the residue field of x,
its degree over Fq and its cardinality, respectively.

For every abelian variety A defined over k let A[p∞] denote its p-divisible group, let A[p∞]ét denote
the maximal étale p-divisible quotient of A[p∞] and let Vp(A) denote the p-adic Gal(k̄/k)-representation
HomZp(Qp/Zp, A[p

∞]ét) ⊗Zp Qp. The dimension of the Qp-vector space underlying Vp(A) is the p-rank
r(A) of A. It is known that 0 ≤ r(A) ≤ dim(A) where dim(A) denotes the dimension of A. Recall that
an abelian variety A is called ordinary if r(A) = dim(A).

As a motivation for our investigations we will have a look at the following

Theorem 1.1. Let A and B be two ordinary abelian varieties over k. Then A and B are isogenous if
and only if the p-adic Gal(k̄/k)-representations Vp(A) and Vp(B) are isomorphic.
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We will give an easy l-adic proof of this theorem in Section 3 by switching to l-adic Tate modules and
using Zarhin’s isogeny theorem for them. Of course it would be aesthetically much more satisfying to
prove Theorem 1.1 only utilizing p-adic objects, directly from de Jong’s theorem [dJo99, Theorem 2.6]
that the natural map

Hom(A,B) ⊗Z Zp → Hom(A[p∞], B[p∞])

is an isomorphism for every pair of abelian varieties A and B over k. In particular, this implies that A and
B are isogenous if and only if the p-divisible groups A[p∞] and B[p∞] are isogenous, and our theorem is
a strengthening of this consequence in the case when A and B are both ordinary. In fact our l-adic proof
can be largely adopted to the p-adic setting. However, there are two missing ingredients: a semi-simplicity
statement for the overconvergent (rational) Dieudonné module of abelian varieties, which we settle in a
separate paper [Pál15], and an analogue of Chebotarëv’s density theorem for p-divisible groups, or more
generally, for convergent F -isocrystals. The major aim of this article is to formulate such an analogue in
the largest possible generality, and prove it in special cases. The most natural way to do that is through
the Tannakian formalism. As an application we will give a p-adic proof of Theorem 1.1 in Section 13
before Theorem 13.6.

To describe our results let Frq,U denote the absolute q-Frobenius on U which is the identity on points
and the q-power map on the structure sheaf. Let K be a finite totally ramified extension of W (Fq)[

1
p ]

and fix an algebraic closure K of K. Since Frq,U is the identity on Fq, we may choose on K the identity
F := idK as a lift of Frq,U . Let F -IsocK(U) denote the K-linear rigid abelian tensor category of K-linear
convergent F -isocrystals on U ; see [Cre92, Chapter 1] for details. If F is an object of F -IsocK(U) we let
〈〈F〉〉 denote the strictly full rigid abelian tensor sub-category of F -IsocK(U) generated by F . We fix a
base point u ∈ U(Fqe) and let Ke be the unramified field extension of K of degree e in K. Pulling back to
u defines a faithful fiber functor ωu : F 7→ u∗F which makes F -IsocK(U) into a Tannakian category and
〈〈F〉〉 into a Tannakian sub-category of F -IsocK(U); see Definitions A.1 and A.3 for explanations. Note
that the fiber functor ωu is non-neutral if e 6= 1. We let Gr(F/U, u) := Aut⊗(wu|〈〈F〉〉) be the smooth
linear algebraic group over Ke consisting of the tensor automorphisms of ωu : F 7→ u∗F ; see Section 3 for
the precise definition. For every closed point x ∈ |U | the Frobenius FF of F furnishes a conjugacy class
Frobx(F) in Gr(F/U, u)(K); see Definition 3.1. The crystalline version of Chebotarëv’s density theorem
is the following

Conjecture 1.2. For every subset S ⊂ |U | of Dirichlet density one the set
⋃
x∈S Frobx(F) is Zariski-dense

in Gr(F/U, u).

We follow Serre in the definition of Dirichlet density; see Definition 3.10. See Remark 5.6 why we do
not expect a density statement for any other topology than the Zariski topology. When F has connected
monodromy group we even expect the following

Conjecture 1.3. If the monodromy group Gr(F/U, u) is connected then for every subset S ⊂ |U | of
positive upper Dirichlet density the set

⋃
x∈S Frobx(F) is Zariski-dense in Gr(F/U, u).

The notion of positive upper Dirichlet density is a natural weakening of positive Dirichlet density (see
Definition 3.11 for a precise definition). A variant of the conjecture above is the following

Conjecture 1.4. For every subset S ⊂ |U | of positive upper Dirichlet density the Zariski-closure of the
set
⋃
x∈S Frobx(F) contains a connected component of the group Gr(F/U, u)×Ke K.

Note that the validity of Conjecture 1.4 for F trivially implies the validity of Conjecture 1.3 for F when
Gr(F/U, u) is connected. We will see later (see Proposition 6.7 below) that the validity of Conjecture 1.4
for F also implies the validity of Conjecture 1.2 for F .

Let us continue by proving an application of crystalline Chebotarëv density. For every convergent F -
isocrystal F on U and for every x ∈ |U | let Tr(Frobx(F)) denote the common trace of all elements of
Frobx(F), considered as endomorphisms of the Ke-vector space ωu(F).

Corollary 1.5. Let S ⊂ |U | be a subset of Dirichlet density one and let F ,G be two convergent F -
isocrystals of the same rank on U such that Tr(Frobx(F)) = Tr(Frobx(G)) for every x ∈ S and such
that Conjecture 1.2 holds for the direct sum Fss ⊕ Gss of their semi-simplifications. Then the semi-
simplifications Fss and Gss of F and G are isomorphic.
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Proof. By Lemma 3.3 below the Frobenius conjugacy class Frobx(F) maps to Frobx(Fss) under the
natural surjective map η : Gr(F , u) ։ Gr(Fss, u) for every x ∈ S. For every g ∈ Gr(F , u) we have
Tr(g) = Tr(η(g)) where we take traces with respect to the representations ωu(F) and ωu(Fss), because in
a suitable basis of ωu(F) the kernel of η consists of unipotent upper triangular matrices by Lemma 3.8,
and so the diagonal entries of g and η(g) coincide. Therefore, we get that Tr(Frobx(F)) = Tr(Frobx(Fss))
for every x ∈ S. By repeating the same argument for G we get that Tr(Frobx(Fss)) = Tr(Frobx(Gss)) for
every x ∈ S.

Let ρ1 and ρ2 denote the representations of Gr(Fss⊕Gss, u) on ωu(Fss) and ωu(Gss), respectively. Note
that ρ1 and ρ2 correspond to the objects Fss⊗KKe and Gss⊗KKe of F -IsocK(U)⊗KKe by Remark A.20.
For every x ∈ S the Frobenius conjugacy class Frobx(Fss ⊕ Gss) maps by Lemma 3.3 to Frobx(Fss) and
Frobx(Gss) under ρ1 and ρ2, respectively. Thus the trace functions of the representations ρ1 and ρ2 on the
group Gr(Fss ⊕ Gss, u) are equal on the Frobenius conjugacy classes Frobx(Fss ⊕ Gss) for all x ∈ S. By
assumption the latter are Zariski-dense in Gr(Fss ⊕ Gss, u), so the trace functions of the representations
ρ1 and ρ2 on the group Gr(Fss ⊕ Gss, u) are equal.

Let Λ ⊂ EndKe

(
ωu(F

ss⊕Gss)
)
be the smallest Ke-linear subspace (viewed as a scheme) containing the

image of Gr(Fss ⊕Gss, u). Then Λ⊗Ke K is the K-linear span of Gr(Fss⊕Gss, u)(K), because the latter
is Gal(K/Ke)-invariant. Thus Λ⊗Ke K is a K-algebra, and hence Λ is a Ke-algebra. Moreover, ωu(Fss)
and ωu(Gss) are semi-simple Λ-modules, because every submodule invariant under Gr(Fss⊕Gss, u) is also
invariant under Λ. Finally, by their linearity the trace functions of Λ on both representations coincide,
because they do on Gr(Fss ⊕ Gss, u)(K). Therefore, by [Ser98, Lemma in § I.2.3 on p. I-11] the two
representations are isomorphic and this implies that Fss⊗KKe

∼= Gss⊗KKe in F -IsocK(U)⊗KKe. Then
it follows from Proposition A.21 that Fss ∼= Gss in F -IsocK(U). �

For an application to p-divisible groupsX over U recall that the (rational) crystalline Dieudonné functor
assigns to (the isogeny class of) X a convergent F -isocrystal D(X) on U . The functor D is fully faithful
on the isogeny category of p-divisible groups by [dJo95, Main Theorem 1].

Corollary 1.6. Let X and Y be two p-divisible groups over U which are semi-simple in the isogeny
category. Let S ∈ |U | be a subset of Dirichlet density one such that for every s ∈ S the traces of the
Frobenii on the rational Dieudonné modules are equal for s∗X and s∗Y . If Conjecture 1.2 holds for
D(X)⊕D(Y ) then X and Y are isogenous.

Proof. For every s ∈ |U | the rational Dieudonné module of the pullback s∗X of X to s equals ωs(D(X)),
which is (non-canonically) isomorphic to ωu(D(X)), such that the Frobenius of s∗X is mapped to the con-
jugacy class Frobs(D(X)). By the full faithfulness of D the F -isocrystals D(X) and D(Y ) are semisimple,
Corollary 1.5 shows that they are isomorphic, and hence X and Y are isogenous. �

Although currently we are unable to establish Conjectures 1.2, 1.3 and 1.4 in general, we can still prove
them in many cases. We will start with an easy result explaining the relation to the classical Chebotarëv

density theorem. Let ordp : K
×

→ Q be the unique p-adic valuation such that ordp(p) = 1. When we will
talk about slopes and Newton polygons, we will do so with respect to the valuation ordp. Moreover for the

sake of simple terminology we will say that α ∈ K is an eigenvalue of Frobx(F) if it is the eigenvalue of
one and hence every element of Frobx(F) acting on the Ke-vector space ωu(F). By the Newton polygon of
Frobx(F) we will mean the Newton polygon of the semilinear Frobenius F on the fiber at x. If x ∈ U(Fqn)
it equals 1

n times the common Newton polygon of the (Kn-linear) elements of Frobx(F). Recall that an
F -isocrystal F is called isoclinic if for every x ∈ |U | the Newton polygon of Frobx(F) has only one slope
(which then is the same at all x). If F is isoclinic of slope zero, it is called unit-root. For those F -isocrystals
Conjecture 1.2 is an easy consequence of the classical Chebotarëv density theorem.

Proposition 1.7. Conjecture 1.2 holds for convergent unit-root F -isocrystals.

We will prove a more general statement later, but we think that the proof is rather instructive, and it
is also a good motivation for our conjectures. Therefore, we decided to present its proof here.

Proof of Proposition 1.7. Choose a geometric base point ū above u and let πét
1 (U, ū) be the étale fun-

damental group of U . By a result of R. Crew [Cre87, Theorem 2.1 and Remark 2.2.4] the full sub-
category of F -IsocK(U) consisting of unit-root F -isocrystals is tensor equivalent to the category of con-
tinuous representations of πét

1 (U, ū) on finite dimensional K-vector spaces; see Proposition 5.2 below. Let
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ρ : πét
1 (U, ū)→ GLr(K) be a representation corresponding to a unit-root F -isocrystal F . Then Gr(F/U, u)

is a closed subgroup of GLr,Ke and by Corollary 5.4 below there is a finite field extension L of Ke such
that Gr(F/U, u)×Ke L equals the Zariski-closure of the image of ρ. Moreover, for all points x ∈ |U | the
Gr(F/U, u)(K)-conjugacy classes of ρ(x∗ Frob

−1
x ) and Frobx(F) coincide, where Frob−1

x ∈ Gal(Fx/Fx) is
the geometric Frobenius at x which maps a ∈ Fx to a1/qx for qx = #Fx.

To prove Conjecture 1.2 let S ⊂ |U | be a subset of Dirichlet density one. By the Chebotarëv density
theorem [Ser63, Theorem 7] the Frobenius conjugacy classes for the points x ∈ S are dense in πét

1 (U, ū)
with respect to the pro-finite topology. Since this topology is finer than the restriction of the Zariski
topology from Gr(F/U, u), the set

⋃
x∈S Frobx(F) is Zariski-dense in Gr(F/U, u). �

Note that Conjecture 1.2 for convergent unit-root F -isocrystals on U is considerably weaker than the
classical Chebotarëv density theorem for U ; see Remark 5.6 for more explanations. Let us next describe
cases for which we prove the conjecture. In Section 7 we use a theorem of Oesterlé [Oes82] to strengthen
Proposition 1.7 to

Theorem 1.8. Conjecture 1.4 holds for direct sums of isoclinic convergent F -isocrystals.

In order to formulate our hardest result for the remaining cases where we can prove the conjectures in
this article we make the following

Definition 1.9. Let F be a convergent F -isocrystal on U . We will say that F is firm if it is a successive
extension of isoclinic convergent F -isocrystals and the monodromy group Gr(Fss/U, u) is abelian. We
will say that F is weakly firm if it is a successive extension of isoclinic convergent F -isocrystals and the
maximal quasi-torus of the monodromy group Gr(Fss/U, u)×KeK (or equivalently of Gr(F/U, u)×KeK)
is abelian. This holds in particular, if Gr(F/U, u) is connected. (For the definition of a maximal quasi-
torus see Definition 8.6 below.) Since subgroups of abelian groups are abelian, we get that firm convergent
F -isocrystals are weakly firm. If there is a non-empty open sub-curve f : V →֒ U such that the restriction
F|V of F onto V is firm, resp. weakly firm we will say that F is locally firm, resp. locally weakly firm
(with respect to V ⊂ U). Note that in particular f∗F|V has a slope filtration on V with isoclinic factors.
If F is (weakly) firm, then its semi-simplification Fss is a direct sum of isoclinic convergent F -isocrystals.
Then by Proposition 10.11 below the natural morphism Gr(f∗F/V, u)→ Gr(F/U, u) is an isomorphism.
Therefore, (weakly) firm implies locally (weakly) firm.

Note that by the specialization theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there is
a non-empty open sub-curve V ⊂ U on which the Newton polygon of F is constant, and by the slope
filtration theorem [Kat79, Corollary 2.6.3] F|V has a slope filtration with isoclinic subquotients. Therefore,
the first condition in the definition of locally firm and locally weakly firm convergent F -isocrystals is not
very restrictive. We show in Proposition 11.3 below that the categories of firm, weakly firm, locally firm
and locally weakly firm convergent F -isocrystals on U are full Tannakian sub-categories of F -IsocK(U).
In Proposition 11.1 we give examples for locally (weakly) firm convergent F -isocrystals. Our main result
is the following

Theorem 1.10. Let F be a semi-simple locally weakly firm convergent F -isocrystal on U which has an
overconvergent extension. Let G ∈ 〈〈F〉〉 and let J be a direct sum of semi-simple isoclinic convergent
F -isocrystals on U . Then Conjectures 1.2, 1.3 and 1.4 hold true for G ⊕ J .

The proof of Theorem 1.10 given on page 69 consists of four main steps: using the theory of reductive
groups and Theorem 1.8 above we first show that it is enough to show Conjecture 1.4 for F only. Then
we prove an analogue of Conjecture 1.4 for the overconvergent monodromy group of the overconvergent
extension of F . Then, using group theory again, we show that F satisfies the hypotheses of the following

Theorem 1.11. Let F be a semi-simple convergent F -isocrystal on U and let f : V →֒ U be an open sub-
curve containing u such that f∗F has a slope filtration on V with isoclinic subquotients. Assume that under
the natural inclusion Gr(f∗F/V, u) ⊂ Gr(F/U, u) every maximal quasi-torus of Gr(f∗F/V, u) ×Ke K is
also a maximal quasi-torus of the group Gr(F/U, u) ×Ke K. Then F satisfies Conjectures 1.2, 1.3 and
1.4.

Once more using group theoretical methods, we finally show in Theorem 11.6 that the hypotheses on F
in Theorem 1.11 above are actually equivalent to Conjecture 1.4 for semi-simple convergent F -isocrystals
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which are locally weakly firm with respect to f : V →֒ U . Theorem 1.11 is proven in the formulation
of Theorem 10.4 below. Note that one of the distinguishing features of convergent F -isocrystals is that
their monodromy groups in general shrink when we shrink the underlying curve U . This shows that F -
isocrystals lack the type of rigidity which we have for l-adic and even p-adic Galois representations, where
the monodromy group does not change when one shrinks the curve. R. Pink addressed this problem and
asked whether the shrunken monodromy group always is a parabolic subgroup in the special case when F
comes from a p-divisible group on U . We cannot prove this but we can prove the weaker Theorem 1.11
which is still sufficient for proving the Chebotarëv density conjectures for F -isocrystals appearing in
Theorem 1.10. It also singles out Pink’s problem as the most central one in the theory of convergent
F -isocrystals.

In the last section we will also look at the analogous problem for overconvergent F -isocrystals, and
prove the following theorem (see Theorem 13.2 and Corollary 13.3) using arguments inspired by our proof
of Theorem 1.8. We think that this is a very interesting result on its own, but it also plays a crucial role
in the proof of Theorem 1.10.

Theorem 1.12. For every semi-simple overconvergent F -isocrystal the analogs of Conjectures 1.2, 1.3
and 1.4 hold true.

We finish the introduction with a brief summary of the individual sections. In Section 2 we give the
l-adic proof of Theorem 1.1. In Section 3 we give the precise definitions of Dirichlet density and of the
Frobenius conjugacy class Frobx(F), and we prove several elementary facts about the monodromy group.
In Section 4 we collect properties of the algebraic envelope of a topological group and we treat constant
F -isocrystals. Section 5 recalls Crew’s theory [Cre87] of unit-root F -isocrystals and Section 6 discusses
the group of connected components of the monodromy group Gr(F/U, u). In Section 7 we prove our
Chebotarëv density conjectures for direct sums of isoclinic F -isocrystals (Theorem 1.8). In Section 10 we
formulate properties of the closed subgroup Gr(f∗F/V ) ⊂ Gr(F/U) which one might expect when one
restricts a convergent F -isocrystal on U to an open sub-curve f : V →֒ U and we prove in Theorem 10.4
that these properties imply our Chebotarëv density conjectures (Theorem 1.11). For this purpose we have
to collect in Section 8 a few facts about semi-simple elements in non-connected linear algebraic groups, and
study the notion of maximal quasi-tori, which is a good generalization of maximal tori in not necessarily
connected groups. In Section 9 we study the intersections of conjugacy classes with maximal quasi-tori. In
Section 10 we prove Theorem 1.11 and conduct a detailed investigation of the hypothesis of this theorem
on maximal quasi-tori. In Section 11 we furnish a few useful conditions which guarantee that the direct
sum of a locally firm convergent F -isocrystal with finitely many isoclinic convergent F -isocrystals satisfies
the hypotheses of Theorem 1.11, and hence the Chebotarëv density. Finally, in Section 13 we treat the
case of overconvergent F -isocrystals, and also derive Theorem 1.10. In Appendix A we briefly review the
theory of (non-neutral) Tannakian categories and of representations of groupoids.

Acknowledgement. We thank Friedrich Knop for providing a proof of Theorem 8.9(c) and Zakhar
Kabluchko for some advice on measure theory. We are also thankful for the support received in form of
grant SFB 878 by the German Science Foundation (DFG) and the EPSRC grants P19164 and P36794.

2. Isogenies of Ordinary Abelian Varieties

We will give two proofs of Theorem 1.1, an l-adic one in this section and a p-adic one in Section 13
before Theorem 13.6.

l-adic proof of Theorem 1.1. If f : A → B is an isogeny then Vpf : Vp(A) → Vp(B) is an isomorphism.
Conversely assume that Vp(A) ∼= Vp(B). By the specialization theorem of Grothendieck and Katz [Kat79,
Theorem 2.3.1] we may replace U by a non-empty open sub-curve such that for every x ∈ |U | the abelian
varieties A and B have good ordinary reduction at x. In particular the p-adic representations Vp(A) and
Vp(B) are unramified at x for every such x. Let kU ⊂ k̄ be the maximal Galois extension of k unramified at
every x ∈ |U | and let Frx ⊂ Gal(kU/k) denote the Frobenius conjugacy class corresponding to x for every
x ∈ |U |. By the above we may consider Vp(A) and Vp(B) as continuous representations of Gal(kU/k).
Let αx1, αx2, . . . , αxd denote the common eigenvalues of the actions of elements of Frx on Vp(A) ∼= Vp(B)
where d is the common dimension of A and B. For every x ∈ |U | let Ax and Bx denote the reductions of A
and B over x, respectively. Then the eigenvalues of the action of the Frobenius element of Gal(Fx/Fx) on
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Vp(Ax) and Vp(Bx) are αx1, . . . , αxd for every x ∈ |U |. Choose a prime number l different from p. Because
Ax and Bx are ordinary abelian varieties of dimension d over Fx we get that the eigenvalues of the action
of the Frobenius element of Gal(Fx/Fx) on Vl(Ax) and Vl(Bx) are αx1, . . . , αxd, qx/αx1, . . . , qx/αxd for
every x ∈ |U |. Indeed, by a classical theorem of Manin [Dem72, Chapter V.5, Corollary on p. 88] the
eigenvalues of the Frobenius acting on the Dieudonné module associated with the p-divisible group Ax[p

∞]
are the reciprocal roots of the L-function L(Ax, t) of Ax where we take into account the multiplicities.
In particular the eigenvalues of the Frobenius acting on Ax[p

∞]ét are exactly those reciprocal roots of
L(Ax, t) which have p-adic valuation zero, again taking into account the multiplicities. Let p(t) be the
product of all linear factors of L(Ax, t) whose reciprocal root has slope one. Since A is isogenous to its
dual, we have the functional equation L(Ax, t) = t2dL(Ax, q/t). Therefore, t

dp(q/t) divides L(Ax, t). The
reciprocal roots of tdp(q/t) have slope one, therefore p(t) and tdp(q/t) are relatively prime. We get that
p(t)tdp(q/t) divides L(Ax, t). These polynomials are monic and have the same degree, therefore they are
equal.

Note that the l-adic representations Vl(A) and Vl(B) are unramified at x and by the above the common
eigenvalues of the actions of the elements of Frx are αx1, . . . , αxd, qx/αx1, . . . , qx/αxd for every x ∈ |U |.
Since the union

⋃
x∈|U| Frx is dense in Gal(kU/k) by the Chebotarëv density theorem [Vil06, Theo-

rem 11.2.20], the traces of the actions of γ on Vl(A) and Vl(B) are equal for every γ ∈ Gal(k̄/k). Because
by a theorem of Zarhin [Zar74a, Theorem 1.5] the l-adic representations Vl(A) and Vl(B) are semi-simple
we get that they must be isomorphic; see [Ser98, Lemma in § I.2.3 on p. I-11]. Hence by Zarhin [Zar74a,
Theorem 1.5] the abelian varieties A and B are isogenous. �

Remark 2.1. The claim of Theorem 1.1 is false when the abelian varieties are not assumed to be ordinary.
Indeed let E be a supersingular elliptic curve defined over Fq and let E′ be a twist of E by a continuous
quadratic character χ of Gal(k̄/k). The curve E has everywhere good reduction while E′ has bad reduction
at the places where χ is ramified. This follows from the criterion of Néron-Ogg-Shavarevich [ST68, § 1,
Theorem 1] because the l-adic Tate modules satisfy Tl(E

′) = Tl(E)⊗χ; see for example [ST68, § 5, Proof
of Theorem 8]. Since the set of places of bad reduction for an abelian variety A over k is an isogeny
invariant of A ([ST68, § 1, Corollary 3]) we get that E is not isogenous to E′ in the latter case while
the zero-dimensional representations Vp(E) and Vp(E

′) are obviously isomorphic. Also note that for every
abelian variety A over k the direct products A×E and A×E′ are not isogenous (for example by Poincaré’s
reducibility theorem). However, the p-adic representations Vp(A×E) and Vp(A×E′) are both isomorphic
to Vp(A) hence the ordinariness condition is necessary in every dimension.

3. Basic Definitions and Properties

We describe in complete detail our basic setup for the convenience of the reader, possibly at the price
of some repetition. Let U be a smooth, geometrically irreducible, non-empty curve over Fq, and let F be

the q-Frobenius on U . Let K be a finite totally ramified extension of W (Fq)[
1
p ] and let K be an algebraic

closure of K. Since F is the identity on Fq, we may choose on K the identity F = idK as a lift of F . For

every n ∈ N let Un := U ⊗Fq Fqn , let Kn ⊂ K be the unramified extension of K of degree n, and let F
be the Frobenius of Kn over K. Then Fn is the identity on Kn. Let F

n-IsocKn(Un) denote the Kn-linear
rigid tensor category of Kn-linear convergent Fn-isocrystals on Un; see [Cre92, Chapter 1] for details.
Let F -IsocK(U) simply denote F 1-IsocK(U). If F is an object of Fn-IsocKn(Un) we let 〈〈F〉〉 denote the
Tannakian sub-category of Fn-IsocKn(Un) generated by F ; see Definition A.3. There is a functor

(3.1) ( . )(n) : F -IsocK(U) −→ Fn-IsocKn(Un), F 7→ F (n)

which is given by pulling back under Un → U , that is, by tensoring the coefficients from K to Kn, and

replacing the Frobenius FF of F by FnF := FF ◦ Fr
∗
q,UFF ◦ . . . ◦ Fr

(n−1)∗
q,U FF , where Frq,U : U → U is the

absolute q-Frobenius of U .
We fix a base point u ∈ U(Fqe) = Ue(Fqe). The pullback u∗F of an F e-isocrystal F to u supplies a

functor ωu from F e-IsocKe(Ue) to the category of F
e-isocrystals on SpecFqe with values inKe. The latter is

simply the category of finite dimensionalKe-vector spaces together with a Ke-linear automorphism coming
from the Frobenius F e. The fiber functor ωu makes F e-IsocKe(Ue) into a neutral Tannakian category.
For F ∈ F e-IsocKe(Ue) let Gr(F , u) := Gr(F/Ue, u) := Aut⊗(ωu|〈〈F〉〉) denote the monodromy group of F
with respect to the fiber functor ωu; see [DM82, Theorem 2.11]. By [DM82, Proposition 2.20(b)] it is a
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linear algebraic group over Ke and 〈〈F〉〉 is tensor equivalent to the category of Ke-rational representations
of Gr(F/Ue, u). By Cartier’s theorem Gr(F , u) is smooth; see for example [Wat79, § 11.4].

On the category F -IsocK(U) we can still consider the fiber functor F 7→ u∗F to Ke-vector spaces. It
factors through the functor ( . )(e) from (3.1) as u∗ = ωu ◦ ( . )(e). This makes F -IsocK(U) into a K-linear
Tannakian category, but u∗ is non-neutral when e > 1. Let F ∈ F -IsocK(U) and let 〈〈F〉〉 be again the
Tannakian sub-category of F -IsocK(U) generated by F . Then 〈〈F〉〉 is tensor equivalent to the Ke-rational
representations of a Ke/K-groupoid Gr(F/U, u); see Definition A.5 and Theorem A.11. In this article we
are only interested in its kernel group Gr(F , u) := Gr(F/U, u) := Gr(F/U, u)∆, which equals the auto-
morphism group of the fiber functor u∗ : F -IsocK(U)→ Ke-vector spaces and is a smooth linear algebraic
group over Ke by Theorem A.11(a) and Proposition A.13. We will use this fact frequently. We explain
the relation of Gr(F/U, u) with Crew’s monodromy group [Cre92] in Remark 4.10 and Proposition 4.11.
Since u∗ = ωu ◦ ( . )(e) the tensor functor ( . )(e) induces (by [Mil92, Proposition A.12 and Example A.13])
a morphism of linear algebraic groups over Ke

he(F) : Gr(F (e)/Ue, u) −→ Gr(F/U, u) ,

which we study further in Lemma 6.3 and Remark 6.4. From now on we will also just write ωu for the
fiber functor u∗ on F -IsocK(U).

The group Gr(F/U, u) is independent of the base point u in the following sense. Let u′ ∈ U(Fqe′ ) be

another base point. By [DM82, Theorem 3.2] there is a (non-canonical) isomorphism of fiber functors

α = αu′,u : ωu′ ⊗Ke′
K ∼−→ ωu ⊗Ke K over the algebraic closure K. Every other isomorphism differs

from α by composition with an element g ∈ Aut⊗(ωu ⊗Ke K) = Gr(F/U, u)(K). The isomorphism α

induces an isomorphism of algebraic groups α∗ : Gr(F/U, u′) ×Ke′
K ∼−→ Gr(F/U, u)×Ke K over K and

the isomorphism (g ◦α)∗ induced by g ◦α differs from α∗ by conjugation with g. In this way we may move
the base point whenever it is convenient.

To introduce the Frobenius conjugacy classes let F ∈ F -IsocK(U) and fix a base point u ∈ U(Fqe). Let
x ∈ |U | be a closed point with residue field Fqn and choose a point y ∈ U(Fqn) above x. Let ñ be the
least common multiple of n and e. Then Kñ is the compositum of Kn and Ke. Since y = (Frq,U )

n ◦ y as

morphisms SpecFqn → U , the Frobenius FnF : (Frq,U )
n∗F (n) ∼−→ F (n) of the Fn-isocrystal F (n) induces

an automorphism y∗FnF of the fiber functor ωy, that is an element of Gr(F (n)/Un, y)(Kn). We denote by

Froby(F) the Gr(F/U, y)(K)-conjugacy class of its image hn(F)(y∗FnF ) under hn(F) in Gr(F/U, y)(K).

Choose an isomorphism of fiber functors α = αy,u : ωy⊗KnK
∼−→ ωu⊗Ke K and the induced isomorphism

of algebraic groups α∗ : Gr(F/U, y)×KnK
∼−→ Gr(F/U, u)×KeK overK as above. Note that Gal(K/Kñ)

operates on the set of these isomorphisms. Since any other isomorphism α′
∗ differs from α∗ by conjugation

with an element in Gr(F/U, u)(K), the conjugacy class α∗

(
Froby(F)

)
⊂ Gr(F/U, u)(K) is independent of

α and hence also invariant under Gal(K/Kñ). We claim that, moreover, it is invariant under Gal(Kñ/Ke)
and only depends on the closed point x of U lying below y. Indeed, there is a point ỹ ∈ U(Fqn) above

x with Frq,U ◦ ỹ = y and ỹ∗Fr∗q,UF = y∗F . The isomorphism FF : Fr∗q,UF
∼−→ F of the F -isocrystal F

induces an isomorphism ỹ∗FF : y∗F ∼−→ ỹ∗F under which the Kn-linear automorphisms FnF on the fibers
at y and ỹ are mapped to each other. So FF maps (αỹ,u)∗

(
Frobỹ(F)

)
onto (αy,u)∗

(
Froby(F)

)
, which

therefore only depends on x and not on y. We denote this conjugacy class by Frobx(F). Finally, the
Galois group Gal(Fqn/Fq) = Gal(Kn/K) surjects onto Gal(Kñ/Ke) and the isomorphism FF yields the
Gal(Kñ/Ke)-invariance of Frobx(F). We therefore may identify it with a subset of the Ke-group scheme
Gr(F/U, u).

Definition 3.1. The subset Frobx(F) ⊂ Gr(F/U, u) defined above is called the (stable) Frobenius conju-
gacy class of the K-linear convergent F -isocrystal F on U at the closed point x ∈ U .

Remark 3.2. The subset Frobx(F) ⊂ Gr(F/U, u) is not closed in general, but on its Zariski-closure

Frobx(F) the characteristic polynomial is constant and Ke-rational when u ∈ U(Fqe). More precisely,
for each element g ∈ Gr(F/U, u)(L) for a field extension L/Ke we let χg ∈ L[T ] be the characteristic
polynomial of g viewed as an endomorphism of the L-vector space ωu(F) ⊗Ke L. Since all elements of
Frobx(F) are conjugate over K and since the characteristic polynomial is continuous with respect to

the Zariski topology, it is constant on Frobx(F). Since moreover Frobx(F) is Gal(K/Ke)-invariant, its
characteristic polynomial is Ke-rational.
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Lemma 3.3. Let F ∈ F -IsocK(U) and let G ∈ 〈〈F〉〉. Then there are canonical epimorphisms of group
schemes Gr(F/U, u) ։ Gr(G/U, u) and their identity components Gr(F/U, u)◦ ։ Gr(G/U, u)◦. Under
these the Frobenius conjugacy class Frobx(F) is mapped onto Frobx(G) for every closed point x ∈ U .

Proof. The epimorphism of groups Gr(F/U, u) ։ Gr(G/U, u) comes from Corollary A.16(a). Its com-
patibility with the Frobenius conjugacy classes follows directly from their definition. That Gr(F/U, u)◦

surjects onto Gr(G/U, u)◦ follows from [Bor91, I.1.4 Corollary]. �

As a direct consequence of Lemma 3.3 we obtain the following

Lemma 3.4. If F is a convergent F -isocrystal on U for which one of the Conjectures 1.2 or 1.3 or
1.4 holds, then this conjecture also holds for the semi-simplification Fss and more generally for every
G ∈ 〈〈F〉〉. �

The lemma has the following partial converse.

Lemma 3.5. Let F be a convergent F -isocrystal on U and let G ∈ 〈〈F〉〉 be such that the epimorphism
π : Gr(F/U, u) ։ Gr(G/U, u) has finite kernel. If one of the Conjectures 1.3 or 1.4 holds for G, then this
conjecture also holds for F .

Remark. Note that the lemma might be false for Conjecture 1.2.

Proof of Lemma 3.5. Let S ⊂ |U | be a subset of positive upper Dirichlet density and let C be a connected
component of Gr(G, u) ×Ke K in which

⋃
x∈S Frobx(G) is Zariski dense. (Note for Conjecture 1.3 that if

Gr(F , u) is connected, then Gr(G, u) is also connected.) Let C1, . . . , Cn be the connected components of
Gr(F , u)×KeK which map to C. By the finiteness assumption on the kernel of π, the dimensions of all Ci
are the same as the dimension of C. If

⋃
x∈S Frobx(F) is not Zariski-dense in Ci for all i, then the Zariski-

closure Zi of Ci ∩
⋃
x∈S Frobx(F) has dimension strictly less than dim(Ci) for all i. The images π(Zi)

are closed in C, because π is a finite morphism, and their union contains
⋃
x∈S Frobx(G) by Lemma 3.3.

Since the latter is Zariski-dense in C and C is irreducible, we must have C = π(Zi) for one i. But this
contradicts the dimension estimate dimπ(Zi) = dim(Zi) < dim(Ci) = dim(C), and proves the lemma. �

Proposition 3.6. Let F ,G ∈ F -IsocK(U), and let u ∈ U(Fqe). Then

(a) Gr(F ⊗ G, u) and Gr(Hom(F ,G), u) are quotients of Gr(F ⊕ G, u).
(b) the strictly full sub-category 〈〈F〉〉 ∩ 〈〈G〉〉 of F -IsocK(U) consisting of all convergent F -isocrystals
H which are both isomorphic to an object of 〈〈F〉〉 and to an object of 〈〈G〉〉, is a Tannakian sub-
category.

(c) Gr(F ⊕ G, u) is a closed subgroup of Gr(F , u) ×Ke Gr(G, u) which sits in a cartesian diagram of
epimorphisms

(3.2) Gr(F ⊕ G, u)

wwww♣♣
♣♣
♣♣

'' ''❖
❖❖

❖❖
❖

Gr(F , u)

'' ''◆
◆◆

◆◆
◆

� Gr(G, u) .

wwww♦♦
♦♦
♦♦

Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u)

(d) Let L be any field extension of Ke. In diagram (3.2) any maximal torus (respectively maximal split
torus, respectively Borel subgroup) T in G := Gr(F ⊕G, u)◦×Ke L equals the connected component
of unity (T1 ×T0 T2)

◦ of the fiber product of its images T1 in G1 := Gr(F , u)◦ ×Ke L and T2 in
G2 := Gr(G, u)◦×KeL over its image T0 in Gr(〈〈F〉〉∩〈〈G〉〉, u)◦×KeL. In this situation, where T is
a maximal (split) torus, let W =W (T,G) := NG(T )/ZG(T ) and Wi =W (Ti, Gi) be the (relative)
Weyl groups. Then the natural map W →֒W1 ×W2 is injective.

Remark. Note that T1×T0 T2 can be disconnected, as one sees for example by taking the n-th power map
[n] : Gm → Gm for both maps Ti → T0.

Proof of Proposition 3.6. (a) follows from Lemma 3.3, because F , G, F ⊗ G and Hom(F ,G) are objects
of 〈〈F ⊕ G〉〉.

(b) follows from the obvious facts that tensor products, direct sums, duals, internal Hom-s and subquotients
of objects in 〈〈F〉〉 ∩ 〈〈G〉〉 again lie in 〈〈F〉〉 ∩ 〈〈G〉〉.
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(c) By Proposition A.13 the object F ⊕ G corresponds to a faithful representation of Gr(F ⊕ G, u) which
factors through Gr(F , u)×KeGr(G, u), because a tensor automorphism of ωu(F⊕G) is trivial as soon as its
restrictions to ωu(F) and ωu(G) are trivial. Since F and G are objects of 〈〈F ⊕ G〉〉, the two upper arrows
in diagram (3.2) are epimorphisms by Corollary A.16(a). Consider the kernels N1 = ker

(
Gr(F ⊕ G, u) ։

Gr(F , u)
)
and N2 = ker

(
Gr(F⊕G, u) ։ Gr(G, u)

)
and the linear algebraic groupG := Gr(F⊕G, u)/N1N2.

We claim that the diagram

Gr(F ⊕ G, u)
π1

wwww♣♣
♣♣
♣♣ π2

&& &&◆
◆◆

◆◆
◆

Gr(F , u)

ρ1 '' ''❖
❖❖

❖❖
❖❖

� Gr(G, u)

ρ2wwww♦♦
♦♦
♦♦
♦

G

is cartesian. Since that diagram is commutative, we obtain a morphism from Gr(F ⊕ G, u) to the fiber
product Gr(F , u)×GGr(G, u), which is a closed immersion, because Gr(F⊕G, u)→ Gr(F , u)×Ke Gr(G, u)
is one. Consider an algebraically closed field L and an L-valued point (g1, g2) ∈ Gr(F , u)×GGr(G, u) with
ρ1(g1) = ρ2(g2). Since πi is surjective, there are elements g̃i ∈ Gr(F ⊕ G, u)(L) with πi(g̃i) = gi. The
equation ρ1π1(g̃1) = ρ1(g1) = ρ2(g2) = ρ2π2(g̃2) = ρ1π1(g̃2) shows that g̃−1

1 g̃2 lies in ker(ρ1π1) = N1N2.

So there are elements ni ∈ Ni with g̃
−1
1 g̃2 = n1n

−1
2 . The element g̃1n1 = g̃2n2 ∈ Gr(F ⊕ G, u)(L) satisfies

πi(g̃ini) = πi(g̃i) = gi for i = 1, 2 as desired. This proves that Gr(F ⊕ G, u) is isomorphic to the fiber
product Gr(F , u)×G Gr(G, u).

It remains to identify G with Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u). Since N1 arises from the epimorphism of groupoids
Gr(F ⊕G, u) ։ Gr(F , u) it is invariant under the conjugation action of Gr(F ⊕G, u) on Gr(F ⊕G, u) from
(A.2). The same is true for N2, and hence also for N1N2. Corollary A.16(b) applied to the epimorphism
Gr(F ⊕ G, u) ։ G shows that G is the monodromy group Gr(K, u) of an object K ∈ 〈〈F ⊕ G〉〉, that is,
G is the kernel group of Gr(K, u). Since Gr(K, u) is also a quotient of Gr(F , u), respectively of Gr(G, u),
the object K is both isomorphic to an object of 〈〈F〉〉 and to an object of 〈〈G〉〉 by Proposition A.14(a),
that is, it belongs to 〈〈F〉〉 ∩ 〈〈G〉〉. This yields an epimorphism Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u) ։ Gr(K, u) = G by
Corollary A.16(a). Conversely, since 〈〈F〉〉∩〈〈G〉〉 is contained both in 〈〈F〉〉 and 〈〈G〉〉 the map Gr(F⊕G, u) ։
Gr(〈〈F〉〉∩〈〈G〉〉, u) factors over Gr(F , u) and over Gr(G, u). So its kernel contains N1 and N2. This provides
the epimorphism in the other direction G։ Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u) and shows that both are isomorphisms.

(d) The natural maps T →֒ T1 ×T0 T2 →֒ Gr(F ⊕ G, u) are closed immersions. Since a product of (split)
tori is a (split) torus (respectively, a product of connected solvable groups is connected solvable) and
(T1 ×T0 T2)

◦ ⊂ T1 ×Ke T2 is a closed connected subgroup, it is a (split) torus by [Bor91, III.8.4 Corollary]
(respectively a connected solvable group by [Hum75, 17.3 Lemma]) . But since T is a maximal such group,
we must have T = (T1 ×T0 T2)

◦ as desired.
To prove the injectivity of the natural map W → W1 ×W2 let n ∈ NG(T ) be mapped to the identity,

that is πi(n) ∈ ZGi(Ti) for i = 1, 2. Thus, for every t ∈ T the element ntn−1t−1 ∈ G maps to the identity
in Gi. Since G →֒ G1×LG2 is a closed immersion, this shows that ntn−1t−1 = 1 in G for every t ∈ T and
n ∈ ZG(T ). The injectivity follows. �

For the next results we need the following well known

Lemma 3.7. Let G be a linear algebraic group over an algebraically closed field L of characteristic zero.

(a) Let g ∈ G(L) and let n be a positive integer such that gn is semi-simple, then g is semi-simple.
(b) All unipotent elements of G(L) are contained in the identity component G◦ of G. In particular all

unipotent groups in characteristic zero are connected.

Proof. (a) If g = gsgu is the multiplicative Jordan decomposition, where gs, gu ∈ G(L) are the semi-simple
and unipotent parts of g, respectively, then gn = gns g

n
u is the multiplicative Jordan decomposition of gn.

Consider a faithful representation G ⊂ GLr. Then gu is conjugate in GLr to a unipotent upper triangular
matrix (use [Bor91, IV.11.10 Theorem]), and hence if gu 6= 1 it has infinite order as char(L) = 0. Therefore,
gn is semi-simple, that is gnu = 1, if and only if gu = 1 and g is semi-simple.

(b) If g ∈ G(L) is a unipotent element, then its image in G/G◦ is of finite order and unipotent by [Bor91,
I.4.4 Theorem], whence trivial by (a). �
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Lemma 3.8. Let F ∈ F -IsocK(U). Then F is semi-simple if and only if the category 〈〈F〉〉 is semi-
simple, if and only if the identity component Gr(F , u)◦ is reductive. More generally, let Fss be the semi-
simplification of F . Then α : Gr(F , u) ։ Gr(Fss, u) is the maximal reductive quotient of Gr(F , u), that
is, kerα is the unipotent radical of Gr(F , u). In particular, α induces an isomorphism on the groups of
connected components.

Proof. In the neutral situation where Ke = K, the first statement is proven in (the proof of) [DM82,
Proposition 2.23 and Remark 2.28]. In the non-neutral situation, Proposition A.22 tells us that F is
semi-simple if and only if F ⊗K Ke is semi-simple in F -IsocK(U) ⊗K Ke. Assume now that this is
the case. By Remark A.20 the Tannakian category 〈〈F ⊗K Ke〉〉 = 〈〈F〉〉 ⊗K Ke is equivalent to the
category RepKe

Gr(F , u) ofKe-rational representations of theKe-group Gr(F , u). By the neutral situation
discussed above it follows that Gr(F , u)◦ is reductive. Conversely, the latter implies that 〈〈F ⊗K Ke〉〉 is
semi-simple. If now G ∈ 〈〈F〉〉, then G⊗KKe ∈ 〈〈F⊗KKe〉〉, and hence G is semi-simple by Proposition A.22.
This proves the first statement also in the non-neutral situation.

We prove the rest. In a suitable basis the representation ρ of G := Gr(F , u) on ωu(F) can be written
in block matrix form such that the diagonal block entries are representations corresponding to the simple
constituents of F . Therefore, the kernel of α lies in the subgroup of upper triangular matrices with ones
on the diagonal. So it is a unipotent group and as such connected by Lemma 3.7. Being also normal,
it is contained in the unipotent radical. On the other hand the unipotent radical is mapped to {1} in

G̃ := Gr(Fss, u), because the latter is a reductive group by our first statement. �

Proposition 3.9. Let F ∈ F -IsocK(U) be a semi-simple convergent F -isocrystal on U . Let Z be the
center (respectively the connected component of the center) of the connected component G◦ := Gr(F/U, u)◦

and let [G◦, G◦] be the derived group of G◦. Then Z and [G◦, G◦] are characteristic subgroups of G◦.
Let S, T ∈ 〈〈F〉〉 be the convergent F -isocrystals whose monodromy groups are Gr(S/U, u) = G/Z and
Gr(T /U, u) = G/[G◦, G◦]; see Remark A.17 and Corollary A.16(b). Then Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u) is a finite
group and in the diagram

(3.3) G = Gr(F/U, u) ։ Gr(S ⊕ T /U, u) ∼−→ G/Z ×Gr(〈〈F〉〉∩〈〈G〉〉,u) G/[G
◦, G◦]

there is a natural isomorphism on the right, and the kernel of the surjection on the left is finite and
contained in the center of G◦.

Proof. Since F is semi-simple, G is reductive by Lemma 3.8. The group G◦/Z is semi-simple by [Bor91,
IV.11.21 Proposition] and G◦/[G◦, G◦] is a torus by [Bor91, IV.14.11 Corollary and III.10.6 Theorem]. The
group Gr(〈〈F〉〉∩〈〈G〉〉, u)◦ is both a quotient of G◦/Z and G◦/[G◦, G◦], and hence is semi-simple and a torus
by [Bor91, IV.14.11 Corollary, III.8.4 Corollary and III.8.5 Proposition]. Therefore, Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u)◦ is
trivial by [Bor91, IV.11.21 Proposition] and Gr(〈〈F〉〉 ∩ 〈〈G〉〉, u) is a finite group. The isomorphism on the
right was established in Proposition 3.6(c). Finally the kernel of the map (3.3) is contained in the center
of G◦ by construction and its connected component is contained in Z◦ ∩ [G◦, G◦] which is a finite group
by [Bor91, IV.14.2 Proposition]. �

In the rest of this section we want to make a few remarks on Dirichlet density.

Definition 3.10. We will say that a subset S ⊂ |U | has Dirichlet density ε for some real number 0 ≤ ε ≤ 1
(in the sense of Serre) if

lim
s→1+

−
∑
x∈S q

− deg(x)s

log(s− 1)
= ε.

Moreover we will say that S has positive Dirichlet density if it has Dirichlet density ε for some positive ε.

Definition 3.11. The upper Dirichlet density δ(S) of a subset S ⊂ |U | is

δ(S) = lim sup
s→1+

−
∑
x∈S q

− deg(x)s

log(s− 1)
.

Note that the limit superior on the right hand side always exists and it is between 0 and 1, and it is equal
to the Dirichlet density of the set S, if the latter exists. In particular the upper Dirichlet density of S is 0
if and only if S has Dirichlet density 0. We will say that S has positive upper Dirichlet density if δ(S) > 0.

Trivially δ(R) ≤ δ(S) when R is a subset of S.
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The key property of upper Dirichlet density is the following easy to prove

Lemma 3.12. Let S ⊂ |U | be a subset, and assume that

S = S1 ∪ S2 ∪ · · · ∪ Sn,

where the sets Si are pair-wise disjoint. Then

δ(S) ≤ δ(S1) + δ(S2) + · · ·+ δ(Sn).

Proof. Note that

−
∑
x∈S q

− deg(x)s

log(s− 1)
=
−
∑
x∈S1

q− deg(x)s

log(s− 1)
+
−
∑
x∈S2

q− deg(x)s

log(s− 1)
+ · · ·+

−
∑
x∈Sn

q− deg(x)s

log(s− 1)
,

so by the sub-additivity of the limit superior we get the lemma. �

We will also need the following

Lemma 3.13. Let S ⊂ |U | be a subset of Dirichlet density one, and let R ⊂ |U | be a subset of positive
upper Dirichlet density. Then R ∩ S also has positive upper Dirichlet density.

