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CRYSTALLINE CHEBOTAREV DENSITY THEOREMS

URS HARTL AND AMBRUS PAL

ABSTRACT. We formulate a conjectural analogue of Chebotarév’s density theorem for convergent F-
isocrystals over a smooth geometrically irreducible curve defined over a finite field using the Tannakian
formalism. We prove this analogue for several large classes, including direct sums of isoclinic convergent
F-isocrystals and semi-simple convergent F-isocrystals which have an overconvergent extension and such
that the semi-simplification of their pull-back to a sufficient small non-empty open sub-curve has abelian
monodromy. In order to prove the latter, we also prove an overconvergent analogue of Chebotarév’s
density theorem for semi-simple overconvergent F-isocrystals.
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1. INTRODUCTION

Let U be a smooth, geometrically irreducible, non-empty curve over a finite field I, having ¢ elements
and characteristic p. Let k = F,(U) be the function field of U, let k be a separable closure of k, and let
|U| be the set of closed points in U. For every z € |U| let F,, deg(x) and ¢, denote the residue field of x,
its degree over F, and its cardinality, respectively.

For every abelian variety A defined over k let A[p>] denote its p-divisible group, let A[p>°]¢* denote
the maximal étale p-divisible quotient of A[p™] and let V,(A) denote the p-adic Gal(k/k)-representation
Homz, (Qp/Zy, A[p™]*) ®z, Q,. The dimension of the Q,-vector space underlying V,(A) is the p-rank
r(A) of A. Tt is known that 0 < r(A4) < dim(A) where dim(A) denotes the dimension of A. Recall that
an abelian variety A is called ordinary if 7(A) = dim(A).

As a motivation for our investigations we will have a look at the following

Theorem 1.1. Let A and B be two ordinary abelian varieties over k. Then A and B are isogenous if
and only if the p-adic Gal(k/k)-representations V,(A) and V,(B) are isomorphic.
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We will give an easy [-adic proof of this theorem in Section [3] by switching to l-adic Tate modules and
using Zarhin’s isogeny theorem for them. Of course it would be aesthetically much more satisfying to
prove Theorem [LT] only utilizing p-adic objects, directly from de Jong’s theorem [dJ099, Theorem 2.6]
that the natural map

Hom(A, B) ®z Z,, — Hom(A[p*], B[p™])

is an isomorphism for every pair of abelian varieties A and B over k. In particular, this implies that A and
B are isogenous if and only if the p-divisible groups A[p>°] and B[p] are isogenous, and our theorem is
a strengthening of this consequence in the case when A and B are both ordinary. In fact our [-adic proof
can be largely adopted to the p-adic setting. However, there are two missing ingredients: a semi-simplicity
statement for the overconvergent (rational) Dieudonné module of abelian varieties, which we settle in a
separate paper [PAl15], and an analogue of Chebotarév’s density theorem for p-divisible groups, or more
generally, for convergent F-isocrystals. The major aim of this article is to formulate such an analogue in
the largest possible generality, and prove it in special cases. The most natural way to do that is through
the Tannakian formalism. As an application we will give a p-adic proof of Theorem [[.1] in Section
before Theorem [I3.G1

To describe our results let Frq r denote the absolute g-Frobenius on U which is the identity on points

and the g-power map on the structure sheaf. Let K be a finite totally ramified extension of W(Fq)[%]

and fix an algebraic closure K of K. Since Fr, ¢ is the identity on F,, we may choose on K the identity
F :=idg as alift of Fr, . Let F-Isock (U) denote the K-linear rigid abelian tensor category of K-linear
convergent F-isocrystals on U; see [Cre92] Chapter 1] for details. If F is an object of F-Isock (U) we let
(F)) denote the strictly full rigid abelian tensor sub-category of F-Isock (U) generated by F. We fix a
base point u € U(F,¢) and let K, be the unramified field extension of K of degree e in K. Pulling back to
u defines a faithful fiber functor w,: F +— u*F which makes F-Isock (U) into a Tannakian category and
{(F)) into a Tannakian sub-category of F-Isock (U); see Definitions [AT] and for explanations. Note
that the fiber functor w, is non-neutral if e # 1. We let Gr(F/U,u) := Aut®(wu|<<;>>) be the smooth
linear algebraic group over K. consisting of the tensor automorphisms of w,, : F — u*F; see Section [3 for
the precise definition. For every closed point x € |U| the Frobenius Fr of F furnishes a conjugacy class
Frob, (F) in Gr(F/U,u)(K); see Definition Bl The crystalline version of Chebotarév’s density theorem
is the following

Conjecture 1.2. For every subset S C |U| of Dirichlet density one the set | ), . g Frob,(F) is Zariski-dense
in Gr(F/U,u).

We follow Serre in the definition of Dirichlet density; see Definition [3.10] See Remark why we do
not expect a density statement for any other topology than the Zariski topology. When F has connected
monodromy group we even expect the following

Conjecture 1.3. If the monodromy group Gr(F/U,u) is connected then for every subset S C |U| of

positive upper Dirichlet density the set |, g Frob,(F) is Zariski-dense in Gr(F /U, u).

The notion of positive upper Dirichlet density is a natural weakening of positive Dirichlet density (see
Definition BIT] for a precise definition). A variant of the conjecture above is the following

Conjecture 1.4. For every subset S C |U| of positive upper Dirichlet density the Zariski-closure of the
set |J,cg Froby(F) contains a connected component of the group Gr(F/U,u) X, K.

Note that the validity of Conjecture [l for F trivially implies the validity of Conjecture [[3lfor F when
Gr(F/U,u) is connected. We will see later (see Proposition [6.7] below) that the validity of Conjecture [[.4]
for F also implies the validity of Conjecture for F.

Let us continue by proving an application of crystalline Chebotarév density. For every convergent F-
isocrystal F on U and for every = € |U| let Tr(Frob,(F)) denote the common trace of all elements of
Frob, (F), considered as endomorphisms of the K.-vector space wy,(F).

Corollary 1.5. Let S C |U| be a subset of Dirichlet density one and let F,G be two convergent F-
isocrystals of the same rank on U such that Tr(Frob,(F)) = Tr(Frob,(G)) for every x € S and such
that Conjecture holds for the direct sum F°° & G*° of their semi-simplifications. Then the semi-
simplifications F*° and G*° of F and G are isomorphic.
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Proof. By Lemma below the Frobenius conjugacy class Frob,(F) maps to Frob,(F*®®) under the
natural surjective map n: Gr(F,u) — Gr(F**,u) for every x € S. For every g € Gr(F,u) we have
Tr(g) = Tr(n(g)) where we take traces with respect to the representations w, (F) and w, (F**), because in
a suitable basis of w, (F) the kernel of 7 consists of unipotent upper triangular matrices by Lemma B8]
and so the diagonal entries of g and 1(g) coincide. Therefore, we get that Tr(Frob, (F)) = Tr(Frob, (F?®%))
for every x € S. By repeating the same argument for G we get that Tr(Frob, (F**)) = Tr(Frob,(G**)) for
every x € S.

Let p1 and py denote the representations of Gr(F** ©G**, u) on w, (F**) and w,(G**), respectively. Note
that p; and py correspond to the objects F*5 ®x K, and G*°* @ K, of F-Isock (U) @k K. by Remark [A.201
For every © € S the Frobenius conjugacy class Frob, (F** & G**) maps by Lemma B3] to Frob,(F**) and
Frob,(G*®) under p; and ps, respectively. Thus the trace functions of the representations p; and ps on the
group Gr(F®* @ G*°, u) are equal on the Frobenius conjugacy classes Frob, (F** & G*%) for all z € S. By
assumption the latter are Zariski-dense in Gr(F** @ G*%,u), so the trace functions of the representations
p1 and po on the group Gr(F** @ G5, u) are equal.

Let A C Endg, (wu (F* o QSS)) be the smallest K.-linear subspace (viewed as a scheme) containing the
image of Gr(F** ®G**,u). Then A ®k, K is the K-linear span of Gr(F** @ G**,u)(K), because the latter
is Gal(K /K.)-invariant. Thus A ®, K is a K-algebra, and hence A is a K.-algebra. Moreover, w, (F**)
and w, (G*°) are semi-simple A-modules, because every submodule invariant under Gr(F** @ G*°, u) is also
invariant under A. Finally, by their linearity the trace functions of A on both representations coincide,
because they do on Gr(F* @ G*°,u)(K). Therefore, by [Ser98, Lemma in §1.2.3 on p. I-11] the two
representations are isomorphic and this implies that F** @ x K. =2 G** Q@ x K, in F-Isock (U) ® g K.. Then
it follows from Proposition [A2T] that F** = G in F-Isock (U). O

For an application to p-divisible groups X over U recall that the (rational) crystalline Dieudonné functor
assigns to (the isogeny class of) X a convergent F-isocrystal D(X) on U. The functor D is fully faithful
on the isogeny category of p-divisible groups by [dJo95, Main Theorem 1].

Corollary 1.6. Let X and Y be two p-divisible groups over U which are semi-simple in the isogeny
category. Let S € |U| be a subset of Dirichlet density one such that for every s € S the traces of the
Frobenii on the rational Dieudonné modules are equal for s*X and s*Y. If Conjecture holds for
D(X)®D(Y) then X and Y are isogenous.

Proof. For every s € |U| the rational Dieudonné module of the pullback s*X of X to s equals ws(D(X)),
which is (non-canonically) isomorphic to w,, (D(X)), such that the Frobenius of s*X is mapped to the con-
jugacy class Frobs(D(X)). By the full faithfulness of D the F-isocrystals D(X) and D(Y") are semisimple,
Corollary [LB shows that they are isomorphic, and hence X and Y are isogenous. O

Although currently we are unable to establish Conjectures .2} [[3] and [[L4l in general, we can still prove
them in many cases. We will start with an easy result explaining the relation to the classical Chebotarév
density theorem. Let ord,: K * — Q be the unique p-adic valuation such that ord,(p) = 1. When we will
talk about slopes and Newton polygons, we will do so with respect to the valuation ord,. Moreover for the
sake of simple terminology we will say that o € K is an eigenvalue of Frob, (F) if it is the eigenvalue of
one and hence every element of Frob, (F) acting on the K.-vector space w, (F). By the Newton polygon of
Frob, (F) we will mean the Newton polygon of the semilinear Frobenius F' on the fiber at x. If x € U(F¢n)
it equals L times the common Newton polygon of the (K,-linear) elements of Frob,(F). Recall that an
F-isocrystal F is called isoclinic if for every = € |U| the Newton polygon of Frob,(F) has only one slope
(which then is the same at all z). If F is isoclinic of slope zero, it is called unit-root. For those F-isocrystals
Conjecture is an easy consequence of the classical Chebotarév density theorem.

Proposition 1.7. Conjecture (L2 holds for convergent unit-root F-isocrystals.

We will prove a more general statement later, but we think that the proof is rather instructive, and it
is also a good motivation for our conjectures. Therefore, we decided to present its proof here.

Proof of Proposition[T.7]. Choose a geometric base point @ above u and let 7¢*(U,u) be the étale fun-
damental group of U. By a result of R. Crew [Cre87, Theorem 2.1 and Remark 2.2.4] the full sub-
category of F-Isock (U) consisting of unit-root F-isocrystals is tensor equivalent to the category of con-
tinuous representations of 7$*(U, @) on finite dimensional K-vector spaces; see Proposition [5.2 below. Let
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p: (U, 4) — GL,(K) be a representation corresponding to a unit-root F-isocrystal 7. Then Gr(F /U, u)
is a closed subgroup of GL, i, and by Corollary 5.4 below there is a finite field extension L of K. such
that Gr(F/U,u) x g, L equals the Zariski-closure of the image of p. Moreover, for all points x € |U| the
Cr(F/U,u)(K)-conjugacy classes of p(z. Frob, ') and Frob, (F) coincide, where Frob, ' € Gal(F, /F,) is
the geometric Frobenius at = which maps a € F, to a'/% for ¢, = #F,.

To prove Conjecture let S C |U| be a subset of Dirichlet density one. By the Chebotarév density
theorem [Ser63, Theorem 7] the Frobenius conjugacy classes for the points x € S are dense in 7$*(U, u)
with respect to the pro-finite topology. Since this topology is finer than the restriction of the Zariski

topology from Gr(F/U,u), the set |J g Frob,(F) is Zariski-dense in Gr(F /U, u). O

Note that Conjecture for convergent unit-root F-isocrystals on U is considerably weaker than the
classical Chebotarév density theorem for U; see Remark for more explanations. Let us next describe
cases for which we prove the conjecture. In Section [7] we use a theorem of Oesterlé [Oes82] to strengthen
Proposition [I.7] to

Theorem 1.8. Conjecture holds for direct sums of isoclinic convergent F-isocrystals.

In order to formulate our hardest result for the remaining cases where we can prove the conjectures in
this article we make the following

Definition 1.9. Let F be a convergent F-isocrystal on U. We will say that F is firm if it is a successive
extension of isoclinic convergent F-isocrystals and the monodromy group Gr(F**/U,u) is abelian. We
will say that F is weakly firm if it is a successive extension of isoclinic convergent F-isocrystals and the
maximal quasi-torus of the monodromy group Gr(F** /U, u) x i, K (or equivalently of Gr(F/U,u) x k, K)
is abelian. This holds in particular, if Gr(F/U,u) is connected. (For the definition of a maximal quasi-
torus see Definition below.) Since subgroups of abelian groups are abelian, we get that firm convergent
F-isocrystals are weakly firm. If there is a non-empty open sub-curve f: V < U such that the restriction
Fly of F onto V is firm, resp. weakly firm we will say that F is locally firm, resp. locally weakly firm
(with respect to V-C U ). Note that in particular f*F|y has a slope filtration on V' with isoclinic factors.
If F is (weakly) firm, then its semi-simplification F** is a direct sum of isoclinic convergent F-isocrystals.
Then by Proposition [0.11] below the natural morphism Gr(f*F/V,u) — Gr(F/U,u) is an isomorphism.
Therefore, (weakly) firm implies locally (weakly) firm.

Note that by the specialization theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there is
a non-empty open sub-curve V' C U on which the Newton polygon of F is constant, and by the slope
filtration theorem [Kat79, Corollary 2.6.3] F|y has a slope filtration with isoclinic subquotients. Therefore,
the first condition in the definition of locally firm and locally weakly firm convergent F-isocrystals is not
very restrictive. We show in Proposition [T.3] below that the categories of firm, weakly firm, locally firm
and locally weakly firm convergent F-isocrystals on U are full Tannakian sub-categories of F-Isock (U).
In Proposition [Tl we give examples for locally (weakly) firm convergent F-isocrystals. Our main result
is the following

Theorem 1.10. Let F be a semi-simple locally weakly firm convergent F-isocrystal on U which has an
overconvergent extension. Let G € (F)) and let J be a direct sum of semi-simple isoclinic convergent
F-isocrystals on U. Then Conjectures[1.2, and[14) hold true for G & J.

The proof of Theorem given on page [69 consists of four main steps: using the theory of reductive
groups and Theorem above we first show that it is enough to show Conjecture [[4] for F only. Then
we prove an analogue of Conjecture [[L4] for the overconvergent monodromy group of the overconvergent
extension of F. Then, using group theory again, we show that F satisfies the hypotheses of the following

Theorem 1.11. Let F be a semi-simple convergent F-isocrystal on U and let f: V — U be an open sub-
curve containing u such that f*F has a slope filtration on V' with isoclinic subquotients. Assume that under
the natural inclusion Gr(f*F/V,u) C Gr(F/U,u) every mazimal quasi-torus of Gr(f*F/V,u) x g, K is
also a mazimal quasi-torus of the group Gr(F/U,u) xr, K. Then F satisfies Conjectures [L3, and

=

Once more using group theoretical methods, we finally show in Theorem [I1.6]that the hypotheses on F
in Theorem [[.TT] above are actually equivalent to Conjecture [[4] for semi-simple convergent F-isocrystals
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which are locally weakly firm with respect to f: V < U. Theorem [[.I1] is proven in the formulation
of Theorem [[0.4] below. Note that one of the distinguishing features of convergent F-isocrystals is that
their monodromy groups in general shrink when we shrink the underlying curve U. This shows that F'-
isocrystals lack the type of rigidity which we have for [-adic and even p-adic Galois representations, where
the monodromy group does not change when one shrinks the curve. R. Pink addressed this problem and
asked whether the shrunken monodromy group always is a parabolic subgroup in the special case when F
comes from a p-divisible group on U. We cannot prove this but we can prove the weaker Theorem [[.11]
which is still sufficient for proving the Chebotarév density conjectures for F-isocrystals appearing in
Theorem It also singles out Pink’s problem as the most central one in the theory of convergent
F-isocrystals.

In the last section we will also look at the analogous problem for overconvergent F-isocrystals, and
prove the following theorem (see Theorem [[3.21and Corollary [[3.3) using arguments inspired by our proof
of Theorem We think that this is a very interesting result on its own, but it also plays a crucial role
in the proof of Theorem [[LT0

Theorem 1.12. For every semi-simple overconvergent F-isocrystal the analogs of Conjectures [1.2,
and [T hold true.

We finish the introduction with a brief summary of the individual sections. In Section [2] we give the
l-adic proof of Theorem [Tl In Section Bl we give the precise definitions of Dirichlet density and of the
Frobenius conjugacy class Frob, (F), and we prove several elementary facts about the monodromy group.
In Section [] we collect properties of the algebraic envelope of a topological group and we treat constant
F-isocrystals. Section [H recalls Crew’s theory [Cre87] of unit-root F-isocrystals and Section [f] discusses
the group of connected components of the monodromy group Gr(F/U,u). In Section [7] we prove our
Chebotarév density conjectures for direct sums of isoclinic F-isocrystals (Theorem [[]]). In Section [I0 we
formulate properties of the closed subgroup Gr(f*F/V) C Gr(F/U) which one might expect when one
restricts a convergent F-isocrystal on U to an open sub-curve f: V < U and we prove in Theorem [10.4]
that these properties imply our Chebotarév density conjectures (Theorem [[LTT]). For this purpose we have
to collect in SectionBla few facts about semi-simple elements in non-connected linear algebraic groups, and
study the notion of mazimal quasi-tori, which is a good generalization of maximal tori in not necessarily
connected groups. In Section @ we study the intersections of conjugacy classes with maximal quasi-tori. In
Section [0 we prove Theorem [[L.TT] and conduct a detailed investigation of the hypothesis of this theorem
on maximal quasi-tori. In Section [[1] we furnish a few useful conditions which guarantee that the direct
sum of a locally firm convergent F-isocrystal with finitely many isoclinic convergent F-isocrystals satisfies
the hypotheses of Theorem [[LTT] and hence the Chebotarév density. Finally, in Section [[3] we treat the
case of overconvergent F-isocrystals, and also derive Theorem In Appendix [A] we briefly review the
theory of (non-neutral) Tannakian categories and of representations of groupoids.

Acknowledgement. We thank Friedrich Knop for providing a proof of Theorem and Zakhar
Kabluchko for some advice on measure theory. We are also thankful for the support received in form of
grant SFB 878 by the German Science Foundation (DFG) and the EPSRC grants P19164 and P36794.

2. ISOGENIES OF ORDINARY ABELIAN VARIETIES

We will give two proofs of Theorem [Tl an [-adic one in this section and a p-adic one in Section
before Theorem [13.6!

l-adic proof of Theorem [l If f: A — B is an isogeny then V,f: V,(A) — V,(B) is an isomorphism.
Conversely assume that V,(A) = V,,(B). By the specialization theorem of Grothendieck and Katz [Kat79)
Theorem 2.3.1] we may replace U by a non-empty open sub-curve such that for every « € |U| the abelian
varieties A and B have good ordinary reduction at z. In particular the p-adic representations V,(A) and
V,(B) are unramified at z for every such x. Let ky C k be the maximal Galois extension of k¥ unramified at
every x € |U| and let Fr,, C Gal(ky /k) denote the Frobenius conjugacy class corresponding to z for every
x € |U]. By the above we may consider V,,(A) and V,(B) as continuous representations of Gal(ky /k).
Let ag1, g2, .. ., azq denote the common eigenvalues of the actions of elements of Fr, on V,(A) = V,(B)
where d is the common dimension of A and B. For every x € |U| let A, and B, denote the reductions of A

and B over z, respectively. Then the eigenvalues of the action of the Frobenius element of Gal(F,./F,.) on
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Vp(Ay) and V,(B;) are a1, . . ., agq for every o € |U]. Choose a prime number [ different from p. Because
A, and B, are ordinary abelian varieties of dimension d over I, we get that the eigenvalues of the action
of the Frobenius element of Gal(F,/F,) on V;(A,) and Vi(B,) are au1,-..,0ud,qs/Cs1s - - Q) Czq for
every z € |U|. Indeed, by a classical theorem of Manin [Dem72, Chapter V.5, Corollary on p. 88] the
eigenvalues of the Frobenius acting on the Dieudonné module associated with the p-divisible group A, [p]
are the reciprocal roots of the L-function L(A,,t) of A, where we take into account the multiplicities.
In particular the eigenvalues of the Frobenius acting on A,[p™]®" are exactly those reciprocal roots of
L(A,,t) which have p-adic valuation zero, again taking into account the multiplicities. Let p(t) be the
product of all linear factors of L(A,,t) whose reciprocal root has slope one. Since A is isogenous to its
dual, we have the functional equation L(A,,t) = t>4L(A,,q/t). Therefore, t¥p(q/t) divides L(A.,t). The
reciprocal roots of t?p(q/t) have slope one, therefore p(t) and t%p(q/t) are relatively prime. We get that
p(t)tp(q/t) divides L(A,,t). These polynomials are monic and have the same degree, therefore they are
equal.

Note that the l-adic representations V;(A) and V;(B) are unramified at 2 and by the above the common
eigenvalues of the actions of the elements of Fr, are az1,...,Qzd, Gz/Qx1, - -, Gz /zq for every z € |U].
Since the union {J, ¢ Fro is dense in Gal(ky/k) by the Chebotarév density theorem [Vil06, Theo-
rem 11.2.20], the traces of the actions of v on V;(A) and V;(B) are equal for every v € Gal(k/k). Because
by a theorem of Zarhin [Zar74al, Theorem 1.5] the [-adic representations V;(A) and V;(B) are semi-simple
we get that they must be isomorphic; see [Ser98, Lemma in §1.2.3 on p. I-11]. Hence by Zarhin
Theorem 1.5] the abelian varieties A and B are isogenous. g

Remark 2.1. The claim of Theorem [ T]is false when the abelian varieties are not assumed to be ordinary.
Indeed let E be a supersingular elliptic curve defined over Fy and let E’ be a twist of E by a continuous
quadratic character y of Gal(k/k). The curve E has everywhere good reduction while £’ has bad reduction
at the places where x is ramified. This follows from the criterion of Néron-Ogg-Shavarevich [ST68| §1,
Theorem 1] because the I-adic Tate modules satisfy T;(E’) = T)(E) ® x; see for example [ST68] § 5, Proof
of Theorem 8]. Since the set of places of bad reduction for an abelian variety A over k is an isogeny
invariant of A ([STG8, §1, Corollary 3]) we get that E is not isogenous to E’ in the latter case while
the zero-dimensional representations V,(E) and V,(E’) are obviously isomorphic. Also note that for every
abelian variety A over k the direct products A x E and A x E’ are not isogenous (for example by Poincaré’s
reducibility theorem). However, the p-adic representations V, (A4 x E) and V,,(A x E’) are both isomorphic
to V,(A) hence the ordinariness condition is necessary in every dimension.

3. BASIC DEFINITIONS AND PROPERTIES

We describe in complete detail our basic setup for the convenience of the reader, possibly at the price
of some repetition. Let U be a smooth, geometrically irreducible, non-empty curve over IF;, and let F' be
the g-Frobenius on U. Let K be a finite totally ramified extension of W(Fq)[z—lj] and let K be an algebraic
closure of K. Since F is the identity on F,, we may choose on K the identity F' =idx as a lift of . For
every n € N let Uy, := U ®p, Fyn, let K,, C K be the unramified extension of K of degree n, and let F
be the Frobenius of K,, over K. Then F™ is the identity on K,,. Let F"-Isock, (U,) denote the K,-linear
rigid tensor category of K,-linear convergent F™-isocrystals on U,; see [Cre92l Chapter 1] for details.
Let F-Isock (U) simply denote F'-Isock (U). If F is an object of F™-Isock, (Uy,) we let ((F)) denote the
Tannakian sub-category of F™-Isock, (Up,) generated by F; see Definition [A.3l There is a functor

(3.1) ()™ Plsock (U) — F'-Isock, (Uy), F s F™

which is given by pulling back under U, — U, that is, by tensoring the coefficients from K to K,, and
replacing the Frobenius Fr of F by F} := Fro Fr;UF].- 0...0 Frl(;fU_l)*Ff, where Frqy: U — U is the
absolute g-Frobenius of U.

We fix a base point u € U(Fge) = Ue(Fqe). The pullback u*F of an F°-isocrystal F to u supplies a
functor w,, from F¢-Isock, (U.) to the category of F¢-isocrystals on Spec Fe with values in K. The latter is
simply the category of finite dimensional K.-vector spaces together with a K,-linear automorphism coming
from the Frobenius F'¢. The fiber functor w, makes F°-Isock,(U.) into a neutral Tannakian category.
For F € F¢-Isock, (Ue) let Gr(F,u) := Gr(F/Ue,u) := Aut®(wu|«;>>) denote the monodromy group of F
with respect to the fiber functor w,,; see [DM82] Theorem 2.11]. By [DMS82] Proposition 2.20(b)] it is a
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linear algebraic group over K. and ((F)) is tensor equivalent to the category of K,-rational representations
of Gr(F/U.,u). By Cartier’s theorem Gr(F,u) is smooth; see for example [Wat79, §11.4].

On the category F-Isock (U) we can still consider the fiber functor F — u*F to K.-vector spaces. It
factors through the functor (.)® from @) as u* = w, o (.)(®). This makes F-TIsock (U) into a K-linear
Tannakian category, but v* is non-neutral when e > 1. Let F € F-Isock (U) and let ((F)) be again the
Tannakian sub-category of F-Isock (U) generated by F. Then ((F)) is tensor equivalent to the K -rational
representations of a K. /K-groupoid &t(F /U, u); see Definition [A.5] and Theorem [A.T1] In this article we
are only interested in its kernel group Gr(F,u) := Gr(F/U,u) := &v(F/U,u)?, which equals the auto-
morphism group of the fiber functor u*: F-Isock (U) — K.-vector spaces and is a smooth linear algebraic
group over K, by Theorem and Proposition We will use this fact frequently. We explain
the relation of Gr(F/U,u) with Crew’s monodromy group [Cre92] in Remark and Proposition {111
Since u* = w, o (. ) the tensor functor (.)(*) induces (by Proposition A.12 and Example A.13])
a morphism of linear algebraic groups over K,

he(F): Gr(F® /U, u) — Gr(F/U,u),

which we study further in Lemma and Remark From now on we will also just write w, for the
fiber functor u* on F-Isock (U).