Proof. Let Sc ⊂ |U | be the complement of S in |U |. Since
∑

x∈|U|

q− deg(x)s =
∑

x∈S

q− deg(x)s +
∑

x∈Sc

q− deg(x)s,

and

lim
s→1+

−
∑
x∈|U| q

− deg(x)s

log(s− 1)
= 1

by the prime number theorem for U , we get that Sc has Dirichlet density zero. Therefore, R ∩ Sc has
Dirichlet density zero, too. Since R is the disjoint union of R ∩ S and R ∩ Sc, the claim follows from
Lemma 3.12. �

The following well known property of the (upper) Dirichlet density obstructs the technique of replacing
U by a finite étale Galois covering.

Example 3.14. Let f : V → U be a finite étale Galois covering of degree n, where n is a prime number,
let S ⊂ |U | be a subset of upper Dirichlet density δ̄(S), and let S′ = f−1(S) ⊂ |V | be the preimage of S
under f .

(a) Assume that n| deg(x) for all x ∈ S. Then there are exactly n points x′ of V lying above each x ∈ S,
and they have degree deg(x′) = deg(x)/n we compute

∑

x′∈S′

(qn)− deg(x′)s = n ·
∑

x∈S

q− deg(x)s .

Therefore, S′ has upper Dirichlet density δ̄(S′) = n · δ̄(S).

(b) Assume that n ∤ deg(x) for all x ∈ S. Then there is exactly one point x′ of V lying above each x ∈ S,
and it has degree deg(x′) = deg(x) we compute

∑

x′∈S′

(qn)− deg(x′)s =
∑

x∈S

q−n deg(x)s .

When s → 1+ this sum converges in R, whereas log(s− 1) goes to ∞. Therefore, S′ has upper Dirichlet
density δ̄(S′) = 0.

This is of course analogous to the situation for number fields, where one says that a subset S ⊂ |M | of
the set |M | of places of a number field M has Dirichlet density δ if

lim inf
m→∞

#{x ∈ S : N(x) ≤ m}

#{x ∈ |M | : N(x) ≤ m}
= δ ,

where N(x) := #OM/x denotes the norm of x. Let N/M be a Galois extension of number fields whose
degree n is a prime number. Then the set S of places in M which split completely in N has Dirichlet
density δ(S) = 1

n , whereas its preimage S′ ⊂ |N | has Dirichlet density δ(S′) = 1. The reason is that above
every place x ∈ S there are exactly n places in S′ with the same norm as x.
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On the other hand the set S of places in M which are inert in N has Dirichlet density δ(S) = n−1
n ,

whereas its preimage S′ ⊂ |N | has Dirichlet density δ(S′) = 0. The reason is that above every place x ∈ S
there is exactly one place x′ in S′ whose norm is N(x′) = N(x)n.

For applications to isoclinic F -isocrystals we will need the following effective form of the classical
Chebotarëv density theorem for function fields.

Notation 3.15. By a finite Galois group G of the curve U we will mean a quotient πét
1 (U, ū) ։ G by

an open normal subgroup. For every such G and for every x ∈ |U | let FrGx ⊂ G denote the image under
the quotient map of the conjugacy class of the geometric Frobenius Frob−1

x at x in πét
1 (U, ū) which maps

a ∈ Fx to a1/qx , where qx = #Fx. For every such G let Gc denote the maximal constant quotient of G,
that is, the largest quotient of G which can be pulled back from Gal(Fq/Fq). In particular, Gc is finite
cyclic, and hence abelian. Let Ggeo be the kernel of the quotient map G→ Gc.

The aforementioned effective version is the following

Theorem 3.16. Let S ⊂ |U | be a set of positive upper Dirichlet density. Then there is a positive constant
ε > 0 such that for every finite Galois group G of U there is an infinite subset R ⊂ N such that for
every n ∈ R the union in G of the Frobenius conjugacy classes FrGx for all x in {x ∈ S : deg(x) = n} has
cardinality at least ε ·#Ggeo.

We will first prove a couple of lemmas. For every positive integer n let P (n) denote the number of
closed points of U of degree n. By the prime number theorem for function fields [Ros02, Theorem 5.12],
which is an easy consequence of the Weil bounds, we have

(3.4) P (n) =
qn

n
+O

(
qn/2

n

)
.

Lemma 3.17. Let T ⊂ |U | be a set of positive upper Dirichlet density δ(T ). There is an infinite subset
R ⊂ N such that for every n ∈ R we have:

#{x ∈ T : deg(x) = n} ≥
δ(T ) · P (n)

2
.

Proof. Assume that the claim is false. Then there is a positive integer m such that

#{x ∈ T : deg(x) = n} <
δ(T ) · P (n)

2

for every n > m. Thus for every s ∈ R with 1 < s < 2 we have:

∑

x∈T

q− deg(x)s ≤
∑

x∈T : deg(x)≤m

q− deg(x)s +
δ(T )

2

∑

n>m

P (n)q−ns.

Since log(s− 1) is negative for such s, we get from the above that

δ(T ) ≤ lim sup
s→1+

−
∑

deg(x)≤m q
− deg(x)s

log(s− 1)
+
δ(T )

2
lim sup
s→1+

−
∑
n>m P (n)q

−ns

log(s− 1)
.

The first limit on the right hand side is zero, while the second limit is

lim sup
s→1+

−
∑
n>m

q(1−s)n

n +O
(
q(1/2−s)n

n

)

log(s− 1)
= lim sup

s→1+

(
log(1 − q(1−s)n)

log(s− 1)
−
∑

n>m

O
(
q(1/2−s)n

n

)

log(s− 1)

)

by the prime number theorem (3.4) for U . By L’Hôpital’s rule this limit is 1. However, the resulting
inequality δ(T ) ≤ δ(T )/2 is a contradiction to δ(T ) > 0. �

Let G be a Galois group of U and let D ⊂ G be a conjugacy class. Then the image of D under G→ Gc

is an element in Gc which we will denote by Dc. Let c(G) denote the order of Gc. Then there is a unique

isomorphism ιG : Gc ∼−→ Z/c(G) such that for every x ∈ |U | the Frobenius FrGc
x at x in Gc maps to

k mod c(G) if and only if deg(x) ≡ k mod c(G).
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Theorem 3.18. For every κ > 0 there is an N(κ) = N(κ,G) ∈ N such that for every n > N(κ) and for
every conjugacy class C ⊂ G we have

#{x ∈ U : FrGx ⊂ C, deg(x) = n} ≤

{
c(G)(1+κ)P (n)#C

#G , if n ≡ ιG(Cc) mod c(G),

0 , otherwise.

Proof. We use [Vil06, Proposition 11.2.16] which says that

#{x ∈ U : FrGx ⊂ C, deg(x) = n} =
c(G)#C

#G

qn

n
+O(#C qn/2)

if n ≡ ιG(C
c) mod c(G) and zero otherwise. The theorem then follows from the prime number theo-

rem (3.4). �

Proof of Theorem 3.16. We claim that ε = δ(S)
4 will do. Now assume that the claim is false, and let G

be a Galois group of U which violates the assertion of the theorem. By Lemma 3.17 there is an infinite
subset R ⊂ N such that for every n ∈ R we have:

(3.5) #{x ∈ S : deg(x) = n} ≥
δ(S)P (n)

2
.

For every n ∈ N let Fn be the union in G of the Frobenius conjugacy classes FrGx for all x in the set
{x ∈ S : deg(x) = n}. It decomposes into a disjoint union of conjugacy classes C in G. We apply
Theorem 3.18 for κ = 1 to each component C of Fn and add. By shrinking R, if necessary this tells us
that

(3.6) #{x ∈ S : deg(x) = n} ≤ #{x ∈ U : FrGx ⊂ Fn, deg(x) = n} ≤
2c(G)P (n)#Fn

#G

for every n ∈ R. Since we assumed that G is a counter-example, by shrinking R further, if this is necessary,
we may assume that

#Fn <
δ(S)#Ggeo

4
=
δ(S)#G

4c(G)

for all n ∈ R. By applying the inequality (3.6) to Fn we get that

#{x ∈ S : deg(x) = n} ≤
2c(G)P (n)#Fn

#G
<

2c(G)P (n)

#G
·
δ(S)#G

4c(G)
=
δ(S)P (n)

2
,

but this contradicts (3.5). �

4. Constant F -Isocrystals

Definition 4.1. For any topological group G and any topological field L we let RepcLG be the neutral
Tannakian category of continuous representations of G on finite dimensional L-vector spaces equipped
with the forgetful fiber functor ωf which sends a representation ρ : G → AutL(W ) to the L-vector space

W . We define the L-linear algebraic envelope GL-alg of G as the Tannakian fundamental group Aut⊗(ωf )
of RepcLG. By definition, ωf induces a tensor equivalence between RepcLG and the category RepLGL-alg

of algebraic representations of GL-alg.

We recall the following lemma from [Ser93, p. 66]; compare also with Saavedra [Saa72, Chapter V.0.3.1]
and [DM82, Example (2.33)].

Lemma 4.2. For every continuous finite-dimensional L-linear representation ρ : G → GLn,L of G, the

monodromy group Aut⊗(ωf |〈〈ρ〉〉) of ρ considered as an object of the category RepcLG, is canonically iso-

morphic to the Zariski-closure of the image ρ(G) ⊂ GLn,L(L) of G. Therefore, we may describe GL-alg as
the limit of the Zariski-closures of the images im(ρ) over the diagram of all continuous finite-dimensional
L-linear representations ρ of G (in some suitably large universe). �

Example 4.3. When L = K then the L-linear algebraic envelope of Z is Gκm,L×Ga,L× Ẑ where κ is the
cardinality of L. We leave the verification of this fact to the reader. What we only need is Theorem 4.8
below.

But before let us record the following well known
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Theorem 4.4. Let L be a topological field. Then every short exact sequence

(4.1) 1 // G1
q

// G2
p

// G3
// 1

of compact topological groups induces a sequence

G
L-alg
1

q
// G

L-alg
2

p
// G

L-alg
3

// 1

of their L-linear algebraic envelopes, see Definition 4.1, in which the composition p ◦ q is trivial and

ker(p) = q(GL-alg
1 )norm is the smallest closed normal subgroup containing q(GL-alg

1 ).

The proof of Theorem 4.4 will use the following criterion:

Theorem 4.5 ([LP17, Theorem 2.4]). Let

(4.2) G1
q

// G2
p

// G3
// 1

be a sequence of affine group schemes over L such that p is faithfully flat. Assume that:

(a) if V ∈ RepLG2, then q
∗(V ) is trivial in RepLG1 if and only if V ∼= p∗(W ) for some W ∈ RepLG3,

(b) for any V ∈ RepLG2, if W0 ⊂ q∗(V ) is the maximal trivial sub-object in RepLG1, then there
exists W ⊂ V ∈ RepLG2 such that q∗(W ) =W0 ⊂ q∗(V ).

Then in sequence (4.2) the composition p◦q is trivial and ker(p) = q(G1)
norm is the smallest closed normal

subgroup containing q(G1).

Now we are ready to give the

Proof of Theorem 4.4. We apply Theorem 4.5. Property (a) follows at once from the definition.

To prove property (b) let V ∈ RepcLG2 be a representation and let W0 ⊂ ResG2

G1
V be the L-linear

subspace on which G1 acts trivially. Since G1 is a normal subgroup of G2 the subspace W0 ⊂ V is stable
under G2. This proves property (b), because the G1-representation W0 equals the restriction to G1 of
the G2-representation W0. �

Corollary 4.6. In the situation of Theorem 4.4 let ρ : G2 → GLn(L) be a representation and let ρ̃ :=
ρ|G1 : G1 → GLn(L) be the restriction of ρ to G1. Let C ⊂ RepLAut⊗(ωf |〈〈ρ〉〉) be the full sub-category
consisting of those objects on which the representation induced by ρ factors through G3. Then C is a
Tannakian sub-category and the homomorphism ρ induces a commutative diagram

1 // G1
q

//

ρ̃

��

G2
p

//

ρ

��

G3
//

��

1

1 // Aut⊗(ωf |〈〈ρ̃〉〉)
q

// Aut⊗(ωf |〈〈ρ〉〉)
p

// Aut⊗(ωf |C) // 1

with exact rows in which the three vertical maps have Zariski-dense image.

Proof. Clearly C is closed under the formation of direct sums, tensor products, duals, internal Hom-s and
subquotients, and hence is a Tannakian sub-category. We apply Theorem 4.5 and argue as in the proof
of Theorem 4.4. It remains to show that the morphism q : Aut⊗(ωf |〈〈ρ̃〉〉) → Aut⊗(ωf |〈〈ρ〉〉) is a closed

immersion which identifies q(Aut⊗(ωf |〈〈ρ̃〉〉)) with a normal subgroup of Aut⊗(ωf |〈〈ρ〉〉). That q is a closed
immersion follows from [DM82, Proposition 2.21], because by definition every representation W ∈ 〈〈ρ̃〉〉 is
isomorphic to a subquotient of a representation ResG2

G1
V where V ∈ 〈〈ρ〉〉. By Lemma 4.2, Aut⊗(ωf |〈〈ρ̃〉〉)

is the Zariski-closure of the image ρ̃(G1) ⊂ GLn(L). Since q(G1) is a normal subgroup in G2, this Zariski-
closure is a normal subgroup of the Zariski-closure of ρ(G2) ⊂ GLn(L). The latter equals Aut⊗(ωf |〈〈ρ〉〉)
by Lemma 4.2. �

To formulate the next Theorem 4.8 we recall the following

Definition 4.7. An F -isocrystal on SpecFq is by definition a pair (W, f) consisting of a finite dimen-
sional K-vector space W together with a K-linear automorphism f ∈ AutK(W ), its Frobenius. It can be
pulled back under the structure morphism π : U → SpecFq to a convergent F -isocrystal π∗(W, f) on U ,
and any convergent F -isocrystal on U arising in this way is called constant. We denote by F -ConstK(U)
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the category of K-linear constant convergent F -isocrystals on U . And by F -IsocK(SpecFq) the cate-
gory of K-linear F -isocrystals on SpecFq. The category F -IsocK(SpecFq) is tensor equivalent to the
category RepcK Z, where Z carries the discrete topology, by sending a representation ρ : Z → GLr(K) to
(K⊕r, ρ(1)) ∈ F -IsocK(SpecFq).

Theorem 4.8. Let C = π∗(W, f) ∈ F -IsocK(U) be a constant F -isocrystal. Then the following holds.

(a) The functor π∗ induces an isomorphism between the Tannakian sub-categories 〈〈(W, f)〉〉 ⊂ F -IsocK(Fq)
and 〈〈C〉〉 ⊂ F -IsocK(U). In particular, every convergent F -isocrystal F in 〈〈C〉〉 is constant.

(b) The monodromy group Gr(C/U, u) of C is isomorphic to Gr((W, f)/Fq, u). This group equals the
Zariski-closure of fZ in AutKe(W ⊗K Ke). In particular, it is commutative and isomorphic to
T ×Ke G

ε
a,Ke

where T is an extension of a finite (étale) abelian group (scheme) T/T ◦ (over Ke)
by a torus T ◦ and ε = 0 or 1.

(c) For every x ∈ |U | the set Frobx(C) consists of the single element fdeg(x).
(d) The categories F -IsocK(SpecFq) and F -ConstK(U) are tensor equivalent to the category RepcK Z,

where Z carries the discrete topology. In particular, they are neutral K-linear Tannakian cate-
gories. The Tannakian fundamental Ke/K-groupoids πF -Isoc

1 (Fq, u) and πF -Const
1 (U, u) are equal

to the neutral Ke/K-groupoid associated with the K-linear algebraic envelope ZK-alg of Z, see
Definitions A.12 and A.7.

Proof. (a) Before we start the proof let us make the following obvious remark: an F -isocrystal is constant
if and only if it is trivial as an isocrystal, i.e. it is generated by its horizontal sections. In particular, an
F -isocrystal is constant if and only if it is constant as an Fn-isocrystal. Now we prove the claim. Since
π∗ is a tensor functor we only need to see that every sub-object of π∗(W, f) is constant. This is trivial if
the curve has a rational point, because we can pull back to this point and use that this functor is fully
faithful. The general case follows by applying the previous case to Fn-isocrystals, and then use that the
image of the sub-object actually must be invariant under F , too, by its uniqueness.

(d) The tensor equivalences follow from (a) and Definition 4.7. The last assertion follows from Lemma 4.2.

(b) The isomorphy of monodromy groups follows from (a). Since the category of F -isocrystals over an Fq-
linear point is just the category of linear representations of Z, the second claim is an immediate consequence
of the Tannakian formalism. Since the monodromy group is the Zariski-closure of fZ, it is commutative
and is the direct product of its unipotent radical by the subgroup consisting of its semi-simple elements,
see [Bor91, I.4.7 Theorem]. The latter is an extension of a finite étale abelian group scheme over Ke

by a torus, see [Bor91, III.8.12 Proposition], and the unipotent radical is isomorphic to Gεa,Ke
by [Ser88,

Chapter VIII, § 2.7, Corollary]. Since the image of f must be Zariski-dense in the quotient Gεa,Ke
, we have

ε = 0 or ε = 1.

(c) follows from the definition of Frobx(C) from (before) Definition 3.1. The set Frobx(C) consists of only
one element fdeg(x) here, because this element is K-rational and Gr(C/U, u) is commutative. �

Definition 4.9. For every convergent F -isocrystal F ∈ F -IsocK(U) let 〈〈F〉〉const be the full Tan-
nakian sub-category of constant F -isocrystals in 〈〈F〉〉 and let W(F , u) denote the fundamental group
of 〈〈F〉〉const with respect to the fiber functor ωu. Note that W(F , u) is a quotient of the monodromy

group πF -Isoc
1 (Fq, u) ×K Ke = πF -Const

1 (U, u) ×K Ke = ZKe-alg. Let β : Gr(F/U, u) ։ W(F , u) be the
homomorphism induced by the inclusion 〈〈F〉〉const ⊂ 〈〈F〉〉; see Corollary A.16(a). We call the kernel

Gr(F/U, u)geo := ker
(
Gr(F/U, u) ։ W(F , u)

)

the geometric monodromy group of F . This terminology is motivated by Corollary 5.8 below.

Remark 4.10. Let IsocK(U) be the category of K-linear convergent isocrystals on U . If u ∈ U(Fq)
R. Crew [Cre92] has defined and studied the monodromy group DGal(F , u) and the Weil groupWF(U/K, u)
of any convergent isocrystal F ∈ IsocK(U). The former is a linear algebraic group over K defined as the
monodromy group of the neutral Tannakian category generated by F in IsocK(U) with respect to the
fiber functor ωu. The latter is the semi-direct product of Z with the former, where 1 ∈ Z operates on
DGal(F , u) by conjugation with the Frobenius u∗FF . It is natural to expect that in our setting DGal(F , u)
plays the role of the geometric monodromy group from Definition 4.9. However, we are only able to prove
this in the semi-simple case; see Proposition 4.11 below.
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For every convergent F -isocrystal F ∈ F -IsocK(U) let F∼ denote the underlying convergent isocrystal
and let 〈〈F∼〉〉 denote the tannakian sub-category generated by F∼ in IsocK(U). Let α : DGal(F , u) →
Gr(F , u) be the homomorphism induced by the forgetful functor ( . )∼ : 〈〈F〉〉 → 〈〈F∼〉〉. It is a closed
immersion by Proposition A.14(b).

Proposition 4.11. Assume that F∼ is semi-simple. Then there is a canonical diagram with exact rows

0 // DGal(F , u) // WF(U/K, u) //

��

Z //

��

0

0 // DGal(F , u)
α

// Gr(F/U, u)
β

// W(F , u) // 0 ,

where W(F , u) was defined in Definition 4.9. In particular, DGal(F , u) is canonically isomorphic to the
geometric monodromy group Gr(F/U, u)geo.

Proof. The upper sequence is exact by definition of the group WF(U/K, u). We next prove the exactness
of the lower sequence. Since 〈〈F〉〉const is a sub-category of 〈〈F〉〉 the map β is surjective and faithfully flat.
Therefore, by [EHS07, Theorem A.1] we only have to check the following:

(i) For an object G of 〈〈F〉〉 the object G∼ of 〈〈F∼〉〉 is trivial if and only if G is an object of 〈〈F〉〉const.
(ii) Let G be an object of 〈〈F〉〉, and let H0 ⊂ G∼ denote the largest trivial subobject. Then there

exists H ⊂ G with H0 = H∼.
(iii) Every object G of 〈〈F∼〉〉 is a subobject of an object of the form H∼ for some object H of 〈〈F〉〉.

Condition (i) trivially holds: an F -isocrystal is constant if and only if it is trivial as an isocrystal. Next we
show (ii). The maximal trivial convergent sub-isocrystalH0 of a convergent F -isocrystal G is generated by
horizontal sections of G. Since the Frobenius FG respects horizontal sections, the isocrystal H0 underlies
a convergent F -isocrystal. Finally we prove (iii). Because the image of 〈〈F 〉〉 under ( . )∼ is closed under
direct sums, tensor products and duals, there is an object H of 〈〈F 〉〉 such that G is a subquotient of H∼.
Since F∼ is semi-simple, so is every object in 〈〈F∼〉〉. Therefore, G is isomorphic to a subobject of H∼.

To prove the commutativity of the diagram we consider the morphism Z → Gr(F/U, u) which sends
1 ∈ Z to the element u∗FF ∈ Gr(F/U, u)(K). This extends to a morphism WF(U/K, u) → Gr(F/U, u)
because WF(U/K, u) = DGal(F , u) ⋊ Z is defined as the semi-direct product where 1 ∈ Z operates on
DGal(F , u) by conjugation with u∗FF inside Gr(F/U, u); see [Cre92, § 5]. �

5. Unit-Root F -Isocrystals

We begin our discussion of unit root F -isocrystal with the following useful criterion.

Lemma 5.1. Let F be a convergent F -isocrystal with finite monodromy group. Then F is a unit-root
F -isocrystal.

Proof. Let N ∈ N be the order of the group Gr(F , u). Then (Frobx)
N = 1 for every x ∈ |U |. This implies

that the Newton polygon of Frobx has slope zero for all x, that is F is unit-root. �

To recall Crew’s result on unit-root F -isocrystals, fix a geometric base point ū ∈ U(Fq) above the base
point u ∈ U(Fqe) and let πét

1 (U, ū) be the étale fundamental group. Let Kun =
⋃
nKn be the maximal un-

ramified extension ofK (andKe) inK and let K̂un be its p-adic completion. Let F -URK(U) ⊂ F -IsocK(U)
be the Tannakian sub-category of convergent unit-root F -isocrystals on U . It is tensor equivalent to the
category of Ke-rational representations of the Ke/K-groupoid Aut⊗K(ωu). Let π

F -UR
1 (U, u)∆ be the kernel

group of the Ke/K-groupoid πF -UR
1 (U, u) := Aut⊗K(ωu), see Definition A.5 and Theorem A.11. That is,

πF -UR
1 (U, u)∆ equals the affine group scheme over Ke of tensor automorphisms of the fiber functor ωu on
F -URK(U).

Proposition 5.2. The category F -URK(U) is canonically tensor equivalent to the category RepcK π
ét
1 (U, ū),

such that the fiber functor ωu on F -URK(U) and the forgetful fiber functor ωf on RepcK π
ét
1 (U, ū) become

canonically isomorphic over K̂un. In particular, πF -UR
1 (U, u)∆ ×Ke K̂

un is canonically isomorphic to the

base-change to K̂un of the K-linear algebraic envelope of the topological group πét
1 (U, ū).
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Proof. The tensor equivalence of categories was established by Crew [Cre87, Theorem 2.1 and Remark 2.2.4].
As this equivalence is natural (see loc. cit.), it commutes with the pull-back to the base point u ∈ U(Fqe).
We explicitly describe the tensor equivalence at u between RepcK π

ét
1 (u, ū) and F -URK(Fqe); see [Cre87,

p. 119]. The objects in the latter category are pairs (F , FF ) consisting of a Ke-vector space F and an F -

semi linear automorphism FF of F . Also πét
1 (u, ū) = Gal(Fq/Fqe) ∼= Ẑ. The tensor equivalence associates

a Galois representation ρ : Gal(Fq/Fqe)→ AutK(W ) with a unit-root F -isocrystal (F , FF ) in such a way
that there is a canonical Galois and F -equivariant isomorphism

(5.1) α : W ⊗K K̂un ∼−→ F ⊗Ke K̂
un

where γ ∈ Gal(Fq/Fqe) = Gal(Kun/Ke) = AutcontKe
(K̂un) acts on the left hand side as ρ(γ)⊗ γ and on the

right hand side as idF ⊗γ, and where Frobenius F acts on the left hand side as idW ⊗F and on the right

hand side as FF⊗F . The isomorphism α allows to recover (F , FF ) as (W⊗K K̂un, id⊗F )Gal(Fq/Fqe ) andW

as (F ⊗Ke K̂
un)F= id, and yields a canonical isomorphism of fiber functors α : ωf ⊗K K̂un ∼−→ ωu⊗Ke K̂

un.

The latter induces an isomorphism of K̂un-group schemes α∗ : Aut⊗(ωf )×K K̂un ∼−→ πF -UR
1 (U, u)∆ ×Ke

K̂un and so the last statement follows directly from Lemma 4.2. �

Remark 5.3. We can compute the difference between ωu and ωf ⊗K Ke, that is the torsor Isom⊗(ωf ⊗K

Ke, ωu) and the corresponding cohomology class in Ȟ
1(
(SpecKe)fpqc,Aut

⊗(ωf )
)
; see [DM82, Theo-

rem 3.2]. It is given by the 1-cocycle h := pr∗2α
−1 ◦ pr∗1α ∈ Aut⊗(ωf )(K̂

un ⊗Ke K̂
un) where pr∗i : K̂

un →

K̂un ⊗Ke K̂
un is the inclusion into the i-th factor. The image (gγ)γ ∈

∏
γ∈Gal(Kun/Ke)

Aut⊗(ωf )(K̂
un) of

h under the morphism K̂un ⊗Ke K̂
un →

∏
γ∈Gal(Kun/Ke)

K̂un, x⊗ y 7→ (γ(x)y)γ is given by

gγ = α−1 ◦ γ∗α = α−1 ◦
(
( idF ⊗γ) ◦ α ◦ ( idW ⊗γ)

−1
)

= ρuniv(u∗γ)⊗ 1K̂un ,

where we identify Gal(Kun/Ke) = Gal(Fq/Fqe) = πét
1 (u, ū), where u∗ : π

ét
1 (u, ū) →֒ πét

1 (U, ū) is the natural

inclusion, and where ρuniv : πét
1 (U, ū) → Aut⊗(ωf )(K) is the homomorphism corresponding to the fact

that every element of πét
1 (U, ū) acts as a tensor automorphism of ωf defined over K.

Note that although
(
ρuniv(u∗γ)

)
γ
∈
∏
γ∈Gal(Kun/Ke)

Aut⊗(ωf )(K) it does in general not lie in the

image of the homomorphism Kun ⊗Ke K
un →֒

∏
γ∈Gal(Kun/Ke)

Kun, x ⊗ y 7→ (γ(x)y)γ which equals the

union of
∏
γ∈Gal(L/Ke)

L embedded diagonally into
∏
γ∈Gal(Kun/Ke)

Kun over all finite Galois extensions

L ⊂ Kun of Ke. Namely
(
ρuniv(u∗γ)

)
γ
lies in

∏
γ∈Gal(L/Ke)

Aut⊗(ωf )(L) if and only if ρuniv(u∗γ) = 1 for

all γ ∈ Gal(Kun/L).

To formulate the consequence for the individual monodromy groups Gr(F , u) let K̂ be the p-adic
completion of K. Moreover, for each x ∈ |U | let x̄ be a geometric base point of U lying above x and

choose an isomorphism of groups πét
1 (U, x̄) ∼−→ πét

1 (U, ū). It is unique up to conjugation in πét
1 (U, ū).

Let Frob−1
x ∈ Gal(Fx/Fx) = πét

1 (x, x̄) be the geometric Frobenius which maps a ∈ Fx to a1/qx , where
qx = #Fx. It is the inverse of the arithmetic Frobenius Frobx : a 7→ aqx . Then the conjugacy class of
x∗ Frob

−1
x in πét

1 (U, ū) is well defined.

Corollary 5.4. Let F be a convergent unit-root F -isocrystal on U and let ρ : πét
1 (U, ū)→ AutK(W ) be the

representation corresponding to F under the tensor equivalence from Proposition 5.2. Then the categories
〈〈F〉〉 ⊂ F -URK(U) and 〈〈ρ〉〉 ⊂ RepcK π

ét
1 (U, ū) are tensor equivalent and there is a finite field extension L

of Ke and an isomorphism β : ωf |〈〈ρ〉〉 ⊗K L ∼−→ ωu|〈〈F〉〉 ⊗Ke L of tensor functors on these categories. In

particular Gr(F , u) ×Ke L is the Zariski-closure of the image of β∗ ◦ ρ : πét
1 (U, ū) → AutKe(u

∗F)(L) and

for all points x ∈ |U | the Gr(F , u)(K)-conjugacy classes of β∗ ◦ ρ(x∗ Frob
−1
x ) and Frobx(F) coincide.

Remark 5.5. The field L and the isomorphism β are not canonical. We do not know whether one can find
such a field L contained in Kun. If L and β are replaced by L′ and β′ then h := β′◦β−1 ∈ Gr(F/U, u)(LL′)
and so the map β∗ ◦ ρ : πét

1 (U, ū)→ AutKe(u
∗F)(LL′) is only canonical up to conjugation by h.

Proof of Corollary 5.4. By Proposition 5.2 the categories 〈〈F〉〉 and 〈〈ρ〉〉 are tensor equivalent. Since
Aut⊗(ωf |〈〈ρ〉〉) is a closed subgroup of AutK(ωf (ρ)) the Aut

⊗(ωf |〈〈ρ〉〉)-torsor Isom
⊗(ωf |〈〈ρ〉〉⊗KKe, ωu|〈〈F〉〉)

is a scheme of finite type over Ke by [EGA, IV2, Proposition 2.7.1] and therefore has a point over a finite

field extension L of Ke. This point defines the isomorphism β : ωf |〈〈ρ〉〉 ⊗K L ∼−→ ωu|〈〈F〉〉 ⊗Ke L of
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tensor functors and an isomorphism of algebraic groups β∗ : Aut⊗(ωf |〈〈ρ〉〉) ×K L ∼−→ Gr(F/U, u)×Ke L,

g 7→ β ◦ g ◦ β−1. So the statement about the latter group follows from Lemma 4.2.
To prove the equality of conjugacy classes note that the tensor isomorphism α from (5.1) satisfies

α ◦
(
ρ(u∗ Frob

−1
u ) ⊗ idK̂un

)
◦ α−1 = u∗FF . If h := β ◦ α−1 ∈ Gr(F , u)(K̂) then β∗ ◦ ρ(u∗ Frob

−1
u ) · h =

h ·α◦
(
ρ(u∗ Frob

−1
u )⊗ idK̂un

)
◦α−1 = h ·u∗FF . Since β∗◦ρ(u∗ Frob

−1
u ) and u∗FF lie in Gr(F , u)(K) this is

an equation for h with coefficients in K which has a solution in K̂. By Hilbert’s Nullstellensatz it thus has
a solution h ∈ Gr(F , u)(K), too. This proves that the Gr(F , u)(K)-conjugacy classes of β∗ ◦ ρ(u∗ Frob

−1
u )

and u∗FF coincide for x = u. The equality for general x follows from this by replacing u by x and arguing
as above. �

Remark 5.6. Note that Conjecture 1.2 for convergent unit-root F -isocrystals on U , which we proved in
Proposition 1.7, is considerably weaker than the classical Chebotarëv density theorem for U to the same
extent as the pro-finite topology on πét

1 (U, ū) is finer than the Zariski topology on in its Ke-linear algebraic
envelope. Namely, the classical Chebotarëv density theorem says that the Frobenii of a set S of Dirichlet
density 1 are dense in πét

1 (U, ū) for the pro-finite topology, see [Ser63, Theorem 7]. If F is a unit-root
F -isocrystal the representation πét

1 (U, ū)→ Gr(F , u)(L) corresponding to F by Corollary 5.4, where L is
a finite extension of Ke, is continuous for the p-adic topology. So the Frobenii lie p-adically dense in the
image of this representation, but this image itself is not p-adically dense in Gr(F , u)(L), since it is closed,
but not the whole group in general. This image is only Zariski-dense by Corollary 5.4. Therefore, the
stronger assertion that the set

⋃
x∈S Frobx(F) is p-adically dense in Gr(F , u)(K) is false in general. So it

is unreasonable to expect a density statement for any topology other than the Zariski topology, even in
the most simple case of constant F -isocrystals. This can be seen from the following

Example 5.7. Let C be the pullback to U of the F -isocrystal on Fq of rank 1 given by (K,F = πs) with
s ∈ Z. If s 6= 0 then Gr(F , u) = Gm,Ke. Indeed, Gr(F , u) is a closed subgroup of AutKe(u

∗C) = Gm,Ke

which contains Frobu(C) = {πes}. Since the set πZes is infinite, the only such group is Gm,Ke . However,
the set

⋃
x∈U Frobx(F) ⊂ πZes is discrete in Gm(Ke) for the p-adic topology.

To formulate further corollaries, recall that the geometric fundamental group πét
1 (U, ū)geo is defined as

the étale fundamental group πét
1 (U ×Fq Fq, ū) of U ×Fq Fq. It sits in Grothendieck’s fundamental exact

sequence [SGA 1, IX, Théorème 6.1]

(5.2) 1 −→ πét
1 (U, ū)geo −→ πét

1 (U, ū) −→ Gal(Fq/Fq) −→ 1

For the next corollary recall from Definition 4.9 the definition of the geometric monodromy group Gr(F/U, u)geo

and of W(F , u) as the monodromy group of 〈〈F〉〉const.

Corollary 5.8. In the situation of Corollary 5.4 the homomorphism β∗◦ρ induces a commutative diagram

(5.3) 1 // πét
1 (U, ū)geo //

β∗◦ρ

��

πét
1 (U, ū) //

β∗◦ρ

��

Gal(Fq/Fq) //

��

1

1 // Gr(F/U, u)geo ×Ke L // Gr(F/U, u)×Ke L // W(F , u)×Ke L // 1

with exact rows in which the three vertical maps have Zariski-dense image. In particular, if ρgeo :=
ρ|πét

1 (U,ū)geo is the restriction of ρ, then β∗ induces an isomorphism

Aut⊗(ωf |〈〈ρgeo〉〉)×K L ∼−→ Gr(F/U, u)geo ×Ke L .

Proof. The category 〈〈F〉〉const has a tensor generator C. Let (K⊕r, f) ∈ F -IsocK(SpecFq) be an F -
isocrystal on SpecFq such that C is the pullback of (K⊕r, f) under the structure morphism U → SpecFq.
Then Gr(C/U, u) = Gr((K⊕r, f)/ SpecFq, u) equals the Zariski-closure of f

Z in GLr,Ke by Theorem 4.8(b).
Since F ∈ F -IsocK(U) is unit-root, also C is unit-root, and possibly after a change of basis, we can
assume that f ∈ GLr(OK), where OK denotes the valuation ring of K. Since the group GLr(OK) is
pro-finite, the morphism Z → GLr(OK), n 7→ fn extends uniquely to a morphism ρconst : Gal(Fq/Fq) =

Ẑ ·Frobq → GLr(OK), Frobq 7→ f . Conversely, if G ∈ 〈〈F〉〉 is an F -isocrystal on which the representation

ρ : πét
1 (U, ū)→ Aut(ωu(G)⊗Ke L) factors through Gal(Fq/Fq), then G is constant and belongs to 〈〈F〉〉const
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by Crew’s result [Cre87, Theorem 2.1 and Remark 2.2.4] for SpecFq. Therefore, the first two assertions
follow from Corollary 4.6. �

Remark 5.9. We do not know, whether the image β∗ ◦ ρ
(
πét
1 (U, ū)geo

)
equals the intersection of β∗ ◦

ρ
(
πét
1 (U, ū)

)
with Gr(F , u)geo(L). To prove this, one needs to find a faithful representation ρ′ of the group

ρ
(
πét
1 (U, ū)

)/
ρ
(
πét
1 (U, ū)geo

)
on a finite dimensional K-vector space which belongs to the Tannakian sub-

category 〈〈ρ〉〉 ⊂ RepcK π
ét
1 (U, ū). Nevertheless, we can prove the following

Corollary 5.10. In the situation of Corollary 5.8 there is a constant unit-root F -isocrystal F ′ on U ,
corresponding to a representation ρ′ : πét

1 (U, ū) ։ Gal(Fq/Fq)→ GLr(K) for r ∈ N, whose image im(ρ′) is
isomorphic to ρ

(
πét
1 (U, ū)

)/
ρ
(
πét
1 (U, ū)geo

)
. If we replace F by F⊕F ′ and ρ by ρ⊕ρ′, then in diagram (5.3)

we have

β∗ ◦ (ρ⊕ ρ
′)
(
πét
1 (U, ū)geo

)
= β∗ ◦ (ρ⊕ ρ

′)
(
πét
1 (U, ū)

)
∩Gr(F ⊕ F ′, u)geo(L) .

Proof. We first construct ρ′. By Cartan’s theorem, see [Ser92, Part II, §V.9, Corollary to Theorem 1
on page 155] or Theorem 7.1 below, the images C := ρ

(
πét
1 (U, ū)

)
and Cgeo := ρ

(
πét
1 (U, ū)geo

)
are Lie

groups over Qp, and the quotient C/Cgeo = ρ
(
πét
1 (U, ū)

)/
ρ
(
πét
1 (U, ū)geo

)
is again a Lie group over Qp by

[Ser92, Part II, § IV.5, Remark 2 after Theorem 1 on page 108]. If the quotient C/Cgeo is finite, then it
has a faithful representation ρ′ on a finite dimensional K-vector space. So we now assume that C/Cgeo

is not finite. Note that Gal(Fq/Fq) ∼= Ẑ = Zp ×
∏
ℓ 6=p Zℓ surjects onto C/Cgeo. By the incompatibility

of the ℓ-adic and the p-adic topologies, the image of
∏
ℓ 6=p Zℓ in C/C

geo is a finite subgroup H and thus

has a faithful representation on a finite dimensional K-vector space V ′
1 . On the other hand, the map

Zp →֒ Gal(Fq/Fq) ։ C/Cgeo is analytic by [Ser92, Part II, §V.9, Theorem 2] and its image is an at
most one-dimensional Lie group over Qp by [Ser92, Part II, § IV.5, Theorems 1 and 3 and Corollary to
Theorem 2]. If it were zero dimensional, then it would be finite because it is compact, and this was
excluded. So it is one-dimensional and the map from Zp onto its image is a local isomorphism by [Ser92,
Part II, § III.9, Theorem 2]. The kernel of this map is finite, and hence trivial, because Zp is compact and
torsion free. Therefore, we obtain an epimorphism ϕ : Zp ×H ։ C/Cgeo, which is even an isomorphism,
because if an element (g, h) lies in the kernel, then ϕ(g) = ϕ(h−1) is a torsion element of ϕ(Zp) = Zp, and
hence trivial. Therefore, g = 1, and since ϕ|H is injective also h = 1. Now take a faithful representation
of Zp on a finite dimensional K-vector space V ′

2 , for example in a unipotent group. The sum V ′
1 ⊕ V

′
2 is

the desired representation ρ′ : πét
1 (U, ū) ։ Gal(Fq/Fq) → GLr(K). The convergent F -isocrystal F ′ on U

corresponding to ρ′ is constant by Crew’s result [Cre87, Theorem 2.1 and Remark 2.2.4] for SpecFq.
To prove the last statement, note that the inclusion “⊂” is trivial. To prove the converse inclusion “⊃”

let C̃ := (ρ⊕ρ′)
(
πét
1 (U, ū)

)
and C̃geo := (ρ⊕ρ′)

(
πét
1 (U, ū)geo

)
. By construction of ρ′ we have isomorphisms

C ∼−→ C̃ and Cgeo ∼−→ C̃geo given by c 7→ (c, c mod Cgeo). Therefore, every element β∗(c, c mod Cgeo) ∈

β∗(C̃) = β∗ ◦ (ρ⊕ρ′)
(
πét
1 (U, ū)

)
which lies in the kernel Gr(F ⊕F ′, u)geo of Gr(F ⊕F ′, u) ։ W(F ⊕F ′, u)

is mapped to 1 in the quotient Gr(F ′, u) = Aut⊗(ωf |〈〈ρ′〉〉) of W(F ⊕ F ′, u). This implies ρ′(c) = 1 and
c ∈ Cgeo as desired. �

Another consequence of Corollary 5.4 is the following

Corollary 5.11. Let F ∈ F -URK(U) be a convergent unit-root F -isocrystal on U and let f : V →֒ U be
a non-empty open sub-curve. Then the pullback functor f∗ : G 7→ f∗G from 〈〈F〉〉 to 〈〈f∗F〉〉 is a tensor
equivalence of Tannakian categories. In particular, if u ∈ V (Fqe) is a base point, the induced morphism of
monodromy groups Gr(f∗F/V, u)→ Gr(F/U, u) is an isomorphism.

Proof. We use that πét
1 (f) : πét

1 (U, ū) ։ πét
1 (V, ū) is an epimorphism by [SGA 1, V, Proposition 8.2]. Let

ρ : πét
1 (U, ū) → AutK(W ) be the representation corresponding to F under the tensor equivalence from

Proposition 5.2. Then f∗ρ := ρ ◦ πét
1 (f) : πét

1 (V, ū) → AutK(W ) is the representation corresponding to
f∗F . Therefore, the functor f∗ on 〈〈F〉〉 is fully faithful. Moreover, every subobject of 〈〈f∗ρ〉〉 is of the form
ρ′ : πét

1 (V, ū)→ AutK(W ′) for an invariant subspace W ′ ⊂W . By the surjectivity of πét
1 (f) this subspace

is also πét
1 (U, ū)-invariant, and hence ρ′ = f∗(ρW ′) for the subobject ρW ′ : πét

1 (U, ū) → AutK(W ′) of ρ.
Since f∗ clearly is a tensor functor, the corollary is proven. �
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6. Groups of Connected Components

We consider a finite étale Galois-covering f : V → U of smooth, geometrically irreducible curves and
the pull back functor

(6.1) f∗ : F -IsocK(U) −→ F -IsocK(V ) , F 7→ f∗F ;

see for example [Cre92, p. 431]. In addition recall the functor ( . )(n) from (3.1). Both functors possess
right adjoints

(6.2)
f∗ : F -IsocK(V ) −→ F -IsocK(U) , G 7→ f∗G and

( . )(n) : F
n-IsocKn(Un) −→ F -IsocK(U) , G 7→ G(n) .

For f∗ see [Cre92, 1.7]. The functor ( . )(n) can explicitly be described as follows. Let pr : Un → U be the

projection, take G(n) :=
⊕n−1

i=0 F
i∗pr∗G =

⊕n−1
i=0 pr∗F

i∗G and let the Frobenius FG(n)
: F ∗G(n)

∼−→ G(n) be
given by the matrix




0 pr∗FG

1

1 0


 ,

where FG : F
n∗G ∼−→ G is the Frobenius of G. Fix a normal basis (bi)i∈Z/nZ of the field extension Kn/K,

that is Kn =
⊕

i∈Z/nZK · bi and F (bi) = bi+1 for the Frobenius F ∈ Gal(Kn/K). Let K be the pullback

to U of the constant F -isocrystal on SpecFq given by
⊕

i∈Z/nZK · ei with Frobenius F (ei) = ei+1. Then

for the trivial Fn-isocrystal n1lUn
on Un one has F i∗(n1lUn

) = n1lUn
and

(n1lUn
)(n) = pr∗(pr

∗K) = K ⊗K Kn =
⊕

i∈Z/nZ

K · bi ∼= K ⊗K ,

where the last isomorphism is given by sending bi to ei. The adjunction satisfies the projection formula

(F (n) ⊗ G)(n) ∼= F ⊗ G(n), and (F (n))(n) ∼= F ⊗ (n1lUn
)(n), as well as (G(n))

(n) = (
⊕n−1

i=0 F
i∗G) ⊗K Kn.

In particular, via the counit morphism of the adjunction, G is a quotient of (G(n))
(n). Now we write

K⊕n = (
⊕

i,j K · ei ⊗ dj)U with Frobenius F (ei ⊗ dj) = ei+1 ⊗ dj . Then there is an isomorphism of
F -isocrystals

(6.3) ψ : K ⊗K ∼−→ K⊕n, ei ⊗ ej 7→ ei ⊗ dj−i , ei ⊗ ei+j ←p ei ⊗ dj .

Similarly, let L := f∗1lV where 1lV is the trivial F -isocrystal on V . Then f∗(f
∗(F)⊗G) ∼= F ⊗ f∗G, and

f∗f
∗F = F ⊗ L. And if we set Γ = Gal(V/U) then f∗f∗G ∼=

⊕
γ∈Γ γ

∗G and f∗L ∼=
⊕

Γ 1lV . So again, via
the counit morphism of the adjunction, G is a quotient of f∗f∗G. The formulas also yield isomorphisms

of F -isocrystals ψ : L⊗L ∼−→
⊕

Γ L and ψ′ : L⊗L∨ = f∗(f
∗L)∨ ∼−→ f∗

⊕
Γ 1lV =

⊕
Γ L. Fix a base point

v ∈ V (Fqe) and let u := f(v) ∈ U(Fqe). Let L := ωu(L). Since ωu(L) = ωv(f
∗L) and f∗L =

⊕
γ∈Γ 1lV ,

the Ke-vector space L possesses a basis (eγ)γ∈Γ for which the isomorphisms ψ and ψ′ on L have the
description

ψ : L⊗ L ∼−→
⊕

δ∈Γ

L · dδ, eγ ⊗ eδ 7→ eγ · dγ−1δ , eγ ⊗ eγδ ←p eγ · dδ ,(6.4)

ψ′ : L⊗ L∨ ∼−→
⊕

δ∈Γ

L · d′δ, eγ ⊗ e
∨

δ 7→ eγ · d
′
γ−1δ , eγ ⊗ e

∨

γδ ←p eγ · d
′
δ ,(6.5)

where (e∨γ)γ is the basis of L∨ which is dual to (eγ)γ .

Lemma 6.1. The monodromy groups satisfy Gr(K/U, u) ∼= Z/nZ and Gr(L/U, u) ∼= Gal(V/U). Moreover,
K = pr∗1lUn

for the projection pr : Un → U and the trivial F -isocrystal 1lUn
on Un.

Proof. We prove both assertions simultaneously using the isomorphisms (6.3) and (6.4), which take iden-
tical form if we set Γ := Z/nZ in (6.3). The isomorphisms in the lemma are explicitly given as follows.

Let R be a Ke-algebra without non-trivial idempotents. If g ∈ Gr(L/U, u)(R) acts on L ⊗Ke R via
g(eγ) =

∑
ε∈Γ gε,γ ·eε with gε,γ ∈ R then it acts on (L⊗L)⊗KeR via g(eγ⊗eγδ) =

∑
ε,η gε,γ ·gη,γδ ·eε⊗eη
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and on (
⊕

δ∈Γ L · dδ) ⊗Ke R via g(eγ · dδ) =
∑
ε gε,γ · eε · dδ. Since these actions have to be compatible

with the isomorphism ψ it follows that

gε,γ · gη,γδ = gε,γ if η = εδ and gε,γ · gη,γδ = 0 if η 6= εδ .

For δ = 1 this implies in particular

(gε,γ)
2 = gε,γ and gε,γ · gη,γ = 0 if η 6= ε .

Thus gε,γ = 0 or 1, because these are the only idempotents in R. If gε,γ = 1 then also gεδ,γδ = 1 for all δ
and gηδ,γδ = 0 for all η 6= ε and all δ. Therefore, g(eη) = eλη for all η, where λ := εγ−1. Mapping this g
to λ ∈ Γ defines an injective group homomorphism α : Gr(L/U, u)(R) →֒ Γ.

To see that α is surjective we use that K and L are convergent unit-root F -isocrystals by Lemma 5.1.
Under Crew’s equivalence between unit-root F -isocrystals and representations of the fundamental group
(Proposition 5.2) the trivial F -isocrystal 1lV and the trivial Fn-isocrystal n1lUn

correspond to the trivial

representations πét
1 (V, v̄) → K

×

and πét
1 (Un, ū) → K

×

n . (Here we assume that u ∈ Un(Fqe).) Moreover,

under this equivalence the functors f∗ and ( . )(n) correspond to the functors

Res : RepcK π
ét
1 (U, ū) −→ RepcK π

ét
1 (V, v̄) , ρ 7−→ ρ|πét

1 (V,v̄) and

Res⊗KKn : RepcK π
ét
1 (U, ū) −→ RepcKn

πét
1 (Un, ū) , ρ 7−→

(
ρ|πét

1 (Un,ū)

)
⊗K Kn .