The group Gr(F/U,u) is independent of the base point u in the following sense. Let u’ € U(F /) be
another base point. By [DMS82, Theorem 3.2] there is a (non-canonical) isomorphism of fiber functors
= Qo Wy K, K =5 w, QK. K over the algebraic closure K. Every other isomorphism differs
from o by composition with an element g € Aut®(w, ®x, K) = Gr(F/U,u)(K). The isomorphism o
induces an isomorphism of algebraic groups o : Gr(F/U,v') xg,, K = Gr(F/U,u) x g, K over K and
the isomorphism (go «), induced by go « differs from a.. by conjugation with g. In this way we may move
the base point whenever it is convenient.

To introduce the Frobenius conjugacy classes let F € F-Isock (U) and fix a base point u € U(F4.). Let
x € |U| be a closed point with residue field Fy» and choose a point y € U(Fg4n) above z. Let 7 be the
least common multiple of n and e. Then Kj is the compositum of K,, and K.. Since y = (Fry )" oy as
morphisms SpecFg» — U, the Frobenius F2%: (FrqﬁU)"*}'(") =~ F() of the F™-isocrystal F(™ induces
an automorphism y* F% of the fiber functor wy, that is an element of Gr(F™ /U,,y)(K,). We denote by
Frob, (F) the Gr(F/U,y)(K)-conjugacy class of its image h,,(F)(y*F}%) under h,(F) in Gr(F/U,y)(K).
Choose an isomorphism of fiber functors a = ay @ wy Pk, K~ w, ® K. K and the induced isomorphism
of algebraic groups au.: Gr(F/U,y) xk, K = Gr(F/U,u) x g, K over K as above. Note that Gal(K /K})
operates on the set of these isomorphisms. Since any other isomorphism «/, differs from «a. by conjugation
with an element in Gr(F/U, u)(K), the conjugacy class o, (Frob,(F)) C Gr(F/U,u)(K) is independent of
« and hence also invariant under Gal(K /K7). We claim that, moreover, it is invariant under Gal(K5/K,)
and only depends on the closed point = of U lying below y. Indeed, there is a point § € U(F4) above
x with Fry oy = y and §*Fr)  F = y*F. The isomorphism Fr: Fr; ;7 == F of the F-isocrystal F
induces an isomorphism §*Fr: y*F == y*F under which the K,-linear automorphisms F'2 on the fibers
at y and § are mapped to each other. So Fr maps (ag.u)«(Froby(F)) onto (ay.u)s(Froby,(F)), which
therefore only depends on x and not on y. We denote this conjugacy class by Frob, (F). Finally, the
Galois group Gal(F /F,) = Gal(K, /K) surjects onto Gal(K;/K.) and the isomorphism Fr yields the
Gal(K/K.)-invariance of Frob, (F). We therefore may identify it with a subset of the K.-group scheme
Gr(F/U,u).

Definition 3.1. The subset Frob,(F) C Gr(F/U,u) defined above is called the (stable) Frobenius conju-
gacy class of the K-linear convergent F-isocrystal F on U at the closed point z € U.

Remark 3.2. The subset Frob,(F) C Gr(F/U,u) is not closed in general, but on its Zariski-closure
Frob, (F) the characteristic polynomial is constant and K.-rational when u € U(F,). More precisely,
for each element g € Gr(F/U,u)(L) for a field extension L/K. we let x, € L[T] be the characteristic
polynomial of g viewed as an endomorphism of the L-vector space wy,(F) ®x, L. Since all elements of
Frob,(F) are conjugate over K and since the characteristic polynomial is continuous with respect to
the Zariski topology, it is constant on Frob,(F). Since moreover Frob, (F) is Gal(K/K,)-invariant, its

characteristic polynomial is K.-rational.
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Lemma 3.3. Let F € F-Isock(U) and let G € (F)). Then there are canonical epimorphisms of group
schemes Gr(F/U,u) — Gr(G/U,u) and their identity components Gr(F/U,u)° — Gr(G/U,u)°. Under
these the Frobenius conjugacy class Frob, (F) is mapped onto Frob,(G) for every closed point = € U.

Proof. The epimorphism of groups Gr(F/U,u) — Gr(G/U,u) comes from Corollary [A.T€)(a)l Its com-

patibility with the Frobenius conjugacy classes follows directly from their definition. That Gr(F/U,u)°
surjects onto Gr(G/U, u)° follows from [Bor91] 1.1.4 Corollary]. O

As a direct consequence of Lemma [B.3] we obtain the following

Lemma 3.4. If F is a convergent F-isocrystal on U for which one of the Conjectures or or
holds, then this conjecture also holds for the semi-simplification F*°° and more generally for every

G e (F). O
The lemma has the following partial converse.

Lemma 3.5. Let F be a convergent F-isocrystal on U and let G € (F)) be such that the epimorphism
m: Gr(F/U,u) — Gr(G/U,u) has finite kernel. If one of the Conjectures[I.3 or[1.7) holds for G, then this

conjecture also holds for F.
Remark. Note that the lemma might be false for Conjecture

Proof of Lemmal3A Let S C |U| be a subset of positive upper Dirichlet density and let C' be a connected
component of Gr(G,u) xg, K in which (J, ¢ Frob,(G) is Zariski dense. (Note for Conjecture [3 that if
Gr(F,u) is connected, then Gr(gG,u) is also connected.) Let C1,...,C, be the connected components of
Gr(F,u) X i, K which map to C. By the finiteness assumption on the kernel of 7, the dimensions of all C;
are the same as the dimension of C. If |, . g Frob, (F) is not Zariski-dense in C; for all 4, then the Zariski-
closure Z; of C; N J, g Frob,(F) has dimension strictly less than dim(Cj;) for all 4. The images 7(Z;)
are closed in C, because  is a finite morphism, and their union contains (J, . 4 Frob,(G) by Lemma B3l
Since the latter is Zariski-dense in C' and C' is irreducible, we must have C' = m(Z;) for one i. But this
contradicts the dimension estimate dim7(Z;) = dim(Z;) < dim(C;) = dim(C), and proves the lemma. [

Proposition 3.6. Let F,G € F-Isockx (U), and let u € U(Fq4e). Then
(a) Gr(F ® G,u) and Gr(Hom(F,G),u) are quotients of Gr(F @ G, u).

(b) the strictly full sub-category (F) N (G)) of F-Isock (U) consisting of all convergent F-isocrystals
H which are both isomorphic to an object of (F)) and to an object of (G)), is a Tannakian sub-

category.
(c) Gr(F ® G,u) is a closed subgroup of Gr(F,u) Xk, Gr(G,u) which sits in a cartesian diagram of
epimorphisms
(3.2) Gr(F @G, u)
Gr(F,u) O Gr(G,u) .

Gr

—~

(F) N (gh,w)

(d) Let L be any field extension of K.. In diagram [B2) any mazximal torus (respectively mazimal split
torus, respectively Borel subgroup) T in G := Gr(F @G, u)® X g, L equals the connected component
of unity (Ty X1, T2)° of the fiber product of its images Ty in G1 := Gr(F,u)° Xg, L and Ty in
Go = Gr(G,u)° x g, L over its image Ty in Gr((( WG, uw)® Xk, L. In this situation, where T is
a mazimal (split) torus, let W = W(T,G) := Na(T)/Za(T) and W; = W (T;,G;) be the (relative)
Weyl groups. Then the natural map W — W1 x Wy is injective.

Remark. Note that T7 x7, Ts can be disconnected, as one sees for example by taking the n-th power map
[n]: Gy, — Gy, for both maps T; — To.

Proof of Proposition [Z.0. @ follows from Lemma B3] because F, G, F ® G and Hom(F,G) are objects
of (F&G).

@follows from the obvious facts that tensor products, direct sums, duals, internal Hom-s and subquotients
of objects in {((F)) N ((G)) again lie in (F) N {(G)).
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By Proposition [AT3] the object F @ G corresponds to a faithful representation of Gr(F & G, u) which
factors through Gr(F, u) X x, Gr(G, u), because a tensor automorphism of w,, (F@G) is trivial as soon as its
restrictions to wy(F) and w,(G) are trivial. Since F and G are objects of (F @ G)), the two upper arrows
in diagram (B:2) are epimorphisms by Corollary Consider the kernels N7 = ker(Gr(f ®G,u) —»
Gr(F,u)) and Ny = ker(Gr(F®G, u) - Gr(G,u)) and the linear algebraic group G := Gr(F &G, u) /N1 Na.
We claim that the diagram

TN

Lot
Gr(F,u) O Gr(G,u)
N P2
G

is cartesian. Since that diagram is commutative, we obtain a morphism from Gr(F @ G, u) to the fiber
product Gr(F,u) X g Gr(G, u), which is a closed immersion, because Gr(F &G, u) — Gr(F,u) x g, Gr(G, u)
is one. Consider an algebraically closed field L and an L-valued point (g1, g2) € Gr(F,u) X Gr(G, u) with
p1(g1) = p2(g2). Since 7; is surjective, there are elements §; € Gr(F @ G,u)(L) with 7;(g;) = ¢;- The
equation plﬂ'l(gl) = pl(gl) = p2(92) = p27T2(§2) = p17T1(§2) shows that §1_1§2 lies in ker(plﬂ'l) = N1N2.
So there are elements n; € N; with g;1g2 = nlngl. The element gin, = gana € Gr(F @ G, u)(L) satisfies
mi(gini) = mi(g;) = g; for i = 1,2 as desired. This proves that Gr(F @ G,u) is isomorphic to the fiber
product Gr(F,u) xg Gr(G, u).

It remains to identify G with Gr({(F)) N (G)),u). Since N arises from the epimorphism of groupoids
Or(F DG, u) - &r(F,u) it is invariant under the conjugation action of &t(F &G, u) on Gr(F @G, u) from
(A2). The same is true for Na, and hence also for Ny N3. Corollary [AT6(b)| applied to the epimorphism
Gr(F @ G,u) — G shows that G is the monodromy group Gr(K,u) of an object K € (F & G)), that is,
G is the kernel group of &t(IC,u). Since Br(K,u) is also a quotient of &v(F,u), respectively of &r(G, u),
the object K is both isomorphic to an object of ((F)) and to an object of (G)) by Proposition
that is, it belongs to (F)) N (G)). This yields an epimorphism Gr({F)) N (G)),u) — Gr(K,u) = G by
Corollary[AT0(a)] Conversely, since ((F))N((G)) is contained both in (F)) and ((G)) the map Gr(F&G,u) —
Gr({(F)HN{G)), u) factors over Gr(F,u) and over Gr(G, u). So its kernel contains Ny and Na. This provides
the epimorphism in the other direction G' — Gr({(F)) N {(G)), u) and shows that both are isomorphisms.

[(d)] The natural maps T' < Ty x7, To < Gr(F @ G, u) are closed immersions. Since a product of (split)
tori is a (split) torus (respectively, a product of connected solvable groups is connected solvable) and
(Ty x1, T2)° C T1 x i, T5 is a closed connected subgroup, it is a (split) torus by [Bor91l II1.8.4 Corollary]
(respectively a connected solvable group by [Hum?75, 17.3 Lemma]) . But since T is a maximal such group,
we must have T = (Ty X7, T»)° as desired.

To prove the injectivity of the natural map W — Wy x Wa let n € Ng(T') be mapped to the identity,
that is m;(n) € Zg,(T;) for i = 1,2. Thus, for every ¢t € T the element ntn='t~! € G maps to the identity
in G;. Since G — G1 x1, G is a closed immersion, this shows that ntn='t~! =1 in G for every t € T and
n € Zg(T). The injectivity follows. O

For the next results we need the following well known

Lemma 3.7. Let G be a linear algebraic group over an algebraically closed field L of characteristic zero.

(a) Let g € G(L) and let n be a positive integer such that g™ is semi-simple, then g is semi-simple.
(b) All unipotent elements of G(L) are contained in the identity component G° of G. In particular all
unipotent groups in characteristic zero are connected.

Proof. If g = gsgu is the multiplicative Jordan decomposition, where gs, g, € G(L) are the semi-simple
and unipotent parts of g, respectively, then g™ = ¢ ¢, is the multiplicative Jordan decomposition of ¢g".
Consider a faithful representation G C GL,. Then g, is conjugate in GL, to a unipotent upper triangular
matrix (use [Bor91l IV.11.10 Theorem]), and hence if g,, # 1 it has infinite order as char(L) = 0. Therefore,
g" is semi-simple, that is g; = 1, if and only if ¢, = 1 and ¢ is semi-simple.

[(B)]1f g € G(L) is a unipotent element, then its image in G/G® is of finite order and unipotent by [Bor91l
[.4.4 Theorem], whence trivial by@ O
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Lemma 3.8. Let F € F-Isocg(U). Then F is semi-simple if and only if the category (F)) is semi-
simple, if and only if the identity component Gr(F,u)° is reductive. More generally, let F*° be the semi-
simplification of F. Then a: Gr(F,u) — Gr(F**,u) is the mazimal reductive quotient of Gr(F,u), that
is, ker v is the unipotent radical of Gr(F,u). In particular, o induces an isomorphism on the groups of
connected components.

Proof. In the neutral situation where K, = K, the first statement is proven in (the proof of) [DMS82]
Proposition 2.23 and Remark 2.28]. In the non-neutral situation, Proposition tells us that F is
semi-simple if and only if F ®x K. is semi-simple in F-Isockx(U) @k K.. Assume now that this is
the case. By Remark [A20] the Tannakian category (F @k K.) = (F) @k K. is equivalent to the
category Repy Gr(F,u) of K.-rational representations of the K.-group Gr(F,u). By the neutral situation
discussed above it follows that Gr(F,«)° is reductive. Conversely, the latter implies that (F ®x K.)) is
semi-simple. If now G € ((F)), then Gox K. € ((F®kK.)), and hence G is semi-simple by Proposition[A:22]
This proves the first statement also in the non-neutral situation.

We prove the rest. In a suitable basis the representation p of G := Gr(F,u) on w,(F) can be written
in block matrix form such that the diagonal block entries are representations corresponding to the simple
constituents of F. Therefore, the kernel of « lies in the subgroup of upper triangular matrices with ones
on the diagonal. So it is a unipotent group and as such connected by Lemma 3.7l Being also normal,
it is contained in the unipotent radical. On the other hand the unipotent radical is mapped to {1} in
G = Gr(F?®%,u), because the latter is a reductive group by our first statement. O

Proposition 3.9. Let F € F-Isockx(U) be a semi-simple convergent F-isocrystal on U. Let Z be the
center (respectively the connected component of the center) of the connected component G° := Gr(F /U, u)°
and let [G°,G°] be the derived group of G°. Then Z and [G°,G°] are characteristic subgroups of G°.
Let S, T € {(F)) be the convergent F-isocrystals whose monodromy groups are Gr(S/U,u) = G/Z and
Gr(T/U,u) = G/[G°,G°]; see Remark[A17 and Corollary [AIA(b)} Then Gr({F) N {(G),u) is a finite

group and in the diagram
(3.3) G = Gr(F/Uu) » Gr(S@T/Uu) = G/Z XarFynioyu) G/G°,G°]

there is a natural isomorphism on the right, and the kernel of the surjection on the left is finite and
contained in the center of G°.

Proof. Since F is semi-simple, G is reductive by Lemma B8 The group G°/Z is semi-simple by [Bor91l
IV.11.21 Proposition] and G°/[G°, G°] is a torus by [Bor91] IV.14.11 Corollary and 111.10.6 Theorem]. The
group Gr({F)N{(G)),u)° is both a quotient of G°/Z and G°/[G°, G°], and hence is semi-simple and a torus
by [Bor91l TV.14.11 Corollary, IT1.8.4 Corollary and I11.8.5 Proposition]. Therefore, Gr({(F)) N {G)),u)° is
trivial by [Bor91) IV.11.21 Proposition] and Gr({(F)) N {(G)),u) is a finite group. The isomorphism on the
right was established in Propositionm Finally the kernel of the map ([33) is contained in the center
of G° by construction and its connected component is contained in Z° N [G°, G°] which is a finite group
by [Bor91l IV.14.2 Proposition)]. O

In the rest of this section we want to make a few remarks on Dirichlet density.

Definition 3.10. We will say that a subset S C |U| has Dirichlet density e for some real number 0 < ¢ <1
(in the sense of Serre) if
N — deg(x)s
lim Lscs =e.
s 1+ log(s —1)
Moreover we will say that S has positive Dirichlet density if it has Dirichlet density ¢ for some positive ¢.

Definition 3.11. The upper Dirichlet density §(S) of a subset S C |U] is
—deg(z)s
5(S) = lim sup — Loesd "
s—1+ 10g(8 - 1)
Note that the limit superior on the right hand side always exists and it is between 0 and 1, and it is equal
to the Dirichlet density of the set .S, if the latter exists. In particular the upper Dirichlet density of S is 0
if and only if S has Dirichlet density 0. We will say that S has positive upper Dirichlet density if 5(S) > 0.
Trivially 6(R) < §(S) when R is a subset of S.
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The key property of upper Dirichlet density is the following easy to prove
Lemma 3.12. Let S C |U| be a subset, and assume that
S=51USU---US,,
where the sets S; are pair-wise disjoint. Then
5(S) < 6(S1) +6(S2) + -+ 6(Sn)-
Proof. Note that

_ Emes q deg(x)s _ _ 21651 q deg(x)s _ 21652 q deg(x)s L _ ZzGSn q deg(x)s
log(s — 1) log(s — 1) log(s — 1) log(s — 1) ’
so by the sub-additivity of the limit superior we get the lemma. 0

We will also need the following

Lemma 3.13. Let S C |U| be a subset of Dirichlet density one, and let R C |U| be a subset of positive
upper Dirichlet density. Then RN S also has positive upper Dirichlet density.

Proof. Let S¢ C |U| be the complement of S in |U]. Since

Z qfdcg(x)s _ qudcg(z)s + Z qfdcg(z)s,

ze|U| zeS zeSe

and
. _ Eme\U| q deg(x)s
lim
s—1+ log(s —1)
by the prime number theorem for U, we get that S° has Dirichlet density zero. Therefore, R N S¢ has
Dirichlet density zero, too. Since R is the disjoint union of R NS and R N S¢, the claim follows from
Lemma 312 0

=1

The following well known property of the (upper) Dirichlet density obstructs the technique of replacing
U by a finite étale Galois covering.

Example 3.14. Let f: V — U be a finite étale Galois covering of degree n, where n is a prime number,
let S C |U| be a subset of upper Dirichlet density 6(S), and let S’ = f~1(S) C |V| be the preimage of S
under f.

(a) Assume that n|deg(z) for all z € S. Then there are exactly n points 2’ of V' lying above each x € S,
and they have degree deg(z') = deg(x)/n we compute

Z (qn)—deg(m')s - n. Z q deg(x)s
@'es’ zes
Therefore, S’ has upper Dirichlet density §(S’) = n - §(S).

(b) Assume that n { deg(z) for all x € S. Then there is exactly one point 2’ of V' lying above each = € S,
and it has degree deg(2’) = deg(z) we compute

Z (qn)fdcg(gﬁ’)s _ Z qfn deg(z)s )
xS’ z€S
When s — 17 this sum converges in R, whereas log(s — 1) goes to co. Therefore, S" has upper Dirichlet
density §(S") = 0.
This is of course analogous to the situation for number fields, where one says that a subset S C |M]| of
the set | M| of places of a number field M has Dirichlet density J if
: <
lim inf #iw € 5: N(z) < m} =9,
where N(z) := #O)s /2 denotes the norm of z. Let N/M be a Galois extension of number fields whose
degree n is a prime number. Then the set S of places in M which split completely in N has Dirichlet

density 6(S) = L1, whereas its preimage S’ C |N| has Dirichlet density §(S’) = 1. The reason is that above
every place x € S there are exactly n places in S” with the same norm as x.
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On the other hand the set S of places in M which are inert in N has Dirichlet density §(S) = =2,
whereas its preimage S’ C |N| has Dirichlet density §(S’) = 0. The reason is that above every place z € S
there is exactly one place 2’ in S* whose norm is N(z') = N(x)".

For applications to isoclinic F-isocrystals we will need the following effective form of the classical
Chebotarév density theorem for function fields.

Notation 3.15. By a finite Galois group G of the curve U we will mean a quotient 7$*(U, @) — G by
an open normal subgroup. For every such G and for every z € |U| let FrmG C G denote the image under
the quotient map of the conjugacy class of the geometric Frobenius Frob, Vat z in 7€t (U, @) which maps
a € F, to a'/% where ¢, = #F,. For every such G let G¢ denote the maximal constant quotient of G,

that is, the largest quotient of G which can be pulled back from Gal(F,/F,). In particular, G¢ is finite
cyclic, and hence abelian. Let G9¢° be the kernel of the quotient map G — G°.

The aforementioned effective version is the following

Theorem 3.16. Let S C |U| be a set of positive upper Dirichlet density. Then there is a positive constant
e > 0 such that for every finite Galois group G of U there is an infinite subset R C N such that for
every n € R the union in G of the Frobenius conjugacy classes Frf for all x in {x € S: deg(x) = n} has
cardinality at least € - #GI.

We will first prove a couple of lemmas. For every positive integer n let P(n) denote the number of
closed points of U of degree n. By the prime number theorem for function fields [Ros02] Theorem 5.12],
which is an easy consequence of the Weil bounds, we have

(3.4) P(n) = % +0 (qu) .

Lemma 3.17. Let T C |U| be a set of positive upper Dirichlet density 5(T). There is an infinite subset
R C N such that for every n € R we have:

T)-P
#{x € T: deg(x) =n} > w
Proof. Assume that the claim is false. Then there is a positive integer m such that
o(T)- P
#{x € T: deg(x) =n} < w

for every n > m. Thus for every s € R with 1 < s < 2 we have:
_ _ o(T) _
deg(x)s deg(x)s ns
Z q ' < Z q— BT ¢ 5 Z P(n)g—"*.
€T z€T: deg(z)<m n>m

Since log(s — 1) is negative for such s, we get from the above that

_ — — deg(a)s < _ P —ns
0(T) < limsup Edeg(m)gm 1 + o(T) lim sup Z">m (n)q .
A (s~ ) g s = D)

The first limit on the right hand side is zero, while the second limit is

S o (1) g1 gt 0 (22
lim sup nem - = limsup o8- —7 ) Z S N A
o log(s — 1) DU\ T g -1 22 Tlog(s— 1)
by the prime number theorem (B4l for U. By L’Hoépital’s rule this limit is 1. However, the resulting
inequality §(7) < 6(T")/2 is a contradiction to 6(7T") > 0. O

Let G be a Galois group of U and let D C G be a conjugacy class. Then the image of D under G — G°
is an element in G¢ which we will denote by D°. Let ¢(G) denote the order of G°. Then there is a unique
isomorphism tg: G¢ == Z/c(G) such that for every x € |U| the Frobenius Fr&¢ at z in G¢ maps to
kE mod ¢(G) if and only if deg(z) = k mod ¢(G).
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Theorem 3.18. For every k > 0 there is an N(k) = N(k,G) € N such that for every n > N(k) and for
every conjugacy class C C G we have

c(G)(A+k)P(n)#C ; = ce delG
4{r e U: FrC C O, deg(z) =n} < #G cifn L'G( ) mod ¢(G),
0 , otherwise.
Proof. We use [Vil06, Proposition 11.2.16] which says that
#reU: B C O, deg(x) =n} = % % + O(#C ¢?)

if n = 1¢(C°) mod ¢(G) and zero otherwise. The theorem then follows from the prime number theo-

rem (B4). O

Proof of Theorem [3.10. We claim that e = @ will do. Now assume that the claim is false, and let G
be a Galois group of U which violates the assertion of the theorem. By Lemma [3.17] there is an infinite

subset R C N such that for every n € R we have:
(S)P(n)
5 .
For every n € N let F,, be the union in G of the Frobenius conjugacy classes FrwG for all x in the set
{z € S: deg(x) = n}. It decomposes into a disjoint union of conjugacy classes C' in G. We apply

Theorem [B.1§ for kK = 1 to each component C of F;, and add. By shrinking R, if necessary this tells us
that

(3.5) #{x € S: deg(x) =n} >

2¢(G) P(n)#Fy
#G

for every n € R. Since we assumed that G is a counter-example, by shrinking R further, if this is necessary,

we may assume that

(3.6) #{rxeS: deg(x) =n} < #{zxecU: S C F,, deg(x) =n} <

d(S)#GI%  §(S)#G
4  4e(@)
for all n € R. By applying the inequality (3.6]) to F,, we get that
2¢(G)P(n)#F, - 2¢(G)P(n) .S(S)#G 5(S)P(n)
#G #G 4¢(Q) 2 ’
but this contradicts ([B.3]). O

#F, <

#{r e S: deg(x) =n} <

4. CONSTANT F-ISOCRYSTALS

Definition 4.1. For any topological group G and any topological field L we let Rep} G be the neutral
Tannakian category of continuous representations of G on finite dimensional L-vector spaces equipped
with the forgetful fiber functor wy which sends a representation p: G — Autz (W) to the L-vector space
W. We define the L-linear algebraic envelope G¥ 218 of G as the Tannakian fundamental group Aut® (w 7)
of Repj, G. By definition, w; induces a tensor equivalence between Rep G and the category Rep;, Gl-ale
of algebraic representations of G218,

We recall the following lemma from [Ser93, p. 66]; compare also with Saavedra [Saa72, Chapter V.0.3.1]
and [DM82, Example (2.33)].

Lemma 4.2. For every continuous finite-dimensional L-linear representation p: G — GL,, 1 of G, the
monodromy group Aut® (wrlpy) of p considered as an object of the category Repy, G, is canonically iso-
morphic to the Zariski-closure of the image p(G) C GL,, (L) of G. Therefore, we may describe G218 as
the limit of the Zariski-closures of the images im(p) over the diagram of all continuous finite-dimensional
L-linear representations p of G (in some suitably large universe). O

Example 4.3. When L = K then the L-linear algebraic envelope of Z is G X Ga,L X Z where £ is the
cardinality of L. We leave the verification of this fact to the reader. What we only need is Theorem
below.

But before let us record the following well known
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Theorem 4.4. Let L be a topological field. Then every short exact sequence

a P

(4.1) 1 G, G, Gs 1

Of Compaclf lfopological g7 Oups induces a Seque’ﬂce
1 : 2 : 3 :

of their L-linear algebraic envelopes, see Definition [{-1], in which the composition p o q is trivial and

ker(p) = q(GE28ynorm s the smallest closed normal subgroup containing q(GX'#),

The proof of Theorem [£.4] will use the following criterion:

Theorem 4.5 ([LP17, Theorem 2.4]). Let

q p

(4.2) G1
be a sequence of affine group schemes over L such that p is faithfully flat. Assume that:
(a) if V € Repy, Ga, then ¢* (V) is trivial in Repy, Gy if and only if V =2 p*(W) for some W € Rep; G,
(b) for any V € Rep; Ga, if Wo C ¢*(V) is the maximal trivial sub-object in Rep; G1, then there
exists W C V€ Repy, G2 such that ¢*(W) = Wy C ¢*(V).
Then in sequence D) the composition poq is trivial and ker(p) = q(G1)
subgroup containing q(G1).