For an open subgroup H of a compact group G the right and left adjoint to ResGH is the induction functor

IndGH : RepcK H → RepcK G with

IndGH(ρ,Wρ) :=
{
r : G→Wρ continuous: r(hg) = ρ(h)r(g) ∀h ∈ H, g ∈ G

}

for a continuous representation ρ : H → AutK(Wρ); see [NSW08, Footnotes on pp. 61 and 63]. Also the
restriction of scalars from Kn to K is right adjoint to . ⊗K Kn. So the right adjoints f∗ and ( . )(n)
correspond to the right adjoints

Ind: RepcK π
ét
1 (V, v̄) −→ RepcK π

ét
1 (U, ū) , ρ 7−→ Ind

πét
1 (U,ū)

πét
1 (V,v̄)

ρ and

Ind: RepcKn
πét
1 (Un, ū) −→ RepcK π

ét
1 (U, ū) , ρ 7−→ Ind

πét
1 (U,ū)

πét
1 (Un,ū)

ρ .

We find that L = f∗1lV and K⊕n = (n1lUn
)(n) correspond to the representations

⊕

Gal(V/U)

K and
⊕

Z/nZ

Kn in RepcK π
ét
1 (U, ū)

on which πét
1 (U, ū)/πét

1 (V, v̄) = Gal(V/U), respectively πét
1 (U, ū)/πét

1 (Un, ū) = Z/nZ, act as permutation
representations. In particular, K = pr∗1lUn

. Moreover, by Corollary 5.4 the groups Gr(K/U, u) ×Ke K

and Gr(L/U, u)×Ke K equal the Zariski-closure of the image of πét
1 (U, ū). This proves the surjectivity of

α. �

Let πF -Isoc
1 (U, u)∆ be the automorphism group of the fiber functor ωu : F -IsocK(U)→ {Ke-vector spaces}.

It is an affine group scheme over Ke and equals the kernel group of the Ke/K-groupoid πF -Isoc
1 (U, u) :=

Aut⊗K(ωu) whose category of Ke-rational representations is tensor equivalent to F -IsocK(U), see Defini-
tion A.5 and Theorem A.11. We again assume that u ∈ Un(Fqe) and similarly define πF -Isoc

1 (V, v)∆ and

πF
n-Isoc

1 (Un, u)
∆.

Lemma 6.2. Let f : V → U be a finite étale Galois-covering of curves with Galois group Γ := Gal(V/U),
let v ∈ V (Fqe) and let u := f(v) ∈ U(Fqe).

(a) There is an exact sequence of affine group schemes over Ke

0 // πF -Isoc
1 (V, v)∆

α
// πF -Isoc

1 (U, u)∆
β

// Gal(V/U) // 0 ,

where the morphism α is induced by the pullback functor f∗ : F -IsocK(U) → F -IsocK(V ), and β
comes from the epimorphism πF -Isoc

1 (U, u)∆ ։ Gr(L/U, u) ∼= Gal(V/U) using Lemma 6.1.
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(b) For every F ∈ F -IsocK(U) the sequence in (a) induces the following exact sequence of affine group
schemes over Ke

(6.6) 0 // Gr(f∗F/V, v) // Gr(F/U, u) // G // 0 ,

where G is a finite group which is a quotient of Gal(V/U). In particular if Gr(F/U, u) is connected

then Gr(f∗F/V, v) ∼−→ Gr(F/U, u).

Proof. (a) Explicitly α is given as follows. Note that ωv(f
∗F) = ωu(F) for all F ∈ F -IsocK(U). If

h ∈ πF -Isoc
1 (V, v)∆ then α(h) acts on ωu(F) as α(h)|F := h|f∗F . Since f∗L =

⊕
γ∈Γ γ

∗1lV = 1l⊕#Γ
V is

a direct sum of the trivial Fn-isocrystal 1lV , the group πF -Isoc
1 (V, v)∆ maps to the kernel of β. Next

every object G ∈ F -IsocK(V ) is a quotient of f∗F for the object F = f∗G ∈ F -IsocK(U), because
f∗f∗G =

⊕
γ∈Γ γ

∗G. Therefore, the map α is a closed immersion by Proposition A.14(b).

To prove exactness in the middle let g ∈ πF -Isoc
1 (U, u)∆ lie in the kernel of β. We must show that

g = α(h) for some h ∈ πF -Isoc
1 (V, v)∆, and this means that for every G ∈ F -IsocK(V ) we have to exhibit

h|G ∈ AutKe(ωv(G)). We reuse the technique from Lemma 6.1. For any such G we have a Ke-linear
automorphism g|f∗G of

ωu(f∗G) = ωv(f
∗f∗G) =

⊕
γ∈Γ

ωv(γ
∗G) .

which we decompose as g|f∗G = (hε,γ)ε,γ :
⊕

γ∈Γωv(γ
∗G) ∼−→

⊕
ε∈Γωv(ε

∗G) for Ke-homomorphisms

hε,γ : ωv(γ
∗G)→ ωv(ε

∗G). To compute g|f∗G we use the isomorphism

ψG : L ⊗ f∗G
∼−→ f∗((f

∗L)⊗ G) = f∗
(
(
⊕
δ∈Γ

δ∗1lV )⊗ G
)

=
⊕
δ∈Γ

f∗(1lV ⊗ G) =
⊕
Γ

f∗G .

We fix bases cγ of the Ke-vector space ωv(γ
∗G) and eδ of the 1-dimensional Ke-vector space ωv(δ

∗1lV ).
We compute

ωu(L ⊗ f∗G) = ωv(f
∗L)⊗Ke ωv(f

∗f∗G) =
⊕
γ,δ∈Γ

ωv(δ
∗1lV )⊗Ke ωv(γ

∗G) =
⊕
γ,δ∈Γ

〈eδ〉Ke ⊗Ke 〈cγ〉Ke ,

ωu(
⊕
Γ

f∗G) =
⊕
δ∈Γ

ωv(f
∗f∗G) =

⊕
γ,δ∈Γ

(Ke · dδ)⊗Ke ωv(γ
∗G) =

⊕
γ,δ∈Γ

〈dδ〉Ke ⊗Ke 〈cγ〉Ke ,

where the basis elements dδ in the last line simply help to keep track of the summands for δ ∈ Γ. As in
(6.4) the isomorphism ψG on these fiber functors is given by

ωu(ψG) : ωu(L ⊗ f∗G)
∼−→ ωu(

⊕
Γ

f∗G) , eδ ⊗ cγ 7→ dγ−1δ ⊗ cγ , eγδ ⊗ cγ ←p dδ ⊗ cγ .

Since g|L = β(g) = id, that is g(eδ) = eδ for all δ ∈ Γ, we obtain

g|L⊗f∗G(eγδ ⊗ aγ · cγ) =
∑

ε

eγδ ⊗ hε,γ(aγ) · cε and

g|⊕
Γ f∗G

(dδ ⊗ aγ · cγ) =
∑

ε

dδ ⊗ hε,γ(aγ) · cε .

The compatibility with the isomorphism ψG imposes for every γ and δ the condition
∑

ε

eγδ ⊗ hε,γ(aγ) · cε =
∑

ε

eεδ ⊗ hε,γ(aγ) · cε

It follows that hε,γ(aγ) = 0 if γ 6= ε. In particular, we can define h|γ∗G := hγ,γ = (g|f∗G)
∣∣
ωv(γ∗G) and

h|G := h1,1 = (g|f∗G)
∣∣
ωv(G). As our argument is functorial in G this shows that indeed h is an element of

πF -Isoc
1 (V, v)∆.
It remains to show that g = α(h). Let F ∈ F -IsocK(U). Then α(h)|F = h|f∗F and we must show that

this is equal to g|F . From f∗f
∗F = F ⊗ L we deduce g|f∗f∗F = g|F ⊗ id |L. Then h|f∗F is defined as

h|f∗F := (g|f∗f∗F)
∣∣
ωv(f∗F) = (g|F )

∣∣
ωu(F). This proves (a).

(b) The group scheme Gr(F/U, u) is the image of the representation πF -Isoc
1 (U, u)∆ → AutKe(ωu(F))

corresponding to F and likewise for f∗F by Propositions A.13 and A.14(a). Since ωu(F) = ωv(f
∗F),

the group Gr(f∗F/V, v) is a closed normal subgroup of Gr(F/U, u) and the quotient G is a quotient of
Gal(V/U).

If Gr(F/U, u) is connected then its image in G will be zero. This proves the lemma. �
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Lemma 6.3. Let n ∈ N and assume that u ∈ Un(Fqe) .

(a) The functor [n]∗ : F -IsocK(Un)→ Fn-IsocKn(Un), (F , FF ) 7→ (F , FnF ) given by passing to the n-th

power of the Frobenius induces an isomorphism of group schemes πF
n-Isoc

1 (Un, u)
∆ ∼−→ πF -Isoc

1 (Un, u)
∆

over Ke.
(b) There is an exact sequence of affine group schemes over Ke

0 // πF
n-Isoc

1 (Un, u)
∆ α

// πF -Isoc
1 (U, u)∆

β
// Z/nZ // 0 ,

where the morphism α is induced by the functor ( . )(n) from (3.1), and β comes from the epimor-
phism πF -Isoc

1 (U, u)∆ ։ Gr(K/U, u) ∼= Z/nZ using Lemma 6.1.
(c) For every F ∈ F -IsocK(U) the sequence in (b) induces the following exact sequence of affine group

schemes over Ke

0 // Gr(F (n)/Un, u) // Gr(F/U, u) // G // 0 ,

where G is a finite group which is a quotient of Z/nZ. In particular if Gr(F/U, u) is connected

then Gr(F (n)/Un, u)
∼−→ Gr(F/U, u).

Remark 6.4. Note that Lemma 6.3(a) does not imply that the functor [n]∗ is an equivalence of categories.
Namely, by Theorem A.11 the category F -IsocK(Un) is equivalent to the Ke-rational representations of the
Ke/K-groupoid Aut⊗K

(
ωu|F -IsocK(Un)

)
and the category Fn-IsocKn(Un) is equivalent to the Ke-rational

representations of the Ke/Kn-groupoid Aut⊗Kn

(
ωu|Fn-IsocKn(Un)

)
. The latter is obtained as the fiber

product

(6.7) Aut⊗Kn

(
ωu|Fn-IsocKn(Un)

)
= Aut⊗K

(
ωu|F -IsocK(Un)

)
×

SpecKe⊗KKe

SpecKe ⊗Kn Ke

by [Mil92, Proposition A.12], because Fn-IsocKn(Un) is the base extension category F -IsocK(Un)⊗K Kn.
In particular, the kernel groups πF

n-Isoc
1 (Un, u)

∆ and πF -Isoc
1 (Un, u)

∆ of both groupoids coincide, because
they are obtained as the pullback along the diagonal SpecKe → SpecKe ⊗Kn Ke of (6.7).

On unit root F -isocrystals Crew’s equivalence from Proposition 5.2 yields a commutative diagram of
categories

F -URK(Un)
[n]∗

//

∼=

��

F -URKn(Un)

∼=

��

RepcK π
ét
1 (Un, ū)

⊗KKn
// RepcKn

πét
1 (Un, ū) .

Note that the horizontal functors have right adjoints RepcKn
πét
1 (Un, ū) → RepcK π

ét
1 (Un, ū) given by re-

striction of scalars from Kn to K, and

[n]∗ : F
n-IsocKn(Un) → F -IsocK(Un)

given by [n]∗G :=
⊕n−1

i=0 F
i∗G with Frobenius F[n]∗G : F

∗([n]∗G)
∼−→ [n]∗G given by the matrix




0 FG

1

1 0


 ,

where FG : F
n∗G ∼−→ G is the Frobenius of G. In particular, the functor ( . )(n) from (6.2) equals pr∗ ◦ [n]∗

for the projection pr : Un → U .

Proof of Lemma 6.3. (a) follows from Remark 6.4. Alternatively, it can be proven by a strategy similar
to Lemma 6.2(a). Indeed, there is an exact sequence of affine Ke-group schemes

0 // πF
n-Isoc

1 (Un, u)
∆

[n]∗
// πF -Isoc

1 (Un, u)
∆ // Gr([n]∗

n1lUn
/Un, u) // 0 ,

where n1lUn
∈ Fn-IsocKn(Un) is the unit object. We show that [n]∗

n1lUn
is trivial. Let λ ∈ Fqn be a

generator of the field extension Fqn/Fq, that is Fqn =
⊕n−1

j=0 Fq · λj and let b ∈ OKn be the qn-th root of

unity which reduces to λ modulo the maximal ideal mKn of OKn . (Use Hensel’s Lemma for the existence
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and uniqueness of b.) Then an isomorphism 1l⊕nUn

∼−→ [n]∗
n1lUn

is given by the matrix
(
F i(bj)

)
i,j=0...n−1

,

which is invertible, because its reduction modulo mKn is an invertible Moore matrix, see for example

[Gos96, § 1.3]. Therefore, Gr([n]∗
n1lUn

/Un, u) is trivial and πF
n-Isoc

1 (Un, u)
∆ ∼−→ πF -Isoc

1 (Un, u)
∆ is an

isomorphism.

(b) and (c) now follow from Lemma 6.2 by observing that pr∗1lUn
= K, see Lemma 6.1. �

Corollary 6.5. Let F be a convergent F -isocrystal on U and let u ∈ U(Fqe). Then, after possibly enlarging
e, there exists a finite étale Galois covering of curves f : V → U and a point v ∈ V (Fqe) with f(v) = u
such that Gr(f∗F/V, v) equals the identity component Gr(F/U, u)◦ in sequence (6.6) and Gal(V/U) is
isomorphic to the group of connected components of Gr(F/U, u).

Proof. Let G := Gr(F/U, u)
/
Gr(F/U, u)◦ be the quotient by the characteristic subgroup Gr(F/U, u)◦ ⊂

Gr(F/U, u). It corresponds to an object G ∈ 〈〈F〉〉 with G = Gr(G/U, u) by Remark A.17 and Corol-
lary A.16(b). Since G is a finite group, G is a convergent unit-root F -isocrystal by Lemma 5.1. Let
ρG : π

ét
1 (U, ū) ։ G be the representation of the fundamental group corresponding to G by Proposition 5.2

which is surjective onto G by Corollary 5.4. The kernel of ρG equals πét
1 (V, v̄) for a finite étale Ga-

lois covering f : V → U and a lift v̄ ∈ V (Fq) of ū, that is G = πét
1 (U, ū)/πét

1 (V, v̄) = Gal(V/U).
In particular, ρG |πét

1 (V,v̄) is the trivial representation and, as it corresponds to f∗G as in the proof of

Lemma 6.1, consequently f∗G is a direct sum of trivial F -isocrystals. At the expense of enlarging e there
is a unique point v ∈ V (Fqe) below v̄ and above u. It follows that Gr(f∗F/V, v) maps to the kernel
of Gr(F/U, u) ։ G = Gal(V/U). From sequence (6.6) we conclude that Gr(f∗F/V, v) is equal to that
kernel, and hence equals Gr(F/U, u)◦. �

For the next corollary note that πF -Isoc
1 (U, ū)∆ = πF -Isoc

1 (U, u)∆×KeK
un and Gr(F/U, ū) = Gr(F/U, u)×Ke

Kun for every point u ∈ U(Fqe) below ū and for every F ∈ F -IsocK(U). Here Kun ⊂ K is the maximal
unramified extension of K.

Corollary 6.6. Let ū ∈ U(Fq) be a geometric base point. Then the exact sequence from Lemma 6.2(a)
induces an exact sequence of affine group schemes over Kun

(6.8) 0 // πF -Isoc
1 (U, ū)∆◦ // πF -Isoc

1 (U, ū)∆ // πét
1 (U, ū) // 0 ,

where πF -Isoc
1 (U, ū)∆◦ is the identity component. In particular, the pro-group of connected components of

πF -Isoc
1 (U, ū)∆ equals the étale fundamental group πét

1 (U, ū).

Proof. For every convergent F -isocrystal on U we obtain from Corollary 6.5 a finite étale Galois covering
f : V → U and an exact sequence

0 // Gr(F/U, ū)◦ // Gr(F/U, ū) // Gal(V/U) // 0 .

We now take the projective limit of these sequences over the diagram of the Tannakian sub-categories 〈〈F〉〉
of F -IsocK(U). This limit is taken in the category of sheaves of groups on Kun for the étale topology.
We claim that this limit is the sequence (6.8). First of all, by Lemma 3.3 the projective system of the
Gr(F/U, ū)◦ consists of epimorphisms and so satisfies the Mittag-Leffler condition. Therefore, (6.8) is
exact at πét

1 (U, ū) = lim
←−V

Gal(V/U). By the remark before the corollary the group πF -Isoc
1 (U, ū)∆ is the

projective system of the Gr(F/U, ū), which can equivalently be taken in the category of affine group
schemes over Kun. It remains to identify πF -Isoc

1 (U, ū)∆◦ with the limit of the projective system of the
Gr(F/U, ū)◦. By construction this limit is representable by a closed subgroup scheme of πF -Isoc

1 (U, ū)∆.
Moreover, it is connected, because if d is an idempotent in its structure sheaf then d lies in the structure
sheaf of some Gr(F/U, ū)◦ and satisfies d2 = d after maybe replacing 〈〈F〉〉 by a larger such category. Since
Gr(F/U, ū)◦ is connected we have d = 0 or d = 1, whence the limit is connected and a closed subgroup
scheme of πF -Isoc

1 (U, ū)∆◦. On the other hand, the limit contains πF -Isoc
1 (U, ū)∆◦ since the latter maps to

the connected component of unity in πét
1 (U, ū), which is trivial. Therefore, this limit equals πF -Isoc

1 (U, ū)∆◦

and the corollary is proven. �

Proposition 6.7. Let F ∈ F -IsocK(U) for which Conjecture 1.4 is true. Then Conjecture 1.2 also holds
true for F .
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Proof. let S ⊂ |U | be a subset of Dirichlet density one. Let G denote the group of connected components
of Gr(F/U, u); it is a quotient of πét

1 (U, ū) and equals the Galois group of a finite étale Galois cover of
U by Corollary 6.5. For every conjugacy class C ⊂ G let RC ⊂ |U | denote the set of those closed points
x ∈ |U | whose Frobenius class Frobx(F) maps onto C ⊂ G. By Corollary 5.4 the image of Frobx(F) in
G coincides with the image of the conjugacy class of the Frobenius Frob−1

x of x in πét
1 (U, ū). Thus by the

classical Chebotarëv density theorem [Ser63, Theorem 7], RC has positive Dirichlet density. Therefore,
SC = S ∩ RC has positive upper Dirichlet density by Lemma 3.13. By the validity of Conjecture 1.4
for F we get that the Zariski-closure of

⋃
x∈SC

Frobx(F) contains a connected component of Gr(F/U, u).
This connected component must map to a point in C. Since the Zariski-closure of

⋃
x∈SC

Frobx(F) is
conjugation-invariant, we get that this set is equal to the union of all connected components mapping into
C. The Zariski-closure of

⋃
x∈S Frobx(F) contains the union of the Zariski-closures of

⋃
x∈SC

Frobx(F)
for varying C, and hence it must be the whole group Gr(F/U, u). �

7. Chebotarëv for Direct Sums of Isoclinic F -Isocrystals

In this section we will prove Theorem 1.8 by working with p-adic analytic manifolds and Lie groups.
First we recall the p-adic version of Cartan’s theorem:

Theorem 7.1. Let G be a linear algebraic group over Qp, and let C ⊂ G(Qp) be a subgroup which is
compact in the p-adic topology. Then C is a Lie subgroup of G(Qp) over Qp.

Proof. Since C is compact, it is closed in the Hausdorff space G(Qp), so the claim follows from [Ser92,
Part II, §V.9, Corollary to Theorem 1 on page 155]. �

Definition 7.2. We will recall what Serre calls a standard group; see [Ser92, Part II, § IV.8]. Let F =

(F1, F2, . . . , FN ) ∈ Zp[[x1, . . . , xN , y1, . . . , yN ]]
N

be a formal group law in N variables over Zp. Serre equips
(pZp)

N with the structure of a Lie group over Qp. We need a re-normalization which identifies Zp with
pZp by multiplication with p. So we equip the p-adic analytic space GF := ZNp of dimension N with the
structure of a Lie group over Qp where the multiplication is given by the formula

(7.1) x ·F y := 1
p · F (px, py) for x, y ∈ GF := ZNp ,

and the identity is (0, 0, . . . , 0).

Let us next recall the following

Lemma 7.3. Let G be a connected linear algebraic group over a field L, and let n be an integer, which
is not divisible by the characteristic of L. Then the n-th power map [n] : G → G (which is not a group
homomorphism if G is not commutative) is a dominant morphism whose image contains an open subset.
In particular, if X ⊂ G(L) is a subset which is Zariski-dense in G, then its image [n](X) is again Zariski-
dense in G.

Proof. The differential of [n] at the neutral element of G equals the multiplication by n which is invertible.
Therefore, [n] is étale in an open neighborhood of the neutral element by [BLR90, § 2.2, Corollary 10],
and hence the image under [n] of this neighborhood is open by [EGA, IV2, Théorème 2.4.6]. Since G is
irreducible, this image is dense. The last assertion follows from this. �

As a further preparation we need the following

Theorem 7.4. Let T be a commutative linear algebraic group over a field L of characteristic zero, whose
identity component T ◦ is the product Grm,L ×L Gna,L of a split torus Grm,L with an additive group scheme

Gna,L for r, n ≥ 0. Let G ⊂ T (L) be an infinite cyclic Zariski-dense subgroup in T . Then n = 0 or n = 1,
and for any connected component T c of T , any infinite subset S of G ∩ T c is still Zariski-dense in T c.

Proof. Clearly the image of G under the projection T → Gna,L is Zariski-dense. Since this image lies in the
at most 1-dimensional linear subspace generated by the image of a generator of G, the dimension n is either
zero or one. By choosing an element h of S and considering the translate S−h we can assume that S ⊂ T ◦,
and we must show that S is Zariski-dense in T ◦. Thus, by replacing G with G ∩ T ◦ = ker(G → T/T ◦)
which is still infinite cyclic and dense in T ◦, we may assume that T = T ◦ is connected.

The n = 0 case can be easily deduced from the the Mordell-Lang conjecture for tori, proved by Michel
Laurent. Indeed, by [Lau84, Théorème 2] the Zariski-closure of S is the finite union of finitely many
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translates of sub-tori of T . By shrinking S, if it is necessary, we may assume that this finite union consists

of just one translate of a sub-torus T̃ . It will be enough to show that T̃ = T . Pick an element h ∈ S. Then
the translate S − h lies in T̃ , and hence the intersection H = G ∩ T̃ is a subgroup of G which contains
the infinite set S − h. Since G ∼= Z we get that H is a subgroup of G of finite index, say n. Then the

n-th power map x 7→ nx on T maps G into H , and hence into T̃ . Because G ∩ T is Zariski-dense in T ,

Lemma 7.3 implies that H is dense in T too. We get that T = T̃ .
We will prove the n = 1 case by a different method (which nevertheless can be applied to the n = 0

case as well). First we will need the following useful

Lemma 7.5. Over a field L of characteristic zero, all closed subgroups Γ of Grm,L×LGa,L are of the form
Γs ×L Gεa,L, where Γs ⊂ Grm,L is a closed subgroup and ε is either 0 or 1. In particular, the set of such
subgroups is countable.

Proof. Since Γ is commutative, it is the direct product Γ = Γu × Γs of the set Γu of its unipotent
elements and the set Γs of its semi-simple elements, which are both closed subgroups; see [Hum75, § 15.5,
Theorem]. The projections Γu → Grm,L and Γs → Ga,L are both zero, because 1 is the only element which

is at the same time unipotent and semi-simple. Therefore, Γu ⊂ ker(Grm,L ×L Ga,L → Grm,L) = Ga,L
and Γs ⊂ ker(Grm,L ×L Ga,L → Ga,L) = Grm,L. Since Γu is connected by Lemma 3.7, there are only the

possibilities Γu = {1} or Γu = Ga,L. This proves the first assertion.
For the last assertion we only have to show that the set of all closed subgroups Γs ⊂ Grm,L is count-

able. By [Bor91, III.8.2 Proposition] these subgroups correspond to quotients of the free abelian group
X∗(Grm,L) = Zr and so there are only countably many. �

Continuation of the Proof of Theorem 7.4. Assume now that the claim is false and let H ⊂ T = Grm,L ×L
Ga,L be a proper hyper-surface such that S lies in H . Let g ∈ G be a generator. Since the coefficients
of the defining polynomial of H and the coordinates of g form a finite set I, we may assume without the
loss of generality that L is finitely generated over Q, by replacing it with the field generated by I, if this
is necessary. Let V be a smooth irreducible variety over Q whose function field is L. By shrinking V , if
this is necessary, we may assume that g extends to a section g̃ of the projection map:

Grm,Q ×Q Ga,Q ×Q V → V .

The projection onto the first two factors induces a morphism

(7.2) g̃ : V → Grm,Q ×Q Ga,Q .

By shrinking V further, we may also assume that the projection of g̃ onto the factor Ga,Q is nowhere zero

on V . Similarly we may assume that H extends to a closed subscheme H̃ of Grm,Q ×Q Ga,Q×Q V which is
a proper hyper-surface in the fiber over any point of V .

Let Q be a closed point of V and let K be the residue field of Q. Then K is a number field. As usual
we identify Ga,Q with A1

Q and we embed Gm,Q into A2
Q as the closed subscheme on which the product of

the coordinates of A2
Q equals 1. We consider the coordinates of the point g̃(Q) ∈ (Grm,Q ×Q Ga,Q)(K) ⊂

(A2r
Q ×QA

1
Q)(K). For all but finitely many valuations µ of K all these coordinates of g̃(Q) are µ-adic units.

Fix such a valuation µ and let Kµ be the completion of K with respect to µ. It is a finite extension of
Qℓ for a prime number ℓ (different from or equal to p). By continuity there is an open ball B around Q
in V (Kµ) such that for every P ∈ B all the coordinates of g̃(P ) are still µ-adic units. We next prove the
following

Claim. There is a P ∈ B such that the group g̃(P )Z generated by g̃(P ) is Zariski-dense inGrm,Kµ
×KµGa,Kµ .

If this is false, the closure of the group g̃(P )Z is a proper closed subgroup W ( Grm,Kµ
×Kµ Ga,Kµ. Note

that for every such subgroup W the locus LW ⊂ VKµ := V ⊗Q Kµ where the map g̃ from (7.2) factors
through W is a Zariski-closed subset. Moreover, LW does not contain any irreducible component of VKµ ,
because it does not contain any generic point η of VKµ . Namely, the residue field κ(η) of η contains L,
and so the element g̃(η) = g generates a Zariski-dense subgroup of Grm,κ(η) ×κ(η) Ga,κ(η) by assumption.

We claim that the intersection LW (Kµ) ∩ B is a proper analytic subset of B which is nowhere dense
in B (that is, has Baire category one), see [Bou98, Chapter 9, § 5.1, Definition 1]. Indeed, assume that
there is a point x ∈ B and a small open neighborhood around x which is contained in LW (Kµ) ∩ B.
Since V is smooth in x, an algebraic neighborhood of x in V is étale over some affine space AdKµ

where
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d = dimV . By shrinking the small open neighborhood around x if necessary, we can assume that it maps
isomorphically onto an open ball in Ad(Kµ). The latter ball is contained inside the scheme theoretic image
of LW ⊂ VKµ in AdKµ

, which is a proper Zariski-closed subset of dimension < d. This is a contradiction

and proves that LW (Kµ)∩B is nowhere dense in B. Now by Lemma 7.5 the set of proper closed subgroups
W ( Grm,Kµ

×Kµ Ga,Kµ is countable, so the union
⋃
W LW (Kµ) ∩B ⊂ B is meager (that is, has still has

Baire category one) by [Bou98, Chapter 9, § 5.2, Definition 2] and cannot equal B by [Bou98, Chapter 9,
§ 5.3, Theorem 1 and Definition 3]. Every point in the complement of

⋃
W LW (Kµ)∩B satisfies our claim.

Since all the coordinates of the generator g̃(P ) of g̃(P )Z are ℓ-adic units, the ℓ-adic closure C of g̃(P )Z

in (Grm,Kµ
×Kµ Ga,Kµ)(Kµ) is a compact group. By [CGP10, Propositions A.5.1. and A.5.2] the Weil

restriction Y = ResKµ/Qℓ
Grm,Kµ

×Kµ Ga,Kµ is a smooth linear algebraic group scheme over Qℓ, and

Y (Qℓ) = (Grm,Kµ
×Kµ Ga,Kµ)(Kµ) contains C. By Theorem 7.1 for Qℓ, the group C is a Lie group over

Qℓ, and by [Ser92, Part II, § IV.8, Theorem] there is an open subgroup C0 of C which is standard in the
sense of Definition 7.2. This means that there is a commutative formal group law F in N variables over
Zℓ and an isomorphism

ψ : C0
∼−→ GF

of Lie groups over Qℓ, where GF := ZNℓ is equipped with the group law (7.1) given by F . Since C is
compact the index m := [C : C0] is finite. Since C is topologically generated by g̃(P ), the finite group
C/C0 is also generated by g̃(P ), and hence is cyclic of order m. This implies that the group g̃(P )mZ

generated by g̃(P )m is contained in C0 and C0 is the ℓ-adic closure of g̃(P )mZ. Via its logarithm map logF
the Lie group GF is isomorphic to the additive Lie group (ℓZNℓ ,+). Since it is topologically generated by
one element, its dimension N is 1.

Using again that the index of C0 in C is finite, there is an h ∈ C such that S∩hC0 is still infinite by the

pigeonhole principle. Under the ℓ-adic analytic isomorphism logF ◦ψ ◦ h
−1 : hC0

∼−→ ℓZℓ the intersection
H ∩ hC0 is mapped isomorphically onto an ℓ-adic analytic subset A of ℓZℓ, that is A is locally in the
ℓ-adic topology on ℓZℓ the zero locus of power series. The set H ∩ hC0 contains the infinite set S ∩ hC0,
so A contains an infinite set. Since ℓZℓ is compact, this infinite set has an accumulation point y. In a
neighborhood U = y+ ℓnZℓ of y for suitable n≫ 0 the power series defining A have infinitely many zeros.
But this implies, that A contains U , because the zeros of a power series in one variable are ℓ-adically
discrete by [Laz62, Proposition 2]. Since U is the translate of an open subgroup of ℓZℓ, it follows that
H contains a translate h′C′

0 of an open subgroup C′
0 of C0. Let m′ = [C : C′

0] be the index. Since C
contains g̃(P )Z, it is also Zariski-dense in Grm,Kµ

×Kµ Ga,Kµ . By Lemma 7.3 we get that C′
0 = [m′](C)

is Zariski-dense in Grm,Kµ
×Kµ Ga,Kµ , too. Therefore, the translate h′C′

0 of C′
0 is still Zariski-dense in

Grm,Kµ
×Kµ Ga,Kµ. So H contains a Zariski-dense subset, but this is a contradiction. �

Corollary 7.6. Let L, T and G be as in Theorem 7.4. Let X be a linear algebraic group over L and let
ϕ : X → T be a surjective morphism of algebraic groups over L. Assume that every connected component
of ker(ϕ) contains an L-rational point. Let T c be a connected component of T and let H ⊂ ϕ−1(T c) be a
Zariski-closed subset which does not contain any irreducible component of ϕ−1(T c). Then the set of those
g ∈ G ∩ T c such that H contains a connected component of ϕ−1(g) is finite.

Proof. Let S ⊂ G ∩ T c be the set of all those elements for which H contains a connected component
of ϕ−1(g). For every connected component ker(ϕ)b of ker(ϕ) let xb ∈ ker(ϕ)b(L) be the L-rational
point whose existence was assumed. Then ker(ϕ)b = xb · ker(ϕ)◦. We claim that the closed subscheme⋃
b xb · H contains ϕ−1(g) for every g ∈ S. Namely, let g ∈ S and let C be a connected component

of ϕ−1(g) which is contained in H . Let x ∈ ϕ−1(g)(L) and let y ∈ C(L) be points with values in an
algebraic closure L of L. Then ϕ(xy−1) = ϕ(x) · ϕ(y)−1 = g · g−1 = 1, and so xy−1 ∈ ker(ϕ). Let
ker(ϕ)b = xb ·ker(ϕ)◦ be the connected component containing xy−1. By multiplying y on the left with the
element x−1

b ·xy
−1 ∈ ker(ϕ)◦(L), and hence y−1 on the right with yx−1 ·xb, we can assume that xy−1 = xb

without changing that y ∈ C. Then x = xb · y ∈ xb ·C ⊂ xb ·H proving the claim. In particular
⋃
b xb ·H

contains the Zariski-closure W of ϕ−1(S).
Now let V be the Zariski-closure of S in T c. Since ϕ−1(S) is invariant under the translation by the

closed subgroup ker(ϕ), the same holds for the Zariski-closureW of ϕ−1(S), and hence W = ϕ−1(ϕ(W )).
Therefore, ϕ(W ) is a Zariski-closed subset of T c which contains S, so it contains V . We get that ϕ−1(V ) ⊂
ϕ−1(ϕ(W )) = W . If S were infinite then V = T c by Theorem 7.4, and hence ϕ−1(T c) ⊂ W is contained
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in
⋃
b xb · H . Let X ′ be an irreducible component of ϕ−1(T c). Then X ′ is contained in

⋃
b xb · H , and

since it is irreducible it is contained in xb ·H for one xb. But this implies that H contains the irreducible
component x−1

b X ′ of ϕ−1(T c), which is a contradiction. Therefore, S is finite. �

To prove Theorem 1.8 we will need the following result of Oesterlé [Oes82]. Let ordp : Q
×

p → Z be the
valuation on Qp with ordp(p) = 1. Let Zp〈z1, . . . , zN〉 denote the integral Tate ring of restricted power
series in N variables, i.e. the ring of formal power series whose coefficients converge to zero p-adically,
and let Qp〈z1, . . . , zN〉 = Zp〈z1, . . . , zN 〉 ⊗Zp Qp denote the Tate algebra over Qp in N variables. Let
0 6= f ∈ Qp〈z1, . . . , zN 〉 be a power series and let

Z(f) := { x = (x1, . . . , xN ) ∈ ZNp : f(x) = 0 } ⊂ ZNp

be the analytic hyper-surface defined by f . Note that dimZ(f) = N−1 by [BGR84, § 5.2.4, Proposition 1,
§ 5.2.2, Theorem 1, § 5.2.3, Proposition 3 and the Remark after § 6.1.2, Corollary 2]. For all ν ∈ N>0 let
Z(f)ν denote the image of Z(f) in (Zp/p

νZp)
N . Assume that f is normalized in such a way that all

its coefficients are in Zp, but not all are in pZp. (Of course this is possible after multiplying f by a
suitable constant.) The reduction of f modulo p is a non-zero polynomial in z1, . . . , zN with coefficients in
Fp = Zp/(p). Let deg(f) denote the degree of this polynomial and call it the Oesterlé degree of f . Then
Oesterlé [Oes82, Theorem 4] proves the following inequality on the cardinality of Z(f)ν :

(7.3) #Z(f)ν ≤ deg(f)pν(N−1) for every ν > 0.

To apply this result we need a bound on the Oesterlé degree deg(f) of f . To this end consider the
following situation. Let | · | : Qp → pZ ∪ {0} ⊂ R≥0 denote the p-adic norm on Qp satisfying |p| = 1/p.
Let V be a finite-dimensional vector space over Qp equipped with a p-adic ultra-metric norm ‖ · ‖. We
assume that ‖ · ‖ is normalized such that ‖V ‖ = pZ ∪ {0}. Let B ⊂ V be the unit sphere with respect to
this norm:

B = {v ∈ V : ‖v‖ = 1}.

Note that by our normalization every vector 0 6= v ∈ V has a multiple which lies in B. The norm ‖·‖ induces
a norm on the dual space V ∨ = HomQp(V,Qp) which we will also denote by ‖·‖ by slight abuse of notation.
It is defined for c ∈ V ∨ by ‖c‖ := inf{M ∈ R : |c(v)| ≤ M‖v‖ for all v ∈ V } = sup{ |c(v)| : v ∈ B }, see
[Sch84, Proposition 13.5], and hence satisfies |c(v)| ≤ ‖c‖ · ‖v‖ for every v ∈ V .

Lemma 7.7. Let cn, n ∈ N be an infinite sequence of Qp-linear maps cn : V → Qp such that ‖cn‖ ≤ 1.
Assume that for every n ∈ N there is an xn ∈ B such that |cn(xn)| = 1. Then there is an x ∈ B such that
|cn(x)| = 1 for all but finitely many n.

Proof. Using that B is compact, we may assume that the sequence xn converges to some x ∈ B, by taking
an infinite subsequence, if it is necessary. Then

|cn(x)− cn(xn)| = |cn(x− xn)| ≤ ‖cn‖ · ‖x− xn‖ ≤ ‖x− xn‖.

Since the right hand side converges to 0 as n→∞, we get that |cn(x)| = |cn(xn)| = 1 for sufficiently large
n. �

The bound on the Oesterlé degree mentioned above will be provided by the following

Proposition 7.8. Let V be a finite dimensional Qp-linear vector subspace of the ring Qp〈z1, z2, . . . , zN〉.
Then there is a constant cV only depending on V such that for every non-zero f ∈ V the Oesterlé degree
deg(f) of f is at most cV .

Proof. Let ‖ · ‖ denote the Gauss norm on Qp〈z1, . . . , zN〉 and restrict it to V . Note that it is also the
supremum norm, considered as functions on ZNp . Let B ⊂ V be the unit sphere as above. For every

multi-index k = (k1, . . . , kN ) ∈ NN0 let ck : V → Qp be the k-th coefficient, that is f =
∑

k ck(f) z
k1
1 · · · z

kN
N

for every f ∈ V . Then |ck(f)| ≤ 1 for every f ∈ B and every k by definition of the Gauss norm. So ck is
a Qp-linear form on V of norm at most 1. Now assume that the claim is false. This means that there is
an infinite sequence of multi-indices k1, k2, . . . , kn, . . . such that for every n ∈ N there is an fn ∈ B such
that |ckn

(fn)| = 1. By Lemma 7.7 there is an f ∈ B such that |ckn
(f)| = 1 for infinitely many n. But

since f ∈ Qp〈z1, z2, . . . , zN 〉 the coefficients of f converge to 0, which is a contradiction. �
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For the rest of the section we use the following

Notation 7.9. Let L be a finite field extension of Qp and let T be a commutative linear algebraic group
over L which is the product of a split torus Grm,L for r ≥ 0 with a finite abelian group and possibly an

additional factor Ga,L. Let G ⊂ T (L) be a Zariski-dense subgroup in T , which is infinite cyclic, G ∼= Z,
and let g be a generator of G. We write the group G additively as G = {ng for n ∈ Z}. Let Y and Z be
linear algebraic groups over L such that Z is of the same kind as T and assume that there are two surjective
homomorphisms ϕ1 : Y → Z and ϕ2 : T → Z of algebraic groups over L. Let X := Y ×Z T be the fiber
product of these two maps. Note that X is a closed subgroup of Y ×L T . We denote by pr1 : X → Y and
pr2 : X → T the maps obtained as the restriction to X of the projection from Y ×L T onto the first and
onto the second factor, respectively. Let C ⊂ Y (L) be a compact, but not necessarily open subgroup with
respect to the p-adic topology, let Y geo ⊂ Y be the kernel of ϕ1 and set Cgeo = Y geo(L) ∩ C. Finally let
F ⊂ (C ×G) ∩X(L) be a subset.

F ⊂ (C ×G) ∩X(L) ⊂ X = Y ×Z T

pr1

||①①
①①
①①
①①
①①

pr2

""
❋❋

❋❋
❋❋

❋❋
❋❋

❋
� � // Y ×L T

C ⊂ Y (L) ⊂ Y

ϕ1

$$ $$■
■■

■■
■■

■■
■

T ⊃ T (L) ⊃ G ∋ ng ,

ϕ2

zzzz✉✉
✉✉
✉✉
✉✉
✉✉

C ×G
?�

OO

Z

Note that pr1 induces an isomorphism between ker(pr2) ⊂ X and Y geo whose inverse is given as

(7.4) Y geo ∼−→ ker(pr2) ⊂ X ⊂ Y ×Z T , y 7→ (y, 1) .

Theorem 7.10. Assume that the following hold:

(a) the Zariski-closure of Cgeo is Y geo,
(b) there is a positive constant ε > 0 such that for every open normal subgroup D ⊂ C there is an

infinite subset SD ⊂ N such that for every n ∈ SD the image of pr1(F ∩ pr
−1
2 (ng)) ⊂ C under the

quotient map C → C/D has cardinality at least ε ·#(Cgeo/D ∩ Cgeo).

Then the Zariski-closure of F contains a connected component of X.

We begin with the preparations to prove Theorem 7.10. Note that condition (a) and the isomorphism
(7.4) imply that every connected component of ker(pr2) contains an L-rational point. Let (Y geo)◦ be
the connected component of identity of Y geo. Since C is compact, and Cgeo and Cgeo ∩ (Y geo)◦ are

closed subgroups we get that Cgeo and Cgeo ∩ (Y geo)◦ are also compact. Let Ỹ = ResL/Qp
Y be the Weil

restriction of Y . By [CGP10, Propositions A.5.1. and A.5.2] it is a smooth linear algebraic group scheme

over Qp. Then Cgeo ∩ (Y geo)◦ ⊂ Cgeo ⊂ C ⊂ Y (L) = Ỹ (Qp), and C and Cgeo and Cgeo ∩ (Y geo)◦ are
Lie groups over Qp by Theorem 7.1. Note that Cgeo ∩ (Y geo)◦ ⊂ Cgeo has finite index, and hence is open,
because it is the kernel of the homomorphism Cgeo → Y geo/(Y geo)◦. By [Ser92, Part II, § IV.8, Theorem]
there is an open subgroup C0 of Cgeo ∩ (Y geo)◦ which is standard in the sense of Definition 7.2. This
means that there is a formal group law F in N variables over Zp and an isomorphism

(7.5) ψ : GF
∼−→ C0

of Lie groups over Qp, where GF = ZNp is equipped with the group law (7.1) given by F . Since Cgeo is
compact the index [Cgeo : C0] is finite.

Lemma 7.11. Under the assumptions of Theorem 7.10 every translate of C0 in Y geo is Zariski-dense in
the connected component of Y geo which contains it.

Proof. The Zariski-closure of a translate of C0 is the translate of the Zariski-closure of C0, so it will be
enough to see that C0 is Zariski-dense in (Y geo)◦. Since Cgeo is Zariski-dense in Y geo by assumption (a)

of Theorem 7.10, also Cgeo ∩ (Y geo)◦ is Zariski-dense in (Y geo)◦. Let C̃0 be the largest subgroup of C0

which is normal in Cgeo ∩ (Y geo)◦. Since C0 has finite index in Cgeo ∩ (Y geo)◦, the same holds for C̃0. Let

i be this index. Then the i-power map maps Cgeo ∩ (Y geo)◦ into C̃0, and therefore C̃0, and hence also C0,
is Zariski-dense in (Y geo)◦ by Lemma 7.3. �
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To establish Theorem 7.10 we will choose closed embeddings Y ⊂ AaL and T ⊂ AbL, and consider the

induced embedding X ⊂ Y ×L T ⊂ Aa+bL . Recall that by [Ser92, Part II, § IV.9, Theorem 1] for every
ν ∈ N>0 the subset pνZNp ⊂ GF = ZNp is actually an open normal subgroup under the group law (7.1)

given by F , and two elements x, y of GF are congruent to each other modulo the subgroup pνZNp if and
only if x ≡ y mod pν .

Lemma 7.12. Let T c be a connected component of T and let H ⊂ pr−1
2 (T c) ⊂ Aa+bL be a Zariski-closed

subset which does not contain any irreducible component of pr−1
2 (T c). Then there is a positive integer dc,H

such that for all but finitely many n ∈ Z and for every ν ∈ N>0 the image of pr1(H ∩ pr
−1
2 (ng))∩C under

the quotient map C ։ C/ψ(pνZNp ) has cardinality at most dc,H · pν(N−1).

Proof. We can write H ⊂ Aa+bL as an intersection of finitely many hyper-surfaces defined by polynomials
hℓ = hℓ(y, t) ∈ L[y, t], where y and t denote the coordinates on AaL and AbL, respectively. Let dH be

the maximum of the degrees of these polynomials. Note that for ng /∈ G ∩ T c the lemma holds trivially,
because then H ∩ pr−1

2 (ng) is empty. On the other hand, Corollary 7.6 implies that for all but finitely

many ng ∈ G ∩ T c the intersection H ∩ pr−1
2 (ng) does not contain an entire connected component of

pr−1
2 (ng). We now fix an ng ∈ G ∩ T c for which this holds.
We claim that X ∩ (C × {ng}) is either a Cgeo × {1}-coset in C × {ng} or empty (in which case the

assertion of the lemma again holds trivially). Indeed, if this set is non empty, let xn = (yn, ng) be a
point in it with yn = pr1(xn) ∈ C. Then ϕ1(yn) = ϕ1pr1(xn) = ϕ2pr2(xn) = ϕ2(ng) and so every other
point x̃n = (ỹn, ng) ∈ X ∩ (C × {ng}) satisfies xn · (y

−1
n ỹn, 1) = x̃n with ϕ1(y

−1
n ỹn) = ϕ1(y

−1
n ) · ϕ1(ỹn) =

ϕ2(ng)
−1 ·ϕ2(ng) = 1, that is y−1

n ỹn ∈ C ∩Y geo = Cgeo. This implies X ∩ (C ×{ng}) ⊂ xn · (Cgeo×{1}).
For the converse inclusion note that for every c ∈ Cgeo the point xn · (c, 1) = (ync, ng) ∈ (Y ×L T )(L)
lies in X because ϕ1(ync) = ϕ1(yn) = ϕ2(ng). This proves that X ∩ (C × {ng}) = xn · (C

geo × {1}). So
X ∩ (C×{ng}) is the pairwise disjoint union of m cosets xn,1 · (C0×{1}), . . . , xn,m · (C0×{1}) of C0×{1},
where we let m := [Cgeo : C0] be the index.

By Lemma 7.11 this means that for every such coset C′ = xn,i · (C0 × {1}) the intersection H ∩C′ is a

proper subset of C′. Namely, the lemma says that pr1(x
−1
n,i · C

′) = C0 is Zariski-dense in (Y geo)◦. Under

the isomorphism from (7.4) this implies that x−1
n,i · C

′ is Zariski-dense in the unity component ker(pr2)
◦,

and so C′ is Zariski-dense in xn,i · ker(pr2)◦. The latter is a connected component of pr−1
2 (ng) and not

contained in H by our assumption on ng. Therefore, H ∩ C′ is a proper closed subset of C′ cut out
by the finitely many polynomials hℓ(y, ng) ∈ L[y] of degree ≤ dH obtained from hℓ(y, t) by plugging in
(the coordinates of) the point ng. Under the projection pr1, which induces like in (7.4) an isomorphism

pr1 : pr
−1
2 (ng) ∼−→ pr1(xn,i) · Y geo of varieties, pr1(H ∩ C′) is a proper closed subset of pr1(C

′) cut out
by the same polynomials hℓ(y, ng) ∈ L[y]. We consider the images h̄ℓ(y, ng) of these hℓ(y, ng) in the
coordinate ring L[Y ] of Y .

For every such coset C′ = xn,i · (C0 × {1}), we consider the subset H ′
n,i = pr1(xn,i)

−1 · pr1(H ∩ C′) ⊂
C0 ⊂ Y geo, which is a proper subset of C0 cut out by finitely many hyper-surfaces of Y geo. Namely, if
we set yn,i := pr1(xn,i) ∈ C, then H ′

n,i is cut out by the pullbacks h̄′ℓ,n,i := t∗yn,i
(h̄ℓ(y, ng)) ∈ L[Y ] of the

polynomials h̄ℓ(y, ng) under the translation tyn,i by yn,i. Let W ⊂ L[Y ] be the L-linear vector subspace

spanned by t∗y(h̄) for all y ∈ Y (L) and all h̄ ∈ L[Y ], which are images of polynomials h ∈ L[y] of degree

≤ dH . Then W has finite dimension by [Bor91, I.1.9 Proposition] which only depends on dH , and the
polynomials h̄′ℓ,n,i cutting out H ′

n,i in C0 belong to W . Let W ⊂ L[y] be a finite dimensional L-linear

subspace that surjects onto W and choose preimages h′ℓ,n,i ∈ W of all h̄′ℓ,n,i. Then H ′
n,i is cut out in C0

by the polynomials h′ℓ,n,i. We note that pr1(H ∩ pr
−1
2 (ng)) ∩ C equals the disjoint union

∐m
i=1 yn,i ·H

′
n,i

by using again the isomorphism pr1 : pr
−1
2 (ng) ∼−→ pr1(xn,i) · Y geo. So it remains to count the elements

in the finite set H ′
n,i/ψ(p

νZNp ) or equivalently its preimage ψ−1(H ′
n,i)/(p

νZp)
N under the isomorphism ψ

from (7.5).
We claim that this preimage is contained in a proper analytic hyper-surface Z in GF = ZNp whose

degree is bounded independently of n and H ′
n,i by a constant depending only on the degree dH and

the isomorphism ψ. Indeed, we choose a Qp-basis (α1, . . . , αs) of L, where we set s = [L : Qp].