Go Gs 1

norm gs the smallest closed normal

Now we are ready to give the

Proof of Theorem[{.4} We apply Theorem [£.5] Property@ follows at once from the definition.

To prove property @ let V' € Repj G2 be a representation and let Wy C Resgf V' be the L-linear
subspace on which Gy acts trivially. Since G is a normal subgroup of Go the subspace Wy C V is stable
under Go. This proves property because the Gi-representation Wy equals the restriction to Gy of
the Go-representation Wy. O

Corollary 4.6. In the situation of Theorem [{4) let p: Go — GLy (L) be a representation and let p =
pla,: G1 — GLy, (L) be the restriction of p to Gi. Let C C Repy Aut®(wy|(,y) be the full sub-category
consisting of those objects on which the representation induced by p factors through Gs. Then C is a
Tannakian sub-category and the homomorphism p induces a commutative diagram

a P

1 G, G, Gs 1

L | |

q p
1 —— Aut® (W) —— Aut® (wyl(py) — Aut® (wyle) — 1

with exact rows in which the three vertical maps have Zariski-dense image.

Proof. Clearly C is closed under the formation of direct sums, tensor products, duals, internal Hom-s and
subquotients, and hence is a Tannakian sub-category. We apply Theorem and argue as in the proof
of Theorem 4l It remains to show that the morphism g¢: Aut®(wf|<<ﬁ>>) — Aut®(wf|<<p>>) is a closed
immersion which identifies ¢(Aut® (w flusy)) with a normal subgroup of Aut®(w #lioy)- That g is a closed
immersion follows from [DM82] Proposition 2.21], because by definition every representation W € ((p)) is
isomorphic to a subquotient of a representation Resgf V where V € ((p)). By Lemma I2, Aut®(wy(z)
is the Zariski-closure of the image p(G1) C GL,,(L). Since ¢(G1) is a normal subgroup in G, this Zariski-
closure is a normal subgroup of the Zariski-closure of p(Gz) C GL,(L). The latter equals Aut®(wy|¢,)
by Lemma (4.2 O

To formulate the next Theorem we recall the following

Definition 4.7. An F-isocrystal on SpecF, is by definition a pair (W, f) consisting of a finite dimen-
sional K-vector space W together with a K-linear automorphism f € Auty (W), its Frobenius. It can be
pulled back under the structure morphism 7: U — SpecF, to a convergent F-isocrystal 7*(W, f) on U,
and any convergent F-isocrystal on U arising in this way is called constant. We denote by F-Constg (U)
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the category of K-linear constant convergent F-isocrystals on U. And by F-Isock(SpecF,) the cate-
gory of K-linear F-isocrystals on SpecF,. The category F-Isock (SpecF,) is tensor equivalent to the
category RepY Z, where Z carries the discrete topology, by sending a representation p: Z — GL,(K) to
(K97, p(1)) € F-Isock (SpecF,).

Theorem 4.8. Let C = n*(W, f) € F-Isock (U) be a constant F-isocrystal. Then the following holds.

(a) The functor ™ induces an isomorphism between the Tannakian sub-categories (W, f))) C F-Isock (Fy)
and (C)) C F-Isock (U). In particular, every convergent F-isocrystal F in ((C)) is constant.

(b) The monodromy group Gr(C/U,u) of C is isomorphic to Gr((W, f)/Fq,w). This group equals the
Zariski-closure of fZ in Autgk, (W @ K.). In particular, it is commutative and isomorphic to
T xr, G x, where T is an extension of a finite (étale) abelian group (scheme) T/T° (over K.)
by a torus T° and e =0 or 1.

(¢) For every x € |U| the set Frob,(C) consists of the single element fd°8(*),

(d) The categories F-Isock (SpecF,) and F-Consty (U) are tensor equivalent to the category Repy Z,
where 7. carries the discrete topology. In particular, they are neutral K-linear Tannakian cate-
gories. The Tannakian fundamental K./K -groupoids mf15°¢(F,,u) and 7i~C°ns"(U,u) are equal
to the neutral K./K-groupoid associated with the K-linear algebraic envelope ZE2 of 7, see

Definitions and[A7

Proof. Before we start the proof let us make the following obvious remark: an F-isocrystal is constant
if and only if it is trivial as an isocrystal, i.e. it is generated by its horizontal sections. In particular, an
F-isocrystal is constant if and only if it is constant as an F™-isocrystal. Now we prove the claim. Since
7 is a tensor functor we only need to see that every sub-object of 7* (W, f) is constant. This is trivial if
the curve has a rational point, because we can pull back to this point and use that this functor is fully
faithful. The general case follows by applying the previous case to F"-isocrystals, and then use that the
image of the sub-object actually must be invariant under F', too, by its uniqueness.

[(d)] The tensor equivalences follow from[(a)]and Definition 7l The last assertion follows from Lemma @21

@ The isomorphy of monodromy groups follows from @ Since the category of F-isocrystals over an Fg-
linear point is just the category of linear representations of Z, the second claim is an immediate consequence
of the Tannakian formalism. Since the monodromy group is the Zariski-closure of fZ, it is commutative
and is the direct product of its unipotent radical by the subgroup consisting of its semi-simple elements,
see [Bor91l 1.4.7 Theorem]. The latter is an extension of a finite étale abelian group scheme over K.
by a torus, see [Bor91l II1.8.12 Proposition], and the unipotent radical is isomorphic to G, ;. by [Ser88|
Chapter VIII, §2.7, Corollary|. Since the image of f must be Zariski-dense in the quotient Gk, we have
e=0ore=1.

follows from the definition of Frob, (C) from (before) Definition Bl The set Frob,(C) consists of only
one element f4°¢(*) here, because this element is K-rational and Gr(C/U,u) is commutative. O

Definition 4.9. For every convergent F-isocrystal F € F-Isock(U) let (F)).,n be the full Tan-
nakian sub-category of constant F-isocrystals in (F)) and let W (F,u) denote the fundamental group
of ((F)) ponsr With respect to the fiber functor w,. Note that W(F,u) is a quotient of the monodromy
group mf 15°¢(F,,u) X Ko = mf YU u) x ¢ K, = ZK<¥8 Let 3: Gr(F/U,u) - W(F,u) be the
homomorphism induced by the inclusion (F)).,..; C (F)); see Corollary [AIf(a)] We call the kernel

Gr(F/U,u)? := ker(Gr(F/U,u) - W(F,u))
the geometric monodromy group of F. This terminology is motivated by Corollary 5.8 below.

Remark 4.10. Let Isock(U) be the category of K-linear convergent isocrystals on U. If u € U(F,)
R. Crew [Cre92] has defined and studied the monodromy group DGal(F, u) and the Weil group W7 (U/ K, u)
of any convergent isocrystal F € Isock (U). The former is a linear algebraic group over K defined as the
monodromy group of the neutral Tannakian category generated by F in Isock (U) with respect to the
fiber functor w,. The latter is the semi-direct product of Z with the former, where 1 € Z operates on
DGal(F, u) by conjugation with the Frobenius u*Fz. Tt is natural to expect that in our setting DGal(F, u)
plays the role of the geometric monodromy group from Definition However, we are only able to prove
this in the semi-simple case; see Proposition L.11] below.
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For every convergent F-isocrystal F € F-Isock (U) let F~ denote the underlying convergent isocrystal
and let ((F~)) denote the tannakian sub-category generated by F~ in Isock (U). Let a: DGal(F,u) —
Gr(F,u) be the homomorphism induced by the forgetful functor (.)~: (F)) — (F~). It is a closed
immersion by Proposition [A.T4[b)

Proposition 4.11. Assume that F~ is semi-simple. Then there is a canonical diagram with exact rows

0 —— DGal(F,u) —— WF(U/K, u) Z 0

| | l

0 —— DGal(F, u) ——s Gr(F/U,u) ——s W(F,u) ——— 0,
where W (F,u) was defined in Definition [{.9 In particular, DGal(F,u) is canonically isomorphic to the
geometric monodromy group Gr(F/U,u)9.

Proof. The upper sequence is exact by definition of the group W (U/K,u). We next prove the exactness
of the lower sequence. Since ((F)),,,. 15 a sub-category of ((F)) the map f is surjective and faithfully flat.
Therefore, by [EHS0T, Theorem A.1] we only have to check the following:

(i) For an object G of (F)) the object G~ of ((F7~)) is trivial if and only if G is an object of (F))_,, s
(i7) Let G be an object of ((F)), and let Ho C G~ denote the largest trivial subobject. Then there
exists H C G with Ho = H"™.
(i7i) Every object G of ((F™)) is a subobject of an object of the form H™ for some object H of (F)).

Condition (7) trivially holds: an F-isocrystal is constant if and only if it is trivial as an isocrystal. Next we
show (é7). The maximal trivial convergent sub-isocrystal H( of a convergent F-isocrystal G is generated by
horizontal sections of G. Since the Frobenius Fg respects horizontal sections, the isocrystal Hy underlies
a convergent F-isocrystal. Finally we prove (ii7). Because the image of (F')) under (.)~ is closed under
direct sums, tensor products and duals, there is an object H of ((F')) such that G is a subquotient of H"™.
Since F" is semi-simple, so is every object in ((F~)). Therefore, G is isomorphic to a subobject of H™.
To prove the commutativity of the diagram we consider the morphism Z — Gr(F/U,u) which sends
1 € Z to the element u*Fx € Gr(F/U,u)(K). This extends to a morphism W7 (U/K,u) — Gr(F/U,u)
because W7 (U/K,u) = DGal(F,u) x Z is defined as the semi-direct product where 1 € Z operates on
DGal(F,u) by conjugation with u*Fr inside Gr(F /U, u); see [Cre92l §5]. O

5. UNIT-ROOT F-ISOCRYSTALS

We begin our discussion of unit root F-isocrystal with the following useful criterion.

Lemma 5.1. Let F be a convergent F-isocrystal with finite monodromy group. Then F is a unit-root
F-isocrystal.

Proof. Let N € N be the order of the group Gr(F,u). Then (Frob,)" =1 for every x € |U|. This implies
that the Newton polygon of Frob, has slope zero for all z, that is F is unit-root. (]

To recall Crew’s result on unit-root F-isocrystals, fix a geometric base point @ € U(F,) above the base
point u € U(F,e) and let 7t (U, ) be the étale fundamental group. Let K = |J, K, be the maximal un-
ramified extension of K (and K. ) in K and let K be its p-adic completion. Let F-URg (U) C F-Isocg (U)
be the Tannakian sub-category of convergent unit-root F-isocrystals on U. It is tensor equivalent to the
category of K.-rational representations of the K./K-groupoid Aut$ (w,). Let 7"VR(U, ) be the kernel
group of the K./K-groupoid mf"VR(U, u) := Aut% (w,), see Definition [AH and Theorem [AT1l That is,
7I-UR(U,u)® equals the affine group scheme over K. of tensor automorphisms of the fiber functor w, on
F-UR(U).

Proposition 5.2. The category F-UR (U) is canonically tensor equivalent to the category RepS w5t (U, @),
such that the fiber functor w, on F-URk(U) and the forgetful fiber functor w; on Rep§ 7$H(U, @) become

canonically isomorphic over K" In particular, mf YR (U, u)® x g, K s canonically isomorphic to the
base-change to K" of the K-linear algebraic envelope of the topological group w$*(U, ).



CRYSTALLINE CHEBOTAREV DENSITY THEOREMS 17

Proof. The tensor equivalence of categories was established by Crew [Cre87, Theorem 2.1 and Remark 2.2.4].
As this equivalence is natural (see loc. cit.), it commutes with the pull-back to the base point u € U(Fy:).

We explicitly describe the tensor equivalence at u between Repf 75 (u, i) and F-URj (Fye); see [Cre87

p. 119]. The objects in the latter category are pairs (F, F'r) consisting of a K.-vector space F and an F-

semi linear automorphism Fr of F. Also 7t (u, 1) = Gal(F,/Fge) = Z. The tensor equivalence associates

a Galois representation p: Gal(F,/F,c) — Autg (W) with a unit-root F-isocrystal (F, F) in such a way

that there is a canonical Galois and F-equivariant isomorphism

(5.1) Oz:W@Kf?un - F QK. Kuw

where v € Gal(F,/Fyc) = Gal(K"™/K.) = Aut}:?ft(f(““) acts on the left hand side as p(y) ® v and on the
right hand side as idr ®~, and where Frobenius F acts on the left hand side as idy ®F and on the right
hand side as F}-®F The isomorphism o allows to recover (F, Fr) as (W®x K™, id ®F)Gal(]F a/Fa¢) and W
as (F ®k, K unyF=id "and yields a canonical isomorphism of fiber functors a: w TS K~ Wy QK. Kun,
The latter induces an isomorphism of K““-group schemes a,: Aut®(wy) x g Kw =~y FUR(U u)® x g,
K" and so the last statement follows directly from Lemma [£2] O

Remark 5.3. We can compute the difference between w, and w; ® g K., that is the torsor Isom® (wr @K
K. ,w,) and the corresponding cohomology class in i ((Spec Ke) rpges Aut®(wy)); see [DMB82, Theo-
rem 3.2]. It is given by the 1-cocycle h := prja=t o pria € Aut®(wf)(f(““ ®k, K™) where pri: K
K™ ®p, K" is the inclusion into the i-th factor. The image (9y)y € [[,cqai(rm /) Aut®(wy)(K"™) of
h under the morphism K" @x, K" = [ cqairm /) K™ 2 @y — (y(2)y)y is given by

gy = atoy*a = ato ((idr @) o ao (idw ®y)!) = P (1,7) @ 1w s
where we identify Gal(K"*/K,) = Gal(F,/F,e) = 7$*(u, @), where u,: 7$*(u,u) < 7$*(U, @) is the natural
inclusion, and where p"V: 7$t(U, @) — Aut®(w;)(K) is the homomorphism corresponding to the fact
that every element of 7$*(U, @) acts as a tensor automorphism of w; defined over K.