The map ψ : GF
∼−→ C0 ⊂ Y (L) ⊂ (AaL)(L) is given with respect to coordinates on AaL by power

series ψ1, . . . , ψa ∈ L〈z1, . . . , zN 〉 which converge for every x = (x1, . . . , xN ) in GF = ZNp . Writing
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h′ℓ,n,i ∈ W for the polynomial equations cutting out H ′
n,i ⊂ C0 we see that ψ−1(H ′

n,i) is the zero lo-

cus of the h′ℓ,n,i(ψ1, . . . , ψa) ∈ L〈z1, . . . , zN 〉. With respect to the Qp-basis (αj)j of L we can write

h′ℓ,n,i(ψ1, . . . , ψa) =
∑

j αj ·fℓ,n,i,j with fℓ,n,i,j ∈ Qp〈z1, . . . , zN〉. Then ψ−1(H ′
n,i) is the simultaneous zero

locus of all fℓ,n,i,j. More precisely, we view h′ℓ,n,i as a morphism Y → AL and consider its Weil restric-

tion ResL/Qp
h′ℓ,n,i : ResL/Qp

Y → ResL/Qp
AL. Here ResL/Qp

AL is the Weil restriction of AL, which is

isomorphic to AsQp
under the identification (ResL/Qp

AL)(Qp) = L =
⊕

j αjQp. Then ψ−1(H ′
n,i) is the

simultaneous zero locus of all the morphisms (for all ℓ)

GF
ψ
−−→
∼

C0 ⊂ (ResL/Qp
Y )(Qp)

ResL/Qp h
′
ℓ,n,i

−−−−−−−−−−→ (ResL/Qp
AL)(Qp) ∼= AsQp

(Qp) .

x p−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(
fℓ,n,i,j(x1, . . . , xN )

)
j=1,...,s

Since H ′
n,i 6= C0, at least one fℓ,n,i,j is non-zero. Let V ⊂ Qp〈z1, . . . , zN 〉 be the Qp-vector space generated

by all fj where h′ runs through a Qp-basis of W and h′(ψ1, . . . , ψa) =
∑

j αj · fj . Then V is a finite
dimensional Qp-vector space which only depends on dH and ψ and not on ng and xn,i. By Proposition 7.8
there is a constant cV such that the Oesterlé degree deg(f) ≤ cV for all 0 6= f ∈ V . It now follows
from Oesterlé’s result (7.3) that the cardinality of H ′

n,i/ψ(p
νZNp ) is at most cV p

ν(N−1). Thus the image of

pr1(H∩pr
−1
2 (ng))∩C under the quotient map C ։ C/ψ(pνZNp ) has cardinality at mostmcV p

ν(N−1). �

After these preparations it is easy to finish the

Proof of Theorem 7.10. To establish Theorem 7.10 we assume to the contrary that the Zariski-closure
of F does not contain any connected component of X . Fix a connected component T c of T and let
H ⊂ pr−1

2 (T c) be the Zariski-closure of F ∩ pr−1
2 (T c). Then the assumption implies that H does not

contain any irreducible component of pr−1
2 (T c). Let dc,H be the positive integer from Lemma 7.12. Then

for all but finitely many n ∈ N and for every ν ∈ N>0 the image of the set pr1(F ∩ pr
−1
2 (ng)) under the

quotient map C ։ C/ψ(pνZNp ) has cardinality at most dc,H · pν(N−1). Let d be the sum
∑
T c dc,H of the

dc,H over all connected components T c of T . Taking the union over all T c we see that for all but finitely

many n ∈ N and for every ν ∈ N>0 the image of the set pr1(F ∩ pr
−1
2 (ng)) ⊂ C under the quotient map

C ։ C/ψ(pνZNp ) has cardinality at most d pν(N−1).
Now let ε > 0 be the constant from assumption (b) of Theorem 7.10 and choose ν so large that

ε pνN > dpν(N−1). We consider the subgroup Dgeo
1 := ψ(pνZNp ) ⊂ Cgeo which is open in Cgeo. Then

#(Cgeo/Dgeo
1 ) ≥ #(C0/D

geo
1 ) = #(Zp/p

νZp)
N = pνN . Since Cgeo carries the subspace topology induced

from C and the topology on C is the topology of C as a profinite group by [Ser92, Part II, § IV.8,
Corollary 2], there is an open normal subgroup D ⊂ C such that Dgeo := Cgeo ∩ D ⊂ Dgeo

1 . By
assumption (b) of Theorem 7.10 there is an infinite subset SD ⊂ N such that for every n ∈ SD the image
of pr1(F ∩ pr

−1
2 (ng)) ⊂ C under the quotient map C → C/D has cardinality at least ε ·#(Cgeo/Dgeo).

Since the map C → C/D factors through C → C/Dgeo → C/D, the image of pr1(F ∩ pr
−1
2 (ng)) ⊂ C

under the quotient map C → C/Dgeo has also cardinality at least ε ·#(Cgeo/Dgeo). The fibers of the map
C/Dgeo

։ C/Dgeo
1 are principal homogeneous spaces under the group Dgeo

1 /Dgeo. This implies that the

number of points in the image of pr1(F ∩ pr
−1
2 (ng)) in C/Dgeo which are mapped to the same point in

C/Dgeo
1 is at most #(Dgeo

1 /Dgeo). In particular, the image of pr1(F ∩pr
−1
2 (ng)) in C/Dgeo

1 has cardinality
at least ε ·#(Cgeo/Dgeo)/#(Dgeo

1 /Dgeo) = ε ·#(Cgeo/Dgeo
1 ) ≥ ε pνN . But this contradicts the estimate

from the previous paragraph. This completes the proof of Theorem 7.10. �

We are now ready to give the

Proof of Theorem 1.8. Let F =
⊕

iFi be a direct sum of isoclinic convergent F -isocrystals Fi on U . Let
mi

n with mi ∈ Z and n ∈ N>0 be the slope of Fi. Then the image (Fi)(n) of Fi under the functor (3.1)

is isoclinic of slope mi and Ui := (Fi)(n) ⊗ C∨

i is unit-root where Ci is the pullback to Un of the constant
Fn-isocrystal on SpecFqn given by (Kn, F

n = πmi). Then U :=
⊕

i Ui is unit-root and C :=
⊕

i Ci is a

direct sum of constant Fn-isocrystals of rank one. Moreover, F (n) lies in the Tannakian category 〈〈U ⊕C〉〉,
and so the monodromy group Gr(U ⊕ C/Un, u) surjects onto Gr(F (n)/Un, u). Here we assume that e is
divisible by n and that u ∈ Un(Fqe). Note that every connected component of Gr(F (n)/Un, u) ×Ke K

maps isomorphically onto a connected component of Gr(F/U, u)×Ke K by Lemma 6.3(c). By Lemma 3.4
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it will be enough to see that Conjecture 1.4 holds for U ⊕ C. Let 〈〈U〉〉const be the full Tannakian sub-

category of constant F -isocrystals in 〈〈U〉〉. It is generated by some constant unit-root F -isocrystal C̃.

Then 〈〈C̃〉〉 ⊂ 〈〈U〉〉 ∩ 〈〈C ⊕ C̃〉〉 ⊂ 〈〈U〉〉const = 〈〈C̃〉〉. We now replace C by C ⊕ C̃ and thus may assume
that 〈〈U〉〉 ∩ 〈〈C〉〉 = 〈〈U〉〉const. We can assume that C is itself not unit-root, by adding a constant Fn-
isocrystal with non-zero slope to it if necessary. To ease notation we will pretend that n = 1 and say again
“F -isocrystal” instead of “Fn-isocrystal”.

To prove Conjecture 1.4 let S ⊂ |U | be a subset of positive upper Dirichlet density. Choose a geometric
base point ū above u and let πét

1 (U, ū) be the étale fundamental group of U . Let ρ : πét
1 (U, ū)→ GLr(K) be

the representation corresponding to the unit-root F -isocrystal U under the canonically tensor equivalence
between F -URK(U) ⊂ F -IsocK(U) and RepcK π

ét
1 (U, ū) of Proposition 5.2. By Corollary 5.4 the restriction

of this tensor equivalence onto 〈〈U〉〉 induces a tensor equivalence between 〈〈U〉〉 and 〈〈ρ〉〉, and over a finite

field extension L of Ke there is an isomorphism β : ωf |〈〈ρ〉〉 ⊗K L ∼−→ ωu|〈〈U〉〉 ⊗Ke L between the forgetful
fiber functor ωf on 〈〈ρ〉〉 and the fiber functor ωu on 〈〈U〉〉.

Let Y = Gr(U/U, u) and T = Gr(C/U, u), and let X = Gr(U ⊕C/U, u) and Z = Gr(〈〈U〉〉∩ 〈〈C〉〉/U, u) =
Gr(〈〈U〉〉const/U, u). Then Y geo := ker(Y → Z) is the geometric monodromy group Gr(U/U, u)geo of
U from Definition 4.9, and X is the fiber product Y ×Z T by Proposition 3.6(c). After enlarging L if
necessary, the groups Z and T are each the product of a split torus with a finite group and possibly an
additional factor Ga,Ke by Theorem 4.8(b) and [Bor91, III.8.11 Proposition]. The isomorphism β induces

an isomorphism β∗ : Aut⊗(ωf |〈〈ρ〉〉)×KL
∼−→ Gr(U/U, u)×KeL and the image C := β∗◦ρ

(
πét
1 (U, ū)

)
of the

induced representation β∗ ◦ ρ : πét
1 (U, ū)→ Gr(U/U, u)(L) is dense in Gr(U/U, u)×Ke L by Corollary 5.4.

This image is a compact group, because πét
1 (U, ū) is pro-finite. By adding a constant unit-root F -isocrystal

to U as in Corollary 5.10, we can assume that Cgeo := Y geo(L) ∩C equals the image β∗ ◦ ρ
(
πét
1 (U, ū)geo

)
.

For every x ∈ |U | the Frobenius conjugacy class Frobx(U) ⊂ Gr(U/U, u)(K) is by Corollary 5.4 gen-
erated by the image with respect to β∗ ◦ ρ of the conjugacy class in πét

1 (U, ū) of the geometric Frobenius
Frob−1

x at x. If g ∈ T (Ke) ⊂ T (L) is the image of the Frobenius of C then Frobx(C) consists of the single
element deg(x) · g for every x ∈ |U | by Theorem 4.8(c). Since C was assumed to be not unit-root, the
group G ⊂ T (L) generated by g is infinite cyclic and Zariski-dense in T , see Theorem 4.8(b). Consider
the Frobenius conjugacy class Frobx(U ⊕ C) ⊂ Gr(U ⊕ C/U, u)(K). By Lemma 3.3 it is mapped to the
conjugacy classes of Frobx(U) in Y (K), respectively of Frobx(C) in T (K). Since these have representatives
over L, also Frobx(U ⊕ C) has a representative in X(L). Thus we set

F =
⋃

x∈S

Frobx(U ⊕ C) ∩ (C ×G) ⊂ (C ×G) ∩X(L) .

Theorem 1.8 is therefore a consequence of the following

Claim. The octuple (T, Y, Z,X,C,G, g, F ) satisfies the hypothesis of Theorem 7.10.

Denoting the morphism X → Y by pr1 and the morphism X → T by pr2, we see in particular, that for
n ∈ N>0

F ∩ pr−1
2 (ng) =

⋃

x∈S : deg(x)=n

Frobx(U ⊕ C) ∩ (C ×G)

and

pr1(F ∩ pr
−1
2 (ng)) =

⋃

x∈S : deg(x)=n

Frobx(U) ∩ C

= β∗ ◦ ρ

(
⋃

x∈S : deg(x)=n

conjugacy class of Frob−1
x in πét

1 (U, ū)

)
.

Therefore, assumption (b) of Theorem 7.10 follows from Theorem 3.16. Moreover, Condition (a), which
requires that Cgeo := Y geo(L)∩C = β∗◦ρ

(
πét
1 (U, ū)geo

)
is Zariski-dense in Y geo, follows from Corollary 5.8.

�

8. The Theory of Maximal Quasi-Tori

We will need some results in the theory of algebraic groups in the following situation. In this entire
section L is an algebraically closed field of characteristic 0.
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Definition 8.1. For a not necessarily connected linear algebraic group G over L we let G◦ be its identity
component and we identify G with the group G(L) of its L-valued points. As usual we say that G is
reductive if G◦ is. For every h ∈ G and closed subgroup H ⊂ G let Hh := ZH◦(h) := {g ∈ H◦ : gh = hg}
denote the centralizer of h in H◦ and let Hh◦ denote the connected component of Hh containing 1. These
are closed subgroups of H◦.

We will need the following mild generalization of a classical result of Steinberg. It was announced in
[KS99, Theorem 1.1A] with a brief sketch of proof. We include a full proof for the convenience of the
reader.

Theorem 8.2. Assume that G is reductive, let h ∈ G be a semi-simple element which normalizes a Borel
subgroup B ⊂ G◦ and a maximal torus T ⊂ B. Then Gh is reductive, T h◦ is a maximal torus in Gh◦,
and Bh◦ is a Borel subgroup in Gh◦.

Note that T h and Bh are not connected in general as can be seen from the following

Example 8.3. Let p be a prime number and let G be the p− 1-dimensional torus:

G = {(x1, x2, . . . , xp) ∈ Gpm : x1 · x2 · · ·xp = 1}.

Then the cyclic permutation
(x1, x2, . . . , xp)→ (x2, x3, . . . , xp, x1)

is an automorphism of G of order p whose fixed points are

(ζ, ζ, . . . , ζ),

where ζ is any p-th root of unity. The semi-direct product G ⋊ Z/pZ where the generator h of Z/pZ
acts by the automorphism above is a counter-example to the connectivity of both the h-fixed points of a
maximal torus and a Borel subgroup of G, since the latter are both equal to G.

Proof of Theorem 8.2. Steinberg [Ste68, Theorem 7.5 on page 51] proved the claim when G◦ is simply
connected. We are going to reduce the general case to this one via two reduction steps. First assume that
G◦ is semi-simple. In this case its étale fundamental group is finite, and hence the same holds for every

connected component of G, too. Let ϕ : G̃ → G be the universal cover of G, which exits by the remarks

above. We may equip G̃ uniquely with the structure of a linear algebraic group such that ϕ is a group

homomorphism. Let K̃ ⊂ G̃ be the kernel of ϕ. It is a finite normal subgroup and K̃ ∩ G̃◦ lies in the

center of G̃◦ by [CGP10, Corollary A.4.11] and [Bor91, IV.11.21 Proposition].

Pick an element h̃ ∈ G̃ in the pre-image of h, and let T̃ , B̃ be the pre-image of T,B in G̃, respectively.

Note that h̃ is semi-simple, because when we write h̃ = h̃sh̃u as a product of its semi-simple part h̃s and

its unipotent part h̃u, then h̃u lies in K̃ by [Bor91, I.4.4 Theorem], because ϕ(h̃) = h is semi-simple. If

we denote by n the order of K̃, then h̃n = h̃ns h̃
n
u = h̃ns is semi-simple. Therefore, already h̃ is semi-simple

by Lemma 3.7(a).

Since T is connected the restriction ϕ|T̃◦ : T̃ ◦ → T is surjective with finite kernel K̃ ∩ G̃◦, therefore the

connected group T̃ ◦ must be a torus. It has the same dimension as T , so it must be a maximal torus in

G̃◦, as the ranks of G◦ and G̃◦ are the same. Likewise B̃◦ is an extension of the solvable group B by the

commutative group K̃ ∩ G̃◦. Therefore, B̃◦ is connected solvable and of the same dimension as B, and

hence a Borel subgroup of G̃◦. Since

ϕ(h̃−1T̃ h̃) = ϕ(h̃−1)ϕ(T̃ )ϕ(h̃) = h−1Th = T,

we get that h̃ normalizes T̃ . A similar computation shows that h̃ normalizes B̃, too. Therefore, by

Steinberg’s theorem quoted above the subgroup G̃h̃ is reductive, T̃ h̃◦ is a maximal torus in G̃h̃, and B̃h̃◦

is a Borel subgroup in G̃h̃.
The regular map

ϕ−1(Gh)→ K̃, x̃ 7→ h̃−1x̃h̃x̃−1

has finite image, so it is constant, hence 1 on ϕ−1(Gh)◦. Therefore, ϕ−1(Gh)◦ ⊂ G̃h̃. Clearly G̃h̃ ⊂

ϕ−1(Gh), and hence G̃h̃◦ = ϕ−1(Gh)◦. A similar argument shows that T̃ h̃◦ = ϕ−1(T h)◦ and B̃h̃◦ =

ϕ−1(Bh)◦. Since ϕ is finite to one and the connected subgroup G̃h̃◦ surjects ontoGh◦ by [Bor91, I.1.4 Corol-

lary], we get that Gh◦ is reductive by [Bor91, IV.14.11 Corollary]. Similarly T̃ h̃◦ surjects onto T h◦, so the
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latter is a maximal torus in Gh◦ by [Bor91, IV.11.14 Proposition]. The same reasoning shows that Bh◦ is
a Borel subgroup in Gh◦.

Consider now the general case and let Z ⊂ G◦ be the connected component of the center of G◦. It
equals the radical of G◦ and is a torus contained in T by [Bor91, IV.11.21 Proposition]. Set G = G/Z
and let ψ : G → G be the quotient map. Then G is semi-simple. Let T ,B be the image of T,B in G,
respectively. By [Bor91, IV.11.14 Proposition] the subgroup T is a maximal torus in G and B is a Borel
subgroup in G. Clearly T ⊂ B and ψ(h) normalizes this pair, so by the case which we have just proven
the subgroup Gψ(h) is reductive, Tψ(h)◦ is a maximal torus in Gψ(h)◦, and Bψ(h)◦ is a Borel subgroup in

Gψ(h)◦. Now let G̃, T̃ , B̃ denote the pre-image of Gψ(h), Tψ(h)◦ and Bψ(h)◦ with respect to ψ, respectively.

Clearly Gh ⊂ G̃ and T h◦ ⊂ T̃ ◦ ⊂ T and Bh◦ ⊂ B̃◦ ⊂ B, because Z ⊂ T ⊂ B.

Proposition 8.4. The groups Gh◦, T h◦, Bh◦ surject onto Gψ(h)◦, Tψ(h)◦ and Bψ(h)◦ with respect to ψ,
respectively.

Proof. Since Z is a characteristic subgroup of G, we have h−1Zh ⊂ Z. Therefore, the map

Z → Z, z 7→ h−1zhz−1

is a homomorphism of groups. Let J be the image of Z under this homomorphism. It is a closed subgroup
of Z invariant under conjugation by h as the computation h(h−1zhz−1)h−1 = h−1(hzh−1)h(hz−1h−1)
shows. Note that it will be enough to show that the regular map

κ : G̃◦ → G̃◦, x 7→ h−1xhx−1

has image in J . Indeed, if this is the case then for every x ∈ G̃◦ there is a z ∈ Z such that

h−1xhx−1 = h−1zhz−1,

so

h−1xz−1h(xz−1)−1 = h−1xhh−1z−1hzx−1 = h−1xhx−1zh−1z−1h = h−1xhx−1(h−1zhz−1)−1 = 1

using that both z and h−1z−1h are in the center of G◦. Therefore, xz−1 ∈ Gh◦, but ψ(x) = ψ(xz−1) as

z ∈ Z. So Gh◦ surjects onto ψ(G̃◦) = Gψ(h)◦ by [Bor91, I.1.4 Corollary]. Using Z ⊂ T ⊂ B, a similar

argument shows that T h◦ and Bh◦ surject onto T
ψ(h)◦ and B

ψ(h)◦ with respect to ψ, respectively.

The group G̃◦ is the extension of the reductive groupGψ(h)◦ by the torus Z, so it is reductive. Therefore,

semi-simple elements are dense in G̃◦. So it will be enough to show that κ maps every maximal torus

V ⊂ G̃◦ into J , since the latter is closed. Since Z is a central torus, it is contained in V . Therefore,
ψ−1(ψ(V )) = V . The image ψ(V ) is a torus on which the action of ψ(h) is trivial, in particular ψ(V ) is

normalized by ψ(h). Therefore, h normalizes V . Since h ∈ Gh ⊂ G̃, for some positive integer m we have

hm ∈ G̃◦, so hm is in the normalizer of V in G̃◦. Since the normalizer of V in G̃◦ is a finite extension of
V , the conjugation action of h on V has finite order.

Conjugation by h leaves J invariant, as we have already remarked, so there is an induced action on
V = V/J . This action is trivial on the subgroup Z = Z/J by definition. We also noted that the induced
action on the quotient V /Z = V/Z is also trivial, because under the morphism ψ the latter is isomorphic
to ψ(V ) on which ψ(h) acts trivially. By Lemma 8.5 below this implies that this action on V is trivial.
This is equivalent to κ|V taking values in J . �

Lemma 8.5. Let T be a torus over a field of arbitrary characteristic, and let α be an automorphism of
T of finite order. Assume that there is a sub-torus T ′ ⊂ T , such that α fixes every point of T ′, and the
automorphism of the quotient T/T ′ induced by α is also the identity. Then α is trivial.

Proof. For every torus T let X∗(T ) denote the group of its cocharacters. Then the rule T 7→ X∗(T )⊗Z Q
is a fully faithful exact functor. In particular we have a short exact sequence:

0 // X∗(T
′)⊗Z Q // X∗(T )⊗Z Q // X∗(T/T

′)⊗Z Q // 0.

Let b′ be a Q-basis of X∗(T
′)⊗ZQ ⊂ X∗(T )⊗ZQ, and extend this to a Q-basis b of X∗(T )⊗ZQ. Since the

induced action is trivial both on X∗(T
′)⊗ZQ and X∗(T )⊗ZQ/X∗(T

′)⊗ZQ = X∗(T/T
′)⊗ZQ, the matrix

of the action on X∗(T )⊗Z Q in the basis b is upper triangular with ones on the diagonal. In particular it
is unipotent. But this is also a matrix of finite order, so it is semi-simple, too. Therefore, this matrix is
the identity by Lemma 3.7. �
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The Proof of Theorem 8.2 is now easy. By the proposition above Gh◦ is the extension of Gψ(h)◦ by a
subgroup of Zh. The group Gψ(h) is reductive by the above, while the above-mentioned subgroup of Zh

is a subgroup of the torus Z, so it is also reductive. Therefore, Gh◦ is also reductive. Since Z lies in T ,
the subgroup Zh◦ lies in T h◦. Therefore, T h◦ is the extension of a maximal torus in Gψ(h) by a group
containing the connected component of the kernel of the restriction of ψ onto Gh◦, so it is a maximal torus
in Gh◦. A similar argument shows that Bh◦ is a Borel subgroup in Gh◦. �

Let α : G ։ Gred denote the maximal reductive quotient of G, i.e. the quotient of G by its unipotent

radical RuG. Note that G/G◦ ∼−→ Gred/(Gred)◦ because RuG is connected and hence contained in G◦.
If γ : G ։ H is a surjection of algebraic groups, then there is an induced surjection γred : Gred

։ Hred

between the reductions, because the image of RuG is a closed connected unipotent normal subgroup, and
hence contained in RuH .

Definition 8.6. (a) If G is reductive (that is G◦ is reductive) a closed subgroup T ⊂ G is called a
maximal quasi-torus if T equals the intersection NG(B

◦) ∩ NG(T ◦) of the normalizers in G of a
Borel subgroup B◦ ⊂ G◦ and a maximal Torus T ◦ ⊂ B◦.

(b) For general G, a closed subgroup T ⊂ G is called a maximal quasi-torus if the quotient morphism
G։ Gred maps T isomorphically onto a maximal quasi-torus in the reductive group Gred.

Remark 8.7. If G is reductive and T ⊂ G is a maximal quasi-torus of the form T = NG(B
◦)∩NG(T ◦) then

T∩G◦ = NG◦(B◦)∩NG◦(T ◦) = NB◦(T ◦) = ZG◦(T ◦) = T ◦ by [Bor91, IV.11.16 Theorem, IV.10.6 Theorem
and IV.13.17 Corollary 2], where ZG◦(T ◦) denotes the centralizer. In particular, the identity component
of T is the maximal torus T ◦ (and the notation is consistent).

Lemma 8.8. Let G be arbitrary and let T be a maximal quasi-torus in G. Then the identity component
T ◦ of T is a maximal torus in G and all elements of T are semi-simple.

Proof. Let RuG ⊂ G be the unipotent radical and let α : G ։ G/RuG = Gred =: G̃ be the quotient

morphism. Then T̃ := α(T ) is a maximal quasi-torus in G̃ and its connected component T̃ ◦ = α(T ◦) is a

maximal torus in G̃ by the above. In particular, T ◦ is a torus and contained in a maximal torus T ′ of G.

It follows that T̃ ◦ is contained in and hence equal to the torus α(T ′). Since T ′ ∩ kerα = {1}, it follows
that α : T ′

։ α(T ′) = α(T ◦) is an isomorphism and so T ◦ = T ′ is a maximal torus in G.
If g lies in T and n is the order of the finite group T/T ◦ then gn ∈ T ◦. That is, gn is semi-simple, and

so g is semi-simple by Lemma 3.7(a). �

We need to establish a few more facts about maximal quasi-tori. We are grateful to Friedrich Knop for
providing a proof of part (c) in the following theorem. Since we were not able to find a correct proof of this
statement in the literature we include Knop’s argument on https://mathoverflow.net/questions/280874 for
the reader’s convenience.

Theorem 8.9. Assume that G is reductive.

(a) Let T be a maximal quasi-torus in G. Then T/T ◦ = G/G◦. Every other maximal quasi-torus is
conjugate to T under G◦.

(b) An element g ∈ G(L) is semi-simple if and only if it is contained in a maximal quasi-torus, if and
only if its G-conjugacy class is closed.

(c) Every connected component of G contains a dense open subset consisting of semi-simple elements.

Proof. (b) If g is semi-simple then it normalizes a maximal torus T ◦ and a Borel subgroup B◦ of G◦

containing T ◦ by [Ste68, Theorem 7.5], and hence lies in the maximal quasi-torus T = NG(B
◦)∩NG(T ◦).

The converse was proven in Lemma 8.8. The characterization in terms of the G-conjugacy class of g is
given in [Spa82, Corollaire II.2.22].

(a) The conjugacy statement follows from the fact that all pairs T ◦ ⊂ B◦ of a maximal torus and a
Borel subgroup in G◦ are conjugate under G◦ by [Hum75, § 21.3, Corollary A]. To show that T surjects
onto G/G◦ fix a connected component of G and let g ∈ G be an element in this connected component.
In its multiplicative Jordan decomposition g = gsgu the unipotent part gu lies in G◦ by Lemma 3.7(b).
Therefore, gs ∈ gG◦. Let T ′ be a maximal quasi-torus containing gs, which exists by (b). In particular,
T ′ intersects the connected component gG◦ of G. Since T is conjugate to T ′ under G◦ which acts trivially

https://mathoverflow.net/questions/280874/are-the-semi-simple-elements-in-a-non-connected-reductive-algebraic-group-dense
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on G/G◦ we see that also T intersects gG◦. It follows that T ։ G/G◦ is surjective. Since T ∩ G◦ = T ◦

by Remark 8.7, we conclude that T/T ◦ ∼−→ G/G◦.

(c) Let T ⊂ G be a maximal quasi-torus. By (a) every connected component of G is of the form hG◦ for
an h ∈ T . To show that hG◦ contains a dense open subset consisting of semi-simple elements, we consider
the conjugation action

Φ: G◦ ×L hT
h◦ → hG◦, (g, ht) 7→ ghtg−1,

where T h := {g ∈ T ◦ : gh = hg} ⊂ T ◦ as in Definition 8.1. All elements in the image of Φ are conjugate to
elements in hT h◦ ⊂ T , and so are semi-simple by (b). Since the image of Φ is constructible by Chevalley’s
theorem [EGA, IV1, Corollaire 1.8.5], this image contains an open subset of its closure by [EGA, 03,
Proposition 9.2.2]. It thus suffices to show that Φ is dominant. Under the isomorphism of varieties

hG◦ ∼−→ G◦, x 7→ h−1x the morphism Φ corresponds to the morphism

Φ′ : G◦ ×L T
h◦ → G◦, (g, t) 7→ h−1ghtg−1.

To prove that Φ′ is dominant, we use Theorem 8.2 which says that T h◦ is a maximal torus inGh. Therefore,
the conjugation action Gh ×L T h◦ → Gh, (g, t) 7→ gtg−1 is dominant by [Bor91, IV.11.10 Theorem and
IV.13.17, Corollary 2]. Note that gtg−1 = h−1ghtg−1, because g ∈ Gh. Thus it suffices to show that the
morphism

Φ′′ : G◦ ×L Gh → G◦, (g, g̃) 7→ h−1ghg̃g−1

is dominant. In the point (g, g̃) = (1, 1) the morphism Φ′′ has differential

(Ad(h−1)− 1)⊕ id : LieG◦ ⊕ LieGh −→ LieG◦,(8.1)

(X , X̃ ) 7−→ (Ad(h−1)− 1)(X) + X̃ = h−1Xh−X + X̃ ,

where LieG◦ denotes the Lie algebra of G◦ and Ad: G→ AutL(LieG
◦) denotes the adjoint representation.

Since Gh = {g ∈ G◦ : h−1ghg−1 = 1} we obtain LieGh = ker(Ad(h−1) − 1) and since h is semi-simple,
also Ad(h−1) is semi-simple, and hence ker(Ad(h−1) − 1) + im(Ad(h−1) − 1) = LieG◦. This shows that
the differential (8.1) is surjective in (1, 1), and therefore Φ′′ is dominant (for example by [BLR90, § 2.2,
Proposition 8]) and the theorem is proven. �

If G is not assumed to be reductive this implies the following

Theorem 8.10. Let G be a not necessarily connected, linear algebraic group over L.

(a) Let T ◦ be a maximal torus of G◦. Then there exists a maximal quasi-torus T ⊂ G with T∩G◦ = T ◦.
(b) Any two maximal quasi-tori in G are conjugate under G◦.
(c) An element g ∈ G(L) is semi-simple if and only if it is contained in a maximal quasi-torus.
(d) Every maximal quasi-torus T in G satisfies T/T ◦ = G/G◦ and normalizes a Borel subgroup of G◦,

which contains the maximal torus T ◦ ⊂ G◦. In particular, G◦ ∩ T = T ◦.
(e) Conversely, a closed subgroup T ⊂ G is a maximal quasi-torus if T ։ G/G◦ is surjective, the

connected component T ◦ is a maximal torus of G◦, and T normalizes a Borel subgroup B◦ ⊂ G◦

containing T ◦.

Proof. (a) Let U := RuG ⊂ G◦ be the unipotent radical, set G̃ := Gred = G/U and let α : G → G̃

be the quotient map. Then G̃ is reductive with G/G◦ ∼= G̃/G̃◦ and T̃ ◦ := α(T ◦) ⊂ G◦ is a maximal

torus by [Bor91, IV.11.20 Proposition]. Choose a Borel subgroup B̃◦ ⊂ G̃◦ containing T̃ ◦ and let T̃ :=

NG̃(B̃
◦) ∩ NG̃(T̃

◦) be the associated maximal quasi-torus in G̃. By [Bor91, IV.11.19 Proposition] all

such Borel subgroups B̃◦ are conjugate under the Weyl group W of G◦, and therefore also all maximal

quasi-tori T̃ containing T̃ ◦ are conjugate under W . We shall lift T̃ to a maximal quasi-torus T in G with
T ∩G◦ = T ◦.

(i) We first consider the case that U = G◦ and T ◦ = (1), in which G̃◦ = (1) and G̃ = G/G◦ is a finite

group. In this case T̃ = G̃ is the unique maximal quasi-torus in G̃ and the theorem asserts that the
sequence

(8.2) 1 // U // G // G/G◦ // 1

splits and any two splittings are conjugate. Using the nilpotent filtration of U we reduce to the case that
U ∼= Gra is commutative. Then the class of the extension G is an element of H2

(
G/G◦, U(L)

)
. If n is the
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order of the finite group G/G◦ then multiplication with n is an isomorphism on U ∼= Gra, hence also on
all cohomology groups Hi

(
G/G◦, U(L)

)
for i ≥ 1. On the other hand n kills Hi

(
G/G◦, U(L)

)
by [Rot09,

Proposition 9.40] and so Hi
(
G/G◦, U(L)

)
= (0) for i ≥ 1. So the sequence (8.2) splits and the image

of a splitting is a maximal quasi-torus T in G. Moreover, H1
(
G/G◦, U(L)

)
= (0) implies that any two

splittings are conjugate under U by [Rot09, Proposition 9.21].

(ii) To treat the general case we set H := α−1(T̃ ) ⊂ G. Then U ⊂ H is normal and α : H/U ∼−→ T̃ .

Its identity component is H◦ = α−1(T̃ ◦) = U ⋊ T ◦ with α : H/H◦ ∼−→ T̃ /T̃ ◦. We will spell out in
terms of algebraic groups the following philosophy. The fact that any two maximal tori of U ⋊ T ◦ are
conjugate could be interpreted by saying that every stabilizing automorphism of U⋊T ◦ is inner, and hence

H1(T̃ ◦, U) = Stab(T̃ ◦, U)/Inn(T̃ ◦, U) = (0); compare [Rot09, § 9.1.3]. As a consequence there should be
an exact sequence

0 // H2(G/G◦, UT
◦

)
Inf2

// H2(T̃ , U)
Res2

// H2(T̃ ◦, U)G/G
◦

as in [Rot09, Theorem 9.84], where UT
◦

= ZH◦(T ◦) ∩ U is the group of fixed points in U under the

conjugation action of T ◦ and ZH◦(T ◦) denotes the centralizer. We interpret H as a class in H2(T̃ , U)

which via pullback under T̃ ◦ → T̃ maps to its identity component H◦ = H×T̃ T̃
◦, and hence to the trivial

class in H2(T̃ ◦, U). From (8.2) interpreted as H2(G/G◦, UT
◦

) = (0) we should obtain that the class of H

is trivial, that is H ∼= U ⋊ T̃ , which provides a lift of T̃ .

Note that we will not use this philosophy, but construct a lift of T̃ as follows. Let N := NH(T ◦) be the
normalizer and consider the sequence of algebraic groups

(8.3) 1 // UT
◦

// N/T ◦ // G/G◦ // 1 ,

which we claim is exact. Using the isomorphisms H/H◦ = T̃ /T̃ ◦ = G̃/G̃◦ = G/G◦ every element of
G/G◦ has a representative g ∈ H . The conjugate gT ◦g−1 is a maximal torus in H◦, and hence of the
form hT ◦h−1 for some h ∈ H◦ by [Bor91, IV.11.3 Corollary]. Then h−1g ∈ N maps onto g in G/G◦ and
this proves exactness on the right. The group N ∩ G◦ = NH◦(T ◦) = ZH◦(T ◦) is connected by [Bor91,
IV.10.6 Theorem], because H◦ is connected and solvable. It follows that N◦ = N ∩G◦ = T ◦×N◦

u , where

N◦
u = N◦∩U = UT

◦

is the group of unipotent elements in N◦, use [Bor91, IV.12.1 Theorem]. This proves
the exactness in the middle and on the left.

Since the identity component UT
◦

of N/T ◦ is a unipotent group, there is a section s : G/G◦ → N/T ◦

by the the special case treated in (i) above. We now define T := β−1
(
s(G/G◦)

)
where β : N → N/T ◦ is

the quotient map. Then T/T ◦ ∼= G/G◦ and this implies that T is a maximal quasi-torus with identity

component T ◦ and α : T ∼−→ T̃ .

(b) We must show that any two maximal quasi-tori T1 and T2 in G are conjugate under G◦ also in

the general case. Let T̃1 and T̃2 be their isomorphic images in G̃ under α. By Theorem 8.9 we can

conjugate T̃2 into T̃1 under G̃◦ = α(G◦) and thus assume that they are equal T̃ := T̃1 = T̃2. In particular

T1, T2 ⊂ H := α−1(T̃ ) and the two maximal tori T ◦
1 and T ◦

2 of the connected group α−1(T̃ ◦), which is
isomorphic to U ⋊ T ◦

1 by the above, are conjugate by [Bor91, IV.11.3 Corollary]. So we may assume
that they are equal T ◦ := T ◦

1 = T ◦
2 . It follows that both T1 and T2 are contained in the normalizer

N := NH(T
◦) and we may consider the subsets T1/T

◦ and T2/T
◦ of the group N/T ◦ from (8.3). Since

they both map isomorphically onto T̃ /T̃ ◦ under the map N/T ◦
։ G/G◦ = G̃/G̃◦ whose kernel is the

unipotent radical UT
◦

of N/T ◦, we see that T1/T
◦ and T2/T

◦ are maximal quasi-tori in N/T ◦. By what

we proved in (a)(i), they are conjugate under UT
◦

and this shows that T1 and T2 are conjugate under G◦.

(c) By Lemma 8.8 every element of a maximal quasi-torus is semi-simple. Conversely, to show that every
semi-simple element g ∈ G lies in a maximal quasi-torus we use that g normalizes a Borel subgroup

B◦ ⊂ G◦ and a maximal torus T ◦ ⊂ B◦ by [Ste68, Theorem 7.5]. Then T̃ ◦ := α(T ◦) and B̃◦ := α(B◦)

are a maximal torus and a Borel subgroup of G̃◦ by [Bor91, IV.11.14 Proposition], which are normalized

by g̃ := α(g) ∈ G̃(L). In particular g̃ ∈ T̃ := NG̃(B̃
◦) ∩NG̃(T̃

◦) and by (a)(ii) we can choose a maximal

quasi-torus T ⊂ G containing T ◦ mapping isomorphically onto T̃ . Let g′ ∈ T (L) be the preimage of g̃

under this isomorphism. Then g and g′ both lie in H := α−1(T̃ ) and even in N := NH(T
◦). Moreover,
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they map to the same element in T̃ /T̃ ◦ = G/G◦ = (N/T ◦)/UT
◦

= N/N◦; see (8.3). Considering the
subgroup of G generated by g, g′ and G◦, which is automatically closed, we can assume that G/G◦ is
cyclic. Then both g and g′ define sections s and s′ of (8.3) and the argument of (a)(i) above shows that
s and s′ are conjugate into each other by an element of N/T ◦. Since T was constructed in (a)(ii) as the
preimage of s(G/G◦) under N ։ N/T ◦ this shows that g can be conjugate into T by an element of N as
desired.

(d) If T ⊂ G is a maximal quasi-torus and T̃ := α(T ), then T/T ◦ = T̃ /T̃ ◦ = G̃/G̃◦ = G/G◦ by Theorem 8.9
and T ◦ is a maximal torus in G◦ by Lemma 8.8. To prove that T normalizes a Borel subgroup of G, let

B̃◦ be a Borel subgroup of G̃ containing T̃ ◦ with T̃ = NG̃(B̃
◦) ∩NG̃(T̃

◦); see Remark 8.7. Then α−1(B̃◦)

is normalized by T and is an extension of B̃◦ by RuG, hence connected solvable. Moreover, α−1(B̃◦) is

contained in a Borel subgroup B◦ of G◦. But α(B◦) is connected solvable and contains B̃◦, hence equals

B̃◦ by maximality of the Borel subgroup B̃◦. This shows that B◦ = α−1(B̃◦) is a Borel subgroup of G◦

normalized by T .

(e) Let n := #(G/G◦). For every element of T its n-th power lies in the torus T ◦ and hence is semi-simple.
Therefore, all elements of T are semi-simple by Lemma 3.7 and U ∩ T = (1). So the map α restricted to

T is injective, and maps T isomorphically onto α(T ) ⊂ G̃. The connected component α(T )◦ = α(T ◦) is a

maximal torus in G̃◦ and α(B◦) is a Borel subgroup in G̃◦ by [Bor91, IV.11.14 Proposition]. Since α(T )

normalizes the pair α(T ◦) ⊂ α(B◦), it is contained in the maximal torus T̃ = NG̃(α(B
◦)) ∩NG̃(α(T

◦)),

which satisfies T̃ ◦ = α(T ◦) by Remark 8.7. Since T ։ G/G◦ ∼−→ G̃/G̃◦ = T̃ /T̃ ◦, we conclude that

α : T ∼−→ α(T ) = T̃ , and hence T is a maximal quasi-torus in G. �

Corollary 8.11. Let f : G ։ H be a surjection of algebraic groups. Then the image of a maximal
quasi-torus (resp. a maximal torus, resp. a Borel subgroup) in G is again a maximal quasi-torus (resp. a
maximal torus, resp. a Borel subgroup) in H. Moreover, every maximal quasi-torus (resp. maximal torus,
resp. Borel subgroup) in H arises in this way.

Proof. For maximal tori and Borel subgroups this is just [Bor91, IV.11.14 Proposition]. So let T ⊂ G
be a maximal quasi-torus. By Theorem 8.10(d) there is a Borel subgroup B◦ ⊂ G◦ which contains the
maximal torus T ◦ ⊂ G◦ and is normalized by T . Then f(T ) normalizes the Borel subgroup f(B◦) and the
maximal torus f(T ◦) ⊂ f(B◦) of H . Since the surjection T ։ G/G◦

։ H/H◦ factors through f(T ), we
see that f(T ) ։ H/H◦ is surjective, and hence f(T ) is a maximal quasi-torus in H by Theorem 8.10(e).

Conversely, if T ⊂ G and T ′ ⊂ H are any maximal quasi-tori (resp. maximal tori, resp. Borel subgroups),
then by Theorem 8.10(b) (resp. [Bor91, IV.11.1 Theorem and IV.11.3 Corollary]) there is an element h ∈ H
with T ′ = h−1f(T )h. For any preimage g ∈ G the maximal quasi-torus g−1Tg in G surjects onto T ′. This
proves the corollary. �

The corollary leads to a very handy remark which will be used at least twice.

Remark 8.12. Let G = G1 ×G3 G2 be the fiber product of two linear algebraic groups G1 and G2 over a
third G3 for epimorphisms G1 ։ G3 and G2 ։ G3. This means that G is a closed subgroup of G1 ×LG2

and the restrictions of the projections π1 : G1 ×L G2 → G1 and π2 : G1 ×L G2 → G2 are surjective. Let
T ⊂ G be a maximal quasi-torus. Then for i = 1, 2, 3 the images Ti ⊂ Gi of T are maximal quasi-tori
by Corollary 8.11. Since T is a subgroup of G1 ×L G2 we get that the product π1|T × π2|T is a closed
immersion of T into T1 ×L T2. Therefore, T is a fiber product of the maximal quasi-tori T1 and T2. In
particular, if G◦ = G◦

1 ×L G
◦
2 then its intersection with T is the maximal torus T ◦ = T ◦

1 ×L T
◦
2 , and if

G = G1 ×L G2 then T = T1 ×L T2.

A useful condition for being a maximal quasi-torus is given in the following

Theorem 8.13. Let G be reductive, and let H ⊂ G be a closed subgroup with the following properties:

(a) the connected component H◦ of H is a maximal torus in G◦,
(b) the natural map H/H◦ → G/G◦ is surjective,
(c) the group H is commutative.

Then H is a maximal quasi-torus in G, and it is the only maximal quasi-torus in G containing H◦.

To prove the theorem we will need the following
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Lemma 8.14. In the situation of the theorem, two elements of H are conjugate under G◦ if and only if
they are conjugate under the normalizer NG◦(H◦) of H◦ in G◦. In particular, the intersection of every
G◦-conjugacy class with H is finite. (Note however, that there is no action of NG◦(H◦) on H in general,
because NG◦(H◦) only normalizes H◦ and not necessarily H.)

Proof. In order to prove the first claim, note that one direction follows from the inclusion NG◦(H◦) ⊂ G◦.
To prove the converse, let h, h′ ∈ H be conjugate under G◦, say h = x−1h′x for an x ∈ G◦. Since H is
commutative by condition (c), h′ centralizes H◦, and hence the conjugate h = x−1h′x centralizes x−1H◦x.
But h also centralizes H◦, so we get that H◦ and x−1H◦x lie in the centralizer Gh of h in G◦. Since H◦

and x−1H◦x are maximal tori in G◦ by condition (a), they are maximal tori in Gh, too. So by [Bor91,
IV.11.3 Corollary] there is a y ∈ Gh such that y−1x−1H◦xy = H◦. Set w = xy. Clearly w ∈ NG◦(H◦),
but also w−1h′w = y−1x−1h′xy = y−1hy = h, as y ∈ Gh. Therefore, h is conjugate to h′ under NG◦(H◦).

To prove the second claim, note that the identity component of NG◦(H◦) is H◦ by assumption (a) and
[Bor91, III.8.10, Corollary 2 and IV.13.17, Corollary 2]. By assumption (c) the latter acts trivially by
conjugation on H , therefore the action of NG◦(H◦) factors through the Weyl group W = NG◦(H◦)/H◦,
which is finite. �

Proof of Theorem 8.13. By condition (a) and Remark 8.7 there is a maximal quasi-torus T ⊂ G such that
T ◦ = H◦. We have to show that T = H . To this end fix a t ∈ T . By condition (b) there is an h ∈ H such
that h−1t ∈ G◦, and hence tG◦ = hG◦.

Proposition 8.15. We have h−1t ∈ T ◦.

Proof. Since T ◦ is commutative, every element tx ∈ tT ◦ centralizes T t ⊂ T ◦. Therefore, the quotient
group Q = T ◦/T t acts faithfully on tT ◦ by conjugation. By [MFK94, Chapter 1, § 2, Theorem 1.1] the
categorical quotient Y of tT ◦ by this action of Q exists as an affine scheme. Let Y red be the reduced
scheme underlying Y , and let π : tT ◦ → Y red be the quotient map. Consider the set

C = {(x, y) ∈ hT ◦ × Y red : ∃ a ∈ tT ◦ ∃ b ∈ G◦ such that π(a) = y and b−1ab = x) }.

We claim that C is a constructible set. Namely consider the morphism

ϕ : tT ◦ ×G◦ −→ hG◦ × Y red, (a, b) 7−→ (b−1ab, π(a)) .

The preimage ϕ−1(hT ◦ × Y red) ⊂ tT ◦ ×G◦ is a closed subset, and C = ϕ
(
ϕ−1(hT ◦ × Y red)

)
. Therefore,

C is a constructible set by Chevalley’s theorem [EGA, IV1, Corollaire 1.8.5]. Let π1 : C → hT ◦ and
π2 : C → Y red be the projections onto the first and the second factor, respectively. Every element of
hT ◦ = hH◦ ⊂ H is semi-simple by Lemma 3.7, because some power of it lies in the torus H◦. Therefore,
this element is conjugate under G◦ to an element of tT ◦ by Theorem 8.9(a),(b). Thus the map π1 is
surjective, and hence the dimension of C is at least dim(T ◦) = dim(hT ◦) by [GW10, Proposition 14.107].
For every y ∈ Y red, the points in the fiber π−1(y) of π : tT ◦ → Y red are conjugate under T ◦, so the fiber
of π2 : C → Y red above y ∈ Y red, which equals

{ x ∈ hT ◦ : ∃ a ∈ π−1(y), ∃ b ∈ G◦ with x = b−1ab } = H ∩ { b−1ab : a ∈ π−1(y), b ∈ G◦ } ,

is the intersection of a G◦-conjugacy class with H . This is a finite set by Lemma 8.14. The image
π2(C) ⊂ Y red is constructible by Chevalley’s theorem, and the fibers of the surjective map π2 : C → π2(C)
are finite by the above, so dim(π2(C)) = dim(C) by [GW10, Proposition 14.107], and this is at least
dim(T ◦) = dim(tT ◦). Thus dim(Y red) ≥ dim(π2(C)) ≥ dim(tT ◦) ≥ dim(Y red). This means that Q is
zero-dimensional and connected as a quotient of T ◦, and hence T t = T ◦. Therefore, both h and t centralize
T ◦, and so h−1t centralizes T ◦, too. But h−1t ∈ G◦ and the centralizer ZG◦(T ◦) of T ◦ in G◦ is T ◦ itself
by [Bor91, IV.13.17, Corollary 2]. �

Proof of Theorem 8.13 continued. By the proposition above tT ◦ = hh−1tT ◦ = hT ◦ = hH◦, so we get that
H contains T . Now we only need to show the reverse inclusion. Let h ∈ H be again arbitrary. Since the
natural map T/T ◦ → G/G◦ is surjective by Theorem 8.9(a), there is a t ∈ T such that t−1h ∈ G◦. Since
T is in H , we get that t−1h is in H , too. But H centralizes H◦, so t−1h is in ZG◦(H◦). However, the
latter is H◦ itself, therefore hH◦ = tt−1hH◦ = tH◦ = tT ◦, and hence T contains H , and so T = H . This
finishes the proof of Theorem 8.13. �

We end this section by proving the following
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Theorem 8.16. Let ϕ : G →֒ H be an injective homomorphism of algebraic groups, and assume that there
is a closed normal subgroup N ⊳G such that ϕ(N)⊳H is also normal. Let T ⊂ G be a maximal quasi-torus.
If its image in H/ϕ(N) is a maximal quasi-torus, then also its image in H is a maximal quasi-torus.