Note that although (p“ni"(u**y))V € H%Gal(Kun/KG)Aut®(wf)(K) it does in general not lie in the
image of the homomorphism K" @k, K" < [ cqaxm k) K" 2 ®y = (v(2)y), which equals the
union of H,YGG&I( /K.y L embedded diagonally into H'yEGal( K i,y I over all finite Galois extensions
L c K" of K.. Namely (p““i"(u*w)) lies in [ cqair/x.) Aut®(wy)(L) if and only if p"V (u.y) = 1 for
all v € Gal(K"™/L).

To formulate the consequence for the individual monodromy groups Gr(F,u) let K be the p-adic
completion of K. Moreover, for each x € |U| let T be a geometric base point of U lying above z and
choose an isomorphism of groups 7$'(U,z) == «$*(U,u). It is unique up to conjugation in w$*(U, ).
Let Frob,' € Gal(F,/F,) = n¢*(z, %) be the geometmc Frobenius which maps a € F, to a'/% where
¢z = #F,. It is the inverse of the arithmetic Frobenius Frob,: a — a%. Then the conjugacy class of

., Frob * in 7t (U, @) is well defined.

Corollary 5.4. Let F be a convergent unit-root F-isocrystal on U and let p: n$*(U,u) — Auty (W) be the
representation corresponding to F under the tensor equivalence from Proposition 5.2 Then the categories
(F) C F-URK(U) and {{p)) C Repj; 7$*(U, @) are tensor equivalent and there is a finite field extension L
of Ke and an isomorphism B: wyl|qpy @x L == wu|ry @K, L of tensor functors on these categories. In
particular Gr(F,u) X g, L is the Zariski-closure of the image of Bx o p: m$t (U, a) — Autg, (u*F)(L) and
for all points x € |U| the Gr(F,u)(K)-conjugacy classes of By o p(zx Frob, ') and Frob,(F) coincide.

Remark 5.5. The field L and the isomorphism g are not canonical. We do not know whether one can find
such a field L contained in K. If L and 3 are replaced by L’ and 8’ then h := 3 o~! € Gr(F/U,u)(LL’)
and so the map 8. o p: 7$"(U, 1) — Autg, (u*F)(LL') is only canonical up to conjugation by h.

Proof of Corollary[5.4} By Proposition the categories ((F)) and ((p)) are tensor equivalent. Since
Aut®(wf|<<p>>) is a closed subgroup of AutK(wf (p)) the Aut® (CUf|<<p>> )—tOI‘SOI‘ Isom® (CUf|<<p>> R Ke, wu|<<;>>)
is a scheme of finite type over K, by [EGAL IV, Proposition 2.7.1] and therefore has a point over a finite
field extension L of K.. This point defines the isomorphism 3: wyly,y) ®@x L == wulry @k, L of



18 URS HARTL AND AMBRUS PAL

tensor functors and an isomorphism of algebraic groups B,: Aut®(wy|y,y) Xk L == Gr(F/U,u) xk, L,
g Bogo B~ So the statement about the latter group follows from Lemma E2
To prove the equality of conjugacy classes note that the tensor isomorphism « from (EJ]) satisfies

ao (p(us Frob, ') ® idgz.,) oa ™t = w*Fr. If h:= Boa~t € Gr(F,u)(K) then f, o p(u. Frob, ") - h =
h-ao (p(u, Frob, ") ® idzu, ) oo™ = h-u*Fr. Since S, 0p(u. Frob, ) and u* F lie in Gr(F,u)(K) this is

an equation for A with coefficients in K which has a solution in K. By Hilbert’s Nullstellensatz it thus has
a solution h € Gr(F, u)(K), too. This proves that the Gr(F, u)(K)-conjugacy classes of S, o p(u, Frob, ')
and u* Fr coincide for « = u. The equality for general « follows from this by replacing u by « and arguing
as above. (]

Remark 5.6. Note that Conjecture for convergent unit-root F-isocrystals on U, which we proved in
Proposition [T is considerably weaker than the classical Chebotarév density theorem for U to the same
extent as the pro-finite topology on 7¢¢(U, @) is finer than the Zariski topology on in its K-linear algebraic
envelope. Namely, the classical Chebotarév density theorem says that the Frobenii of a set .S of Dirichlet
density 1 are dense in w$(U, u) for the pro-finite topology, see [Ser63, Theorem 7]. If F is a unit-root
F-isocrystal the representation 7t (U, @) — Gr(F,u)(L) corresponding to F by Corollary 5.4 where L is
a finite extension of K., is continuous for the p-adic topology. So the Frobenii lie p-adically dense in the
image of this representation, but this image itself is not p-adically dense in Gr(F,u)(L), since it is closed,
but not the whole group in general. This image is only Zariski-dense by Corollary B4l Therefore, the
stronger assertion that the set |J, . g Frob,(F) is p-adically dense in Gr(F,u)(K) is false in general. So it
is unreasonable to expect a density statement for any topology other than the Zariski topology, even in
the most simple case of constant F-isocrystals. This can be seen from the following

Example 5.7. Let C be the pullback to U of the F-isocrystal on F, of rank 1 given by (K, F' = 7°) with
s € Z. If s # 0 then Gr(F,u) = Gy, k.. Indeed, Gr(F,u) is a closed subgroup of Autg_(u*C) = Gy, k.
which contains Frob,, (C) = {7}. Since the set 72¢¢ is infinite, the only such group is G, r,. However,
the set (J, ¢ Frobg (F) C 7% is discrete in G, (K.) for the p-adic topology.

To formulate further corollaries, recall that the geometric fundamental group 7¢* (U, ©)9¢° is defined as

the étale fundamental group m$*(U xp, Fq, @) of U xp, Fy. It sits in Grothendieck’s fundamental exact
sequence [SGAT] IX, Théoreme 6.1]

(5.2) 1 — YU, — " U,a) — Gal(F,/F,) — 1

For the next corollary recall from Definition[£9]the definition of the geometric monodromy group Gr(F /U, u)9¢°
and of W(F,u) as the monodromy group of (F))

const*

Corollary 5.8. In the situation of Corollary[5.4] the homomorphism [, 0p induces a commutative diagram

5.3) 1 ——m (U, )9 —— 5 78U, i) —— Gal(F, /F,) —— 1

lﬂmp lg l

1—— Gr(F/U,u)9%° x g, L —— Gr(F/U,u) xg, L —— W(F,u) Xg, L ——1

with exact rows in which the three wvertical maps have Zariski-dense image. In particular, if p9c° =
p|ﬂf<c(U7a)gm is the restriction of p, then B. induces an isomorphism

Aut® (wyl(pocoy) xx L == Gr(F/U,u)9° x g, L.

Proof. The category ((F)),,ns: has a tensor generator C. Let (K%, f) € F-Isock(SpecF,) be an F-
isocrystal on Spec F,, such that C is the pullback of (K®", f) under the structure morphism U — SpecF,,.
Then Gr(C/U, u) = Gr((K®", f)/ SpecFy, u) equals the Zariski-closure of f%in GL; k, by Theorem ILJ(b)]
Since F € F-Isock (U) is unit-root, also C is unit-root, and possibly after a change of basis, we can
assume that f € GL,.(Ok), where Ok denotes the valuation ring of K. Since the group GL,(Ok) is
pro-finite, the morphism Z — GL,(Ok), n — f™ extends uniquely to a morphism peonst: Gal(F,/F,) =
Z - Froby, — GL,(Ok), Frob, — f. Conversely, if G € ((F)) is an F-isocrystal on which the representation
p: w€(U,u) — Aut(w,(G) @k, L) factors through Gal(F,/F,), then G is constant and belongs to ((F))

const
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by Crew’s result [Cre87, Theorem 2.1 and Remark 2.2.4] for SpecF,. Therefore, the first two assertions
follow from Corollary .6l O

Remark 5.9. We do not know, whether the image S, o p(wi’t(U, ﬂ)geo) equals the intersection of f, o
p(m$4(U,w)) with Gr(F,u)9°°(L). To prove this, one needs to find a faithful representation p’ of the group
p(w‘ft(U , a)) / P (wft(U ) ﬂ)geo) on a finite dimensional K-vector space which belongs to the Tannakian sub-
category {(p)) C Rep§ 7$*(U, u). Nevertheless, we can prove the following

Corollary 5.10. In the situation of Corollary there is a constant unit-root F'-isocrystal F' on U,
corresponding to a representation p': w$*(U,u) - Gal(F,/F,) — GL,(K) for r € N, whose image im(p') is
isomorphic to p(7$* (U, w)) /p(7$* (U, )9°°). If we replace F by FOF' and p by pdp’, then in diagram ([53)
we have

Boo(p@ o) (T (U, 1)) = B, o (p@ o) (xEH(U, @) N Gr(F @& F',u)9=(L).

Proof. We first construct p’. By Cartan’s theorem, see [Ser92, Part II, § V.9, Corollary to Theorem 1
on page 155] or Theorem [Tl below, the images C' := p(7{'(U,u)) and C9°° := p(n{*(U,uw)?%) are Lie
groups over QQp, and the quotient C'/C9°° = p(wfft(U, a))/p(w‘ft(U, a)-qw) is again a Lie group over QQ, by
[Ser92l Part IT, §1V.5, Remark 2 after Theorem 1 on page 108]. If the quotient C'//C9¢° is finite, then it
has a faithful representation p’ on a finite dimensional K-vector space. So we now assume that C'/C9°°
is not finite. Note that Gal(F,/F,) = 7 = Zp % |14z Ze surjects onto C/C9°°. By the incompatibility
of the f-adic and the p-adic topologies, the image of Hhﬁp Zy in C/C9° is a finite subgroup H and thus
has a faithful representation on a finite dimensional K-vector space V{. On the other hand, the map
Z, — Gal(F,/F,) — C/C9° is analytic by [Ser92, Part II, §V.9, Theorem 2] and its image is an at
most one-dimensional Lie group over Q, by [Ser92, Part II, §IV.5, Theorems 1 and 3 and Corollary to
Theorem 2]. If it were zero dimensional, then it would be finite because it is compact, and this was
excluded. So it is one-dimensional and the map from Z, onto its image is a local isomorphism by [Ser92]
Part II, §II1.9, Theorem 2]. The kernel of this map is finite, and hence trivial, because Z, is compact and
torsion free. Therefore, we obtain an epimorphism ¢: Z, x H — C/C9°°, which is even an isomorphism,
because if an element (g, h) lies in the kernel, then ¢(g) = ¢(h~!) is a torsion element of p(Z,) = Z,, and
hence trivial. Therefore, g = 1, and since ¢|p is injective also h = 1. Now take a faithful representation
of Z, on a finite dimensional K-vector space V3, for example in a unipotent group. The sum V{ & Vj is
the desired representation p': 7¢*(U,u) — Gal(F,/F,) — GL,(K). The convergent F-isocrystal ' on U
corresponding to p is constant by Crew’s result [Cre87, Theorem 2.1 and Remark 2.2.4] for SpecF,.

To prove the last statement, note that the inclusion “C” is trivial. To prove the converse inclusion “2”
let C := (p@®p') (7$"(U, w)) and C9°° .= (p®p') (7§ (U, w)?*°). By construction of p’ we have isomorphisms
C = C and C9°° = C9°° given by ¢ (¢,c mod C9¢°). Therefore, every element S.(c,c mod C9¢°) €
B.(C) = Buo(p®dp) (7$"(U, @) which lies in the kernel Gr(F & F/,u)9°° of Gr(F & F',u) - W(F & F', u)
is mapped to 1 in the quotient Gr(F’,u) = Aut®(wy|(,y) of W(F @& F’,u). This implies p(c) = 1 and
c € (9 as desired. O

Another consequence of Corollary 54 is the following

Corollary 5.11. Let F € F-URk(U) be a convergent unit-root F-isocrystal on U and let f: V — U be
a non-empty open sub-curve. Then the pullback functor f*: G — f*G from {(F)) to {(f*F)) is a tensor
equivalence of Tannakian categories. In particular, if w € V(Fg4e) is a base point, the induced morphism of
monodromy groups Gr(f*F/V,u) — Gr(F/U,u) is an isomorphism.