To prove it we start with a

Lemma 8.17. Let γ : G ։ H be a surjective homomorphism of linear algebraic groups whose kernel is
a unipotent group, and let T ⊂ G be a closed subgroup such that the restriction of γ to T is injective. If
γ(T ) is a maximal quasi-torus in H, then T is a maximal quasi-torus in G.

Proof. Let π : H ։ Hred be the maximal reductive quotient. Then the composition π ◦ γ : G։ Hred is a
surjective map onto a reductive group. Its kernel is an extension of unipotent groups, so it is unipotent
and hence connected by Lemma 3.7(b). Therefore, π ◦ γ : G։ Hred is the maximal reductive quotient for

G. Since T ∼−→ γ(T ) ∼−→ π ◦ γ(T ) is an isomorphism onto the maximal quasi-torus π ◦ γ(T ) in Hred we
conclude that T is a maximal quasi-torus in G. �

Definition 8.18. We say that a closed subgroup B in a linear algebraic group G is a quasi-Borel subgroup
if its identity component B◦ is a Borel subgroup, and there is a maximal quasi-torus T ⊂ G such that T
lies in B and B is generated by B◦ and T .

Remark 8.19. (a) Every maximal quasi-torus is contained in a quasi-Borel subgroup. Namely, by The-
orem 8.10(d) there is a Borel subgroup B◦ ⊂ G◦ normalized by T with T ◦ ⊂ B◦. Let B be the group
generated by B◦ and T . Since B◦ is normalized by T , the semi-direct product B◦ ⋊ T ։ B surjects onto
B with kernel B◦∩T = T ◦. We conclude that B is an extension 1→ B◦ → B → T/T ◦ → 1. In particular,
the connected component of B is B◦, and hence B is a quasi-Borel subgroup.

(b) For every quasi-Borel subgroup B ⊂ G the map B/B◦ → G/G◦ induced by the inclusion of B into G
is an isomorphism. Indeed, in the situation of the definition, T normalizes B◦ and T ◦ ⊂ B◦. Therefore,
B arises as described in (a), and this shows that G◦ ∩B = B◦, whence B/B◦ → G/G◦ is injective. The
surjectivity follows from the surjectivity of T ։ G/G◦.

(c) If γ : G ։ H is a surjection of algebraic groups, then the image γ(B) of every quasi-Borel subgroup
B in G is again a quasi-Borel subgroup. Indeed, in the situation of the definition γ(T ) is a maximal
quasi-torus in H by Corollary 8.11, which is contained in γ(B). Moreover, γ(T ) and γ(B◦) generate γ(B)
and the identity component γ(B)◦ = γ(B◦) is a Borel subgroup of H by [Bor91, I.1.4 Corollary and
IV.11.14 Proposition].

Lemma 8.20. Let γ : G ։ G′ be a surjection of linear algebraic groups, let T ⊂ G be a maximal quasi-
torus in G, and let B ⊂ G be a quasi-Borel subgroup which contains T . Then T is a maximal quasi-torus
in H = γ−1(γ(B)).

Proof. We will use Theorem 8.10(e) for the pair T ⊂ H . The identity component T ◦ is a maximal torus
in G, so it is a maximal torus in the smaller group H , too. Since B◦ is a Borel subgroup of G, and clearly
B◦ ⊂ B ⊂ H , we get that B◦ is a Borel subgroup in the smaller group H . By choice B◦ is normalized
by T and B◦ contains T ◦. So by Theorem 8.10(e) we only need to show that the map H/H◦ → G/G◦

induced by the inclusion H →֒ G is injective, because then the surjection T ։ G/G◦ will factor through
a surjection T ։ H/H◦.

So let h ∈ G◦ ∩ H . Then γ(h) lies in γ(G◦) = G′◦ and in γ(H) = γ(B), which is a quasi-Borel
subgroup of G′ by Remark 8.19(c). Therefore, γ(h) ∈ G′◦ ∩ γ(B) = γ(B)◦ = γ(B◦) by Remark 8.19(b),
and hence γ(h) = γ(b) for an element b ∈ B◦ ⊂ H◦ ⊂ G◦. Thus we have to show that the element

h̃ := hb−1 ∈ G◦∩ker γ actually lies in H◦. For this purpose note, that (ker γ)◦ is a characteristic subgroup
of ker γ, which in turn is normal in G. Therefore, (ker γ)◦ is normal in G. Let π : G։ G/(ker γ)◦ =: G be

the quotient morphism and set H := π(H) and B
◦
:= π(B)◦ = π(B◦). The latter is a Borel subgroup in

G by [Bor91, IV.11.14 Proposition]. Now π(h̃) lies in the finite group C := G
◦
∩ ker γ/(kerγ)◦, which is

normal in G
◦
. The operation of G

◦
by conjugation on C factors through the finite automorphism group

of C, and hence is trivial because G
◦
is connected. It follows that C is contained in the center of G

◦
, and

hence in B
◦
= π(B◦) by [Bor91, IV.11.11 Corollary]. Thus that π(h̃) = π(b̃) for an element b̃ ∈ B◦, and

so hb−1b̃−1 = h̃b̃−1 ∈ kerπ = (ker γ)◦ ⊂ H◦. We conclude that h ∈ H◦, and hence G◦ ∩ H = H◦ and
H/H◦ → G/G◦ is injective as desired. This proves the lemma. �
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Proposition 8.21. Let γ : G։ G′ be a surjection of linear algebraic groups, and let T ⊂ G be a maximal
quasi-torus in G. Then T is a maximal quasi-torus in H = γ−1(γ(T )).

Proof. Let B be a quasi-Borel subgroup which contains T . By the lemma above T is a maximal quasi-
torus in γ−1(γ(B)). Therefore, we may replace G by γ−1(γ(B)) and G′ by γ(B) without loss of generality.
In other words we may assume that G′◦ is solvable. The idea is to show that the inclusion H →֒ G

induces an isomorphism Hred ∼−→ Gred. Let U be the unipotent radical of K := ker(γ). Since U is a
characteristic subgroup in K, which is a normal subgroup both in G and in H , the group U is also normal

both in G and in H . Therefore, γ(U) is also normal in G′. Set G = G/U and G
′
= G′/γ(U) and let

γ : G→ G
′
be the map induced by γ. By Corollary 8.11 the image T of T in G is a maximal quasi-torus.

Set H = H/(H ∩ U); then the kernel H ∩ U of the quotient map H → H is unipotent, and intersects T
trivially by Theorem 8.10(c). So by Lemma 8.17 it will be enough to see that T is a maximal quasi-torus
in H . We obtain the two upper exact rows in the following diagram.

1 // K/U // H //
� _

��

γ(T ) //
� _

��

1

1 // K/U // G
γ

//

����

G
′

//

����

1

1 // K/U // G
red

// G
′red // 1 .

Since H is the extension of a reductive group by another reductive group, it is reductive, i.e. H = Hred.

The intersection (K/U)∩RuG
◦
ofK/U with the unipotent radical RuG

◦
of G

◦
is a closed unipotent normal

subgroup of K/U , hence connected by Lemma 3.7(b). Since K/U is reductive, we obtain (K/U)∩RuG
◦
=

(1). Moreover, RuG
′◦ = γ(RuG

◦
) by [Bor91, IV.14.11 Corollary]. This shows that the bottom row in the

diagram is also exact. Since γ(T )◦ is a maximal torus in the connected solvable group G
′◦, the composition

of the morphisms in the right column is an isomorphism on the identity components γ(T )◦ ∼−→ (G
′red)◦ by

[Bor91, III.10.6 Theorem]. Since γ(T ) is a maximal quasi-torus in G
′
by Corollary 8.11, the composition

of the morphisms in the right column is also an isomorphism on the group of connected components by

Theorem 8.9. This proves that H ∼−→ G
red

is an isomorphism. In particular, T is a maximal quasi-torus
in H and the proposition follows. �

Proof of Theorem 8.16. Let π1 : G → G/N and π2 : H → H/ϕ(N) be the quotient maps. Then π1(T ) ⊂
G/N is a maximal quasi-torus by Corollary 8.11 and its image π2ϕ(T ) in H/ϕ(N) is a maximal quasi-torus
by assumption. Note that ϕ maps the pre-image F1 = π−1

1 (π1(T )) ⊂ G isomorphically onto the pre-image
F2 = π−1

2 (π2ϕ(T )) ⊂ H . By Corollary 8.11 there is a maximal quasi-torus T ′ in H with π2(T
′) = π2ϕ(T ).

By Proposition 8.21 the subgroup T is a maximal quasi-torus in F1 and the subgroup T ′ is a maximal
quasi-torus in F2. Since ϕ|F1 : F1 → F2 is an isomorphism, ϕ(T ) is a maximal quasi-torus in F2. Therefore,
ϕ(T ) is conjugate to T ′ under F2 by Theorem 8.10(b). Since T ′ is a maximal quasi-torus in H , we get
that ϕ(T ) is conjugate to a maximal quasi-torus in H , so itself is a maximal quasi-torus in H . �

9. Intersecting Conjugacy Classes with Maximal Quasi-Tori

In this section we continue to consider linear algebraic groups G over an algebraically closed field L of
characteristic 0. We collect several results which we will need in the following sections.

Notation 9.1. Let G be a linear algebraic group, let T ⊂ G be a maximal quasi-torus. Note that T ◦

commutes with T h := {g ∈ T ◦ : gh = hg} for every h ∈ T . So we have T ht = T h for every t ∈ T ◦. The
conjugation action of T ◦ on hT ◦ is given for t ∈ T ◦ and hx ∈ hT ◦ by thxt−1 = hh−1thxt−1 = hxh−1tht−1,
because h−1th ∈ T ◦ commutes with x ∈ T ◦. Therefore, the map

(9.1) ϕ : T ◦ −→ T ◦, t 7−→ h−1tht−1

satisfies thxt−1 = hxϕ(t) for every t ∈ T ◦ and hx ∈ hT ◦. Moreover, ϕ is a homomorphism of algebraic
groups, namely the product of the endomorphisms t 7→ h−1th and t 7→ t−1 of the commutative group T ◦.
The kernel of ϕ is T h. Let Qh be the quotient T ◦/T h. Then ϕ induces a closed immersion of tori

ϕ : Qh −֒→ T ◦, t̄ = t mod T h 7−→ h−1tht−1.
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Proposition 9.2. In the situation of Notation 9.1 the following holds:

(a) The natural group homomorphisms T h◦×LQh → T ◦, (t0, t̄ ) 7→ t0 ·ϕ(t̄) and T h◦ → T ◦/ϕ(Qh) are
surjective with finite kernels.

(b) Every element of hT ◦ is conjugate under T ◦ to an element of hT h◦,
(c) The intersection of hT h◦ with any G◦-conjugacy class (respectively G-conjugacy class) is finite.

Proof. (a) The kernel of the first homomorphism is the set {(t0, t̄ ) : t0 = ϕ(t̄)−1 = th−1t−1h}. This
condition is equivalent to h−1th = t−1

0 t. Since t0 ∈ T h we obtain h−nthn = t−n0 t for every positive integer
n. If n equals the order of h in the group T/T ◦ of connected components, then hn ∈ T ◦ and h−nthn = t.
This shows that tn0 = 1 and ϕ(t̄ n) = ϕ(t̄)n = t−n0 = 1. In particular, the kernel of the first homomorphism
is contained in the n-torsion subgroup of the torus T h◦×LQh and the kernel of the second homomorphism
is contained in the n-torsion subgroup of the torus T h◦. Both are finite groups. By [Bor91, I.1.4 Corollary]
the surjectivity now follows from this, from the irreducibility of the targets, and from the comparison of
dimensions dimQh = dimT ◦ − dimT h and dim T ◦/ϕ(Qh) = dimT ◦ − dimQh = dimT h = dimT h◦.

(b) By (a) every hx ∈ hT ◦ is of the form hx = ht0ϕ(t̄) = ht0ϕ(t) = t(ht0)t
−1 for ht0 ∈ hT h◦ and t ∈ T ◦.

(c) Since the projection onto the maximal reductive quotient G → Gred maps T isomorphically to its
image, and it maps conjugate elements to conjugate elements, we may assume that G is reductive without
loss of generality. (Note that there may be elements in T which are not conjugate under G, but whose
images are conjugate under Gred. So the cardinality of the intersection in question may grow by passing
to Gred.) The proposition is now a consequence of the following more precise statement. �

Proposition 9.3. In the situation of Notation 9.1 let G be reductive, let NG(T
h◦) be the normalizer and

let W ⊂ {w ∈ NG(T
h◦) : whw−1 ∈ hT h◦ } be a finite subset which is maximal (under the inclusion of

subsets) such that W →֒ NG(T
h◦)/NG(T

h◦)◦ is injective. Moreover, let m > 0 be the smallest positive
integer with hm ∈ T h◦ and consider Z := {z ∈ T h◦ : zm = 1}, which is a finite group. If two elements
u, v ∈ hT h◦ are conjugate under G, then there are elements w ∈ W and z ∈ Z with u = zwvw−1.

Remark 9.4. (a) The set {w ∈ NG(T h◦) : whw−1 ∈ hT h◦ } is a subgroup. But in general it does not
contain NG(T

h◦)◦.

(b) Note that we do not claim that for every w ∈ W and z ∈ Z the element zwvw−1 is conjugate to v.

(c) When G is connected, T = T ◦ and so h ∈ T ◦ and T h = T h◦ = T ◦ is a maximal torus in G. Thus
we can take W as (a system of representatives of) the Weyl group of T ◦. Also m = 1 and Z = {1}. In
this way we recover the result of Steinberg [Ste74, § III.3.4, Corollary 2]: Two elements of T are conjugate
under G if and only if they are conjugate under W .

Proof of Proposition 9.3. First note that some power of h lies in T ◦, and since this power commutes with
h, it also lies in T h. Multiplying the exponent further by the order of T h/T h◦ produces an integer m > 0
such that hm ∈ T h◦. Also note that Z is a finite group because T h◦ is commutative.

Let u, v ∈ hT h◦ be conjugate under G, and pick an x ∈ G such that u = xvx−1. Since v centralizes
T v◦ = T h◦ = T u◦, the conjugate u = xvx−1 centralizes xT u◦x−1. But u also centralizes T u◦, so we get
that T u◦, xT u◦x−1 ⊂ Gu◦. By Theorem 8.2 the subgroups T u◦ ⊂ Gu◦ and T v◦ ⊂ Gv◦ are maximal tori,
and hence xT v◦x−1 = xT u◦x−1 is also a maximal torus in xGv◦x−1 = Gu◦. So there is a y ∈ Gu◦ such
that yxT u◦x−1y−1 = T u◦. Then w := yx ∈ NG(T h◦), but also u = yuy−1 = yxvx−1y−1 = wvw−1, as
y ∈ Gu.

Writing u = hũ = ũh and v = hṽ = ṽh with ṽ, ũ ∈ T h◦, we see that hũ = u = wvw−1 = whw−1wṽw−1

and thus whw−1 = hũ(wṽ−1w−1) ∈ hT h◦, because ṽ ∈ T h◦ which is normalized by w. So there is an
element w̃ ∈ W such that w = w̃n for an n ∈ NG(T

h◦)◦. Let t ∈ T h◦ with w̃hw̃−1 = ht = th. Then
u−1(w̃vw̃−1) = ũ−1h−1(w̃hṽw̃−1) = ũ−1t(w̃ṽw̃−1) = (w̃ṽw̃−1)tũ−1 = (w̃ṽhw̃−1)h−1ũ−1 = (w̃vw̃−1)u−1,
because T h◦ is commutative. We set z := u(w̃vw̃−1)−1 and compute zm = um(w̃vmw̃−1)−1. By [Bor91,
III.8.10, Corollary 2], NG◦(T h◦)◦ = ZG◦(T h◦)◦, that is T h◦ centralizes NG◦(T h◦)◦. Now, vm = hmṽm

lies in T h◦, and hence commutes with n. We conclude that um = wvmw−1 = w̃nvmn−1w̃−1 = w̃vmw̃−1.
Therefore, zm = 1 and z ∈ Z, whence u = zw̃vw̃−1 as claimed. �

Corollary 9.5. In the situation of Notation 9.1 let C be the intersection of hT ◦ with a G◦-conjugacy
class (respectively a G-conjugacy class) in G. Then C is a finite union of T ◦-conjugacy classes on hT ◦.
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Proof. Write C as a disjoint union:

C =
∐

i∈I

Ci

such that each ∅ 6= Ci ⊂ hT ◦ is a T ◦-conjugacy class. By Proposition 9.2(b) for each i ∈ I the intersection
Ci∩hT h◦ is non-empty. Therefore, #(C∩hT h◦) ≥ #I. But the set C∩hT h◦ is finite by Proposition 9.2(c).

�

Definition 9.6. For a closed subgroup H ⊂ G and a set C ⊂ G let HC =
⋃
g∈H

gCg−1 be the union of the

H-conjugacy classes of elements of C. Clearly the map C 7→ HC on subsets of G preserves inclusions and
satisfies H(HC) = HC.

Proposition 9.7. In the situation of Notation 9.1 let C ⊂ hT ◦ be a subset and let H ⊂ G be a closed
subgroup containing T ◦. Then HC∩hT h◦ is Zariski-dense in hT h◦ if and only if HC∩hT ◦ is Zariski-dense
in hT ◦.

Proof. We set C1 := HC ∩ hT h◦ and observe that HC1 = HC, because the inclusion HC1 ⊂ HC is obvious
and the opposite inclusion follows from Proposition 9.2(b), because T ◦ ⊂ H .

First assume that hT h◦ equals the Zariski-closure C1 of C1, and let x ∈ hT ◦. By Proposition 9.2(b)

there is a t ∈ T ◦ ⊂ H with txt−1 ∈ hT h◦ = C1. Then x ∈ t−1C1t = t−1C1t . Since t
−1C1t is contained in

HC1 ∩ hT ◦ = HC ∩ hT ◦ we conclude that x ∈ t−1C1t ⊂ HC ∩ hT ◦. Therefore, HC ∩ hT ◦ is Zariski-dense
in hT ◦.

For the converse implication we assume that C1 6= hT h◦ and consider the subset

D := { (c1, b, g) ∈ C1 × hT
◦ ×H such that b = gc1g

−1 } ⊂ C1 × hT
◦ ×H

and the projections π1 : D → C1 and π2 : D → hT ◦. Then π2(D) = HC1 ∩ hT
◦ = HC ∩ hT ◦. We consider

the following diagram which is not commutative

D
π2

//

π1
��

hT ◦

γ
��

C1 ⊂ hT h◦
β

// hT ◦/ϕ(Qh)

where β is induced from the homomorphism from Proposition 9.2(a). Although the diagram is not com-
mutative, we claim that γπ2(D) ⊂ βπ1(D). Indeed, let x ∈ γπ2(D) and let (c1, b, g) ∈ D be a preimage of
x, that is b = gc1g

−1. By Proposition 9.2(b) there is an element t ∈ T ◦ ⊂ H such that c := tbt−1 ∈ hT h◦.
Then c = (tg)c1(tg)

−1 ∈ HC1 ∩ hT h◦ = C1. Moreover, b = t−1ct = cϕ(t), and hence (c, b, t−1) ∈ D. This
shows that x = γπ2(c1, b, g) = b · ϕ(Qh) = c · ϕ(Qh) = βπ1(c, b, t

−1) ∈ βπ1(D) and proves the claim.
Since C1 6= hT h◦ and hT h◦ is irreducible, we get the inequality dimC1 < dimhT h◦ for the dimensions.

By [EGA, IV2, Théorème 4.1.2] we have dimβ(C1) ≤ dimC1 < dimhT h◦ = dimhT ◦/ϕ(Qh), and therefore

β(C1) is a proper closed subset of hT ◦/ϕ(Qh) which contains γπ2(D). Since γ is surjective, the preimage

of β(C1) under γ is a proper closed subset of hT ◦ which contains π2(D) = HC ∩hT ◦. This shows that the
Zariski-closure of HC ∩ hT ◦ is strictly contained in hT ◦ and finishes the proof. �

Proposition 9.8. Let G be a linear algebraic group, let T ⊂ G be a maximal quasi-torus, let h ∈ T , and
let C ⊂ hT ◦ be a subset. Let α : G։ G̃ := G/RuG be the projection onto the maximal reductive quotient

of G. Let H ⊂ G and H̃ ⊂ G̃ be closed subgroups with T ◦ ⊂ H and α(H) ⊂ H̃. Then HC ∩ hT ◦ is

Zariski-dense in hT ◦ if and only if H̃α(C) ∩ α(hT ◦) is Zariski-dense in α(hT ◦).

Remark. Note that the “if”-direction is not obvious, because there may be elements in hT ◦ which are not
conjugate under H , but whose images are conjugate under α(H).

Proof. Note that α(HC) ⊂ H̃α(C), and hence α(HC ∩ hT ◦) ⊂ H̃α(C) ∩ α(hT ◦). Since α : hT ◦ ∼−→ α(hT ◦)
is an isomorphism, the “only if”-direction is clear.

To prove the converse, we use Notation 9.1 and let C1 := HC ∩ hT h◦. Then HC1 = HC as in the

proof of Proposition 9.7. Moreover, H̃α(C1) = H̃α(C), because the inclusion H̃α(C1) ⊂ H̃α(C) follows

from α(C1) ⊂ α(HC) ⊂ H̃α(C), and the opposite inclusion follows from α(C) ⊂ α(HC1) ⊂ H̃α(C1). So
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by Proposition 9.7 it suffices to show that C1 is Zariski-dense in hT h◦ provided that H̃α(C1)∩ α(hT
h◦) is

Zariski-dense in α(hT h◦).

Let u ∈ H̃α(C1) ∩ α(hT h◦), that is u = g̃vg̃−1 for some g̃ ∈ H̃ and v ∈ α(C1) ⊂ α(hT h◦). Then

in the notation of Proposition 9.3 applied to α(T h◦) ⊂ G̃, there are elements z ∈ Z and w ∈ W with
u = zwvw−1. We conclude that

H̃α(C1) ∩ α(hT
h◦) ⊂

⋃

z∈Z,w∈W

zwα(C1)w
−1 ⊂ α(hT h◦) .

If the Zariski-closure C1 of C1 is strictly contained in hT h◦, then α(C1) = α(C1) 6= α(hT h◦) and we

obtain an inequality of dimensions dim α(C1) < dimα(hT h◦), because α(hT h◦) is irreducible. On the
other hand the Zariski-closure

H̃α(C1) ∩ α(hT h◦) ⊂
⋃

z∈Z,w∈W

zw α(C1)w
−1 ⊂ α(hT h◦) ,

because the union is closed as a finite union of closed subsets. Since dim zw α(C1)w
−1 = dim α(C1) <

dimα(hT h◦) and α(hT h◦) is irreducible, it cannot be the finite union of proper closed subsets. This

implies that H̃α(C1) ∩ α(hT h◦) is not Zariski-dense in α(hT h◦) and proves the proposition. �

Lemma 9.9. Let G be reductive (but not necessarily connected) and let T ⊂ G be a maximal quasi-torus.

(a) For every g ∈ G(L) we have G{g} ∩ T = G{gs} ∩ T , where gs is the semi-simple part in the
multiplicative Jordan decomposition of g.

(b) Let {Cx : x ∈ S} be a collection of conjugacy classes in G(L) and let h ∈ T (L). Then hG◦∩
⋃
x∈S Cx

is Zariski-dense in hG◦ if and only if hT ◦ ∩
⋃
x∈S Cx is Zariski-dense in hT ◦.

Proof. Let c : G×G→ G be the map given by the rule (h, g) 7→ hgh−1.

(a) Theorem 8.9(a), (b) implies that G{g} is Zariski-closed in G if and only G{g}∩T 6= ∅. So if G{g}∩T = ∅

there is a g′ ∈ G{g} r G{g}. By Chevalley’s theorem [EGA, IV1, Théorème 1.8.4] G{g} = c(G × {g}) is

constructible, so there is a non-empty Zariski-open subset of its closure O ⊂ G{g} with O ⊂ G{g} by

[EGA, 0III, Proposition 9.2.2]. In particular G{g′} ⊂ G{g}r O and G{g′} ( G{g}. Proceeding in this way

will eventually produce a g′ ∈ G{g}∩T . Now we use that the map s : h 7→ hs on G{g} sending h ∈ G to its
semi-simple part hs is actually a morphism of schemes by Lemma 9.10 below. Since G{g} is mapped into
G{gs} under s, its Zariski-closure G{g} is mapped into G{gs}. But gs is semi-simple, so G{gs} is closed,

and hence the image of G{g} under s lies in G{gs}. Therefore, g′ = g′s also lies in G{gs}, and this shows

that G{gs} = G{g′} ⊂ G{g}. It moreover shows that all semi-simple elements h = hs ∈ G{g} are mapped

under s to G{gs}. Since h = s(h), we conclude that G{g} ∩ T ⊂ G{gs} ∩ T proving (a).

(b) Let A := hG◦ ∩
⋃
x∈S Cx and B := hT ◦ ∩

⋃
x∈S Cx denote the Zariski-closures. Note that A contains

B, and since A is invariant under conjugation by G◦, it also contains c(G◦ ×B). From Theorem 8.9(c)
we conclude that the set of semi-simple elements in hG◦, which equals c(G◦ × hT ◦), is dense in hG◦, that

is c(G◦ × hT ◦) = hG◦.

Now, if B = hT ◦ then this implies that A contains c(G◦ × hT ◦) = hG◦.
So we only have to show that A = hG◦ implies B = hT ◦. Assume that this is not the case and let

V ⊂ hT ◦ be the open complement of B. We claim that the Zariski-closure of c(G◦×V ) equals hG◦. Indeed,

(G◦ × hT ◦) r c−1(c(G◦ × V )) is open in G◦ × hT ◦ and its image in hT ◦ with respect to the projection
does not meet V . Since the projection G◦ × hT ◦ → hT ◦ is flat of finite presentation, this image is open
by [EGA, IV2, Théorème 2.4.6], and hence empty because V is open and dense in the irreducible variety

hT ◦. Thus (G◦ × hT ◦) ⊂ c−1(c(G◦ × V )) and c(G◦ × hT ◦) ⊂ c(G◦ × V ). Since c(G◦ × hT ◦) = hG◦,

we have c(G◦ × V ) = hG◦, which is our claim. By Chevalley’s theorem [EGA, IV1, Théorème 1.8.4]
c(G◦ × V ) is constructible, so it must contain a non-empty Zariski-open subset O ⊂ hG◦ by [EGA, 0III,
Proposition 9.2.2]. Because hG◦ ∩

⋃
x∈S Cx is Zariski-dense in hG◦, we get that there is an x ∈ S such

that Cx ∩O 6= ∅. Hence there is a h ∈ G◦ such that h−1V h ∩ Cx 6= ∅, and since Cx is a conjugacy class,
we get V ∩ Cx 6= ∅. This is a contradiction. �
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Lemma 9.10. Let G be a linear algebraic group, and consider the maps of sets s : G → G, h 7→ hs and
u : G→ G, h 7→ hu, which send every element h to its semi-simple part hs, respectively unipotent part hu
in the multiplicative Jordan decomposition. Let g ∈ G. Then the restriction of these maps to the reduced

closed subscheme G{g}, where G{g} is the conjugacy class of g, are morphisms of schemes.

Proof. Let ρ : G →֒ GLn =: H be a faithful linear representation. Since ρ(G{g}) ⊂ H{ρ(g)} and the
multiplicative Jordan decomposition is compatible with ρ by [Bor91, I.4.4 Theorem], it will be enough to

show the claim for H{ρ(g)}, or in other words we may assume that G = GLn without loss of generality.

Note that the characteristic polynomial, as a conjugation-invariant regular function, is constant on G{g}.
Let χ(t) ∈ L[t] be this value, and write

χ(t) =

r∏

j=1

(t− λj)
rj ,

where λj ∈ L are pairwise different, and the rj are positive integers. Since the polynomials

Pj(t) = χ(t)/(t− λj)
rj , (j = 1, 2, . . . , r)

have no common divisor, and L[t] is a principal ideal domain, there are Q1, Q2, . . . , Qr ∈ L[t] such that

1 = Q1P1 +Q2P2 + · · ·+QrPr.

In particular Qj(t)Pj(t) ≡ 1 mod (t− λj)rj for all j, because (t− λj)rj divides Pi(t) for every i 6= j, and

hence (QjPj)
2 ≡ QjPj mod χ. Let h ∈ G{g}. Then the characteristic polynomial of h equals χ and the

Cayley-Hamilton theorem implies that the endomorphism Qj(h)Pj(h) ∈ EndL(L
n) is the projection onto

the generalized eigenspace ker(h− λj)rj of h for the eigenvalue λj . Thus the polynomial

P (t) := λ1Q1(t)P1(t) + λ2Q2(t)P2(t) + · · ·+ λrQr(t)Pr(t) ∈ L[t]

satisfies

s(h) = P (h) = λ1Q1(h)P1(h) + λ2Q2(h)P2(h) + · · ·+ λrQr(h)Pr(h) ∈Mn×n(L)

for every h ∈ G{g}. Clearly this is a polynomial map, hence a morphism of schemes. Thus u(h) = s(h)−1 ·h
is also a morphism. �

Corollary 9.11. Let G be a reductive group (which is not necessarily connected). Let F ⊂ G be a union
of conjugacy classes and let F ss = {gs : g ∈ F} be the set consisting of the semi-simple parts gs of the
elements g of F . Then F is Zariski-dense in a connected component of G if and only if F ss is Zariski-dense
in that connected component.

Proof. For every g ∈ G the Zariski-closure G{g} of the conjugacy class G{g} of g contains the conjugacy
class G{gs} of the semi-simple part gs of g by Lemma 9.9(a). So the Zariski-closure of F ss lies in the Zariski-
closure of F , and hence one implication holds. On the other hand let hG◦ ⊂ G be a connected component
in which F ∩ hG◦ is Zariski-dense. By Theorem 8.9(c) there is a dense open subset O ⊂ hG◦ such that
O only contains semi-simple elements. Then F ∩O is also Zariski-dense in hG◦, but F ∩O ⊂ F ss ∩ hG◦.
Therefore, F ss ∩ hG◦ is also Zariski-dense in hG◦. �

10. The Weakly Pink Hypothesis and its Consequences

Conjecture 10.1. Consider an open sub-curve f : V →֒ U and a base point u ∈ V (Fqe). Let F ∈
F -IsocK(U) be a convergent F -isocrystal on U . Then Gr(f∗F/V, u) ⊂ Gr(F/U, u) is a parabolic subgroup.

In private conversation with one of us this was formulated by Richard Pink as a question in the
special case when F comes from a p-divisible group on U . Note that by [Bor91, IV.11.2 Corollary] and
the following lemma, the conjecture is equivalent to the assertion that the natural injective morphism
Gr(f∗F/V, u) → Gr(F/U, u) maps every Borel subgroup of Gr(f∗F/V, u)×Ke K onto a Borel subgroup
of Gr(F/U, u)×Ke K.

Lemma 10.2. The natural morphism Gr(f∗F/V, u)→ Gr(F/U, u) always is a closed immersion.

Proof. Every object of 〈〈f∗F〉〉 is a subquotient of an object of the form
⊕

i f
∗F⊗mi ⊗ (f∗F∨)⊗ni =

f∗
(⊕

i F
⊗mi ⊗ (F∨)⊗ni

)
. Now the statement follows from Proposition A.14(b). �
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Definition 10.3. Let F ∈ F -IsocK(U) be a convergent F -isocrystal on U and let f : V →֒ U be an open
sub-curve with a base point u ∈ V (Fqe).

(a) We will call F pink 1 with respect to f : V →֒ U if under the inclusion Gr(f∗F/V, u) ⊂ Gr(F/U, u)
a Borel subgroup of Gr(f∗F/V, u)×Ke K is also a Borel subgroup of Gr(F/U, u)×Ke K.

(b) We will call F weakly pink with respect to f : V →֒ U if under the inclusion Gr(f∗F/V, u) ⊂
Gr(F/U, u) a maximal quasi-torus of Gr(f∗F/V, u) ×Ke K is also a maximal quasi-torus of the
group Gr(F/U, u)×Ke K.

(c) We will call F conservative with respect to f if Gr(f∗F/V, u)→ Gr(F/U, u) is an isomorphism.

Note that F is (weakly) pink with respect to f : V →֒ U if and only if every Borel subgroup (resp. every
maximal quasi-torus) of Gr(f∗F/V, u) ×Ke K is also a Borel subgroup (resp. maximal quasi-torus) of
Gr(F/U, u)×Ke K, because they are all conjugate by [Bor91, IV.11.1 Theorem] (resp. Theorem 8.10).

The reason why we are interested in this concept is the following theorem, which reformulates Theo-
rem 1.11 and which we will prove at the end of this section.

Theorem 10.4. Let F ∈ F -IsocK(U) be a convergent semi-simple F -isocrystal on U which is weakly pink
with respect to an open sub-curve f : V →֒ U for which f∗F has a slope filtration on V (with isoclinic
subquotients). Then F satisfies Conjectures 1.2, 1.3 and 1.4.

Note that by the specialization theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there always
is an open sub-curve f : V →֒ U on which the Newton polygon of F is constant, and by the slope filtration
theorem [Kat79, Corollary 2.6.3] the restriction f∗F has a slope filtration with isoclinic subquotients. Our
assumption is that F is weakly pink with respect to such an f .

Before we prove the theorem (after Definition 10.15) let us establish a few facts about (weakly) pink
F -isocrystals.

Proposition 10.5. Let F ∈ F -IsocK(U) be a convergent F -isocrystal on U and let f : V →֒ U be an open
sub-curve with a base point u ∈ V (Fqe).

(a) If F is pink with respect to f , then it is weakly pink with respect to f .
(b) If F is weakly pink with respect to f then the natural inclusion β : Gr(f∗F/V, u) →֒ Gr(F/U, u)

induces an isomorphism on the groups of connected components and every maximal torus of
Gr(f∗F/V, u) is also a maximal torus of Gr(F/U, u). (See Warning 10.6 for the converse.)

(c) Without assumption on F , the inclusion Gr(f∗F/V, u) ⊂ Gr(F/U, u) always induces a surjection(
Gr(f∗F/V, u)/Gr(f∗F/V, u)◦

)
×Ke K ։

(
Gr(F/U, u)/Gr(F/U, u)◦

)
×Ke K on the groups of

geometrically connected components.

Proof. (b) Let T1 be a maximal quasi-torus ofG1 := Gr(f∗F/V, u)×KeK and set G2 := Gr(F/U, u)×KeK.
If F is weakly pink with respect to f , then T2 := β(T1) is a maximal quasi-torus of G2 and β(T ◦

1 ) = T ◦
2 is a

maximal torus of G2 by Lemma 8.8. Furthermore, Theorem 8.10 implies that G1/G
◦
1
∼= T1/T

◦
1
∼= T2/T

◦
2
∼=

G2/G
◦
2 is an isomorphism on the groups of connected components over K. Since this isomorphism is

already defined over Ke, this proves (b).

(c) Let U be an object of 〈〈F〉〉 such that the surjective homomorphism Gr(F/U, u) ։ Gr(U/U, u) has
kernel equal to the characteristic subgroup G◦

2 ⊂ G2; see Remark A.17 and Corollary A.16(b). Then U
is unit-root by Lemma 5.1, and hence the inclusion map Gr(f∗U/V, u) ⊂ Gr(U/U, u) is an isomorphism
by Corollary 5.11. Since f∗U is an object of 〈〈f∗F〉〉 the corresponding homomorphism Gr(f∗F/V, u)×Ke

K ։ Gr(f∗U/V, u) ×Ke K
∼−→ Gr(U/U, u) ×Ke K = G2/G

◦
2 is surjective by Lemma 3.3. It follows that

G1/G
◦
1 ։ G2/G

◦
2 is surjective.

(a) Let T1 be a maximal quasi-torus in G1 and let α : G2 ։ G2/RuG2 =: G3 be the maximal reductive
quotient of G2, where RuG2 is the unipotent radical of G2. We have to show that α maps β(T1) isomor-
phically onto a maximal quasi-torus of G3. By Theorem 8.10 there is a Borel subgroup B◦

1 of G◦
1 which is

normalized by T1. Since β(G1) ⊂ G2 is parabolic, β(T ◦
1 ) is a maximal torus and β(B◦

1 ) is a Borel subgroup
of G◦

2 by [Bor91, IV.11.2 Corollary and IV.11.3 Corollary]. Now [Bor91, IV.11.14 Proposition] shows that
T ◦
3 := αβ(T ◦

1 ) is a maximal torus and B◦
3 := αβ(B◦

1 ) is a Borel subgroup of G◦
3. The latter is normalized

1as an abbreviation for “die Monodromie-Gruppe wird parabolisch unter der Inklusion von Kurven” (the monodromy

group becomes parabolic under the inclusion of curves)
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by αβ(T1). Therefore, αβ(T1) is contained in the maximal quasi-torus T3 := NG3(B
◦
3) ∩NG3(T

◦
3 ). Since

all elements of β(T1) are semi-simple by Theorem 8.10 and the kernel of α is unipotent, the restriction
of α to β(T1) is injective, and therefore the map αβ induces an injection T1/T

◦
1 →֒ T3/T

◦
3 . On the other

hand, this injection equals the surjection T1/T1 = G1/G
◦
1 ։ G2/G

◦
2 = G3/G

◦
3 = T3/T

◦
3 from (c). This

shows that α maps β(T1) isomorphically onto T3 as desired. �

Warning 10.6. If we consider a closed subgroup G1 of a non-connected linear algebraic group G2 and
a maximal quasi-torus T1 in G1 one can ask whether there is a maximal quasi-torus of G2 containing
T1. We believe that this is not true in general, even under the assumption that G1/G

◦
1 = G2/G

◦
2 and

that T ◦
1 is a maximal torus in G◦

2, but see Theorem 11.6 below. That is, we believe that the converse
of Proposition 10.5(b) does not hold in general. In order to prove this converse one would have to show
that (in the notation of the proof of Proposition 10.5) every maximal quasi-torus T1 of G1 is mapped
isomorphically to a maximal quasi-torus in the maximal reductive quotient G3 of G2. By our hypothesis

we obtain an isomorphism G1/G
◦
1

∼−→ G2/G
◦
2

∼−→ G3/G
◦
3. The proof now reduces to the following group

theoretic statement. By hypothesis T ◦
3 = αβ(T ◦

1 ) is a maximal torus in G◦
3 and we choose a Borel subgroup

B◦
3 ⊂ G

◦
3 containing T ◦

3 . Then T3 := NG3(B
◦
3)∩NG3(T

◦
3 ) is a maximal quasi-torus in G3. The isomorphism

G3/G
◦
3

∼−→ T3/T
◦
3 ⊂ NG3(T

◦
3 )/T

◦
3 from Theorem 8.9 yields a split exact sequence of groups

(10.1) 1 // NG◦
3
(T ◦

3 )/T
◦
3

// NG3(T
◦
3 )/T

◦
3

// G3/G
◦
3

// 1 .

HereW := NG◦
3
(T ◦

3 )/T
◦
3 is the Weyl group. The morphismG3/G

◦
3

∼−→ G1/G
◦
1

∼−→ T1/T
◦
1

αβ
−−→ NG3(T

◦
3 )/T

◦
3

yields another splitting of (10.1). One has to show that the two splittings are conjugate. Every conjugacy
class of splittings s : G3/G

◦
3 → NG3(T

◦
3 )/T

◦
3 defines a cohomology class ϕ : G3/G

◦
3 →W in H1(G3/G

◦
3,W )

as follows. Let g ∈ G3/G
◦
3. Since s(g) normalizes T ◦

3 it conjugates B◦
3 to another Borel subgroup containing

T ◦
3 . The latter is of the form s(g)−1B◦

3s(g) = ϕ(g)B◦
3ϕ(g)

−1 for a uniquely determined element ϕ(g) ∈ W
by [Bor91, II.11.19 Proposition]. The cohomology class ϕ is trivial if and only if the splitting comes from a
maximal quasi-torus, because if s(g) ∈ T3 ⊂ NG3(B

◦
3 ) then ϕ(g) = 1. So αβ(T1) is a maximal quasi-torus

if and only if the corresponding cohomology class is trivial. Now it is not difficult to construct a group
G3 with H1(G3/G

◦
3,W ) 6= 0 and to choose a splitting s with non-zero cohomology class. Unfortunately

we were not able to show that this situation cannot arise from a group homomorphism G1 → G2 or from
a convergent F -isocrystal F ∈ F -IsocK(U).

Proposition 10.7. Let F ∈ F -IsocK(U) be a convergent F -isocrystal on U which is weakly pink with
respect to an open immersion f : V →֒ U , and let G be a convergent F -isocrystal on U which is conservative
with respect to f . Then F ⊕ G is weakly pink with respect to f .

Proof. By Proposition 3.6(c) there are two Cartesian diagrams

Gr(f∗(F)⊕ f∗(G)/V, u)
π1

tttt✐✐✐
✐✐✐

✐✐ ρ1

** **❯❯
❯❯❯

❯❯❯

Gr(f∗F/V, u)

** **❯❯
❯❯❯

❯❯❯
� Gr(f∗G/V, u)

σ1tttt✐✐✐
✐✐✐

✐✐

Gr(〈〈f∗(F)〉〉 ∩ 〈〈f∗(G)〉〉/V, u)

and

Gr(F ⊕ G/U, u)
π2

uuuu❥❥❥
❥❥❥

❥❥ ρ2

)) ))❙❙
❙❙❙

❙❙❙

Gr(F/U, u)

)) ))❚❚
❚❚❚

❚❚❚
� Gr(G/U, u)

σ2uuuu❦❦❦
❦❦❦

❦❦

Gr(〈〈F〉〉 ∩ 〈〈G〉〉/U, u),

of algebraic groups, where the maps are all induced by the inclusion functors on the respective Tannakian
categories. Let N1 and N2 denote the kernel of π1 and π2, respectively. Then N1 and N2 are closed
normal subgroups in Gr(f∗(F) ⊕ f∗(G)/V, u) and Gr(F ⊕ G/U, u), respectively. We claim that N1 maps
isomorphically onto N2 with respect to the map:

ϕ : Gr(f∗(F)⊕ f∗(G)/V, u)→ Gr(F ⊕ G/U, u)
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induced by pull-back with respect to f . The map ϕ extends to a map of the Cartesian diagrams above
which is also induced by pull-back with respect to f . Therefore, ϕ(N1) ⊂ N2. Now N1 and N2 can be
described as the fiber products

N1

vv♥♥
♥♥
♥♥
♥♥
♥ ρ1

**❚❚
❚❚❚

❚❚❚
❚❚

{1}

''P
PP

PP
PP

� Gr(f∗G/V, u)

σ1uu❥❥❥
❥❥❥

❥❥

Gr(〈〈f∗F〉〉 ∩ 〈〈f∗G〉〉/V, u)

and

N2

vv♠♠
♠♠
♠♠
♠♠
♠♠ ρ2

))❚❚
❚❚❚

❚❚❚
❚❚

{1}

((P
PP

PP
PP

P � Gr(G/U, u)

σ2uu❦❦❦
❦❦❦

❦❦

Gr(〈〈F〉〉 ∩ 〈〈G〉〉/U, u),

of algebraic groups, respectively. Since the map

ϕ : Gr(f∗G/V, u)→ Gr(G/U, u)

is an isomorphism by the assumption that G is conservative, and since

ϕ : Gr(〈〈f∗F〉〉 ∩ 〈〈f∗G〉〉/V, u)→ Gr(〈〈F〉〉 ∩ 〈〈G〉〉/U, u)

is a closed immersion by Lemma 10.2, we conclude that ϕ|N1 : N1 → N2 is an isomorphism. Note that

Gr(f∗(F)⊕ f∗(G)/V, u)/N1 = Gr(f∗F/V, u) and Gr(F ⊕ G/U, u)/N2 = Gr(F/U, u),

and the group homomorphism

ϕ̃ : Gr(f∗(F)⊕ f∗(G)/V, u)/N1 → Gr(F ⊕ G/U, u)/N2

induced by ϕ is the map:

Gr(f∗F/V, u)→ Gr(F/U, u)

induced by the pull-back with respect to f . If T ⊂ Gr(f∗(F)⊕f∗(G)/V, u)×KeK is a maximal quasi-torus,
its images in Gr(f∗F/V, u)×KeK and in Gr(F/U, u)×KeK are maximal quasi-tori by Corollary 8.11 and by
the assumption that F is weakly pink with respect to f . Therefore, the image of T in Gr(F⊕G/U, u)×KeK
is a maximal quasi-torus by Theorem 8.16, and hence F ⊕ G is also weakly pink with respect to f . �

Definition 10.8. Let γ : G1 → G2 be a homomorphism of linear algebraic groups over an algebraically
closed field L of characteristic 0. We say that γ is pink, if it maps a Borel subgroup of G1 onto a Borel
subgroup of G2. Similarly, we say that γ is weakly pink, if it maps a maximal quasi-torus of G1 onto a
maximal quasi-torus of G2.

Note that γ is (weakly) pink if and only if it maps every Borel subgroup (resp. every maximal quasi-
torus) of G1 onto a Borel subgroup (resp. maximal quasi-torus) of G2, because they are all conjugate
under G◦

1 by [Bor91, IV.11.1 Theorem] (resp. Theorem 8.10).

Lemma 10.9. Let

G1
γ

//

π1

��

G2

π2

��

H1
χ

// H2

be a commutative diagram in the category of linear algebraic groups over an algebraically closed field L of
characteristic 0, such that π1 and π2 are surjective. If γ is pink (resp. weakly pink), then χ is also pink
(resp. weakly pink).
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Proof. Let Γ be a Borel subgroup (resp. maximal quasi-torus) in G1. Since π1 is surjective, its image
π1(Γ) is also a Borel subgroup (resp. maximal quasi-torus) in H1 by Corollary 8.11. By assumption the
image γ(Γ) is also a Borel subgroup (resp. a maximal quasi-torus) in G2. Since π2 is surjective, the image
π2(γ(Γ)) of γ(Γ) is also a Borel subgroup (resp. a maximal quasi-torus) in H2 by Corollary 8.11. But
π2(γ(Γ)) = χ(π1(Γ)), so χ is pink (resp. weakly pink). �

Proposition 10.10. Let F ∈ F -IsocK(U) be a convergent F -isocrystal on U which is pink (resp. weakly
pink, resp. conservative) with respect to an open sub-curve f : V →֒ U , and let G be an object of 〈〈F〉〉.
Then G is pink (resp. weakly pink, resp. conservative) with respect to f .

Proof. We have a commutative diagram:

Gr(f∗F/V, u) �
�

//

����

Gr(F/U, u)

����

Gr(f∗G/V, u) �
�

// Gr(G/U, u)

such that the vertical maps are surjective and the horizontal maps are induced by the inclusion f : V →֒ U .
If the top horizontal group homomorphism is pink (resp. weakly pink), the lower horizontal group homo-
morphism is also pink (resp. weakly pink) by Lemma 10.9. On the other hand, if the top horizontal group
homomorphism is an isomorphism, the lower horizontal group homomorphism is also an isomorphism,
because it is a surjective closed immersion. �

Next we will establish the following

Proposition 10.11. Let F be a direct sum of isoclinic convergent F -isocrystals on U and let f : V →֒ U
be an open sub-curve with a base point u ∈ V (Fqe). Then F is conservative with respect to f , i.e. the map
Gr(f∗F/V, u) →֒ Gr(F/U, u) induced by the inclusion f : V →֒ U is an isomorphism. In particular F is
pink with respect to f .

Before proving the proposition, we note the following

Corollary 10.12. Let F be a convergent F -isocrystal on U such that the identity component Gr(F/U, u)◦

of its monodromy group is a torus. Let f : V →֒ U be an open sub-curve with a base point u ∈ V (Fqe).
Then F is conservative with respect to f .

Proof. There is a finite field extension K ′
n of Ke over which the torus Gr(F/U, u)◦ splits. Let n be the

inertia degree of K ′
n over K. Then K ′

n is a totally ramified field extension of Kn. By Corollary 6.5 we

may find a finite étale covering g : Ũ → U and take K ′
n and n large enough, such that u lifts to a point

ũ ∈ Ṽ (Fqn) for Ṽ := Ũ ×U V , and such that Gr(g∗F/Ũ, ũ) ∼−→ Gr(F/U, u)◦ is an isomorphism. We

consider the functor F -IsocK(Ũ)→ Fn-IsocK′
n
(Ũn), g

∗F 7→ (g∗F)(n)⊗Kn K
′
n which is the composition of

the functor ( . )(n) from (3.1) on Ũ and the extension functor ⊗KnK
′
n of the coefficients from Kn to K ′

n.
We get by Lemma 6.3(c) an open and closed immersion

(10.2) Gr(g∗F (n) ⊗Kn K
′
n/Ũn, ũ) →֒ Gr(g∗F/Ũ, ũ)×Ke K

′
n .

Since Gr(g∗F/Ũ, ũ) is geometrically connected, the map (10.2) is an isomorphism and Gr(g∗F (n) ⊗Kn

K ′
n/Ũn, ũ) is a split torus. Therefore, its one-dimensional K ′

n-rational representations generate the Tan-

nakian category of all its representations. So g∗F (n)⊗KnK
′
n belongs to the Tannakian sub-category 〈〈F̃〉〉 ⊂

Fn-IsocK′
n
(Ũn) generated by an Fn-isocrystal F̃ on Ũn which is a sum of one-dimensional Fn-isocrystals.

For each one-dimensional Fn-isocrystal the slope filtration is constant, so F̃ is a direct sum of isoclinic

convergent Fn-isocrystals. By Propositions 10.10 and 10.11 the Fn-isocrystals F̃ and g∗F (n) ⊗Kn K
′
n

are conservative with respect to the open sub-curve prŨ : Ṽ →֒ Ũ . By (10.2) this implies that the closed

immersion Gr(p̃r∗
Ũ
g∗F/Ṽ , ũ) →֒ Gr(g∗F/Ũ, ũ) is an isomorphism after the faithfully flat base-change from

Ke to K ′
n. Thus it is an isomorphism already over Ke. Since g ◦ prŨ = f ◦ prV : Ṽ → U , Lemmas 6.2

and 10.2 provide closed immersions of group schemes Gr(p̃r∗
Ũ
g∗F/Ṽ , ũ) →֒ Gr(f∗F/V, u) →֒ Gr(F/U, u)

whose composition is an isomorphism onto the identity component by the above. Now Proposition 10.5(c)
implies that Gr(f∗F/V, u) →֒ Gr(F/U, u) is an isomorphism and F is conservative. �
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Next we prove Proposition 10.11, which by Proposition A.14(a) follows immediately from the following
two lemmas:

Lemma 10.13. The full sub-category S(U) of direct sums of isoclinic convergent F -isocrystals is a full
Tannakian sub-category.

Proof. Clearly S(U) is closed under direct sums. Since the tensor product and duals of isoclinic F -
isocrystals are isoclinic, the category S(U) is closed under tensor products and taking duals, too. Therefore,
it will be sufficient to show that if F is a direct sum of isoclinic F -isocrystals and G ⊂ F is a sub F -
isocrystal, then G and F/G are also direct sums of isoclinic F -isocrystals with the same slopes than F . By
looking at the dual (F/G)∨ ⊂ F∨ and observing that the dual of an isoclinic F -isocrystal is again isoclinic
with the negative slope, it suffices to prove the statement for G. Write F as

F = F1 ⊕F2 ⊕ · · · ⊕ Fn,

where each Fi is an isoclinic F -isocrystal of slope λi and the slopes λi are pair-wise different. We are
going to show the claim by induction on n. The case n = 1 is trivial.

Now assume that n ≥ 2 and the claim is true for n− 1. Let πi : F → Fi be the projection onto the i-th
factor for each i = 1, 2, . . . , n. Set G1 = ker(π1) ∩ G; it is a sub F -isocrystal of G. It is also isomorphic
to a sub F -isocrystal of ker(π1) = F2 ⊕ · · · ⊕ Fn, so it is a direct sum of isoclinic F -isocrystals by the
induction hypothesis. Set G2 = ker(π2 ⊕ · · · ⊕ πn) ∩ G; it is a sub F -isocrystal of G. It is also isomorphic
to a sub F -isocrystal of F1, so it is isoclinic. Since G1 ∩ G2 ⊂ ker(π1)∩ ker(π2), the intersection G1 ∩ G2 is
the trivial crystal, and therefore we have an injection

G1 ⊕ G2 →֒ F

which is an isomorphism onto G1 + G2, the sub-isocrystal generated by G1 and G2. Since G contains both
G1 and G2, it contains G1 + G2, too. The quotient G/(G1 + G2) is isomorphic both to a subquotient of
F1 and F2 ⊕ · · · ⊕ Fn. By our induction hypothesis, every subquotient of F1 is isoclinic with slope λ1
and every subquotient of F2 ⊕ · · · ⊕ Fn is a direct sum of isoclinics with slopes in {λ2, . . . , λn}. Since λ1
does not lie in {λ2, . . . , λn}, this can only be the case if the quotient G/(G1 + G2) is trivial, and hence
G ∼= G1 ⊕ G2. The claim follows. �

Lemma 10.14. Let f : V →֒ U be the inclusion of a non-empty open sub-curve and let F be an object
of S(U). Then the pull-back functor G 7→ f∗G from 〈〈F〉〉 to 〈〈f∗F〉〉 is a tensor equivalence of Tannakian
categories.

Proof. The pull-back functor is obviously a tensor functor. It is fully faithful by Kedlaya’s full faithfulness
theorem [Ked04, Theorem 1.1]. So it remains to show the following: if F is a direct sum of isoclinic
F -isocrystals on U and G ⊂ f∗F is a sub F -isocrystal (over V ), then G is of the form f∗H for some
sub F -isocrystal H ⊂ F . By the proof of the lemma above G is the direct sum of sub F -isocrystals of
pull-backs of the isoclinic direct summands of F via f . So we may assume without loss of generality that
F is isoclinic of slope λ. Then there are two constant F -isocrystals D1,D2 of slopes λ1 = −λ and λ2 = λ,
respectively, such that F ⊗ D1 is unit-root and D1 ⊗ D2 is trivial of rank n2 for some positive integer
n. Then G ⊗ f∗D1 ⊂ f∗(F ⊗ D1) is of the form f∗H1 for a unique F -isocrystal H1 ⊂ F ⊗ D1 on U by
Corollary 5.11. Therefore

G⊕n
2 ∼= G ⊗ f∗D1 ⊗ f

∗D2 ⊂ f
∗(F)⊗ f∗(D1 ⊗D2) ∼= f∗(F⊕n2

)

is of the form f∗(H1 ⊗ D2) for the F -isocrystal H1 ⊗ D2 ⊂ F
⊕n2

on U . By projecting onto a direct

summand of F⊕n2

we get the claim. �

After these general results we now turn towards the proof of Theorem 10.4. We make use of the following

Definition 10.15. Let F be a convergent F -isocrystal and fix a maximal quasi-torus T ⊂ Gr(F , u) with
connected component T ◦ and an element t ∈ T (K). For every closed point x of U let

Frobssx (F , tT ◦) := Frobx(F) ∩ tT
◦.
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We will frequently use the following useful fact: let G be an object of 〈〈F〉〉 and let h : Gr(F , u) ։

Gr(G, u) be the corresponding surjective homomorphism. Choose two maximal quasi-tori T1 ⊂ Gr(F , u)
and T2 ⊂ Gr(G, u) such that h maps T1 into T2. Let t1 ∈ T1(K) and t2 := h(t1). Then for every closed
point x of U the morphism h maps Frobssx (F , t1T ◦

1 ) into Frobssx (G, t2T ◦
2 ). (This is clear since h maps

Frobx(F) into Frobx(G) by Lemma 3.3.)

Proof of Theorem 10.4. Let F be a convergent semi-simple F -isocrystal on U and let S ⊂ |U | be a set of
positive upper Dirichlet density. By assumption there is an open sub-curve f : V →֒ U which respect to
which F is weakly pink, such that f∗F has a filtration

F0 ⊂ F1 ⊂ · · · ⊂ Fm

with isoclinic factors Fi/Fi−1. We replace S by S∩|V | which has the same Dirichlet density as S because
|U |r |V | is finite. Moreover, set

G =

m⊕

i=1

(Fi/Fi−1)
ss.

Then α : G := Gr(f∗F/V, u) ։ G̃ := Gr(G/V, u) is the maximal reductive quotient and α induces an

isomorphism on the groups of connected components G/G◦ ∼−→ G̃/G̃◦ by Lemma 3.8. By Theorem 8.10

there exists a maximal quasi-torus T ⊂ G. Then T ◦ is a maximal torus in G by Lemma 8.8 and T̃ := α(T )

is a maximal quasi-torus in G̃ with identity component T̃ ◦ = α(T ◦) and α|T : T
∼−→ T̃ is an isomorphism.

By Theorem 1.8, Conjecture 1.4 holds for G/V . Let t̃ ∈ T̃ (K) be an element such that the connected

component t̃G̃◦ of Gr(G/V, u) is contained in the Zariski-closure of the set
⋃
x∈S Frobx(G). We claim that

this is not changed if we remove from S all points x for which Frobx(G) does not consist of semi-simple

elements or does not meet t̃G̃◦. Namely, by Theorem 8.9(c) there is an open set O in t̃G̃◦ consisting

of semi-simple elements. Since the Zariski-closure X = t̃G̃◦(K) of X := t̃G̃◦(K) ∩
⋃
x∈S Frobx(G) is

irreducible and contained in the union of X ∩O(K) and X rO(K) ⊂ (t̃G̃◦ r O)(K), we conclude that

t̃G̃◦ equals the Zariski-closure of X ∩O(K) which consists of semi-simple elements only.

Since G̃ is reductive, the semi-simple conjugacy class Frobx(G) is Zariski-closed in G̃ for every x ∈ S

by Theorem 8.9(b). Therefore, Frobssx (G, t̃T̃ ◦) = t̃T̃ ◦ ∩ Frobx(G) and Lemma 9.9(b) implies that t̃T̃ ◦ is

the Zariski-closure of C̃ := t̃T̃ ◦ ∩
⋃
x∈S Frobx(G) =

⋃
x∈S Frob

ss
x (G, t̃T̃ ◦). We now lift the situation to

G = Gr(f∗F/V, u). Let t := (α|T )−1(t̃) ∈ T (K) and view it as an element of Gr(F/U, u) by Lemma 10.2.
Since F is weakly pink with respect to f , T is also a maximal quasi-torus in Gr(F/U, u). By Lemma 9.9(b)
and Proposition 6.7 the theorem is now a consequence of the following

Claim. The set C :=
⋃
x∈S Frob

ss
x (F , tT ◦) is Zariski-dense in tT ◦.

To prove the claim, let x ∈ S be arbitrary and pick a g ∈ Frobx(f
∗F) ∩ tG◦(K). Write g = gs · gu for

the multiplicative Jordan decomposition of g, where gs, gu ∈ G are the semi-simple and unipotent parts
of g, respectively. Since gs is semi-simple, Theorem 8.10 shows that gs lies in a maximal quasi-torus
of G and can be conjugate by an element h ∈ G◦(K) such that h−1gsh lies in T ∩ tG◦ = tT ◦. Then
h−1gh is also an element of Frobx(f

∗F)(K), and its multiplicative Jordan decomposition is h−1gh =
(h−1gsh) · (h−1guh), where h

−1gsh, h
−1guh ∈ Gr(f∗F/V, u) are the semi-simple and unipotent parts of

h−1gh, respectively. So we may assume without loss of generality that gs ∈ tT ◦(K). Since gs is also the
semi-simple part of g in the larger group G1 := Gr(F/U, u) (see [Bor91, I.4.4 Theorem]) which is reductive,
and Frobx(f

∗F) ⊂ Frobx(F) by definition, we get that gs ∈ Frobssx (F , tT ◦) using Lemma 9.9(a) and that

Frobssx (F , tT ◦) = Frobx(F)∩tT ◦ = G1{gs}∩tT ◦. Therefore, also G1Frobssx (F , tT ◦)∩tT ◦ = Frobssx (F , tT ◦).
Since by [Bor91, I.4.4 Theorem] the homomorphism α : Gr(f∗F/V, u) → Gr(G/V, u) preserves Jor-

dan decompositions we get that α(g) = α(gs) · α(gu) is the multiplicative Jordan decomposition of α(g),
where α(gs), α(gu) ∈ Gr(G/V, u) are the semi-simple and unipotent parts of α(g), respectively. More-
over, as α(g) ∈ Frobx(G) by Lemma 3.3 and Frobx(G) is semi-simple by our assumption on S we get

α(gs) = α(g) ∈ Frobx(G). Therefore, Frobx(G) = G̃{α(gs)} in terms of Definition 9.6, and this means that
G̃α(Frobssx (F , tT ◦)) contains Frobx(G). Therefore, also G̃α(Frob

ss
x (F , tT ◦))∩ t̃T̃ ◦ contains Frobx(G)∩ t̃T̃

◦ =

Frobssx (G, t̃T̃ ◦), and hence G̃α(C)∩t̃T̃ ◦ =
⋃
x∈S

G̃α(Frobssx (F , tT ◦))∩t̃T̃ ◦ contains
⋃
x∈S Frob

ss
x (G, t̃T̃ ◦) = C̃.

Since C̃ is Zariski-dense in t̃T̃ ◦, also G̃α(C)∩t̃T̃ ◦ is Zariski-dense in t̃T̃ ◦, and by Proposition 9.8 we conclude
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that GC ∩ tT ◦ is Zariski-dense in tT ◦. Finally GC ∩ tT ◦ ⊂ G1C ∩ tT ◦ =
⋃
x∈S

G1Frobssx (F , tT ◦)∩ tT ◦ = C.

So C = GC ∩ tT ◦ is Zariski-dense in tT ◦ as claimed. �

11. The Weakly Pink Conjecture for Weakly Firm F -Isocrystals

In this section we will show that Chebotarëv density is equivalent to the weakly pink property for the
locally weakly firm F -isocrystals from Definition 1.9. The following claim provides examples of locally
firm and locally weakly firm F -isocrystals.

Proposition 11.1. Let F be a convergent F -isocrystal on U . Consider the following list of properties:

(a) the rank of F is two and F is not isoclinic.
(b) each slope of the generic Newton polygon of F has multiplicity one,
(c) each isoclinic component of the generic slope filtration of F has an abelian monodromy group,
(d) the convergent F -isocrystal F is locally firm.
(e) the convergent F -isocrystal F is locally weakly firm.

Then (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e).

Proof. If F is not isoclinic, then every isoclinic component of the generic slope filtration of F has rank
strictly less than the rank of F . Therefore, if the rank of F is two then the former must have rank one.
So (a) implies (b). If (b) holds let V ⊂ U be a dense open subset over which the Newton polygon of F
is constant. By [Kat79, Corollary 2.6.2] the restriction of F to V has a slope filtration whose factors are
isoclinic of rank one. Thus the monodromy group of each factor is a closed subgroup of the multiplicative
group Gm,Ke. In particular it is abelian, so (c) holds. Now assume that (c) is true for F . Let V ⊂ U
be the dense open subset over which the Newton polygon of F is constant and let Fi be the isoclinic
components of the slope filtration of F on V . Then F|ssV is an object of 〈〈F1,F2, . . . 〉〉, so Gr(F|ssV /V, u)
is the quotient of a subgroup of the product of the Gr(Fi/V, u). The latter are abelian, so the same holds
for their product, and hence for their subgroups, the quotients of the latter, and so for Gr(F|ssV /V, u), too.
So (d) holds. We already explained in Definition 1.9 why (d) implies (e). �

Proposition 11.2. The sub-categories consisting of convergent F -isocrystals which are successive exten-
sions of isoclinic convergent F -isocrystals on U is a full Tannakian sub-categories of F -IsocK(U).

Proof. We will call an F -isocrystal which is a successive extension of isoclinic convergent F -isocrystals
on U isofiltered. Obviously the trivial F -isocrystal is isofiltered, so we need to check that the category of
isofiltered convergent F -isocrystals on U is closed under taking directs sums, tensor products, duals, and
subobjects. Let F and G be two isofiltered F -isocrystals on U , and let

F−n ⊂ F−n+1 ⊂ · · · ⊂ Fn and G−n ⊂ G−n+1 ⊂ · · · ⊂ Gn

be filtrations on F and G, respectively, such that the subquotients Fi/Fi−1 and Gi/Gi−1 are isoclinic of
slopes of valuation −i (assuming that the valuation is suitably normalized to take only integer values).
Note that the definitions

(F ⊕ G)i = Fi ⊕ Gi and (F ⊗ G)i =
∑

j+k≤i

Fj ⊗ Gk

furnish filtrations

(F ⊕ G)−n ⊂ (F ⊕ G)−n+1 ⊂ · · · ⊂ (F ⊕ G)n and (F ⊗ G)−2n ⊂ (F ⊗ G)−2n+1 ⊂ · · · ⊂ (F ⊗ G)2n

on F⊕G and F⊗G, respectively, such that the subquotients (F⊕G)i/(F⊕G)i−1 and (F⊗G)i/(F⊗G)i−1

are quotients of

Fi/Fi−1 ⊕ Gi/Gi−1 and
⊕

j+k=i

Fj/Fj−1 ⊗ Gk/Gk−1,

respectively. Any quotient of these is isoclinic. We get that F ⊕G and F ⊗G are isofiltered. The dual F∨

has a filtration:
F∨
n ⊂ F

∨
n−1 ⊂ · · · ⊂ F

∨
−n

such that F∨
i /F

∨
i+1 is isomorphic to the dual of Fi+1/Fi, and in particular is isoclinic, too. Thus F∨ is

isofiltered, too. Finally let H ⊂ F be a sub F -isocrystal. Then

F−n ∩H ⊂ F−n+1 ∩H ⊂ · · · ⊂ Fn ∩H
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is a filtration on H such that Fi ∩ H/Fi−1 ∩ H is a subquotient of Fi/Fi−1. In particular, it is likewise
isoclinic. Therefore H is isofiltered, too. �

Proposition 11.3. The sub-categories consisting of firm, locally firm, weakly firm, and locally weakly firm
convergent F -isocrystals on U are full Tannakian sub-categories of F -IsocK(U).

Proof. Obviously the trivial F -isocrystal is firm, so we need to check that the categories of (locally) firm
convergent F -isocrystals on U are closed under taking direct sums, tensor products, duals, and subobjects.
Since these operations commute with shrinking U , we only need to treat the firm case. Let F and G be
two firm convergent F -isocrystals on U , and let H ∈ 〈〈F ,G〉〉. By Proposition 11.2 above H is isofiltered.
Moreover Hss ∈ 〈〈Fss,Gss〉〉, so Gr(Hss, u) is a quotient of a fiber product of Gr(Fss, u) and Gr(Gss, u)
by Proposition 3.6(c). Since the fiber products and quotients of abelian groups are abelian, we get that
Gr(Hss, u) is also abelian, and hence H is firm, too.

The proof for weakly firm and locally weakly firm F -isocrystals is similar. By shrinking U , we only
need to treat the weakly firm case. Let F and G be two weakly firm convergent F -isocrystals on U , and
let H ∈ 〈〈F ,G〉〉. By Proposition 11.2 above H is isofiltered. Moreover Gr(H, u) is a quotient of a fiber
product of Gr(F , u) and Gr(G, u) by Proposition 3.6(c), so we only need to show that the category of
linear algebraic groups whose maximal quasi-torus is abelian is closed under quotients and fiber products.

The latter can be proven as follows. If F is a linear algebraic group and G is a quotient of F by a closed
normal subgroup, and T ⊂ F is a maximal quasi-torus then its image T ′ in G is a maximal quasi-torus
in G by Corollary 8.11. If T is abelian, then so its quotient T ′, and hence the maximal quasi-torus of
G is abelian. Now the maximal quasi-torus of a fiber product H of two linear algebraic groups F and
G is isomorphic to a fiber product of the maximal quasi-tori of F and G by Remark 8.12. If the latter
are abelian, so is this fiber product, so in other words the maximal quasi-torus of the fiber product H is
abelian, too. �

Definition 11.4. Let F be a convergent F -isocrystal on U and let f : V →֒ U be a non-empty open sub-
curve. We say that F is almost weakly pink (with respect to the inclusion f : V →֒ U) if every maximal
torus of the monodromy group Gr(f∗F/V, u) of the crystal on the shrunken curve is a maximal torus in
the monodromy group Gr(F/U, u) of the crystal, too.

Theorem 11.5. Let F be a semi-simple convergent F -isocrystal on U and let f : V →֒ U be a non-empty
open sub-curve. Assume that

⋃
x∈|V | Frobx(F) ⊂ Gr(F/U, u) is Zariski dense. (This is a weak form of

the Chebotarëv density Conjecture 1.2.) Then F is almost weakly pink with respect to f : V →֒ U .

Remark. We believe that the conclusion of the theorem does not imply that F is weakly pink; compare
Warning 10.6, but see Theorem 11.6 below.

Proof. Let G = Gr(F/U, u)(K) be the K-valued points of the monodromy group of F and let H :=
Gr(f∗F/V, u)(K) ⊂ G be the K-valued points of the monodromy group of f∗F on the shrunken curve.
We view both groups as linear algebraic groups over K. Let F =

⋃
x∈|V | Frobx(f

∗F) ⊂ H be the union

of the Frobenius conjugacy classes (conjugacy under H), and let F ss = {gs : g ∈ F} ⊂ H be the set of the
semi-simple parts gs of the elements g of F . For a subset X of G let GX be the union of the conjugacy
classes under G of the elements of X . Then GF =

⋃
x∈|V | Frobx(F) ⊂ G is the union of the Frobenius

conjugacy classes (conjugacy under G), and G(F ss) = (GF )ss := {gs : g ∈ GF} ⊂ G. By our assumption
GF is dense in G. By Corollary 9.11 we get that (GF )ss is Zariski-dense in G, too. Let T ⊂ H be a
maximal quasi-torus. Since every element of F ss is conjugate to an element of T by Theorem 8.9(a),(b),
we get that GT is also Zariski-dense in G, and hence that GT ∩G◦ is Zariski-dense in G◦.

At this point the proof is now purely group-theoretical: We consider conjugation under G◦ and we write
G◦

T , respectively G◦

T ◦ for the union of the conjugacy classes under G◦ of the elements of T , respectively of
T ◦. Then T/T ◦ = H/H◦ surjects onto G/G◦ by Theorem 8.9(a) and Proposition 10.5(c). Thus GT = G◦

T ,
because every element g ∈ G can be written as g = g0h with g0 ∈ G◦ and h ∈ T , and so gTg−1 = g0Tg

−1
0 .

Therefore, G
◦

T ∩ G◦ is Zariski-dense in G◦. We observe that G
◦

T ∩ G◦ = G◦

(T ∩ G◦). Now let A ⊂ G◦

be a maximal torus in G◦ containing T ◦. Recall that there is a finite group Γ acting on A such that any
two elements of A in the same conjugacy class under the action of G◦ actually lie in the same orbit under
the action of Γ by Steinberg’s result [Ste74, § III.3.4, Corollary 2], see also Remark 9.4(c). If T ◦ were a
proper closed subscheme of A then the same would hold for the union of its images under the action of Γ,
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because the latter is finite and A is irreducible. Therefore, G
◦

(T ∩G◦)∩A is a proper closed subscheme of

A. By Lemma 9.9(b) this contradicts that G
◦

(T ∩ G◦) is Zariski-dense in G◦. We conclude that T ◦ = A
is a maximal torus in G◦. �

Our main result of this section is the following equivalence:

Theorem 11.6. Let F be a semi-simple convergent F -isocrystal on U and let f : V →֒ U be an open
sub-curve for which f∗F is locally weakly firm. Then the following properties are equivalent:

(a) F is weakly pink with respect to f ,
(b) F is almost weakly pink with respect to f ,
(c) F satisfies Conjecture 1.4,
(d) F satisfies Conjecture 1.2.

Proof. The implications (a)⇒(c), (c)⇒(d), and (d)⇒(b) were already proven in Theorem 10.4, Propo-
sition 6.7, and Theorem 11.5, respectively. Now we only need to concern ourselves with (b)⇒(a). By
assumption G = f∗F is the successive extension of isoclinic convergent F -isocrystals Gi on V and the
maximal quasi-torus of the monodromy group Gr(Gss/V, u) is abelian, that is the direct product of a torus
with a finite abelian group H ; use [Bor91, III.10.6 Theorem (4)]. Let us fix the following notation. We
write

G :=Gr(F/U, u)×Ke K and

G̃ :=Gr(G/V, u)×Ke K and

G̃red :=Gr(Gss/V, u)×Ke K

for the linear algebraic groups over K obtained by base-change. Let T ⊂ G̃ be a maximal quasi-torus, and

consider T as a closed subgroup of G via the embedding G̃ →֒ G furnished by f : V →֒ U . By Theorem 8.13
we only have to show the following:

(i) the connected component T ◦ of T is a maximal torus in G◦,
(ii) the natural map T/T ◦ → G/G◦ is surjective,
(iii) the group T is commutative.

First we establish (ii). By Theorem 8.10(d) the map T/T ◦ ∼−→ G̃/G̃◦ is an isomorphism, since T is a

maximal quasi-torus in G̃. By Proposition 10.5(c) the map G̃/G̃◦
։ G/G◦ is surjective for every F -

isocrystal F on U , so (ii) holds. Claim (iii) holds, because the maximal quasi-torus in G̃red is abelian,
since G is weakly firm, and the maximal quasi-torus T maps isomorphically onto its image under the map

G̃ ։ G̃red which is a maximal quasi-torus in G̃red by Corollary 8.11. Finally, by our assumption (b) we
have condition (i). This finishes the proof of Theorem 11.6. �

Proposition 11.7. Let F be a semi-simple convergent F -isocrystal on U whose monodromy group G =
Gr(F/U, u) has semi-simple rank at most one. This means that the maximal tori in the semi-simple
quotient G/RG of G by the radical RG have dimension at most one. Then F is weakly pink with respect
to any open sub-curve f : V →֒ U as above.

Remark 11.8. Note that the monodromy group of every rank two semi-simple convergent F -isocrystal
has semi-simple rank at most one, so the proposition above applies to this case.

Proof of Proposition 11.7. We will use the set-up and notation in the proof of Theorem 11.6 and write

G := Gr(F/U, u)×KeK and G̃ := Gr(f∗F/V, u)×KeK. We use Proposition 3.9 and let S, T ∈ 〈〈F〉〉 be the
convergent F -isocrystals whose monodromy groups are Gr(S/U, u)×KeK = G/Z and Gr(T /U, u)×KeK =
G/[G◦, G◦], where Z ⊂ G◦ is the center and [G◦, G◦] is the derived group of G◦, which are both character-
istic subgroups defined over Ke. Then S has semi-simple monodromy group by [Bor91, IV.11.21 Propo-
sition] and the identity component Gr(T /U, u)◦ of the monodromy group of T is a torus, use [Bor91,
IV.14.11 Corollary and III.10.6 Theorem]. We consider the diagram

G = Gr(F/U, u)×Ke K
π

// // Gr(S ⊕ T /U, u)×Ke K =: H

G̃ = Gr(f∗F/V, u)×Ke K
π̃

// //

?�

OO

Gr(f∗(S ⊕ T )/V, u)×Ke K =: H̃
?�

OO
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We claim that it suffices to show that S is weakly pink with respect to f . Indeed, T is conservative with
respect to f by Corollary 10.12 and so S ⊕ T will be weakly pink with respect to f by Proposition 10.7.

Let T̃ ⊂ G̃ be a maximal quasi-torus and let T be the image of T̃ in G. Then the images π̃(T̃ ) ⊂ H̃ and

π(T ) ⊂ H of T̃ are maximal quasi-tori by Corollary 8.11 and by the property that S ⊕ T is weakly pink.
Let C ⊂ G be the kernel of π, which is a finite group contained in the center of G◦ by Proposition 3.9. Let
B ⊂ H◦ be a Borel subgroup with π(T ◦) = π(T )◦ ⊂ B which is normalized by the maximal quasi-torus
π(T ) ⊂ H , and let B ⊂ G◦ be a Borel subgroup with B = π(B); use [Bor91, IV.11.14 Proposition].
Since C ⊂ B by [Bor91, IV.11.11 Corollary] we must have B = π−1(B) and hence T ◦ ⊂ B. We now use
Theorem 8.10(e) to show that T ⊂ G is a maximal quasi-torus. Firstly, every t ∈ T normalizes B, because
tBt−1 ⊂ π−1

(
π(tBt−1)

)
= π−1

(
π(t) ·B · π(t−1)

)
= π−1(B) = B. Secondly, T ։ π(T ) ։ H/H◦ ∼= G/G◦,

because π(T ) is a maximal quasi-torus in H and the kernel of π is contained in G◦. And finally, T ◦ surjects
onto the maximal torus π(T )◦ in H◦. On the other hand T ◦ is contained in a maximal torus T ◦

1 of G◦

which also surjects onto π(T )◦. Since the kernel of π is finite, the tori T ◦ and T ◦
1 both have the same

dimension as π(T )◦. So they coincide, and it follows from Theorem 8.10(e) that T ⊂ G is a maximal
quasi-torus. Thus F is weakly pink.

We now prove that S is weakly pink, and to this end, we replace F by S. Then F is still semi-simple and
locally firm with respect to f by Lemma 3.8 and Proposition 11.3, and moreover G := Gr(F/U, u)×Ke K
is semi-simple of rank at most one. If this rank is zero, then {1} is the maximal torus in G and G◦ is
a unipotent group by [Bor91, IV.11.5 Corollary]. Being semi-simple, G◦ is trivial. By Lemma 10.2 and

Proposition 10.5(c) the map G̃ := Gr(f∗F/V, u) ×Ke K →֒ G is a closed immersion which is surjective

on G̃/G̃◦
։ G/G◦ = G. This implies that G̃ ∼−→ G is an isomorphism, and F is weakly pink (and even

conservative).
If G has semi-simple rank 1, then the maximal tori in G are one-dimensional. If F were not weakly

pink, then T̃ ◦ = {1} would be the maximal torus in G̃◦. Then G̃◦ is actually a unipotent group by
[Bor91, IV.11.5 Corollary]. Therefore, by [Hum75, 17.5 Theorem] there is a filtration W• on the Ke-

linear space W := ωu(F) left invariant by G̃◦ such that G̃◦ acts trivially on the successive quotients. Let

(0) =: H̃0 ( H̃1 ⊂ f∗F be the convergent F -sub-isocrystal on V corresponding to the fixed vectors of G̃◦

on W by Proposition A.18. Iterating this we obtain a filtration (0) = H̃0 ⊂ H̃1 ⊂ H̃2 ⊂ · · · ⊂ f∗F of f∗F
by convergent F -sub-isocrystals on V corresponding to the filtration W• above by successively applying

Proposition A.18 to the F -isocrystals f∗F/H̃i for all i. Having finite monodromy group, all quotients

H̃i+1/H̃i are unit root by Lemma 5.1. Therefore, f∗F is also unit root. By the Katz-Grothendieck semi-
continuity theorem [Kat79, Corollary 2.3.2] we get that F itself is unit root, and hence conservative by
Corollary 10.12. This contradicts that F is not weakly pink. �

Combining Propositions 10.7, 10.11 and 11.7 we have the following immediate

Corollary 11.9. Let F be a semi-simple convergent F -isocrystal on U whose monodromy group G =
Gr(F/U, u) has semi-simple rank at most one. Let G be a direct sum of isoclinic convergent F -isocrystals
on U . Then F ⊕ G is weakly pink with respect to f , and hence Conjecture 1.4 holds for it. �

12. Maximal compact subgroups of complex linear algebraic groups

In the rest of this article we want to look at the overconvergent analog of Conjectures 1.2, 1.3, 1.4, and
prove Theorem 1.12. To this end we start with some facts about maximal compact subgroups of complex
linear algebraic groups in the present section. If G is a linear algebraic group over C, then G(C) has the
structure of a complex analytic group such that G◦(C) is the connected component of the identity in the
usual topological sense. In particular the group of connected components of the Lie group G(C) is finite.
Therefore, [Hoc65, Chapter XV, Theorem 3.1] applies to G(C), and provides the following result:

Theorem 12.1. There is a compact (and hence closed) Lie subgroup K ⊂ G(C) and a closed differentiable
sub-manifold E ⊂ G◦(C) diffeomorphic to Rn for some n ∈ N and containing the identity such that

(a) the multiplication map E×K→ G(C) is a diffeomorphism,
(b) we have x−1Ex = E for every x ∈ K,
(c) for every compact subgroup L ⊂ G(C) there is an e ∈ E such that e−1Le ⊂ K. �
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Definition 12.2. We will call a subgroup K ⊂ G(C) as in Theorem 12.1 a maximal compact subgroup. It
is easy to derive the following basic properties of these subgroups:

Remark 12.3. Recall that by Cartan’s theorem, (that is, by the original R-version of Theorem 7.1 above)
every closed subgroup of G(C) is a real Lie group and a real sub-manifold of G(C), see[Ser92, Part II,
§V.9, Corollary to Theorem 1 on page 155].

Proposition 12.4. The following hold:

(a) For every maximal compact subgroup K ⊂ G(C) the inclusion K ⊂ G(C) induces an isomorphism
K/K◦ ∼= G(C)/G(C)◦ ∼= G/G◦ of groups of connected components. In particular, K∩G(C)◦ = K◦,
and this is a maximal compact subgroup of G(C)◦.

(b) Any two maximal compact subgroups in G(C) are conjugate by an element in G◦(C).
(c) For every automorphism ϕ of the complex Lie group G(C) and every maximal compact subgroup

K in G(C) the image ϕ(K) is a maximal compact subgroup in G(C).
(d) Every compact subgroup L ⊂ G(C) is contained in a maximal compact subgroup of G(C). In

particular, a subgroup L ⊂ G(C) is compact and maximal with respect to the inclusion of subgroups
if and only if it is a maximal compact subgroup in the sense of Definition 12.2.

(e) Every element x of a compact subgroup L ⊂ G(C) is semi-simple.

Proof. (a) Let G and K be as in the claim, and let E be as in Theorem 12.1. To prove the surjectivity
of K → G(C)/G(C)◦ let g ∈ G(C) and write it as g = ec with e ∈ E and c ∈ K. Then g ∈ Ec ⊂ G(C)◦c
as desired. Since both E and K◦ are connected, so is their product, and hence the multiplication map
restricted onto E×K◦ is a diffeomorphism E×K◦ → G(C)◦, and K∩G(C)◦ = K◦. Since K◦ is a subgroup
of K, part (b) of Theorem 12.1 also holds for K◦ trivially. Now let L ⊂ G(C)◦ be a compact subgroup.
Then by Theorem 12.1(c), there is an e ∈ E such that e−1Le ⊂ K. As E is connected and contains the
identity, we have e ∈ E ⊂ G(C)◦. Since also L ⊂ G(C)◦ we get e−1Le ∈ K ∩ G(C)◦ = K◦. So K◦ is a
maximal compact subgroup of G(C)◦.

(b) Let K1,K2 ⊂ G(C) be two maximal compact subgroups and view them as real Lie groups by Re-
mark 12.3. Then there is an e ∈ E such that e−1K1e ⊂ K2 by Theorem 12.1(c), because K1 is a compact
subgroup and K2 is a maximal compact subgroup. Therefore, dim(K1) ≤ dim(K2). By reversing the roles
of K1 and K2 we get that dim(K2) ≤ dim(K1), too, and hence dim(e−1K1e) = dim(K1) = dim(K2). It
follows that the connected components are equal: e−1K◦

1e = K◦
2. By claim (a) above we get that

e−1K1e/(e
−1K1e)

◦ ∼= K1/K
◦
1
∼= G(C)/G(C)◦ ∼= K2/K

◦
2 .

So e−1K1e and K2 must be equal and (b) is proven.

(c) Let E be as in Theorem 12.1 above. Then ϕ(E) is diffeomorphic to E, so it is also a closed differentiable
sub-manifold in G(C) diffeomorphic to Rn for some n ∈ N and containing the identity. We get that the
multiplication map ϕ(E) × ϕ(K)→ ϕ(G(C)) = G(C) is a diffeomorphism. If x ∈ ϕ(K) then x = ϕ(y) for
some y ∈ K, and hence

x−1ϕ(E)x = ϕ(y)−1ϕ(E)ϕ(y) = ϕ(y−1Ey) = ϕ(E) ,

so part (b) of Theorem 12.1 holds for ϕ(K) and ϕ(E), too. If L ⊂ G(C) is any compact subgroup
then also ϕ−1(L) ⊂ G(C) is a compact subgroup. So there is an e ∈ E such that e−1ϕ−1(L)e ⊂ K
by Theorem 12.1(c). Then ϕ(e) ∈ ϕ(E) satisfies ϕ(e)−1Lϕ(e) = ϕ(e−1ϕ−1(L)e) ⊂ ϕ(K), so part (c) of
Theorem 12.1 holds for ϕ(K). This proves claim (c).

(d) Now let L ⊂ G(C) be a compact subgroup and let K be an arbitrary maximal compact subgroup of
G(C). By Theorem 12.1(c) there is an e ∈ E such that e−1Le ⊂ K. Then L ⊂ eKe−1. However, eKe−1 is a
maximal compact subgroup of G(C) by claim (c), and so claim (d) follows. To prove the second statement
let K be a maximal compact subgroup in the sense of Definition 12.2 and let L ⊂ G(C) be a compact
subgroup which contains K. Then there exists a maximal compact subgroup K′ containing L, and hence
also K. Arguing as in the proof of (b) above shows that dimK = dimK′, and hence K = K′ and K = L.
It follows that K is maximal under inclusion. Conversely if L is any compact subgroup which is maximal
under inclusion there exists a maximal compact subgroup K in the sense of Definition 12.2 containing L.
Since L is maximal under inclusion, it is equal to K.



CRYSTALLINE CHEBOTARËV DENSITY THEOREMS 57

(e) Let H ⊂ G be the Zariski closure of the group xZ generated by x. Then H is commutative and is
isomorphic to the product Hs × Hu of the closed subgroups Hs and Hu consisting of all semi-simple,
respectively unipotent elements of H ; see [Bor91, I.4.7 Theorem]. The element x lies in H(C) ∩ L, which
is a compact group, because L is compact and H ⊂ G is a closed subgroup. The image of x under
the projection homomorphism πu : H ։ Hu lies in the compact subgroup πu(H(C) ∩ L). Since Hu is a
successive extension of additive groups Ga,C and Ga,C contains no compact subgroups other than {0}, the
image πu(H(C) ∩ L) must be {0}. This shows that x ∈ Hs, and proves the claim. �

Proposition 12.5. Let G be a (not necessarily connected) reductive linear algebraic group over C and let
K ⊂ G(C) be a maximal compact subgroup. Then K is Zariski dense in G. Moreover, G has in a unique
way the structure of an algebraic group over R such that K = G(R).

Remark. It is important to note that we need to assume that G is reductive. The claim is not true for
G = Gna , for example, where the maximal compact subgroup is just the identity.

Proof of Proposition 12.5. By [Ser93, § 5.2 and Théorème 1] the R-linear algebraic envelope GR := KR-alg

of K, see Definition 4.1, is a linear algebraic group satisfying GR(R) = K. By [Ser93, Beginning of § 5.3
and Théorème 4 and Remarque] it satisfies GR ×R C = G, and is thus the desired unique real form. If
H ⊂ GR is the Zariski closure of K in GR then the universal property of GR implies that H = GR, see
[Ser93, § 4.3 and Exemple b]. So K is Zariski-dense in GR and G. �

Example 12.6. The group G = Gnm,C = SpecC[z±1
ν : ν = 1, . . . , n] is commutative, and hence has a

unique maximal compact subgroup K by Proposition 12.4(a),(b). A real structure on G is given by GR :=
SpecC[aν , bν : ν = 1, . . . , n]/(a2ν+b

2
ν−1) with isomorphism given by aν = 1

2 (zν+z
−1
ν ) and bν = 1

2i (zν−z
−1
ν ),

as well as zν = aν + ibν and z−1
ν = aν − ibν. Clearly GR(R) = (S1)n is compact, so by Proposition 12.4(d)

it is contained in the maximal compact subgroup K ⊂ G(C). Under the map t 7→
(
log |zν(ϕ(t))|

)
ν=1...n

the
quotient Lie group G(C)/GR(R) is isomorphic to (Rn,+), whose only compact subgroup is the identity.
Since the image of K under the continuous quotient map G(C) → G(C)/GR(R) is compact, it is the
identity. Therefore, GR(R) = K and hence GR(R) is the maximal compact subgroup in G and GR is the
unique associated compact real form of G from Proposition 12.5.

Proposition 12.7. Let G ⊂ GLn be a closed subgroup over C and let K ⊂ G(C) be a maximal com-
pact subgroup. Let z ∈ G(C) be a semi-simple element such that every eigenvalue of z on the standard
representation Cn of GLn has complex norm 1. Then z is conjugate to an element of K under G◦(C).

Proof. It will be enough to find a compact subgroup C ⊂ GLn(C) which contains z. In this case the
subgroup C ∩ G(C) ⊂ G(C), being the intersection of a compact and a closed subgroup, is compact, so
there is an x ∈ G◦(C) such that x−1(C ∩ G(C))x ⊂ K by Theorem 12.1(c), and hence x−1zx ∈ K, too.
Since z is semi-simple, the standard representation Cn of GLn has a basis B in which the matrix of z is
diagonal. Let C ⊂ GLn(C) be the subgroup of all elements which in the basis B are diagonal such that
all diagonal entries have norm 1. Then C is isomorphic to (S1)n as a Lie group, so C is compact, and it
clearly contains z. �

We will also need the following lemma due to Deligne:

Lemma 12.8. Let G be a linear algebraic group over C, let K ⊂ G(C) be a maximal compact subgroup,
and let x, y ∈ K be two elements conjugate under G(C), respectively under G◦(C). Then they are already
conjugate under K, respectively under K◦.

Proof. Deligne’s proof in [Del80, Lemma 2.2.2] lacks references, and is only really formulated in the
connected semi-simple case, so here is a short proof using the results from [Hoc65]. Let E be as in Theorem
12.1 above. Let a ∈ G(C) be such that axa−1 = y. Then we may write a uniquely as a = ec, where e ∈ E
and c ∈ K. If a ∈ G◦(C) then E ⊂ G◦(C) implies that c ∈ K∩G◦(C) = K◦; use Proposition 12.4(a). Then
e(cxc−1)e−1 = y. Since c ∈ K, the element z = cxc−1 is in K, so it will be enough to show that z = y.
Note that eze−1 = y implies

ezy−1 = yey−1.

By Theorem 12.1(b) we have yey−1 ∈ E. Since y, z ∈ K we have zy−1 ∈ K, therefore yey−1 = e and
zy−1 = 1 by Theorem 12.1(a). �
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We next combine the above with the theory of maximal quasi-tori from Section 8.

Definition 12.9. A linear algebraic group T over C is a quasi-torus if its connected component T ◦ is
a torus, i.e. T ◦ is isomorphic to Gnm,C for some n. A real Lie group T is a compact quasi-torus if it is

compact and T◦ is a compact real torus, i.e. T◦ is isomorphic to (S1)n for some natural number n. (Here
S1 = {z ∈ C : |z| = 1} as usual.)

Definition 12.10. A subgroup T ⊂ G(C) is a maximal compact quasi-torus in G(C) if there is an
(algebraic) maximal quasi-torus T ⊂ G in the sense of Definition 8.6, such that T is a maximal compact
subgroup in T (C). By Example 12.6 every such T is a compact quasi-torus, so the terminology is at least
partially justified.

Proposition 12.11. The following holds:

(a) any two maximal compact quasi-tori in G(C) are conjugate under G◦(C),
(b) every subgroup in G(C) conjugate to a maximal compact quasi-torus under G(C) is a maximal

compact quasi-torus,
(c) every maximal compact subgroup K ⊂ G(C) contains a maximal compact quasi-torus T,
(d) for every K and T as in (c) the following holds: every x ∈ K is conjugate under K◦ to an element

of T.

Proof. (a) Let T1,T2 ⊂ G(C) be two maximal compact quasi-tori. Let T1, T2 ⊂ G be two maximal
(algebraic) quasi-tori in G such that T1,T2 is a maximal compact subgroup in T1(C), T2(C), respectively.
Then there is an a ∈ G◦(C) such that a−1T1a = T2 by Theorem 8.10(b). Since the map x 7→ a−1xa is an
isomorphism from T1 onto T2, the image a−1T1a of T1 under this map is a maximal compact subgroup
in T2. So a−1T1a is conjugate to T2 under an element of T ◦

2 (C) by Proposition 12.4(b), and hence T1 is
conjugate to T2 by an element of G◦(C).

(b) Let T ⊂ G(C) be a maximal compact quasi-torus and let a ∈ G(C) be arbitrary. Let T ⊂ G be a
maximal quasi-torus in G such that T is a maximal compact subgroup in T (C). Since the map x 7→ a−1xa
is an isomorphism from T onto a−1Ta, the image a−1Ta of T under this map is a maximal compact
subgroup in the algebraic maximal quasi-torus a−1Ta.

(c) Let T ⊂ G(C) be again a maximal compact quasi-torus and let K ⊂ G(C) be a maximal compact
subgroup. Note that T exists by Theorems 8.10(a) and 12.1. By Theorem 12.1(c) there is an x ∈ G(C)◦

such that x−1Tx ⊂ K. By claim (b) the group x−1Tx is a maximal compact quasi-torus.

(d) Finally let K,T and x ∈ K be as in claim (d). Then x is semi-simple by Proposition 12.4(e). Let T ⊂ G
be an algebraic maximal quasi-torus in G such that T is a maximal compact subgroup in T (C). Then there
is an a ∈ G◦(C) such that a−1xa ⊂ T (C) by Theorem 8.10. Since L = a−1Ka∩T (C) is the intersection of
a compact and a closed subgroup, it is a compact subgroup in T (C). Therefore, there is a b ∈ T ◦(C) such
that b−1Lb ⊂ T by Theorem 12.1(c). Then (ab)−1xab = b−1a−1xab ∈ b−1Lb ⊂ T. Claim (d) now follows
from Deligne’s Lemma 12.8 applied to the two elements x ∈ K and (ab)−1xab ∈ T ⊂ K. �

Next let us prove the analog of Proposition 9.2 for maximal compact quasi-tori. We consider the
following situation: Let G ⊂ GLn be a closed algebraic subgroup over C, let K ⊂ G(C) be a maximal
compact subgroup, and let T ⊂ G(C) be a maximal compact quasi-torus contained in K, such that T is
a maximal compact subgroup of a maximal quasi-torus T of G. Let h ∈ T and recall that we defined
T h := {g ∈ T ◦ : gh = hg} in Notation 9.1. Set Th = {g ∈ T◦ : gh = hg} = T h(C) ∩ T◦.

Lemma 12.12. The group Th is a maximal compact subgroup in T h. In particular, it is a compact
quasi-torus.

Proof. Since Th = T h∩T◦ is the intersection of a closed algebraic subgroup with a compact Lie group, it is
a compact subgroup. Let S be a maximal compact subgroup of T h which contains Th. Then S is contained
in a maximal compact subgroup of T ◦. Since T ◦ is abelian, it has a unique maximal compact subgroup
by Proposition 12.4(b), which is T◦ = T ∩ T ◦ by Proposition 12.4(a). We get that S ⊂ T h ∩ T◦ = Th, so
S = Th, and hence the latter is a maximal compact subgroup in T h. �

Let Th◦ denote the connected component of the identity of Th, as usual.