Proof. We use that w¢t(f): 74U, u) — w$*(V, @) is an epimorphism by [SGAT, V, Proposition 8.2]. Let
p: T4 U, u) — Autgx (W) be the representation corresponding to F under the tensor equivalence from
Proposition Then f*p := pon$t(f): 78V, @) — Autx (W) is the representation corresponding to
f*F. Therefore, the functor f* on (F)) is fully faithful. Moreover, every subobject of ((f*p)) is of the form
PV, ) — Autg (W) for an invariant subspace W’ C W. By the surjectivity of «$'(f) this subspace
is also 7¢*(U, @)-invariant, and hence p’ = f*(pw~) for the subobject py: 7¢(U, @) — Autr(W’) of p.
Since f* clearly is a tensor functor, the corollary is proven. O
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6. GROUPS OF CONNECTED COMPONENTS

We consider a finite étale Galois-covering f: V' — U of smooth, geometrically irreducible curves and
the pull back functor

(6.1) [ F-Isock (U) — F-Isocg(V), F e f*F;
see for example [Cre92 p. 431]. In addition recall the functor (.)™ from (BI). Both functors possess
right adjoints
fr 1 F-Isock (V) — F-Isock(U), G f.G and
(ny + F-Isock, (Un) — F-Isocg (U), G = Gy -
For f. see [Cre92] 1.7]. The functor (.)(,) can explicitly be described as follows. Let pr: U, — U be the

projection, take G(n) := @y F*pr.g = @)~ pr.F*G and let the Frobenius Fg,, : F*G,) == G,y be
given by the matrix

(6.2)

priFg

where Fg: F*G == G is the Frobenius of G. Fix a normal basis (b;);ez/mz of the field extension K, /K,
that is K,, = EBieZ/nZ K - b; and F(b;) = b;y1 for the Frobenius F' € Gal(K,,/K). Let K be the pullback

to U of the constant F-isocrystal on SpecF, given by EBieZ/nZ K - e; with Frobenius F(e;) = e;+1. Then
for the trivial F"-isocrystal "1, on U, one has F™*("1;; ) ="1; and

"Ly )y = prelpr'K) = Kox Ko = P K b = KoK,
1€L/NL

where the last isomorphism is given by sending b; to e;. The adjunction satisfies the projection formula
(F™ @ G)ny = F @ Gy, and (FM)() = F @ "Ly, )y as well as ()™ = (D= F*G) @k K.
In particular, via the counit morphism of the adjunction, G is a quotient of (Q(n))(”). Now we write
Ko = (D, K - ei ® d;j)u with Frobenius F(e; ® dj) = e;11 ® dj. Then there is an isomorphism of
F-isocrystals

(63) 1/}IC®ICL)’C®7I, 6i®6j’—)6i®dj,i, €i®€i+j(—|€i®dj.

Similarly, let £ := f,.1,, where 1, is the trivial F-isocrystal on V. Then f.(f*(F)®G) 2 F® f.G, and
fof*F=F®L. And if we set I' = Gal(V/U) then f*f.G = P, r7v*G and f*L = Py 1. So again, via
the counit morphism of the adjunction, G is a quotient of f*f,G. The formulas also yield isomorphisms
of F-isocrystals ¢¥: L& L=+ @ L and ' L& LY = fo(f*L)" == f. Dr 1, = P L. Fix a base point
v € V(Fge) and let u := f(v) € U(Fge). Let L := wy(L). Since wy(L) = wy(f*L) and f*L =P, cr Ly,
the K.-vector space L possesses a basis (e,)yer for which the isomorphisms ¢ and ' on L have the
description

(6.4) Y L®LL>@L-CZ5, ey @es ey dy1s5, €y R eysiey-ds,
ser

(6.5) W LRLY - L-ds, ey @ey ey -d, ey @els ey ds,
e

where (eY), is the basis of LY which is dual to (e ).

Lemma 6.1. The monodromy groups satisfy Gr(K/U,u) = Z/nZ and Gr(L/U,u) = Gal(V/U). Moreover,
K = pr.dy, for the projection pr: U, — U and the trivial F-isocrystal 1;; on U,.

Proof. We prove both assertions simultaneously using the isomorphisms (63) and (6-4), which take iden-

tical form if we set I' := Z/nZ in (63). The isomorphisms in the lemma are explicitly given as follows.
Let R be a K.-algebra without non-trivial idempotents. If g € Gr(£/U,u)(R) acts on L @k, R via

g(ey) =D cer gey e With ge 4 € R then it acts on (L® L)@k, R via g(ey®eys) =30, Gery Gnys e ey
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and on (P L - ds) @k, R via gley - ds) = Y ge - € - ds. Since these actions have to be compatible
with the isomorphism ) it follows that

Gey " Gnys = ey if m=ed and ey " Gnys = 0 if nF£ed.

For § = 1 this implies in particular

(QE,V)Q = Geyy and Gery " Gny = 0 i n#e.

Thus g. 4~ = 0 or 1, because these are the only idempotents in R. If g. = 1 then also g.s.45 = 1 for all §
and g,5,5 = 0 for all n # € and all 6. Therefore, g(e,) = ey, for all n, where A := ey~!. Mapping this g
to A € I defines an injective group homomorphism «: Gr(£/U, u)(R) < T.

To see that « is surjective we use that I and £ are convergent unit-root F-isocrystals by Lemma [5.11
Under Crew’s equivalence between unit-root F-isocrystals and representations of the fundamental group
(Proposition 5.2)) the trivial F-isocrystal 1y, and the trivial F'"-isocrystal "1;; correspond to the trivial
representations 7$¢(V,7) — K and 7$*(U,, ) — K, . (Here we assume that u € U, (F4).) Moreover,
under this equivalence the functors f* and (.)™ correspond to the functors

Res:  Rep§ n$*(U, @) — RepS; 758(V, 0), P plast(v,5) and
Res @k K,: Repf 7i' (U, u) — Repg, 75" (Uy, 1), p—> (p|7r‘1é°(Un,ﬁ)) QK Ky .
For an open subgroup H of a compact group G the right and left adjoint to Resg is the induction functor
md$: Rep% H — Repe G with
nd$(p, W,) = {r: G — W, continuous: r(hg) = p(h)r(g) Vh € H,g € G }

for a continuous representation p: H — Autg (W,); see [NSWO08| Footnotes on pp. 61 and 63]. Also the
restriction of scalars from K, to K is right adjoint to . ®x K,. So the right adjoints f. and (.)e,
correspond to the right adjoints

Ind:  Reple af'(V,0) — Repfenf'(U,a),  pr—s Ind,
Ind:  Repfk, 7 Uy, 1) — Repe 754U, ), pr—> Ind:g
We find that £ = f,1,, and K®" = ("1, ), correspond to the representations
B K ad EPK, in Repini'(Ua)
Gal(V/U) Z/nl

on which 7 (U, @) /7$4(V,v) = Gal(V/U), respectively m$t(U, u) /7S (U, u) = Z/nZ, act as permutation
representations. In particular, K = pr,1;; . Moreover, by Corollary 5.4 the groups Gr(KC/U,u) xk, K

and Gr(L£/U,u) x g, K equal the Zariski-closure of the image of 7¢*(U, @). This proves the surjectivity of
a. il

Let f15°¢ (U, u)® be the automorphism group of the fiber functor w, : F-Isocx (U) — {K.-vector spaces}.
It is an affine group scheme over K. and equals the kernel group of the K./K-groupoid mf~15°¢(U, u) :=
Aut% (w,) whose category of K -rational representations is tensor equivalent to F-Isoc (U), see Defini-
tion and Theorem [AT1] We again assume that u € U, (F,c) and similarly define 7f-5°¢(V,v)2 and
7.‘_1F"—Isoc(U'n7 ’U,)A.

Lemma 6.2. Let f: V — U be a finite étale Galois-covering of curves with Galois group T := Gal(V/U),
letve V(Fg) and let u:= f(v) € U(Fge).

(a) There is an exact sequence of affine group schemes over K,
0 —— pFBoc (1, ) 2y wF-tsoc (17 ) A 2 Gal(v/U) —— 0,

where the morphism « is induced by the pullback functor f*: F-Isock (U) — F-Isock(V), and B
comes from the epimorphism mf 15°¢(U, u)® — Gr(L/U,u) = Gal(V/U) using Lemma Gl



22 URS HARTL AND AMBRUS PAL

(b) For every F € F-Isock (U) the sequence in[(a) induces the following exact sequence of affine group
schemes over K,

(6.6) 0—— Gre(f*F/V,v) —— Gr(F/U,u) —— G——0,

where G is a finite group which is a quotient of Gal(V/U). In particular if Gr(F /U, w) is connected
then Gr(f*F/V,v) == Gr(F/U,u).

Proof. Explicitly « is given as follows. Note that w,(f*F) = wy(F) for all F € F-Isocg(U). If
h € wf5o¢(V,v)2 then a(h) acts on wy(F) as a(h)|z := h|px. Since f*L = D errly = lg#F is
a direct sum of the trivial F™-isocrystal 1,,, the group w7 1%°¢(V,v)® maps to the kernel of 3. Next
every object G € F-Isock (V) is a quotient of f*F for the object F = f.G € F-Isock(U), because
[ G =€, cr7"g. Therefore, the map « is a closed immersion by Proposition AT4(b)}

To prove exactness in the middle let g € 7f~5°¢(U,u)? lie in the kernel of 3. We must show that
g = a(h) for some h € 7f~15°¢(V )2 and this means that for every G € F-Isocx (V) we have to exhibit
hlg € Autg, (wy(G)). We reuse the technique from Lemma For any such G we have a K -linear
automorphism g7, g of

wu(f+G) = wo(f*f:9) = Dwu(v"9).

~el’
which we decompose as glr.g = (hepy). ., Drerwo(v'G) = D.crwo(e"G) for Ke-homomorphisms
he : wo(7*G) = wy(€*G). To compute g|f,g we use the isomorphism

v L& i = L((fL)®G) = L(DIL)eG) = @filly®F) = DI
ser ser T

We fix bases ¢, of the K.-vector space w, (v*G) and es of the 1-dimensional K.-vector space w,(0*1,,).
We compute

wu(L® f.G) = wo(f'L) Ok, wolf"f:G)

D wo(07Ly) @k wo(v9) = D (&)K. Ok, (¢)) K. ;

v,0€l’ v,0€l’
wu(BfG) = Bwu(f"f.9) = @ (Ke-ds) @k, wo(7'G) = D (ds)k. Dk, (¢))K. ;
T ser v,0€l v,0€l

where the basis elements ds in the last line simply help to keep track of the summands for § € T'. As in
([64) the isomorphism 1¢g on these fiber functors is given by

wu(hg): wu(L® f[:G) = wu(DfiG), es®c, > dy-15®c,, en®c, +ids®c,.
T
Since g|z = B(g) = id, that is g(es) = es for all § € ', we obtain

Jleargleys ®ay-c,) = Z €y ® hey(ay) - c. and

€

dlg, rolds®ay-c)) = Y ds@hey(ay) - c..
g

The compatibility with the isomorphism g imposes for every v and § the condition

Z ys @ hey(ay) - c. = Z €es ® hey(aq) - ¢
1>

€

It follows that h. ~(a,) = 0 if v # €. In particular, we can define h
hlg == h11 = (9l1.0)
7.‘_1F—Isoc (‘/7 ’U)A.

It remains to show that g = a(h). Let F € F-Isockx (U). Then a(h)|r = h|;+r and we must show that

this is equal to g|r. From f.f*F = F @ L we deduce g¢|;.r+r = g|r ® id|z. Then h|s-r is defined as
hlg7 = (9ls.5F)|w.r+7) = (9]F)]w.x)- This proves [(a]]
[(B)] The group scheme Gr(F/U,u) is the image of the representation m{ 5°¢(U,u)® — Autg, (wy(F))
corresponding to F and likewise for f*F by Propositions [A.13] and [A.14(a)} Since w,(F) = wy(f*F),
the group Gr(f*F/V,v) is a closed normal subgroup of Gr(F/U,u) and the quotient G is a quotient of
Gal(V/U).

If Gr(F/U,u) is connected then its image in G will be zero. This proves the lemma. O

g = hyy = (9|f*9)}wu('v*g) and
wo(G)- As our argument is functorial in G this shows that indeed h is an element of
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Lemma 6.3. Let n € N and assume that u € U, (Fge) .
(a) The functor [n]*: F-Isock (U,) — F"-Isock, (Uy), (F,Fr) — (F,F3%) given by passing to the n-th
power of the Frobenius induces an isomorphism of group schemes 7§ "5°¢(U,,, u)® == 7f-15°¢(U,,, u)?
over K,.
(b) There is an exact sequence of affine group schemes over K,

0—— ﬂ'fn'ISOC(Um u)A LN ﬂ'f'ISOC(U, u)A b Z/nZ 0,

where the morphism o is induced by the functor (.)™ from @), and B comes from the epimor-
phism 7wf1°¢(U u)® — Gr(K/U,u) = Z/nZ using Lemma Gl

(¢) For every F € F-Isock (U) the sequence m induces the following exact sequence of affine group
schemes over K,

0 — Gr(F™ /U, u) — Gr(F/U,u) — G —— 0,

where G is a finite group which is a quotient of Z/nZ. In particular if Gr(F/U,u) is connected
then Gr(F™ /U, u) == Gr(F /U, u).

Remark 6.4. Note that Lemmadoes not imply that the functor [n]* is an equivalence of categories.
Namely, by Theorem [A-TT]the category F-Isock (Uy) is equivalent to the K, -rational representations of the
K./K-groupoid Autf, (w,| F-Isock (Uy,)) and the category F"-Isock, (Uy) is equivalent to the K.-rational
representations of the K./K,-groupoid Aut?}n (wu| F™-Isock, (Uy)). The latter is obtained as the fiber
product
(6.7) Aut}e}n (wu| Fr-Isock, (Uy)) = Aut$ (w.| F-Isock (Uy)) X Spec K. ®p, K.
Spec Ke® K Ke

by [Mil92] Proposition A.12], because F"-Isocg, (U,) is the base extension category F-Isock (U,) @k K.
In particular, the kernel groups 7" 15°¢(U,,, u)® and 7f™15°¢(U,,,u)® of both groupoids coincide, because
they are obtained as the pullback along the diagonal Spec K, — Spec K, ®,, K. of ([G1).