Proposition 12.13. The following hold:



CRYSTALLINE CHEBOTARËV DENSITY THEOREMS 59

(a) every element of hT◦ is conjugate under T◦ to an element of hTh◦,
(b) there is a positive integer M such that the intersection of hTh◦ with any G(C)-conjugacy class has

at most M elements.

Before we start the proof of this proposition, we will need a lemma. Every torus T over C is abelian,
so it has a unique maximal compact subgroup by Proposition 12.4(b), which we denote by c(T ).

Lemma 12.14. Let P,Q be two tori over C. Then the following holds:

(a) we have c(P ×C Q) = c(P )× c(Q),
(b) every surjective homomorphism ϕ : P → Q maps c(P ) onto c(Q).

Proof. By Tychonoff’s theorem c(P )×c(Q) is a compact subgroup of P×CQ. Therefore, c(P×CQ) contains
c(P )× c(Q). On the other hand the image of c(P ×C Q) with respect to the projection P ×C Q→ P is a
compact subgroup of P , so it lies in c(P ). Similarly the image of c(P ×CQ) with respect to the projection
P ×C Q→ Q lies in c(Q). Therefore, c(P ×C Q) lies in c(P )× c(Q), so claim (a) holds.

Now we are going to prove claim (b). First assume that ϕ is an isogeny, that is it has finite kernel.
Recall that the maximal compact subgroup of a torus R is a real torus whose real dimension is the same
as the dimension of R by Example 12.6. Since ϕ induces an isomorphism on tangent spaces we get that
ϕ(c(P )) is a compact Lie group whose dimension is the same as the dimension of c(Q), which contains it.
Since both groups are connected, they are equal.

Next assume that P = R × Q and ϕ is the projection R × Q → Q to the second factor. Then
c(P ) = c(R) × C(Q) by part (a), so claim (b) holds in this case, too. Finally let ϕ be arbitrary. The
connected component of the kernel of ϕ is a torus R. Since over the algebraically closed field C any
extension of tori splits, we have P = R×C S for S := P/R. Then ϕ : P = R×C S → Q is the composition
of the projection R ×C S → S followed by the isogeny S → Q. By the above the claim holds for the
composition of a projection and an isogeny, so it holds for ϕ, too. �

Proof of Proposition 12.13. Let T ⊂ G be maximal quasi-torus such that T is a maximal compact subgroup
in T (C). Let ϕ : T ◦ → T ◦ be the map ϕ(t) = h−1tht−1. As we saw in Notation 9.1 this map is a group
homomorphism. The restriction of this homomorphism maps T◦ into itself, because ϕ(T◦) is contained in
the maximal compact subgroup T◦. We denote the resulting homomorphism T◦ → T◦ by ϕ as well. In
order to prove (a) it will be sufficient to show that for every hx ∈ hT◦ there are elements t0 ∈ Th◦ and
t ∈ T◦ with

hx = ht0ϕ(t) = hϕ(t)t0 = hh−1tht−1t0 = tht−1t0 = t(ht0)t
−1.

So it will be sufficient to show that the map Th◦ × T◦ → T◦ given by (t0, t) 7→ t0ϕ(t) is surjective.
Let ψ : T h◦×T ◦ → T ◦ be the homomorphism defined similarly, i.e. given by the formula (t0, t) 7→ toϕ(t).

By Proposition 9.2(a) we know that ψ is surjective. By Lemma 12.12 and Lemma 12.14(a) the group
Th◦ × T◦ is a maximal compact subgroup of T h◦ × T ◦. Therefore, claim (a) holds by Lemma 12.14(b).
Claim (b) is an immediate consequence of Proposition 9.3. �

Lemma 12.14 also implies the following

Corollary 12.15. Let ϕ : G։ G̃ be an epimorphism of linear algebraic groups over C and let T ⊂ G be
a maximal quasi-torus and T ⊂ T (C) ⊂ G(C) a maximal compact quasi-torus. Then ϕ(T) is a maximal

compact quasi-torus in ϕ(T ) and G̃.

Proof. By Corollary 8.11 the image ϕ(T ) is a maximal quasi-torus in G̃. Since ϕ(T) ⊂ ϕ(T ) is compact, it

is contained in a maximal compact subgroup T̃ of ϕ(T ). We must show that ϕ(T) = T̃. In the connected

component of unity we have ϕ(T◦) = ϕ(c(T ◦)) = c(ϕ(T ◦)) = T̃◦ by Lemma 12.14(b). The claim now

follows from the surjectivity T/T◦ = T/T ◦ = G/G◦
։ G̃/G̃◦ = T̃/T̃◦ for which we use Proposition 12.4(a)

and Theorem 8.10(d). �

13. Chebotarëv for Overconvergent F -Isocrystals

Finally in this section we shall prove Theorem 1.12 about Chebotarëv density for overconvergent F -

isocrystals. For every field K and curve U as above let F -Isoc†K(U) denote the K-linear rigid tensor

category of K-linear overconvergent F -isocrystals on U . There is a forgetful functor fU : F -Isoc†K(U) →
F -IsocK(U) which is fully faithful by a fundamental theorem of Kedlaya [Ked04, Theorem 1.1]. Fix a
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point u ∈ U(Fqe). Then the composition of fU and the fiber functor ωu on F -IsocK(U) corresponding to

u makes F -Isoc†K(U) a Tannakian category. By abuse of notation we denote ωu ◦ fU again by ωu. For

every object F of F -Isoc†K(U) let 〈〈F〉〉 be the Tannakian sub-category of F -Isoc†K(U) generated by F ,

see Definition A.3, and let Gr†(F/U, u) or Gr†(F , u) denote the automorphism group of the fiber functor
ωu : 〈〈F〉〉 → Ke-vector spaces. The category 〈〈F〉〉 is tensor equivalent to the Ke-rational representations of

aKe/K-groupoidGr
†(F/U, u), see Definition A.5 and Theorem A.11, and Gr†(F , u) = Gr

†(F/U, u)∆ is its
kernel group. It is a smooth linear algebraic group over Ke by Proposition A.13. With every closed point
x ∈ U one can associate a (stable) Frobenius conjugacy class Frob†x(F) ⊂ Gr†(F , u) in the same way as for

Gr(F , u); see Definition 3.1. Note that the functor fU induces a homomorphism Gr(fU (F), u)→ Gr†(F , u)
which is not an isomorphism in general.

Lemma 13.1. The natural morphism Gr(fU (F), u) → Gr†(F , u) always is a closed immersion and in-

duces an epimorphism Gr(fU (F), u)/Gr(fU (F), u)◦ ։ Gr†(F , u)/Gr†(F , u)◦ on the groups of connected
components.

Proof. Every object of 〈〈fU (F)〉〉 is a subquotient of an object of the form
⊕

i fU (F)
⊗mi ⊗ (fU (F)∨)⊗ni =

fU
(⊕

iF
⊗mi ⊗ (F∨)⊗ni

)
. So the first statement follows from Proposition A.14(b).

To prove the second let U be an object of 〈〈F〉〉 such that the surjective homomorphism Gr†(F , u) ։
Gr†(U , u) has kernel equal to the characteristic subgroup Gr†(F , u)◦ ⊂ Gr†(F , u); see Remark A.17 and
Corollary A.16(b). Then U has finite monodromy group and is unit-root by Lemma 5.1. Moreover, every
convergent F -isocrystal G ∈ 〈〈fU (U)〉〉 has finite monodromy, and in particular finite local monodromy at
the points in the complement of U . By Tsuzuki’s monodromy theorem [Tsu98, Theorem 7.2.3 on page 1165]

this implies that G has an overconvergent extension on U . Therefore, fU : 〈〈U〉〉 ∼−→ 〈〈fU (U)〉〉 is a tensor

equivalence of Tannakian categories and the inclusion map Gr(fU (U), u) ⊂ Gr†(U , u) is an isomorphism.

Since fU (U) is an object of 〈〈fU (F)〉〉 the corresponding homomorphism Gr(fU (F), u) ։ Gr(fU (U), u)
∼−→

Gr†(U , u) = Gr†(F , u)/Gr†(F , u)◦ is surjective by Lemma 3.3. This proves the claim. �

Using the p-adic version of Deligne’s equidistribution theorem due to Crew and Kedlaya [Ked06] and
arguments inspired by the proof of Theorem 1.8 we will now prove Theorem 1.12, that is we prove the
following

Theorem 13.2. For every semi-simple overconvergent F -isocrystal F and for every subset S ⊂ |U |

of positive upper Dirichlet density the Zariski-closure of the set
⋃
x∈S Frob

†
x(F) contains a connected

component of the group Gr†(F/U, u)×Ke K.

In other words, the overconvergent analog of Conjectures 1.4 and 1.2 hold for every semi-simple over-
convergent F -isocrystal F . This implies as in Proposition 6.7 that also the overconvergent analog of
Conjecture 1.3 hold:

Corollary 13.3. For every semi-simple overconvergent F -isocrystal F and for every subset S ⊂ |U | of

Dirichlet density one the set
⋃
x∈S Frob

†
x(F) is Zariski-dense in Gr†(F/U, u). �

We immediately have the following further

Corollary 13.4. Let S ⊂ |U | be a subset of Dirichlet density one and let F ,G be two overconvergent F -

isocrystals such that for every x ∈ S we have Tr(Frob†x(F)) = Tr(Frob†x(G)). Then the semi-simplifications
of F and G are isomorphic.

Proof. Note that Fss ⊕ Gss is also an overconvergent F -isocrystal, so by Theorem 13.2 we know that the
set
⋃
x∈S Frob

†
x(F

ss ⊕ Gss) is Zariski-dense in Gr†(Fss ⊕ Gss, u). Now we may argue exactly as we did in
the proof of Corollary 1.5. �

Remark 13.5. This corollary was proven by Nobuo Tsuzuki when F and G are ι-mixed (see Definition 13.9
below) via a simpler direct method, see [Abe18b, Proposition A.4.1], but his argument also uses the p-
adic analogue of Weil II, like ours. (Note that the proof of this claim in [Abe18a, Proposition in Section
3] is incorrect.) Note that the natural p-adic analogue of the Langlands correspondence was proven by
Tomoyuki Abe in [Abe18b], so the condition of being ι-mixed is not very restrictive. (See Remark 13.11
below for an explanation.)



CRYSTALLINE CHEBOTARËV DENSITY THEOREMS 61

We will continue by showing how Corollary 13.4 yields a

p-adic proof of Theorem 1.1. We only need to show that when Vp(A) ∼= Vp(B) then there is an isogeny
f : A→ B. As in the l-adic proof above we may assume that for every x ∈ |U | the abelian varieties A and
B have good ordinary reduction at x. For every such x let Ax and Bx denote the reductions of A and
B over x, respectively. Arguing as in the l-adic proof in Section 2 we can conclude that the L-functions
L(Ax, t) and L(Bx, t) are equal for every x ∈ |U |. By slight abuse of notation let A,B also denote the
unique abelian schemes over U whose generic fiber is A,B, respectively.

Let Zq and Qq denote the ring of Witt vectors of Fq of infinite length and its fraction field, respectively.
For every abelian scheme C over U let D†(C) denote the overconvergent (rational) crystalline Dieudonné
module of A over U (for a construction see [KT03], sections 4.3–4.8). It is a Qq-linear overconvergent
F -isocrystal equipped with the q-Frobenius which is semi-simple by [Pál15, Theorem 1.2]. Moreover by
[Pál15, Theorem 1.1] we also know the following:

Theorem 13.6. The map:

Hom(A,B)⊗Z Qq −→
α Hom(D†(A),D†(B))

induced by the functoriality of overconvergent Dieudonné modules is an isomorphism.

Note that for every abelian scheme C over U the convergent F -isocrystal underlying D†(C) is the
convergent Dieudonné module of the p-divisible group C[p∞]. In particular for every x ∈ |U | the factor

of the L-function L(U,D†(C), t) of D†(C), defined by Étesse–Le Stum (see [ES93]), at x is equal to the
L-function L(Cx, t) of the reduction of C over x. In particular D†(C) is pure of weight 1. We get that

the trace of the Frobenius elements Frob†x(D
†(A)) and Frob†x(D

†(B)) are the same for every x ∈ |U |.
Therefore, by Corollary 13.4 the overconvergent F -isocrystals D†(A) and D†(B) must be isomorphic, so
by Theorem 13.6 above the abelian varieties A and B are isogenous and the p-adic proof of Theorem 1.1
is complete. �

In order to prove Theorem 13.2 we next describe the overconvergent analog of Definition 4.9, Re-
mark 4.10 and Proposition 4.11.

Definition 13.7. Let Isoc†K(U) denote the category of K-linear overconvergent isocrystals on U . Fix a

point u ∈ U(Fqe). The pull-back with respect to u furnishes a functor from Isoc†K(U) into the category of

finite dimensionalKe-vector spaces which makes Isoc†K(U) into a Tannakian category, see [Cre92, § 2.1]. By

slight abuse of notation let ωu be the corresponding fiber functor on Isoc†K(U). Let (·)∼ : F -Isoc†K(U)→

Isoc†K(U) denote the functor furnished by forgetting the Frobenius structure. For every object F of

F -Isoc†K(U) let DGal†(F , u) denote the Tannakian fundamental group of the Tannakian sub-category

〈〈F∼〉〉 of Isoc†K(U) generated by F∼ with respect to the fiber functor ωu. Moreover for every such F let
〈〈F〉〉const and W(F , u) denote the Tannakian sub-category of constant objects of 〈〈F〉〉 and the Tannakian
fundamental group of 〈〈F〉〉const with respect to the fiber functor ωu, respectively. Then W(F , u) is
commutative by Theorem 4.8(b).

The monodromy group DGal†(F , u) was introduced by Crew [Cre92]. Next we describe its relationship

to Gr†(F , u). Let α : DGal†(F , u) → Gr†(F , u) be the homomorphism induced by the forgetful functor

(·)∼ : 〈〈F〉〉 → 〈〈F∼〉〉, and let β : Gr†(F , u) → W(F , u) be the homomorphism induced by the inclusion
〈〈F〉〉const ⊂ 〈〈F〉〉.

Proposition 13.8. If F∼ is semi-simple, then the sequence:

0 // DGal†(F , u)
α

// Gr†(F , u)
β

// W(F , u) // 0.

is exact. This is the case for example if the overconvergent F -isocrystal F is semi-simple.

Proof. This follows by the same proof as in Proposition 4.11, or alternatively like in [Pál15, Proposi-
tion 3.8]. The last statement follows from [Cre92, Corollary 4.10], which states that for a semi-simple

F the group DGal†(F , u)◦ is a semi-simple group. Since it is the monodromy group of F∼, the latter is
semi-simple by Lemma 3.8. �
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In the rest of the section we shall prove Theorem 13.2 by reducing to the case when F is ι-mixed as in
the following

Definition 13.9. Fix an isomorphism of fields ι : K → C and let | · | : C→ R≥0 be the usual archimedean
absolute value on C. We say that an overconvergent F -isocrystal F on U is (point-wise) ι-pure of weight

w, where w ∈ Z, if for every x ∈ |U | and for every eigenvalue α ∈ K of Frob†x(F) acting on ωu(F)⊗Ke,ι C

we have |ι(α)| = qw deg(x)/2. We say that an overconvergent F -isocrystal F is ι-mixed if it is a successive

extension of ι-pure overconvergent F -isocrystals. Let F -Isoc†,ιK (U) denote the the full sub-category of

F -Isoc†K(U) whose objects are ι-mixed overconvergent F -isocrystals on U .

Proposition 13.10. The category F -Isoc†,ιK (U) is a full Tannakian sub-category of F -Isoc†K(U).

Proof. The category F -Isoc†,ιK (U) contains the trivial (constant, hence overconvergent) F -isocrystal 1lU
and is closed under forming direct sums by definition. Because tensor products, duals and subquotients

of ι-pure overconvergent F -isocrystals are also ι-pure, we get that F -Isoc†,ιK (U) is also closed under tensor
products, duals and subquotients. �

Remark 13.11. We would like to clarify what we mean by the natural p-adic analogue of the Langlands
correspondence in Remark 13.5, and why such a claim would imply that a large class of overconvergent
F -isocrystals on U is ι-mixed. Let A denote the ring of adèles of k = Fq(U). Let F be an absolutely
irreducible K-linear overconvergent F -isocrystal on U of rank n, by which we mean that for every finite
field extension L of K the L-linear overconvergent F -isocrystal F ⊗K L on U we get from F by extension
of scalars from K to L is irreducible. Also assume that the determinant det(F) =

∧n
(F) of F is

a unit-root F -isocrystal with finite monodromy and let ρ be the corresponding p-adic representation

ρ : πét
1 (U, ū) → K

×

; see Proposition 5.2. Then the aforementioned p-adic Langlands correspondence of
Abe [Abe18a, Theorem 4.2.2] claims that there is a cuspidal automorphic representation Π of GLn(A)
such that the central character of Π is ρ under the identification furnished by class field theory, and
if Π = ⊗x∈|X|Πx is the factorization of Π into the tensor product of local representations then Πx is

unramified for every x ∈ |U | and its Hecke parameters are equal to the eigenvalues of Frob†x(F). Because
by [Laf02, Théorème VI.10(i)] the Ramanujan-Petersson conjecture holds for Π we get that F is ι-pure of
weight zero.

Next we will state a convenient form of the p-adic version of Deligne’s equidistribution theorem. For
the rest of the section we keep the following

Notation 13.12. We fix a ι-pure overconvergent F -isocrystal U ∈ F -Isoc†,ιK (U) on U of weight zero. We

call Garith := Gr†(U , u) and Ggeom := DGal†(U , u) its arithmetic and geometric monodromy groups, re-
spectively. Assume that the connected component (Garith)◦ ofGarith is a semi-simple group. By (the analog
of) Lemma 3.8 this implies that U is a semi-simple overconvergent F -isocrystal. Therefore, the connected
component (Ggeom)◦ of Ggeom is semi-simple by [Cre92, Corollary 4.10] and equals the derived group of the
connected component (Garith)◦ of Garith by [Pál15, Proposition 4.12]. By [Bor91, IV.14.2 Corollary] we
have (Garith)◦ = (Ggeom)◦, and it follows from Proposition 13.8 that W(U , u) is finite. It follows further
that W(U , u) is cyclic, because it is generated by the Frobenius f of a tensor generator (W, f) of 〈〈U〉〉const
by Theorem 4.8(b).

Using the embedding ι we may extend scalars and define the semi-simple algebraic groups Garith
C and

Ggeom
C over C. Let Garith(C) and Ggeom(C) denote their complex points, which we regard as complex

semi-simple Lie groups. We will denote by Karith and Kgeom maximal compact subgroups of Garith(C)
and Ggeom(C) such that Kgeom ⊂ Karith. Clearly (Kgeom)◦ ⊂ (Karith)◦. Since (Garith)◦ = (Ggeom)◦, both
(Kgeom)◦ and (Karith)◦ are maximal compact subgroups in (Garith)◦ = (Ggeom)◦ by Proposition 12.4(a).
Therefore, they are conjugate by Proposition 12.4(b), and hence have the same dimension. Since they are
also connected we get that (Karith)◦ = (Kgeom)◦, and therefore we deduce from Proposition 12.4(a) that

Karith/Kgeom ∼=
(
Karith/(Karith)◦

)/(
Kgeom/(Kgeom)◦

)

∼=
(
Garith

C /(Garith
C )◦

)/(
Ggeom

C /(Ggeom
C )◦

)

∼= Garith
C /Ggeom

C

∼= W(U , u)(C) =: Γ
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is a finite cyclic group with canonical generator being the Frobenius f from the previous paragraph. In
what follows we consider the group homomorphism

(13.1) Z −→→ Γ, m 7−→ [m] := fm.

Definition 13.13. Fix an element γ ∈ Γ ∼= Karith/Kgeom and let Karith
γ denote the inverse image of γ

in Karith. We denote the set of Karith-conjugacy classes in Karith by Karith,# and the ones which meet
Karith
γ by Karith,#

γ . We equip these sets with the quotient topology. Karith,#
γ is a union of connected

components of Karith,#, because it equals the preimage of γ under the induced map Karith,# → Γ. Let
µHaar,γ be the Kgeom-translation invariant measure on Karith

γ of total mass 1. (We may take the left or

right invariant measure as either is bi-invariant by [Bou04, Chapitre VII, § 1.3, Corollaire].) Let µ#
Haar,γ

be its push-forward onto Karith,#
γ , see Definition B.1. The main equidistribution statement will be that a

suitably normalized sum of point masses corresponding to Frobenius elements converges to the measure

µ#
Haar,γ .

Lemma 13.14. The space Karith,# is a compact topological Hausdorff space.

Proof. By [Bou95, Chapter I, § 8.3, Proposition 8] it suffices to show that the quotient map Karith →
Karith,# is open and the graph of the conjugation actionKarith×Karith → Karith×Karith, (x, g) 7→ (x, gxg−1)
is closed. The openness of the quotient map follows from [Bou95, Chapter III, § 2.4, Lemma 2], and the
graph is closed because Karith ×Karith is compact and Hausdorff. �

We will need more results on the structure of the quotient, which are due to Brumfiel by viewing Karith

as a closed, bounded affine semi-algebraic group, see [DK81, § 7, Definition 3].

Theorem 13.15 ([Bru87, Corollary 1.6]). If H is a closed, bounded affine semi-algebraic group which
acts continuously and semi-algebraically on an affine semi-algebraic space X then the quotient space X/H
exits as an affine semi-algebraic space and the quotient map X → X/H is continuous and semi-algebraic.

Remark 13.16. Theorem 13.15 applies to all real closed fields, but we will only use it for the real number
field R. It is pointed out in [Bru87, Remark 1.3] that in the latter case the quotient map X → X/H is
topological, which implies that the topology on X/H is the usual quotient topology. We conclude that
Karith,# is an affine semi-algebraic space and the quotient map Karith → Karith,# is semi-algebraic.

Definition 13.17. We consider the semi-simplification Frob†x(U)
ss of the Frobenius conjugacy class

Frob†x(U). The eigenvalues α ∈ K of Frob†x(U)
ss and of Frob†x(U) acting on ωu(U) are the same. Since

U is ι-pure of weight zero, all these eigenvalues have complex norm 1 in the action on ωu(U) ⊗Ke,ι C. So

Frob†x(U)
ss is conjugate under Garith(C)◦ to an element of Karith by Proposition 12.7. The Karith-conjugacy

class of this element is well-defined, because by Lemma 12.8 two elements of Karith which are conjugate
under Garith(C) are already conjugate under Karith. We denote this Karith-conjugacy class by θ(x). Note

that by definition of W(U , u), the image of Frob†x(U) and Frob†x(U)
ss in Γ = W(U , u)(C) is just the image

γ := [deg(x)] of deg(x) under the map (13.1). Thus the conjugacy class θ(x) is an element of Karith,#
γ .

Definition 13.18. For each integer m let Um denote the set of points in U of degree m. For every
y ∈ Karith,# let δy denote the Dirac delta of y on Karith,#. We define a measure µm on the set of
conjugacy classes Karith,# to be the discrete measure:

µm :=
1

#Um

∑

x∈Um

δθ(x).

Note that this measure is supported on Karith,#
γ where γ is equal to the image [m] of m in Γ from (13.1).

Theorem 13.19 (p-adic version of Deligne’s equidistribution theorem). For every γ ∈ Γ the measures

µm, for which [m] = γ ∈ Γ in (13.1), converge weakly to µ#
Haar,γ on Karith,#

γ as m→∞.

Proof. In the l-adic case Ulmer [Ulm04, § 9.4] attributes this theorem to Katz–Sarnak [KS99, Theo-
rem 9.7.10] and points out that this is a mild generalization of Deligne’s original result [Del80, Theo-
rem 3.5.3]. The p-adic case can be handled in the same way, based on the work of Crew, Kedlaya, Abe
and Caro [AC18, Cre98, Ked06]. �
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Finally we are ready to give the

Proof of Theorem 13.2. The proof is very similar to the proof of Theorem 1.8 at the end of Section 7.
We start with similar reduction steps. Let F be a semi-simple overconvergent F -isocrystal with simple
summands Fi. Fix an i and look at the element αi := Frob†u(detFi) := u∗F e in the (abelian) monodromy

group Gr†(detFi/U, u)(Ke) ⊂ K
×

e . We take an (rie)-th root α̃i of αi where ri is the rank of Fi, and at
the expense of replacing K by the finite extension K(α̃i) we let Ci be the constant, hence overconvergent
F -isocrystal on U induced from the F -isocrystal (K,F = α̃−1

i ) ∈ F -IsocK(SpecFq) on Fq. Set Ui :=

Fi ⊗ Ci. Then the conjugacy class Frob†u(detUi) of detUi = det(Fi ⊗ Ci) = (detFi) ⊗ C
⊗ri
i is equal

to {1} ⊂ Gr†(detUi/U, u)(Ke) ⊂ K
×

e . In particular, detUi is unit root at u. Since it has rank one,
it is unit root on the entire curve U . By Lemma 3.3 also the tensor generator Ei of 〈〈detUi〉〉const has

Frob†u(Ei) = {1} and so Gr†(Ei/U, u) is a finite group by Theorem 4.8(b) and (c). By Proposition 13.8 this
implies that the monodromy group of detUi is finite, since its geometric monodromy group is also finite
by [Cre87, 4.13 Corollary]. Moreover, Ui is irreducible, because Fi is. So Ui is ι-pure of weight zero by
Abe’s result, see Remark 13.11. Now we let U :=

⊕
i Ui and C :=

⊕
i Ci. Then F belongs to 〈〈U ⊕ C〉〉 and

by Lemma 3.3 it is enough to show the theorem for U ⊕C. So we may assume that F = U ⊕C, where U is
a semi-simple and ι-pure overconvergent F -isocrystals of weight zero and C is the direct sum of irreducible
constant F -isocrystals of varying weights.

The group DGal†(U , u)◦ is semi-simple by [Cre92, Corollary 4.10] and equals the derived group of the

connected component Gr†(U , u)◦ by [Pál15, Proposition 4.12]. Let Z1 be the center of Gr†(U , u)◦. We use
(the overconvergent analog of) Proposition 3.9 and let S, T ∈ 〈〈U〉〉 be the overconvergent F -isocrystals

whose monodromy groups are Gr†(S, u) = Gr†(U , u)/Z1 and Gr†(T , u) = Gr†(U , u)/DGal†(U , u)◦. There
is a commutative diagram:

Gr†(U ⊕ C, u) �
�

//

����

Gr†(U , u)×Ke Gr†(C, u)

����

Gr†(S ⊕ T ⊕ C, u) �
�

// Gr†(S ⊕ T , u)×Ke Gr†(C, u).

By Proposition 3.9 the vertical map on the right has finite kernel. Since the horizontal maps are injective
by Proposition 3.6(c), we get that the vertical map on the left has finite kernel, too. By Lemma 3.5 it is
enough to prove Theorem 13.2 for S ⊕ T ⊕ C. Since ι-pure overconvergent F -isocrystals of weight zero
form a full Tannakian sub-category, the first claims in the two following lemmas are clear.

Lemma 13.20. The overconvergent F -isocrystal S is ι-pure of weight zero such that Gr†(S, u)◦ is semi-
simple and has trivial center.

Proof. The group Gr†(S, u)◦ is semi-simple by [Bor91, IV.11.21 Proposition and IV.14.11 Corollary].

Let Z be its center. For an element z̄ ∈ Z(K) and a preimage z ∈ Gr†(U , u)◦(K) of z̄ the map

Gr†(U , u)◦ → Z1 ∩ [Gr†(U , u)◦,Gr†(U , u)◦], g 7→ gzg−1z−1 factors through the connected component of

Z1 ∩ [Gr†(U , u)◦,Gr†(U , u)◦] which is trivial by [Bor91, IV.14.2 Proposition]. Thus z ∈ Z1 and z̄ = 1. �

Lemma 13.21. The overconvergent F -isocrystal T is ι-pure of weight zero such that Gr†(T , u)◦ is a torus

and DGal†(T , u) is finite.

Proof. The second claim follows from the fact that the connected commutative reductive group Z◦
1 surjects

onto Gr†(T , u)◦ by [Bor91, I.1.4 Corollary, IV.14.2 Proposition, III.8.4 Corollary and III.8.5 Proposition].

The last claim follows from the fact that we divided out Gr†(U , u) by DGal†(U , u)◦ and that DGal†(U , u)◦

surjects onto DGal†(T , u)◦, because T ∈ 〈〈U〉〉. �

Let E be a tensor generator of 〈〈T 〉〉const. It is a constant F -isocrystal whose monodromy group is

Gr†(E , u) = W(T , u) = Gr†(T , u)/DGal†(T , u) by Proposition 13.8. There is a commutative diagram:

Gr†(S ⊕ T ⊕ C, u) �
�

//

����

Gr†(S, u)×Ke Gr†(T , u)×Ke Gr†(C, u)

����

Gr†(S ⊕ E ⊕ C, u) �
�

// Gr†(S, u)×Ke Gr†(E , u)×Ke Gr†(C, u).
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By Lemma 13.21 the map on the right has finite kernel. Since the horizontal maps are injective by
Proposition 3.6(c), we get that the vertical map on the left has finite kernel, too. By Lemma 3.5 it is
enough to prove Theorem 13.2 for S ⊕ E ⊕ C.

Note that E ⊕ C is the direct sum of constant ι-pure F -isocrystals of varying weights. By slight abuse
of notation writing U for S and C for E ⊕C we may assume without the loss of generality that F = U ⊕C,
where U is a semi-simple and ι-pure overconvergent F -isocrystals of weight zero such that Gr†(U , u)◦

is semi-simple with trivial center, and C is the direct sum of constant ι-pure F -isocrystals of varying
weights. In this case Gr†(F , u) is the fiber product of Gr†(U , u) and Gr†(C, u) over Gr†(〈〈U〉〉 ∩ 〈〈C〉〉, u) by
Proposition 3.6(c). Let f ∈ Gr†(C, u)(Ke) be the Frobenius of the constant F -isocrystal C. Then Gr†(C, u)
is the Zariski closure of fZ and is commutative by Theorem 4.8(b). Since Gr†(〈〈U〉〉∩〈〈C〉〉, u)◦ is a quotient

of the commutative group Gr†(C, u)◦, it is commutative. Since Gr†(〈〈U〉〉 ∩ 〈〈C〉〉, u)◦ is also a quotient

of Gr†(U , u)◦, which has no commutative quotients by [Bor91, IV.14.2 Proposition], we conclude that

Gr†(〈〈U〉〉 ∩ 〈〈C〉〉, u)◦ is trivial. So Gr†(F , u)◦ is actually the direct product of Gr†(U , u)◦ and Gr†(C, u)◦.
We now consider the base change of these groups to C via ι

G1 := Gr†(F , u)×Ke,ι C , G2 := Gr†(U , u)×Ke,ι C , G3 := Gr†(C, u)×Ke,ι C .

Let T1 ⊂ G1 be a maximal quasi-torus. It is the fiber product of two maximal quasi-tori T2 ⊂ G2 and
T3 ⊂ G3 with T ◦

1 = T ◦
2 ×C T

◦
3 by Remark 8.12. Note that actually T3 = G3, because G

◦
3 is a torus. Let T1

be a maximal compact quasi-torus in T1, see Definition 12.10 and let Tj for j = 2, 3 be the image of T1

under the projections T1 ։ Tj. Then Tj is a maximal compact quasi-torus in Tj and Gj by Corollary 12.15.

Let S ⊂ |U | be a subset of positive upper Dirichlet density δ(S) > 0. For every connected component

h1G
◦
1 of G1 we consider the subset S(h1) of those x ∈ S for which h1G

◦
1 contains a point of Frob†x(F).

Then S is the finite union of the subsets S(h1). By Lemma 3.12 at least one of them has positive upper
Dirichlet density. We replace S by this subset and then consider the connected component h1G

◦
1 of

G1 which meets Frob†x(F) for every x ∈ S. Since T1 ⊂ G1 is a maximal quasi-torus, we may assume
that h1 ∈ T1 by Theorem 8.9 and Proposition 12.4(a). For j = 2, 3 let hj ∈ Tj be the image of h1
under the projection T1 ։ Tj . Then T h3

3 := {t3 ∈ T
◦
3 : t3h3 = h3t3} = T ◦

3 using Notation 9.1, because

T3 = G3 is commutative. Therefore, T h1
1 := {t1 = (t2, t3) ∈ T ◦

1 = T ◦
2 ×C T

◦
3 : t1h1 = h1t1} = T h2

2 ×C T
◦
3

and h1T
h1
1

◦ = h2T
h2
2

◦ ×C h3T
◦
3 . Moreover, T

hj

j = T
hj

j ∩ T◦
j is a maximal compact subgroup in T

hj

j for
j = 1, 2, 3 by Lemma 12.12.

We consider the semi-simplification Frob†x(F)
ss of the Frobenius conjugacy class Frob†x(F) and similarly

for the F -isocrystal U . In order to show that h1G
◦
1 ∩

⋃
x∈S Frob

†
x(F) is Zariski-dense in h1G

◦
1, it is by

Lemma 9.9(b) and Proposition 9.7 enough to show that h1T
h1
1

◦ ∩
⋃
x∈S Frob

†
x(F)

ss is Zariski-dense in

h1T
h1
1

◦. Also note that h1T
h1
1

◦ ∩ Frob†x(F)
ss 6= ∅ for every x ∈ S by our choice of h1 and by Theorem 8.9

and Proposition 9.2(b).

As in Notation 13.12 we now consider maximal compact subgroups K̃arith
2 of G2 and K̃geom

2 of Ggeom
2 :=

DGal†(U , u)×Ke,ι C such that K̃arith
2 contains K̃geom

2 . By Theorem 12.1(c) and Proposition 12.4(c) there

is an element e ∈ Garith
2 (C)◦ such that Karith

2 := e K̃arith
2 e−1 contains T2 and is a maximal compact

subgroup of G2. Since Ggeom
2 is normal in G2 conjugation by e is an automorphism of Ggeom

2 , and hence

Kgeom
2 := e K̃geom

2 e−1 is a maximal compact subgroup of Ggeom
2 contained in Karith

2 by Proposition 12.4(c).
To lighten the notation we drop the superscript “arith” and just write K2 := Karith

2 . We let γ ∈ Γ be
the image of the element h2 ∈ T2, and we denote by K2,γ the preimage of γ in K2. It is a union of
connected components containing h2K

◦
2, where we write K◦

2 for the connected component of K2. Note
that by Lemma 12.8 two elements of K2 which are conjugate under G2(C) are already conjugate under

K2. We denote the set of conjugacy classes of K2 by K#
2 , the ones which meet K2,γ by K#

2,γ , and the

ones which meet h2K
◦
2 by (h2K

◦
2)

#. We equip these sets with the quotient topology. Then (h2K
◦
2)

# is a

connected component of K#
2,γ . We consider the following diagram

(13.2) h2K
◦
2

ψ
����

� � // K2,γ

ψ
����

h2T
h2
2

◦ ϕ
// // (h2K

◦
2)

# � � // K#
2,γ .
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In this diagram the map ψ is surjective by construction, and ϕ is surjective by Propositions 12.11(d) and
12.13(a). In particular, it follows from this and Definition 13.17 that θ(x) ∈ (h2K

◦
2)

#, and hence

(13.3) h2T
h2
2

◦ ∩ Frob†x(U)
ss = ϕ−1(θ(x)) 6= ∅ for every x ∈ S .

Lemma 13.22. (a) The continuous map ϕ between compact Hausdorff spaces is nice in the sense of
Definition B.3.

(b) There is a positive integer M such that all fibers of ϕ have cardinality at most M .

(c) For every semi-algebraic subset X ⊂ (h2T
h2
2

◦) we have dimX = dimϕ(X).

(d) Every closed semi-algebraic subset Y ⊂ (h2K
◦
2)

# with dim Y < dim(h2K
◦
2)

# has volume µ#
Haar,γ(Y ) =

0.
(e) There is a closed semi-algebraic subset Z ⊂ (h2K

◦
2)

# with dimZ < dim(h2K
◦
2)

# whose complement
is a finite disjoint union (h2K

◦
2)

#rZ =
∐n
i=1 Yi of open subsets Yi such that ϕ is trivial over Yi in

the sense that there is a finite discrete set Fi and a semi-algebraic isomorphism ϕ−1(Yi)
∼−→ Fi×Yi

compatible with the projections onto Yi.

Proof. (b) follows from Proposition 12.13(b).

(a) By Lemma 13.14 the quotient (h2K
◦
2)

# is compact. By Remark 13.16 the quotient map h2K
◦
2 →

(h2K
◦
2)

# is continuous and semi-algebraic as the restriction of K2 → K#
2 to the connected component

h2K
◦
2, and (h2K

◦
2)

# is an affine semi-algebraic space. So also ϕ is continuous and semi-algebraic as

the composition of the inclusion h2T
h2
2

◦ → h2K
◦
2 and the quotient map h2K

◦
2 → (h2K

◦
2)

#. Moreover,

h2T
h2
2

◦ is semi-algebraic and compact, hence complete by [DK81, Theorem 9.4]. Then [DK85, Chapter I,
Remark 5.5(v) and § 6, Definition 4] implies that ϕ is a finite semi-algebraic map. Therefore, [DK85, Chap-

ter II, Theorem 6.13] implies that there are semi-algebraic triangulations τ1, τ2 of h2T
h2
2

◦ and (h2K
◦
2)

#,
respectively, such that the restriction of ϕ onto any simplex of τ1 is a simplicial map to a simplex of τ2, up
to continuous semi-algebraic isomorphism. Since every finite to one simplicial map between simplices is
trivially injective, we get that each such restriction is injective. The claim now follows from Remark B.4.

(e) By Hardt’s Local-Triviality-Theorem [DK82, Theorem 6.4] for the semi-algebraic map h2T
h2
2

◦ →

(h2K
◦
2)

# there is a decomposition (h2K
◦
2)

# =
∐ñ
i=1 Ỹi into finitely many semi-algebraic subsets Yi ⊂

(h2K
◦
2)

#, such that ϕ is trivial over Ỹi in the above sense. By [DK81, Proposition 8.2(b)] there is an

n ≤ ñ with dim(h2K
◦
2)

# = dim Ỹ1 = . . . = dim Ỹn > dim Ỹi for all i > n. For i ≤ n let Yi be the open

interior of Ỹi, which is a semi-algebraic subset of (h2K
◦
2)

#. Let further Z :=
⋃
i≤n(Ỹi r Yi) ∪

⋃
i>n Ỹi.

Then dimZ < dim(h2K
◦
2)

# = dimYi for every i ≤ n by [DK81, Theorem 8.10]. Indeed, if dim(Ỹi r Yi)

was equal to dim(h2K
◦
2)

# then ỸirYi would contain a non-empty open subset by loc. cit. in contradiction

to Yi being the largest open subset of Ỹi. This proves (e).

(c) The inequality dimX ≥ dimϕ(X) follows from [DK81, Proposition 8.3]. We next consider the de-

composition (h2K
◦
2)

# =
∐ñ
i=1 Ỹi from the previous paragraph and the semi-algebraic subsets ϕ(X)∩ Ỹi of

(h2K
◦
2)

#. Then X ∩ ϕ−1(Ỹi) ⊂ ϕ−1(ϕ(X) ∩ Ỹi) ∼= Fi × (ϕ(X) ∩ Ỹi). Therefore,

dimX = max{dimX ∩ ϕ−1(Ỹi) : 1 ≤ i ≤ ñ} ≤ max{dimϕ(X) ∩ Ỹi : 1 ≤ i ≤ ñ} = dimϕ(X)

by [DK81, Proposition 8.2(b)].

(d) By (c) the semi-algebraic set ϕ−1(Y ) satisfies dimϕ−1(Y ) < dimh2T
h2
2

◦. By definition this means

that the Zariski closure ϕ−1(Y ) in h2T
h2
2

◦ is strictly contained in h2T
h2
2

◦. Let G2ϕ−1(Y ) be the union of
the G2-conjugacy classes of the elements of ϕ−1(Y ) ⊂ h2G◦

2. The preimage ψ−1(Y ) equals the intersection
of G2ϕ−1(Y ) with h2K

◦
2. If ψ

−1(Y ) was Zariski-dense in h2G
◦
2, then

G2ϕ−1(Y ) would be Zariski-dense in

h2G
◦
2, too. This would imply by Lemma 9.9(b) and Proposition 9.7 that G2ϕ−1(Y )∩h2T

h2
2

◦ is Zariski-dense

in h2T
h2
2

◦. In the notation of Proposition 9.3 we have G2ϕ−1(Y ) ∩ h2T
h2
2

◦ ⊂
⋃
w∈W,z∈Z zwϕ

−1(Y )w−1 ⊂

h2T
h2
2

◦. This is a finite union. Since h2T
h2
2

◦ is irreducible, already one component zwϕ−1(Y )w−1

must be Zariski-dense in h2T
h2
2

◦ for certain w and z. But then ϕ−1(Y ) would be Zariski-dense in

w−1z−1(h2T
h2
2

◦)w = h2T
h2
2

◦ which yields a contradiction. Therefore, ψ−1(Y ) must be contained in a
proper hyperplane H ( h2G

◦
2 and then ψ−1(Y ) ⊂ H ∩h2K◦

2 ( h2K
◦
2, the latter being a strict inclusion by

Proposition 12.5. Since H is defined by a polynomial equation in the coordinates of h2G
◦
2 and µHaar,γ is
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absolutely continuous with respect to the Lebesgue measure on the charts of the differentiable manifold

h2K
◦
2, we conclude 0 = µHaar,γ

(
ψ−1(Y )

)
= µ#

Haar,γ(Y ). �

We continue with the proof of Theorem 13.2. On the sets in Diagram (13.2) we consider various
measures: On K2,γ and h2K

◦
2 the (restriction of the) Haar measure µHaar,γ from Definition 13.13 and on

K#
2,γ and (h2K

◦
2)

# its push-forward µ#
Haar,γ . Moreover, on K#

2,γ and (h2K
◦
2)

# we consider the (restriction

of the) measures µm from Definition 13.18. By the equidistribution Theorem 13.19, when m → ∞ the

measures µm, for which [m] = γ ∈ Γ in (13.1), converge weakly to µ#
Haar,γ on K#

2,γ and on (h2K
◦
2)

#. Since
ϕ is nice by the previous lemma, we can pull back measures along ϕ, see Definition B.7. By Lemma 13.22
and Proposition B.8 the pullback measures ϕ∗µm, for which the class [m] of m in Γ equals γ, converge

weakly to the measure λ := ϕ∗µ#
Haar,γ on h2T

h2
2

◦ when m→∞.

Lemma 13.23. The pull-back measure λ := ϕ∗µ#
Haar,γ satisfies λ(h2T

h2
2

◦) < ∞ and λ(H ∩ h2T
h2
2

◦) = 0

for every proper hypersurface H ( h2T
h2
2

◦.

Proof. By Lemma 13.22(b) the cardinality of every fiber ϕ−1(y) is at most M . Therefore,

λ(h2T
h2
2

◦) :=

∫

(h2K
◦
2)

#

#ϕ−1(y) dµ#
Haar,γ(y) ≤ M · µ#

Haar,γ

(
(h2K

◦
2)

#
)

:= M · µHaar,γ(h2K
◦
2) ≤ M

by Definition 13.13 of the measure µHaar,γ .
Next let H be as in the second statement. By [DK81, § 8, Definitions 1 and 2] the dimension of

H ∩ h2T
h2
2

◦ is the dimension of its Zariski closure in h2T
h2
2

◦. Therefore, dim(H ∩ h2T
h2
2

◦) ≤ dimH <

dimh2T
h2
2

◦ = dim h2T
h2
2

◦ = dim(h2K
◦
2)

#, because h2T
h2
2

◦ is irreducible. Here the second-to-last equality

follows from [DK81, Proposition 8.6] by considering a real structure on T h2
2

◦ with Th2
2

◦ = T h2
2

◦(R) as in
Proposition 12.5. The last equality follows from Lemma 13.22(c). By [DK81, Proposition 8.3] we have

dimϕ(H ∩ h2T
h2
2

◦) ≤ dim(H ∩ h2T
h2
2

◦) < dim(h2K
◦
2)

# ,

and hence Lemma 13.22(d) implies µ#
Haar,γ

(
ϕ(H ∩ h2T

h2
2

◦)
)
= 0. Now for a point y ∈ (h2K

◦
2)

# the

cardinality of ϕ−1(y)∩H∩h2T
h2
2

◦ is zero if y /∈ ϕ(H∩h2T
h2
2

◦) and otherwise at mostM by Lemma 13.22(b).
Thus we compute

λ(H ∩ h2T
h2
2

◦) :=

∫

(h2K
◦
2)

#

#
(
ϕ−1(y) ∩H ∩ h2T

h2
2

◦
)
dµ#

Haar,γ(y) ≤ M · µ#
Haar,γ

(
ϕ(H ∩ h2T

h2
2

◦)
)
= 0

as desired. �

The pullback measure ϕ∗µm on h2T
h2
2

◦ has the following description. Recall, that for every m ∈ N we

set Um := { x ∈ U : deg x = m}. Let A ⊂ h2T
h2
2

◦ be a Borel-subset. Then by Definition B.7

ϕ∗µm(A) :=
1

#Um

∑

x∈Um

(ϕ∗δθ(x))(A) =
1

#Um

∑

x∈Um

#(A ∩ Frobx(U)
ss) .

Now let Sm := S ∩ Um. Then Lemma 3.17 gives us an infinite subset R ⊂ N such that

#Sm
#Um

≥
δ(S)

2
for every m ∈ R .

In particular, for every m ∈ R we have Sm 6= ∅, and h2T
h2
2

◦ ∩ Frob†x(U)
ss 6= ∅ for every x ∈ Sm by (13.3).

Thus the image [m] of m in Γ = W(U , u)(C) under the map (13.1) coincides with the image of h2 which
we called γ.

Consider closed immersions h2T
h2
2

◦ →֒ Cd2 and h3T
◦
3 →֒ Cd3 . It will be sufficient to prove that no

proper hyper-surface H ⊂ Cd2+d3 with H ∩ h1T
h1
1

◦ ( h1T
h1
1

◦ = h2T
h2
2

◦ ×C h3T
◦
3 ⊂ Cd2 × Cd3 contains

h1T
h1
1

◦ ∩
⋃
x∈S Frob

†
x(F)

ss. Assume the contrary and let H be such a counterexample. Let D be the

degree of H in the variables of the first factor Cd2 and for every m ∈ R set

Hm = {z ∈ Cd2 : (z, fm) ∈ H} .

Note that fm = Frob†x(C) = Frob†x(C)
ss ∈ h3T

◦
3 for every x ∈ Sm. Then Frob†x(F)

ss = Frob†x(U)
ss ×

{fdegx} implies that h2T
h2
2

◦ ∩ Frob†x(U)
ss ⊂ Hm for every x ∈ Sm. Each Hm is a hyper-surface in Cd2

of degree ≤ D such that Hm ∩ h2T
h2
2

◦ is properly contained in h2T
h2
2

◦ for all but finitely many m by
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Corollary 7.6 (applied with L = C, T = T3, G = fZ, X = G1, T
c = h3T

◦
3 ). So by shrinking R we may

assume that Hm∩h2T
h2
2

◦ is properly contained in h2T
h2
2

◦ for everym ∈ R. By considering a real structure

on T h2
2 with h2T

h2
2

◦ = h2T
h2
2

◦(R) as in Proposition 12.5, using Theorem B.10, and shrinking R further

we may even assume that there is a proper hyper-surface H ( h2T
h2
2

◦ ⊂ Cd2 of degree at most D such

that the sequence H1 ∩h2T
h2
2

◦, H2 ∩h2T
h2
2

◦, . . . , Hm ∩h2T
h2
2

◦, . . . converges to H ∩h2T
h2
2

◦ in the sense of

Definition B.9. Then H ∩ h2T
h2
2

◦ ( h2T
h2
2

◦ by Proposition 12.5 and λ(H ∩ h2T
h2
2

◦) = 0 by Lemma 13.23.

By Lemma B.12 there is a small ε > 0 such that λ
(
(H ∩ h2T

h2
2

◦)(2ε)
)
< 1

2 δ(S). By the triangle

inequality (H ∩ h2T
h2
2

◦)(2ε) contains the closure (H ∩ h2T
h2
2

◦)(ε) of (H ∩ h2T
h2
2

◦)(ε) in the metric space

h2T
h2
2

◦, and hence λ
(
(H ∩ h2T

h2
2

◦)(ε)
)
< 1

2 δ(S). Choose an mε ∈ N such that for every index m ∈ R with

m ≥ mε we have Hm ∩h2T
h2
2

◦ ⊆ (H ∩h2T
h2
2

◦)(ε). For every x ∈ Sm the intersection h2T
h2
2

◦ ∩Frob†x(U)
ss

is contained in Hm ∩ h2T
h2
2

◦ by assumption. Moreover, h2T
h2
2

◦ ∩ Frob†x(U)
ss is non-empty by (13.3). So

for every m ∈ R with m ≥ mε and for every x ∈ Sm we have #
(
(H ∩ h2T

h2
2

◦)(ε) ∩ Frobx(U)ss
)
≥ 1, and

hence

ϕ∗µm
(
(H ∩ h2T

h2
2

◦)(ε)
)

=
1

#Um

∑

x∈Um

#
(
(H ∩ h2T

h2
2

◦)(ε) ∩ Frobx(U)
ss
)
≥

#Sm
#Um

≥
δ(S)

2
.

But taking lim supm→∞ and by the weak convergence of ϕ∗µm to λ and the Portemanteau theorem [Kle14,
Theorem 13.16] we have

δ(S)

2
≤ lim sup

m→∞
ϕ∗µm

(
(H ∩ h2T

h2
2

◦)(ε)
)
≤ λ

(
(H ∩ h2T

h2
2

◦)(ε)
)
<

δ(S)

2
,

which is a contradiction. This rules out the existence of H and finishes the proof of Theorem 13.2. �

Theorem 13.2 has the following consequence for convergent F -isocrystals.

Theorem 13.24. Let F be a semi-simple convergent F -isocrystal on U . Assume that F has an over-
convergent extension whose monodromy group Gr†(F/U, e) has an abelian maximal quasi-torus. Then
Conjectures 1.2, 1.3 and 1.4 hold true for F .

Remark 13.25. Of course by the assumption in the theorem we mean that there is an overconvergent
isocrystal F† such that the convergent isocrystal underlying F† is isomorphic to F . Note that F† is
necessarily semi-simple. Indeed if G† ⊂ F† is an overconvergent sub-isocrystal, then it has a convergent
complement H ⊂ F . This H is isomorphic to the convergent isocrystal underlying the quotient F†/G†, so
by Kedlaya’s extension theorem [Ked04, Theorem 1.1] the embedding H →֒ F extends to an embedding
F†/G† →֒ F†, and hence G† has an overconvergent complement, too.

Proof of Theorem 13.24. Let Gr†(F†, u) be the monodromy group of F† and let Gr(F , u) ⊂ Gr†(F†, u)

be the monodromy group of F , see Lemma 13.1. We view G† := Gr†(F†, u)(K) as an algebraic group over
K. Let S ⊂ |U | be a subset of positive upper Dirichlet density. Let F =

⋃
x∈S Frobx(F) ⊂ Gr(F , u)(K)

be the union of the Frobenius conjugacy classes, and let F ss = {gs : g ∈ F} be the set consisting of the
semi-simple parts gs of the elements g of F . Using the sub-additivity of upper Dirichlet density from
Lemma 3.12, we may assume without the loss of generality that every element of F and hence F ss lies in
the same conjugacy class C of connected components of Gr(F , u) by shrinking S, if it is necessary. For
every subset X of an algebraic group H let HX be the union of the conjugacy classes of elements of X .

By our overconvergent density Theorem 13.2 and by Corollary 9.11 the set G†

F ss is Zariski-dense in a
connected component hG†◦ of G†. We want to deduce that F ss is Zariski-dense in a connected component
of Gr(F , u). By Corollary 9.11 this is enough to prove Conjecture 1.4 for F . Choose any connected
component C ⊂ Gr(F , u) lying in C and in hG†◦. We will actually show that F ss ∩ C is Zariski-dense in
C.

Let T be a maximal quasi-torus in Gr(F , u) and let T ′ be the unique connected component of T
contained in C. Let Z be the Zariski-closure of F ss ∩ T ′. Since every element of F ss lies in C, it can be
conjugate into C. By Theorem 8.9 it is thus conjugate under Gr(F , u) to an element of Z. Therefore,
G†

Z contains G
†

F ss, and hence G
†

Z is Zariski-dense in hG†◦, too. Let T † ⊂ G† be a maximal quasi-torus,
whose connected component T †◦ contains the maximal torus T ◦ of Gr(F , u)◦, use Theorem 8.10(a). By
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Theorem 8.9(a) we may assume that h ∈ T †. Consider the set

D = {(z, t) ∈ Z × hT †◦ : ∃ g ∈ G† such that g−1zg = t) }.

We claim that D is a constructible subset of Z × hT †◦. Namely consider the morphism

ϕ : Z ×G† −→ Z ×G†, (z, g) 7−→ (z, g−1zg) .

The preimage ϕ−1(Z × hT †◦) ⊂ Z ×G† is a closed subset, and D = ϕ
(
ϕ−1(Z × hT †◦)

)
. Therefore, D is a

constructible set by Chevalley’s theorem [EGA, IV1, Corollaire 1.8.5]. Let π1 : D → Z and π2 : D → hT †◦

be the projections onto the first and the second factor, respectively. Since G†

Z is Zariski-dense in hG†◦

and is the union of semi-simple conjugacy classes, Lemma 9.9(b) tells us that π2(D) = G†

Z ∩ hT †◦ is
Zariski-dense in hT †◦. This implies dim(D) ≥ dim(hT †◦) = dim(T †◦) by [EGA, IV2, Théorème 4.1.2].

Fix an element (z, t) ∈ D. For every other point (z, t′) in D with π1(z, t) = π1(z, t
′) the two elements

t and t′ of hT †◦ are conjugate under G†. Since T † is assumed to be commutative, we have (T †)h :=
{g ∈ T †◦ : gh = hg} = T †◦. So Proposition 9.3 implies that there are only finitely many t′ ∈ hT †◦ with
π1(z, t) = π1(z, t

′). In other words, the fibers of the surjective map π1 : D → π1(D) are finite, and so
dim(D) = dim(π1(D)) ≤ dim(Z) by [GW10, Proposition 14.107]. On the other hand dim(T ′) = dim(T ◦) ≤
dim(T †◦) ≤ dim(D), because T ◦ is contained in T †◦. Since Z ⊂ T ′ with dim(Z) ≥ dim(D) ≥ dim(T ′),
and T ′ is irreducible, we get that Z is T ′, so F ss ∩T ′ is Zariski-dense in T ′. By Lemma 9.9(b) we get that
F ss ∩ C is Zariski-dense in C as desired. �

The proof of the following theorem will use most of the results which we prove in our paper up to this
point. This theorem will imply Theorem 1.10 in the introduction, as we shall see shortly.

Theorem 13.26. Let F be a semi-simple convergent F -isocrystal on U which has an overconvergent
extension F† on U , and such that F is locally weakly firm with respect to an open sub-curve f : V →֒ U .
Then F is weakly pink with respect to f .

Proof. By Theorem 11.6 it is enough to show that F is almost weakly pink with respect to f . Let
G† := Gr†(F†/U, u)(K) be the K-valued points of the monodromy group of F† and let Gr(F/U, u) ⊂
Gr†(F†/U, u) be the monodromy group of F ; see Lemma 13.1. LetH := Gr(f∗F/V, u)(K) ⊂ Gr(F/U, u)(K) ⊂
G† be the K-valued points of the monodromy group of f∗F on the shrunken curve; see Lemma 10.2. We
view all three groups as linear algebraic groups over K. Now the proof proceeds exactly as the proof of
Theorem 11.5. Namely, let F =

⋃
x∈|V | Frobx(f

∗F) ⊂ H be the union of the Frobenius conjugacy classes

(conjugacy under H), and let F ss = {gs : g ∈ F} ⊂ H be the set of the semi-simple parts gs of the elements

g of F . For a subset X of G† let G†

X be the union of the conjugacy classes under G† of the elements

of X . Then G†

F =
⋃
x∈|V | Frob

†
x(F

†) ⊂ G† is the union of the Frobenius conjugacy classes (conjugacy

under G†), and G†

(F ss) = (G
†

F )ss := {gs : g ∈ G†

F} ⊂ G†. By Remark 13.25 and Corollary 13.3 the set
G†

F is dense in G†. By Corollary 9.11 we get that (G
†

F )ss is Zariski-dense in G†, too. Let T ⊂ H be a
maximal quasi-torus. Since every element of F ss is conjugate to an element of T by Theorem 8.9(a),(b),

we get that G
†

T is also Zariski-dense in G†, and hence that G
†

T ∩G†◦ is Zariski-dense in G†◦. As in the
second (the purely group theoretic) part of the proof of Theorem 11.5 we see that T ◦ is a maximal torus

in G†◦ = Gr†(F†/U, u)(K)◦, and hence T ◦ must be a maximal torus in the subgroup Gr(F/U, u)(K)◦,
too. �

Proof of Theorem 1.10. Let f : U →֒ V be an open sub-curve on which f∗F is weakly firm. Then F and
G are weakly pink with respect to f by Theorem 13.26 and Proposition 10.10. Since J is conservative
by Proposition 10.11 we see that G ⊕ J is weakly pink with respect to f by Proposition 10.7. Moreover,
G ⊕J is semi-simple by Lemma 3.8 because F and J are by assumption. Therefore, Conjectures 1.2, 1.3
and 1.4 hold true for G ⊕ J by Theorem 10.4. �

Appendix A. Non-Neutral Tannakian Categories and Representations of Groupoids

In this appendix we briefly recall the basics about Tannakian categories, groupoids and how they relate
to monodromy groups of F -isocrystals. We closely follow the articles of Deligne and Milne [DM82, Del89,
Del90, Mil92].
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Definition A.1 ([Mil92, (A.7.1) and (A.7.2), page 222]). Let K be a field. A K-linear abelian tensor
category C with unit object 1l such that K = End(1l) is a Tannakian category over K if

(a) for every object X of C there exists an object X∨ of C , called the dual of X , and morphisms
ev : X ⊗X∨ → 1l and δ : 1l → X∨ ⊗X such that

(ev⊗ idX) ◦ ( idX ⊗δ) = idX : X
idX ⊗δ
−−−−−→ X ⊗X∨ ⊗X

ev⊗ idX−−−−−−→ X and

( idX∨ ⊗ev) ◦ (δ ⊗ idX∨) = idX∨ : X∨
δ⊗ idX∨

−−−−−−→ X∨ ⊗X ⊗X∨
idX∨ ⊗ev
−−−−−−−→ X∨,

(b) and for some non-zero K-algebra L there is an exact faithful K-linear tensor functor ω from C

to the category of finitely generated L-modules. Any such functor ω is called an L-rational fiber
functor for C .

A K-rational fiber functor for C is called neutral. If C has a neutral fiber functor it is called a neutral
Tannakian category over K.

Remark A.2. (a) According to [DM82, § 1] being a tensor category means that there is a “tensor product”
functor C ×C → C , (X,Y ) 7→ X⊗Y which is associative and commutative, such that C has a unit object.

The latter is an object 1l ∈ C together with an isomorphism 1l ∼−→ 1l⊗1l such that C → C , X 7→ 1l⊗X is an
equivalence of categories. A unit object is unique up to unique isomorphism; see [DM82, Proposition 1.3].
One sets X⊗0 := 1l and X⊗n := X ⊗X⊗n−1 for n ∈ N>0.

(b) Being K-linear means that HomC (X,Y ) is a K-vector space for all X,Y ∈ C .

(c) Being abelian means that C is an abelian category. Then automatically ⊗ is a bi-additive functor and
is exact in each factor; see [DM82, Proposition 1.16].

(d) By [Del90, §§ 2.1–2.5] the conditions of Definition A.1 imply that EndC (1l) = K and that the tensor
product is K-bilinear and exact in each variable. It further implies that Hom(X,Y ) := X∨ ⊗ Y is an
internal hom in C, that is an object which represents the functor C ◦ → VecK , T 7→ HomC (T⊗X,Y ). This
means that HomC (T⊗X,Y ) = HomC (T,Hom(X,Y )). Then C is a rigid abelian K-linear tensor category
in the sense of [DM82, Definition 2.19]. This further means that the natural morphisms X → (X∨)∨ are
isomorphisms and that

⊗n
i=1Hom(Xi, Yi) = Hom(

⊗
iXi,

⊗
i Yi) for all Xi, Yi ∈ C .

(e) A functor F : C → C ′ between rigid abelian K-linear tensor categories is a tensor functor if F (1l)
is a unit object in C ′ and there are fixed isomorphisms F (X ⊗ Y ) ∼= F (X) ⊗ F (Y ) compatible with
the associativity and commutativity laws. A tensor functor automatically satisfies F (X∨) = F (X)∨ and
F
(
Hom(X,Y )

)
= Hom

(
F (X), F (Y )

)
; see [DM82, Proposition 1.9]. In particular, for an L-rational fiber

functor ω this means ω(1l) ∼= L.

Definition A.3. A sub-category C ′ of a category C is strictly full if it is full and contains with every
X ∈ C ′ also all objects of C isomorphic to X .

A strictly full sub-category C ′ of a rigid tensor category C is a rigid tensor sub-category if 1l ∈ C ′ and
X ⊗ Y,X∨ ∈ C ′ for all X,Y ∈ C ′. If in addition C is abelian and C′ is closed under forming direct sums
and subquotients, we call C′ a rigid abelian tensor sub-category.

If C is a Tannakian category over K and X ∈ C , the rigid abelian tensor sub-category of C containing
as objects all subquotients of all

⊕r
i=1X

⊗ni ⊗ (X∨)⊗mi for all r, ni,mi ∈ N0 is called the Tannakian
sub-category generated by X and is denoted 〈〈X〉〉. Any L-rational fiber functor ω on C restricts to an
L-rational fiber functor ω|〈〈X〉〉 on 〈〈X〉〉 and makes 〈〈X〉〉 indeed into a Tannakian category over K.

To describe the Tannakian duality in the non-neutral case, we need the following

Definition A.4. A groupoid in sets is a category in which every morphism has an inverse. Thus to give
a groupoid in sets is to give a set S (of objects), a set G (of arrows), two maps t, s : G → S (sending an
arrow to its target and source respectively), and a law of composition

◦ : G ×
s,S,t

G −→ G , where G ×
s,S,t

G = {(h, g) ∈ G×G : s(h) = t(g)} ,

such that ◦ is a map over S×S, each object has an identity morphism, composition of arrows is associative,
and each arrow has an inverse.
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In the rest of this appendix let K be a field and let Ke be a (finite or infinite) field extension which is
Galois with Galois group G . Let S0 := SpecK and S := SpecKe. If G is finite, then the isomorphism

Ke ⊗K Ke
∼−→

∏

G

Ke , a⊗ b 7−→
(
σ(a) · b

)
σ∈G

gives rise to a commutative diagram

(A.1) S ×S0 S

pr2

��

SpecKe ⊗K Ke
∼ ∐

G
SpecKe

��

: G S

S SpecKe ,

in which we view G S as a finite étale group scheme over S. If G is infinite, it is the projective limit of its
finite quotients. Therefore, we can view G S as a profinite affine group scheme over S and the projective
limit of the diagrams (A.1) over the finite quotients of G induces the corresponding diagram (A.1) also in
this case.

Definition A.5. (a) A Ke/K-groupoid (or a K-groupoid in schemes acting on Ke) is a scheme G

over K together with two morphisms t, s : G → SpecKe, called target and source, and a law of
composition

◦ : G ×
s,S,t

G −→ G ,

which is an S ×S0 S-morphism such that for all K-schemes T the category with objects S(T ),
morphisms G(T ), target and source maps t and s, and composition law ◦ is a groupoid in sets.

(b) The K-groupoid G is transitive if the morphism (t, s) : G→ S ×S0 S is surjective, it is affine if G
is an affine scheme and it is algebraic if G→ S ×S0 S is of finite type.

(c) The kernel of a Ke/K-groupoid G is the pullback

G := G∆ := ∆∗G

of G under the diagonal morphism ∆: S → S ×S0 S. It is a group scheme over S which is affine if
G is affine.

(d) A morphism betweenKe/K-groupoidsG and H is a morphism of S×S0S-schemes α : G→ H which
is compatible with the composition laws and induces a homomorphism of group schemes α∆ : G∆ →
H∆. Equivalently, α induces a functor between the categories

(
S(T ),G(T )

)
→
(
S(T ),H(T )

)
which

is the identity map S(T )→ S(T ) on objects.

Remark A.6. Let G be a Ke/K-groupoid with kernel G := G∆. Then pr∗2G acts on G over S×S0 S and
makes it into a right G-torsor. The groupoid G acts on G by conjugation:

(A.2) (g, x) 7−→ g ◦ x ◦ g−1 for g ∈ G(T ) and x ∈ G(T )

for any K-scheme T .

Definition A.7. If G0 is a group scheme overK then G := G0×S0 (S×S0S) together with the composition
induced by the group law of G0 is a Ke/K-groupoid. It is called the neutral groupoid defined by G0. It
is affine, respectively algebraic, if G0 is.

Example A.8. Let V be a finite dimensional vector space over Ke. Let Gl(V ) be the scheme over S×S0 S
representing the functor that sends a scheme (b, a) : T → S×S0 S over S×S0S to the set IsomOT (a

∗V, b∗V )
of OT -isomorphisms from a∗V to b∗V . Then the composition of isomorphisms makes Gl(V ) into a Ke/K-
groupoid which is affine, algebraic and transitive.

Example A.9. Here is a generalization of the previous example. Let V be a finite dimensional vector
space over Ke and let V• = (0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V ) be a flag of Ke-linear subspaces Vi ⊂ V . Let
Gl(V•) be the scheme over S×S0 S representing the functor that sends a scheme (b, a) : T → S ×S0 S over
S ×S0 S to the set

IsomOT (a
∗V•, b

∗V•) :=
{
f ∈ IsomOT (a

∗V, b∗V ) : f(a∗Vi) = b∗Vi for all i
}
.

We explain that this subfunctor is representable by a closed subscheme of Gl(V ). Namely, by induction
on i the condition f(a∗Vi) = b∗Vi is equivalent to the condition that the composite OT -homomorphism
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a∗Vi →֒ a∗Vi+1
f
−→ b∗Vi+1 ։ b∗(Vi+1/Vi) is the zero homomorphism. The latter is represented by a closed

subscheme by [EGA, Inew, Proposition 9.7.9.1]. Again the composition of isomorphisms makes Gl(V•) into
a Ke/K-groupoid which is affine, algebraic, transitive, and is a closed subgroupoid of Gl(V ). Obvioiusly,
Gl(0 ⊂ V ) = Gl(V ).

For every i the restriction to Vi defines a morphism Gl(V•)→ Gl(Vi) of groupoids, which is an epimor-
phism onto the closed subgroupoid Gl(0 = V0 ⊂ . . . ⊂ Vi) ⊂ Gl(Vi).

Definition A.10. A representation of a groupoid G is a morphism ρ : G → Gl(V ) of groupoids for a
finite dimensional Ke-vector space V . We let Rep(Ke : G) be the category of representations of G for
varying finite dimensional Ke-vector spaces V . It has a natural tensor structure relative to which it forms
a Tannakian category. The forgetful functor ω0 : (ρ, V ) 7→ V is a fiber functor over Ke.

Tannakian duality says that every K-linear Tannakian category which has a fiber functor over Ke is of
this form:

Theorem A.11 (Tannakian duality [Del90, Théorème 1.12], [Mil92, Theorem A.8]). Let C be a K-linear
Tannakian category with a fiber functor ω over Ke.

(a) There is an affine transitive Ke/K-groupoid G that represents the functor Aut⊗K(ω) sending an

S ×S0 S-scheme (b, a) : T → S ×S0 S to the set of isomorphisms of tensor functors a∗ω ∼−→ b∗ω;
see [DM82, p. 116].

(b) The fiber functor ω induces an equivalence of tensor categories C
∼−→ Rep(Ke : G).

Conversely, let G be an affine transitive Ke/K-groupoid, and let ω0 be the forgetful fiber functor of
Rep(Ke : G). Then the natural map G→ Aut⊗K(ω0) is an isomorphism of groupoids.

Definition A.12. The groupoid G = Aut⊗K(ω) is called the Tannakian fundamental groupoid of (C, ω).

Proposition A.13. The Ke/K-groupoid G is algebraic if and only if Rep(Ke : G) has a tensor generator
X; compare Definition A.3. In this case G →֒ Gl(ω0(X)) is a closed immersion.

Proof. By construction [Del90, § 6.8], G = SpecLK(ω0, ω0), where LK(ω0, ω0) is defined in [Del90, § 4.7
and § 4.10(iii)] as an inductive limit of quotients of ω0(X)∨ ⊗K ω0(X) where X runs through all objects
of Rep(Ke : G). In particular, if Rep(Ke : G) has a tensor generator X then LK(ω0, ω0) is a quotient of
ω0(X)∨ ⊗K ω0(X) and a finitely generated algebra over

∐
G
Ke. Conversely, if LK(ω0, ω0) is a finitely

generated algebra over
∐

G
Ke, then it is a quotient of ω0(X)∨⊗Kω0(X) for some object X of Rep(Ke : G),

which necessarily must be a tensor generator. Obviously G →֒ Gl(ω0(X)) is a closed immersion. �

Proposition A.14. Let α : G→ H be a homomorphism of affine transitive Ke/K-groupoids, and let ωα

be the corresponding functor Rep(Ke : H)→ Rep(Ke : G).

(a) Then α is faithfully flat if and only if ωα is fully faithful and every subobject of ωα(Y ), for Y ∈
Rep(Ke : H), is isomorphic to the image of a subobject of Y .

(b) α is a closed immersion if and only if every object of Rep(Ke : G) is isomorphic to a subquotient
of an object of the form ωα(Y ) for an object Y ∈ Rep(Ke : H).

Proof. This was proven in [DM82, Proposition 2.21] for neutral Tannakian categories and group schemes
instead of groupoids. But the proof likewise works in the non-neutral case for groupoids. �

Proposition A.15 ([Del89, § 10.8]). Let G and H be Ke/K-groupoids with kernels G := G∆ and H := H∆,
and let ϕ : G→ H be a homomorphism of group schemes. If there is given an action of G on H compatible
with its action on G from (A.2), then the pr2H-torsor deduced from G by pushing out by the morphism
pr∗2ϕ : pr

∗
2G→ pr∗2H is endowed with the structure of a groupoid whose kernel is H. We denote it by ϕ∗G.

We apply this proposition in the following form.

Corollary A.16. Let C be a K-linear Tannakian category equiped with a Ke-linear fiber functor ω. Let
F be an object of C and let G := Aut⊗K(ω|〈〈F〉〉) be the Tannakian fundamental groupoid of F .

(a) Every Tannakian sub-category of 〈〈X〉〉 has a tensor generator Y ∈ 〈〈X〉〉 and the natural fully faith-
ful embedding 〈〈Y 〉〉 → 〈〈X〉〉 of Tannakian categories induces an epimorphism of Ke/K-groupoids
G = Aut⊗(ω|〈〈X〉〉) ։ Aut⊗(ω|〈〈Y 〉〉) =: H and an epimorphism G∆

։ H∆ of the kernel groups.
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(b) Conversely, let ϕ : G∆
։ H be an epimorphism of algebraic groups over Ke whose kernel is

invariant under the conjugation action of G on G∆ from (A.2). Then there exists an object
Y ∈ 〈〈X〉〉 and an epimorphism of groupoids α : G ։ H := Aut⊗(ω|〈〈Y 〉〉) whose restriction to the

kernel groups α∆ : G∆
։ H∆ is isomorphic to ϕ : G∆

։ H.

Proof. (b) Since the kernel of ϕ is stabilized by the conjugation action of G on G∆ from (A.2), this induces
a compatible action of G on H , and by Proposition A.15 we can form the groupoid H := ϕ∗G with kernel
H∆ = H . Since ϕ : G∆

։ H is faithfully flat, also its extension α : G ։ H is faithfully flat by Remark A.6
and so the functor Rep(Ke : H) → Rep(Ke : G) ∼= 〈〈X〉〉 is an isomorphism onto a full Tannakian sub-
category by Proposition A.14(a). Since G is of finite type over S ×S0 S by Proposition A.13, also H is of
finite type over S ×S0 S, and Rep(Ke : H) has a tensor generator Y again by Proposition A.13.

(a) follows directly from Proposition A.14(a). The existence of a tensor generator was just proven in
(b). �

Remark A.17. Recall that a subgroup of an algebraic groupG which is invariant under all automorphisms
of G is a characteristic subgroup. In particular, if the kernel of ϕ : G∆

։ H is a characteristic subgroup
of G∆, then it is stabilized by the conjugation action of G on G∆ from (A.2), and so the hypotheses of
Corollary A.16(b) are satisfied.

Proposition A.18. Assume that K has characteristic zero. Let ρ : G→ Gl(V ) be a representation of an
affine transitive Ke/K-groupoid G on a Ke-vector space V and let H ⊂ G∆ be a closed algebraic subgroup
over Ke which is stable under the conjugation action of G on G∆ from (A.2). Let W ⊂ V be the Ke-linear
subspace of fixed vectors of H and consider the flag V• = (0 ⊂W ⊂ V ). Then the representation ρ factors
through the Ke/K-groupoid Gl(V•) ⊂ Gl(V ) from Example A.9. In particular, the representation (ρW ,W )
of G is a subrepresentation of (ρ, V ), where ρW is the composition of ρ : G → Gl(V•) followed by the
epimorphism Gl(V•) ։ Gl(W ) from Example A.9.

Remark A.19. The subspace W in the proposition is defined as follows. Let K be a separable closure
of Ke and let

W := { v ∈ V := V ⊗Ke K : ρ(h)(v) = v for all h ∈ H(K) } .

Since H is defined over Ke the subspace W ⊂ V descends to a Ke-linear subspace W ⊂ V satisfying
W =W ⊗Ke K.

Proof of Proposition A.18. We use Remark A.19 and let S := SpecK. By faithfully flat descent [EGA,
IV2, Proposition 2.2.1] it suffices to prove that the morphism ρ : G→ Gl(V ) factors through Gl(V•) after
base-change from S×S0 S to S×S0 S. Since in characteristic zero G∆ is smooth, and hence G∆ and G are
reduced schemes, we have to show that for every S×S0 S-scheme of the form (b, a) : T = SpecK → S×S0 S
the map G(T ) → Gl(V )(T ) factors through Gl(V•)(T ). In addition, we consider T via the morphism
∆ ◦ a : T → S →֒ S ×S0 S as another S ×S0 S-scheme, which we denote by Ta. Likewise, we define Tb.
Let g ∈ G(T ) and let h ∈ H(Tb) ⊂ G∆(Tb) = G(Tb). Then g−1hg ∈ H(Ta) ⊂ G∆(Ta) = G(Ta) by the
assumption that H is stable under the conjugation action of G on G∆ from (A.2). We have to show that
ρ(g) ∈ Gl(V )(T ) = IsomOT (a

∗V, b∗V ) satisfies ρ(g)(w) ∈ b∗W for all w ∈ a∗W . Since ρ(g−1hg)(w) = w
in a∗V , we compute in b∗V

ρ(h)ρ(g)(w) = ρ(g)ρ(g−1hg)(w) = ρ(g)(w) .

As this holds for all h ∈ H(Tb), we obtain that ρ(g)(w) ∈ b∗W , and hence ρ factors through Gl(V•) as
desired. The last assertion is clear. �

Remark A.20. Recall from [DM82, p. 155ff] that for a Tannakian category C over K there is an ex-
tension of scalars C ⊗K Ke which is a Tannakian category over Ke. It is equipped with a tensor functor

• ⊗K Ke : C → C ⊗K Ke, X 7→ X ⊗K Ke, which satisfies

HomC (X,Y )⊗K Ke = HomC⊗KKe(X ⊗K Ke, Y ⊗K Ke) .

If ω is a Ke-rational fiber functor on C then ω extends canonically to a Ke-rational, hence neutral fiber
functor on C ⊗K Ke. Then [Mil92, Proposition A.12 and Example A.13] implies that Theorem A.11
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induces a commutative diagram of Tannakian categories

(A.3) X❴

��

C

��

∼

ω
// Rep(Ke : G)

��

ρ : G→ Gl(V )
❴

��

X ⊗K Ke C ⊗K Ke
∼

ω
// Rep(Ke : G

∆) ρ∆ : G∆ → Gl(V )∆

where the right vertical map is the restriction to the kernel groups.

Proposition A.21. Let X and Y be two objects of a Tannakian category C over K. If there is a field

extension L ⊃ K which is Galois and an isomorphism f : X ⊗K L ∼−→ Y ⊗K L in the category C ⊗K L,

then there is an isomorphism g : X ∼−→ Y in C .

Proof. Consider the group scheme AutC Y over K which is defined for any K-algebra R by its R-valued
points

(AutC Y )(R) :=
(
EndC (Y )⊗K R

)×
.

For every σ ∈ Gal(L/K) let hσ := f ◦ σ∗f−1 ∈ (AutC Y )(L) = AutC⊗KL(Y ⊗K L). They satisfy
hστ = hσ ◦ σ(hτ ) and form a cocycle in H1(Gal(L/K),AutC Y ). However, this group is trivial by [Ser79,
Chapter X, § 1, Exercise 2]. So there is an element h ∈ (AutC Y )(L) with hσ = h−1 ◦ σ∗h. In particular,

g := h ◦ f : X ⊗K L ∼−→ Y ⊗K L satisfies g = σ∗g for every σ ∈ Gal(L/K). Therefore g : X ∼−→ Y is the
desired isomorphism in C . �

Proposition A.22. Assume that K has characteristic zero and let L ⊃ K be a finite Galois extension.
Let C be a Tannakian category over K and let X be an object of C . Then X is semi-simple if and only
if the object X ⊗K L of C ⊗K L is semi-simple.

Proof. If X is semi-simple then X ⊗K L is semi-simple by [Sta08, Proposition 1.5.1]. Conversely let
X ⊗K L be semi-simple and let f : X ։ Y be an epimorphism in C . Since the extension functor • ⊗K L
has a right adjoint, it is right exact and f ⊗ 1: X ⊗K L ։ Y ⊗K L is an epimorphism. Since X ⊗K L is
semi-simple, there exists a morphism g ∈ HomC⊗KL(Y ⊗K L,X ⊗K L) with (f ⊗ 1) ◦ g = idY⊗KL. Then
g̃ := 1

[L:K]

∑
σ∈Gal(L/K) σ

∗(g) ∈ HomC⊗KL(Y ⊗K L,X⊗K L) satisfies (f ⊗ 1)◦ g̃ = idY⊗KL and σ∗(g̃) = g̃

for every σ ∈ Gal(L/K). Therefore g̃ ∈ HomC (Y,X) splits f , and hence X is semi-simple. �

Appendix B. Results from measure theory and real algebraic geometry

Definition B.1. Let f : X → Y be a continuous map between two topological spaces, each equipped
with the Borel σ-algebra. For a measure µ on X the push-forward measure f∗µ is defined as (f∗µ)(V ) :=
µ(f−1V ) for every Borel-measurable subset V ⊂ Y . It satisfies

∫
Y
h(y) d f∗µ(y) =

∫
X
h(f(x)) dµ(x) for

every measurable function h on Y .

Our next aim is to define the notion of a pull-back of measures under certain nice maps.

Lemma B.2. Let f : X → Y be an injective continuous map between compact Hausdorff spaces. Then f
maps Borel-measurable sets in X to Borel-measurable sets in Y .

Proof. It will be enough to show the following:

• the image of every closed subset of X is Borel-measurable,
• the collection of subsets of X :

C = {Z ⊂ X | f(Z) ⊂ Y is Borel-measurable}

is a σ-algebra.

We first show the first claim. Since X is compact and Y is Hausdorff, the image of every closed subset of
X is compact, and hence closed, and these are Borel-measurable. Now we prove the second claim. Since
∅ and X are closed in X , we get that ∅, X ∈ C by the above. If B ∈ C, then

f(X rB) = f(X)r f(B)
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using that f is injective. Since Borel-sets form a σ-algebra, the right hand side is a Borel-set, and hence
X rB ∈ C. If Bi ∈ C, where i ∈ N, then

f(
⋃

i∈N

Bi) =
⋃

i∈N

f(Bi),

so using that Borel-sets form a σ-algebra, we get that
⋃
i∈NBi ∈ C. �

Definition B.3. Let f : X → Y be a continuous map between topological spaces. We say that the map
f is nice if there is a countable pair-wise disjoint decomposition

(B.1) X =

∞∐

i=1

Xi

of X into Borel-measurable subsets Xi such that the restriction of f onto the closure Xi of each Xi is
injective.

Remark B.4. Note that a continuous map f : X → Y is nice if and only if there is a countable cover
{Zi}i∈N of X by closed subsets such that f |Zi is injective for every i ∈ N. Indeed if f is nice and

X =

∞∐

i=1

Xi

is a decomposition of X as in (B.1) above, then {Xi}i∈N of X is such a cover. On the other hand if
{Zi}i∈N is a countable cover of X by closed subsets such that f |Zi is injective for every i ∈ N then

Xi = Zi r
⋃

j<i

Zj

is Borel-measurable, and

X =

∞∐

i=1

Xi

is a decomposition of X . Since Xi ⊂ Zi, we have Xi ⊂ Zi = Zi, and hence f |Xi
is injective for every

i ∈ N.

Lemma B.5. Let f : X → Y be a nice continuous map between compact Hausdorff spaces. Then f maps
Borel-measurable sets in X to Borel-measurable sets in Y .

Proof. Fix a decomposition of X as in (B.1) above. For every Borel-measurable Z ⊂ X we have:

f(Z) =
⋃

i∈N

f(Z ∩Xi),

so it will be sufficient to show that f(Z ∩Xi) is Borel-measurable for every i ∈ N. Since Xi is closed, it
is a compact Hausdorff space. Also the restriction of f onto X i is injective by assumption. As Z ∩Xi is
Borel-measurable in Xi, the claim follows from Lemma B.2. �

Lemma B.6. Let f : X → Y be a nice continuous map between compact Hausdorff spaces. For every
Borel-measurable subset Z ⊂ X the counting function cZ/Y : Y → R ∪ {∞} given by the rule:

y 7→ #(f−1(y) ∩ Z)

is measurable.

Proof. Fix a decomposition of X as in (B.1) above. Clearly

cZ/Y (y) =

∞∑

i=1

ci(y),

where for every i ∈ N the function ci : Y → R ∪ {∞} is given by the rule:

y 7→ #(f−1(y) ∩ Z ∩Xi).

Since the latter are non-negative, cZ/Y is the point-wise supremum of the sequence
(∑j

i=1 ci
)
j∈N

. So it

will be enough to show that each ci is measurable. However, the restriction of f onto Xi is injective, so
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ci is just the characteristic function of f(Z ∩Xi). By Lemma B.5 the set f(Z ∩Xi) is Borel-measurable,
since Z ∩Xi is, so ci is also measurable. �

Definition B.7. Let f : X → Y be a nice continuous map between compact Hausdorff spaces. Let µ be
a Borel-measure on Y . We define the pull-back measure f∗µ on X by the formula:

(f∗µ)(Z) =

∫

Y

cZ/Y (y)dµ(y)

for every Borel-measurable Z ⊂ X . By the lemma above the integrand is measurable, and it is also non-
negative, so the integral is well-defined. When there is an upper bound on the cardinality of the fibers of
f , we get that f∗(µ) is bounded, too, i.e. it only takes finite values if the same is true for µ.

Proposition B.8. Let f : X → Y be a nice, continuous, surjective map between compact Hausdorff spaces
and let µm for m ∈ N be a sequence of measures on Y which converge weakly to a measure ν on Y . Assume
that there is a positive integer M such that all fibers of f have cardinality at most M . Assume further
that there is a closed subset Z ⊂ Y of measure ν(Z) = 0 whose complement is a finite disjoint union
Y rZ =

∐n
i=1 Yi of open subsets Yi such that f is trivial over Yi in the sense that there is a finite discrete

set Fi and a homeomorphism gi : Fi × Yi
∼−→ f−1(Yi) compatible with the projections onto Yi. Then the

pullback measures f∗µm converge weakly to f∗ν.

Proof. We first observe that

(f∗ν)(f−1Z) :=

∫

Z

#f−1(y) dν(y) ≤ M · ν(Z) = 0

and likewise

(f∗µm)(f−1Z) :=

∫

Z

#f−1(y) dµm(y) ≤ M · µm(Z) .

Since lim supm→∞ µm(Z) ≤ ν(Z) = 0 by the weak convergence and the Portemanteau theorem [Kle14,
Theorem 13.16], we conclude that limm→∞(f∗µm)(f−1Z) = 0.

Let U ⊂ X be an open subset. Then

(f∗ν)(U) = (f∗ν)(U ∩ f−1Z) +

n∑

i=1

(f∗ν)(U ∩ f−1Yi) =

n∑

i=1

∑

x∈Fi

(f∗ν)
(
U ∩ gi(x× Yi)

)

and likewise

lim inf
m→∞

(f∗µm)(U) =

n∑

i=1

∑

x∈Fi

lim inf
m→∞

(f∗µm)
(
U ∩ gi(x× Yi)

)
,

and similarly for lim sup. Since the projection map x×Yi → Yi is a homeomorphism, the set f
(
U ∩gi(x×

Yi)
)
⊂ Yi is open and (f∗ν)

(
U∩gi(x×Yi)

)
= ν

(
f(U∩gi(x×Yi))

)
and (f∗µm)

(
U ∩gi(x×Yi)

)
= µm

(
f(U∩

gi(x×Yi))
)
. From this and the weak convergence of µm to ν we obtain lim infm→∞(f∗µm)(U) ≥ (f∗ν)(U).

If U = X we also must show that lim supm→∞(f∗µm)(X) ≤ (f∗ν)(X). Note that

lim sup
m→∞

(f∗µm)
(
gi(x× Yi)

)
= lim sup

m→∞
µm(Yi) = lim sup

m→∞
µm(Z ∪ Yi) ≤ ν(Z ∪ Yi)

because Z ∪ Yi is closed in Y and µm converges weakly to ν. We compute

ν(Z ∪ Yi) = ν(Z) + ν(Yi) = ν(Yi) = (f∗ν)
(
gi(x× Yi)

)
.

This implies lim supm→∞(f∗µm)(X) ≤ (f∗ν)(X) and shows that the sequence of measures f∗µm converges
weakly to f∗ν. �

In the rest of this appendix we consider the following

Definition B.9. As usual let |z| denote the absolute value of a complex number z ∈ C. Let Y ⊂ AdR be
a smooth affine scheme over R, and assume that its set of real points

C = Y (R) ⊂ Rd

is compact and Zariski-dense in the base-change YC ⊂ AdC of Y to C. Let

(B.2) µ
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be the Lebesgue measure furnished by the volume form of the Riemannian metric specified on C. Let
d(·, ·) : Rd → R≥0 be the usual Euclidean metric. For every ε > 0 and every subset A ⊂ C let A(ε) denote
the open ε-neighborhood of A in C:

A(ε) := {z ∈ C : ∃ y ∈ A such that d(z, y) < ε} =
⋃

y∈A

{z ∈ C : d(z, y) < ε} .

Note that for a subset A ⊂ C which is closed, and hence compact, the closure A(ε) with respect to the
metric on C is contained in A(2ε). We say that a sequence A1, A2, . . . , Am, . . . of subsets of C converges
to a subset A ⊆ C if for every ε > 0 there is an index mε ∈ N such that Am ⊆ A(ε) for every m ≥ mε.

Theorem B.10. Let D ∈ N, and let H1, H2, . . . , Hm, . . . be a sequence of algebraic hyper-surfaces of Cd

of degree at most D such that the intersection Hm ∩YC is a proper hyper-surface in YC for every m. Then
there is a subsequence Hm1 , Hm2 , . . . , Hmn , . . . and an algebraic hyper-surface H ⊂ Cd of degree at most
D with H ∩ YC ( YC, such that the sequence Hm1 ∩ C,Hm2 ∩ C, . . . , Hmn ∩ C, . . . converges to H ∩ C in
the sense of Definition B.9.

To prove the theorem we let PD ⊂ C[x1, x2, . . . , xd] denote the complex vector space of all com-
plex polynomials on Cd of total degree at most D and we let PD be its image in the coordinate ring
C[x1, x2, . . . , xd]/I(YC) of YC. Here I(YC) is the ideal of functions vanishing on YC. The images of the

monomials xi11 x
i2
2 · · ·x

id
d for i = (i1, i2, . . . , id) ∈ Nd0 with i1 + i2 + · · ·+ id ≤ D form a generating system

of the C-vector space PD. We may shrink this generating system to a basis B. For every

F (x1, x2, . . . , xd) =
∑

i∈B

ci · x
i1
1 x

i2
2 · · ·x

id
d ∈ PD with ci ∈ C

let

‖F‖ := max
i∈B
|ci|.

This is clearly a norm on PD.

Lemma B.11. Let M ∈ R, M ≥ 1 be such that d(0, x) ≤M for all x ∈ C.

(a) For every x, y ∈ C and for every F ∈ PD we have:

|F (x) − F (y)| ≤ ‖F‖ · d(x, y) ·MD−1 ·D ·#B.

(b) For every x ∈ C and for every F1, F2 ∈ PD we have:

|F1(x)− F2(x)| ≤ ‖F1 − F2‖ ·M
D ·#B.

Proof. (a) Write x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd). Then

|xi − yi| ≤ d(x, y) and |xi|, |yi| ≤M (∀i = 1, 2, . . . , d).

In particular for every multi-index i = (i1, i2, . . . , id) ∈ B by telescoping we get:

|xi11 x
i2
2 · · ·x

id
d − y

i1
1 y

i2
2 · · · y

id
d | = |(xi11 x

i2
2 · · ·x

id
d − y

i1
1 x

i2
2 · · ·x

id
d ) + (yi11 x

i2
2 · · ·x

id
d − y

i1
1 y

i2
2 x

i3
3 · · ·x

id
d ) + · · · |

≤
d∑

j=1

|x
ij
j − y

ij
j | · |y

i1
1 · · · y

ij−1

j−1 · x
ij+1

j+1 · · ·x
id
d |

≤
d∑

j=1

|xj − yj | · |x
ij−1
j + x

ij−2
j yj + · · ·+ y

ij−1
j | ·M i1+...+ij−1+ij+1+...+id

≤ d(x, y) ·MD−1 ·
d∑

j=1

ij

≤ d(x, y) ·MD−1 ·D.

Write

F (t1, t2, . . . , td) =
∑

i∈B

ci · t
i1
1 t

i2
2 · · · t

id
d .
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By the above:

|F (x) − F (y)| = |
∑

i∈B

ci · (x
i1
1 x

i2
2 · · ·x

id
d − y

i1
1 y

i2
2 · · · y

id
d )|

≤
∑

i∈B

|ci| · d(x, y) ·M
D−1 ·D

≤ ‖F‖ · d(x, y) ·MD−1 ·D ·#B.

(b) Writing F1(t1, . . . , td) =
∑
i∈B bi · t

i1
1 · · · t

id
d and F2(t1, . . . , td) =

∑
i∈B ci · t

i1
1 · · · t

id
d we compute

|F1(x) − F2(x)| ≤
∑

i∈B

|bi − ci| · |x1|
i1 |x2|

i2 · · · |xd|
id

≤
∑

i∈B

‖F1 − F2‖ ·M
D

≤ ‖F1 − F2‖ ·M
D ·#B.

�

Proof of Theorem B.10. For every m ∈ N let Fm ∈ PD be a polynomial such that ‖Fm‖ = 1 and the zero
set of Fm in YC isHm∩YC. Because the unit sphere {F ∈ PD : ‖F‖ = 1} is compact, there is a subsequence
Fm1 , Fm2 , . . . , Fmn , . . . and an element F ∈ PD such that ‖F‖ = 1 and the sequence Fm1 , Fm2 , . . . , Fmn , . . .
converges to F with respect to the norm ‖ . ‖. We may even assume this subsequence is the full sequence
after re-indexing.

We claim that in this case H1 ∩ C,H2 ∩ C, . . . , Hn ∩ C, . . . converges to H ∩ C, where H ∩ YC is the
zero set of F . Assume that this is false. Then there is a small ε > 0 such that, after taking a suitable
subsequence, Hm ∩C does not lie in (H ∩C)(ε) for every m ∈ N. Choose an xm ∈ (Hm ∩C)r (H ∩C)(ε)
for every m. Since the set C r (H ∩C)(ε) is closed in C, it is compact, so we may assume, after taking a
suitable subsequence, that xm converges to a point x ∈ C r (H ∩C)(ε). Note that

|Fm(x)| = |Fm(x)− Fm(xm)| ≤MD−1 ·D ·#B · d(x, xm)

and
|F (x) − Fm(x)| ≤MD ·#B · ‖F − Fm‖

by Lemma B.11. Therefore

F (x) = lim
m→∞

Fm(x) + lim
m→∞

(F (x)− Fm(x)) = 0,

and x ∈ H∩C. But this is a contradiction and so our claim is proven. To finish the proof of Theorem B.10
we note that F 6= 0 in PD, because ‖F‖ = 1, and so H ∩ YC is a proper hyper-surface in YC. �

To prove Theorem 13.2 we will also need the following

Lemma B.12. Keep the notation of Definition B.9. Let λ be a measure on C satisfying λ(C) <∞. Then
for every algebraic hyper-surface H ⊂ Cd with H ∩C ( C and λ(H ∩C) = 0 we have:

lim
ε→0

λ
(
(H ∩ C)(ε)

)
= 0.

Proof. Assume that the claim is false. Then there is a strictly decreasing sequence ε1, ε2, . . . , εn, . . . such
that εn → 0, and

λ
(
(H ∩ C)(εn)

)
≥ δ,

for some positive δ. Set An = (H∩C)(εn)−(H∩C)(εn+1). Then by σ-additivity applied to (H∩C)(εn) =
(H ∩ C) ∪

∐
m≥nAm we have

(B.3) λ
(
(H ∩ C)(εn)

)
= λ(H ∩ C) +

∑

m≥n

λ(Am) =
∑

m≥n

λ(Am) .

Since λ
(
(H ∩ C)(εn)

)
≤ λ(C) <∞ the sum

∑∞
m=1 λ(Am) is convergent. Therefore, we have:

lim
n→∞

∑

m≥n

λ(Am) = 0.



CRYSTALLINE CHEBOTARËV DENSITY THEOREMS 79

So by taking the limit in (B.3) we get λ(H ∩ C) ≥ δ, which is a contradiction. �
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Norm. Sup. 31 (1998), 717–763; available at http://www.numdam.org/item/ASENS 1998 4 31 6 717 0/.

[DK81] H. Delfs, M. Knebusch: Semialgebraic topology over a real closed field, II, Basic theory of semialgebraic spaces,
Math. Z. 178 (1981), no. 2, 175–213, available at https://epub.uni-regensburg.de/12798/1/ubr05114 ocr.pdf.

[DK82] H. Delfs, M. Knebusch: On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math. 335

(1982), 122–163.
[DK85] H. Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Mathematics 1173, Springer, Berlin-New

York, 1985.

[Del80] P. Deligne: La conjecture de Weil, II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252; available at
http://www.numdam.org/item?id=PMIHES 1980 52 137 0.

[Del89] P. Deligne: Le groupe fondamental de la droite projective moins trois points, in “Galois groups
over Q”, pp. 79–297, Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989; available at
https://publications.ias.edu/sites/default/files/61 LeGroupeFondamentalDroite.pdf.

[Del90] P. Deligne: Catégories tannakiennes, in “The Grothendieck Festschrift”, Vol. II, pp. 111–
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Publ. Math. 14 (1962), 47–75; also available at http://www.numdam.org/item?id=PMIHES 1962 14 47 0.

[LP17] C. Lazda and A. Pál, A homotopy exact sequence for overconvergent isocrystals, preprint 2017, available at
arXiv:1704.07574.

[MFK94] D. Mumford, J. Fogarty, F. Kirwan: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzge-
biete (3) 34, Springer-Verlag, Berlin, 1994.

[Mil92] J. Milne: The points on a Shimura variety modulo a prime of good reduction, in: The zeta func-
tions of Picard modular surfaces, pp. 151–253, Univ. Montral, Montreal, QC, 1992; available at
http://www.jmilne.org/math/articles/abstracts.html#1992.

[NSW08] J. Neukirch, A. Schmidt, K. Wingberg: Cohomology of number fields, Grundlehren der Mathematischen Wis-
senschaften 323, Springer-Verlag, Berlin, 2008.
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Birkhäuser Verlag, Boston, MA, 2006.
[Wat79] W.C. Waterhouse: Introduction to affine group schemes, Graduate Texts in Mathematics 66, Springer-Verlag, New

York.
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