On unit root F-isocrystals Crew’s equivalence from Proposition yields a commutative diagram of
categories

F-UR(U,) iy F-URk., (Uy)

“J k

RepS 5t (U, 0) Repc, 7' (U, 1)

®KKn

Note that the horizontal functors have right adjoints Repf, m$"(Un,u) — Repg wi"(Un, @) given by re-
striction of scalars from K,, to K, and

[n]s: F™-Isock, (U,) — F-Isock(U,)
given by [n].G := @/, F™*G with Frobenius F,)_g: F*([n].G) == [n].G given by the matrix
0 Iy
g

where Fg: F"*G == G is the Frobenius of G. In particular, the functor (.),) from ([6.2) equals pr. o [n].
for the projection pr : U, — U.

Proof of Lemmal6.3. follows from Remark Alternatively, it can be proven by a strategy similar
to Lemma [G.(a)l Indeed, there is an exact sequence of affine K.-group schemes

0 —— " 0e(U,, u)d 2 P soe(1, ) —— Gr([n]. "Ly, /U, u) —— 0,
where "1;; € F"-Isocg, (Uy) is the unit object. We show that [n]."1;; is trivial. Let A € Fg» be a
generator of the field extension Fyn /Fg, that is Fgn = @?:_01 F, - M and let b € O, be the ¢"-th root of
unity which reduces to A modulo the maximal ideal mg,, of Ok, . (Use Hensel’s Lemma for the existence
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and uniqueness of b.) Then an isomorphism 17" = [n], "1, is given by the matrix (Fi(bj))i,j:O...n—l’
which is invertible, because its reduction modulo mg, is an invertible Moore matrix, see for example
[Gos96, §1.3]. Therefore, Gr([n]. "1y /Uy, u) is trivial and f -15°¢(U,, u)® = af-1oc(U,,u)? is an
isomorphism.

@ and now follow from Lemma by observing that pr.1;, = K, see Lemma O

Corollary 6.5. Let F be a convergent F'-isocrystal on U and let uw € U(Fqe). Then, after possibly enlarging
e, there exists a finite étale Galois covering of curves f: V — U and a point v € V(Fge) with f(v) = u
such that Gr(f*F/V,v) equals the identity component Gr(F/U,u)° in sequence ([68) and Gal(V/U) is
isomorphic to the group of connected components of Gr(F /U, u).

Proof. Let G := Gr(F/U,u)/ Gr(F/U,u)° be the quotient by the characteristic subgroup Gr(F /U, u)° C
Gr(F/U,u). It corresponds to an object G € (F)) with G = Gr(G/U,u) by Remark [A7] and Corol-
lary Since G is a finite group, G is a convergent unit-root F-isocrystal by Lemma 5.1l Let
pg: ™4(U,u) — G be the representation of the fundamental group corresponding to G by Proposition (.2
which is surjective onto G by Corollary .4l The kernel of pg equals 7¢*(V,9) for a finite étale Ga-
lois covering f: V — U and a lift ¥ € V(F,) of @, that is G = #¢"(U,a)/7$"(V,v) = Gal(V/U).
In particular, pg|ﬂ§t(w§) is the trivial representation and, as it corresponds to f*G as in the proof of
Lemma [6.1] consequently f*G is a direct sum of trivial F-isocrystals. At the expense of enlarging e there
is a unique point v € V(F4e) below ¥ and above u. It follows that Gr(f*F/V,v) maps to the kernel
of Gr(F/U,u) - G = Gal(V/U). From sequence ([6.0) we conclude that Gr(f*F/V,v) is equal to that
kernel, and hence equals Gr(F /U, u)°. O

For the next corollary note that f -5°¢(U, @) = 7f~15°¢ (U, u)® x ¢, K™ and Gr(F /U, u) = Gr(F /U, u) X,
K" for every point u € U(F,e) below @ and for every F € F-Isock (U). Here K" C K is the maximal
unramified extension of K.

Corollary 6.6. Let u € U(F,) be a geometric base point. Then the ezact sequence from Lemma [6(a)
induces an exvact sequence of affine group schemes over K"

(6.8) 0 —— mfIsoc (U, a)A° —— nf-soc(U, 0) A —— 74U, 1) —— 0,

where Ti-1so¢(U, w)A° is the identity component. In particular, the pro-group of connected components of
mi-lsoc (7 w)A equals the étale fundamental group st (U, @).

Proof. For every convergent F-isocrystal on U we obtain from Corollary [6.5] a finite étale Galois covering
f:V — U and an exact sequence

0—— Gr(F/U,u)° —— Gr(F/U,u) — Gal(V/U) ——0.

We now take the projective limit of these sequences over the diagram of the Tannakian sub-categories ((F))
of F-Isock (U). This limit is taken in the category of sheaves of groups on K"* for the étale topology.
We claim that this limit is the sequence (6.8). First of all, by Lemma B3] the projective system of the
Gr(F/U,u)° consists of epimorphisms and so satisfies the Mittag-Leffler condition. Therefore, (G.8) is
exact at 7§ (U, 1) = Jm, Gal(V/U). By the remark before the corollary the group 7f1%°¢(U, )2 is the
projective system of the Gr(F/U,u), which can equivalently be taken in the category of affine group
schemes over K. It remains to identify 7~15°¢(U, u)2° with the limit of the projective system of the
Gr(F/U,u)°. By construction this limit is representable by a closed subgroup scheme of 7f1°¢(U, )2,
Moreover, it is connected, because if d is an idempotent in its structure sheaf then d lies in the structure
sheaf of some Gr(F/U, ©)° and satisfies d* = d after maybe replacing ((F)) by a larger such category. Since
Gr(F/U,u)° is connected we have d = 0 or d = 1, whence the limit is connected and a closed subgroup
scheme of 7{-1%°¢(U, @)”°. On the other hand, the limit contains 7f~5°¢(U, @)° since the latter maps to
the connected component of unity in 7$*(U, @), which is trivial. Therefore, this limit equals 7~5°¢(U, 7)4°
and the corollary is proven. 0

Proposition 6.7. Let F € F-Isock (U) for which Conjecture[1.7] is true. Then Conjecture[I.2 also holds
true for F.
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Proof. let S C |U| be a subset of Dirichlet density one. Let G denote the group of connected components
of Gr(F/U,u); it is a quotient of 7¢*(U, @) and equals the Galois group of a finite étale Galois cover of
U by Corollary [G.5l For every conjugacy class C' C G let R C |U| denote the set of those closed points
x € |U| whose Frobenius class Frob,(F) maps onto C' C G. By Corollary 5.4 the image of Frob,(F) in
G coincides with the image of the conjugacy class of the Frobenius Frob;1 of z in 7$*(U, ). Thus by the
classical Chebotarév density theorem [Ser63, Theorem 7], R¢ has positive Dirichlet density. Therefore,
Sc = S N Re has positive upper Dirichlet density by Lemma By the validity of Conjecture [[.4]
for 7 we get that the Zariski-closure of |, g Frob,(F) contains a connected component of Gr(F /U, u).
This connected component must map to a point in C. Since the Zariski-closure of |J, g, Frobs(F) is
conjugation-invariant, we get that this set is equal to the union of all connected components mapping into
C. The Zariski-closure of | J g Frob;(F) contains the union of the Zariski-closures of {J, g Frob,(F)
for varying C, and hence it must be the whole group Gr(F /U, u). O

7. CHEBOTAREV FOR DIRECT SUMS OF ISOCLINIC F-ISOCRYSTALS

In this section we will prove Theorem by working with p-adic analytic manifolds and Lie groups.
First we recall the p-adic version of Cartan’s theorem:

Theorem 7.1. Let G be a linear algebraic group over Q,, and let C' C G(Q)) be a subgroup which is
compact in the p-adic topology. Then C is a Lie subgroup of G(Q,) over Q.

Proof. Since C' is compact, it is closed in the Hausdorff space G(Q,), so the claim follows from [Ser92]

Part II, §V.9, Corollary to Theorem 1 on page 155]. O
Definition 7.2. We will recall what Serre calls a standard group; see [Ser92, Part II, §IV.8]. Let F =
(F1,Fs, ..., FN) € Zp[za,...,zN, Y1, - - - ,yN]]N be a formal group law in N variables over Z,. Serre equips

(pZy)N with the structure of a Lie group over Q,. We need a re-normalization which identifies Z, with
pZy, by multiplication with p. So we equip the p-adic analytic space Gr := ZIJ)V of dimension N with the
structure of a Lie group over Q, where the multiplication is given by the formula

(7.1) Topy = %-F(p:v,py) for x,y € Gp ::Zév,
and the identity is (0,0,...,0).
Let us next recall the following

Lemma 7.3. Let G be a connected linear algebraic group over a field L, and let n be an integer, which
is not dwisible by the characteristic of L. Then the n-th power map [n]: G — G (which is not a group
homomorphism if G is not commutative) is a dominant morphism whose image contains an open subset.
In particular, if X C G(L) is a subset which is Zariski-dense in G, then its image [n|(X) is again Zariski-
dense in G.

Proof. The differential of [n] at the neutral element of G equals the multiplication by n which is invertible.
Therefore, [n] is étale in an open neighborhood of the neutral element by [BLRI0, §2.2, Corollary 10],
and hence the image under [n] of this neighborhood is open by [EGAL IV, Théoreme 2.4.6]. Since G is
irreducible, this image is dense. The last assertion follows from this. 0

As a further preparation we need the following

Theorem 7.4. Let T be a commutative linear algebraic group over a field L of characteristic zero, whose
identity component T° s the product Gy, | X1, Gy 1 of a split torus Gy, | with an additive group scheme
Ggp form,n>0. Let G C T(L) be an inﬁnite cyclic Zariski-dense subgroup inT'. Thenn =0 orn =1,
and for any connected component T¢ of T', any infinite subset S of G N'T° is still Zariski-dense in T°.

Proof. Clearly the image of G' under the projection I" — G, ; is Zariski-dense. Since this image lies in the
at most 1-dimensional linear subspace generated by the image of a generator of G, the dimension 7 is either
zero or one. By choosing an element h of S and considering the translate S—h we can assume that S C T°,
and we must show that S is Zariski-dense in T°. Thus, by replacing G with G NT° = ker(G — T/T°)
which is still infinite cyclic and dense in T°, we may assume that T'= T° is connected.

The n = 0 case can be easily deduced from the the Mordell-Lang conjecture for tori, proved by Michel
Laurent. Indeed, by Théoréme 2] the Zariski-closure of S is the finite union of finitely many
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translates of sub-tori of T'. By shrinking S, if it is necessary, we may assume that this finite union consists
of just one translate of a sub-torus T. Tt will be enough to show that T = T. Pick an element h € S. Then
the translate S — h lies in TV, and hence the intersection H = GN T is a subgroup of G which contains
the infinite set S — h. Since G = Z we get that H is a subgroup of G of finite index, say n. Then the
n-th power map x — nx on T maps G into H, and hence into T. Because G N T is Zariski-dense in T,
Lemma [7.3] implies that H is dense in T too. We get that T = T.

We will prove the n = 1 case by a different method (which nevertheless can be applied to the n = 0
case as well). First we will need the following useful

Lemma 7.5. Over a field L of characteristic zero, all closed subgroups I' of Gy, | X1, Gg, 1 are of the form
I's xp, G 1, where I's C Gy, | 1s a closed subgroup and € is either O or 1. In particular, the set of such
subgroups is countable.

Proof. Since I' is commutative, it is the direct product I' = I, x I'y of the set I', of its unipotent
elements and the set I's of its semi-simple elements, which are both closed subgroups; see §15.5,
Theorem]. The projections I, — an) 1, and I'y — G, 1 are both zero, because 1 is the only element which
is at the same time unipotent and semi-simple. Therefore, I'y, C ker(Gy, ; X1 Ga,. — G7, 1) = Ga,L
and I'y C ker(anL X Gor = Go,1) = anﬁL. Since I',, is connected by Lemma [B.7, there are only the
possibilities T, = {1} or Ty, = G, 1. This proves the first assertion.

For the last assertion we only have to show that the set of all closed subgroups I's C Gy, 1, is count-
able. By [Bor91l I11.8.2 Proposition] these subgroups correspond to quotients of the free abelian group
X*(Gy, 1) = Z" and so there are only countably many. O

Continuation of the Proof of Theorem[7] Assume now that the claim is false and let H C T = G XL
G, 1. be a proper hyper-surface such that S lies in H. Let g € G be a generator. Since the coeflicients
of the defining polynomial of H and the coordinates of g form a finite set I, we may assume without the
loss of generality that L is finitely generated over QQ, by replacing it with the field generated by I, if this
is necessary. Let V be a smooth irreducible variety over Q whose function field is L. By shrinking V, if
this is necessary, we may assume that g extends to a section g of the projection map:

Gmo XQGagxV = V.
The projection onto the first two factors induces a morphism
(72) 52 V = G:n,Q XQ Gay(@.
By shrinking V' further, we may also assume that the projection of g onto the factor G, g is nowhere zero

on V. Similarly we may assume that H extends to a closed subscheme H of Gr..0 X Ga,q x@ V which is
a proper hyper-surface in the fiber over any point of V.

Let @ be a closed point of V' and let K be the residue field of Q. Then K is a number field. As usual
we identify Go,q with Ajy and we embed G, g into A3 as the closed subscheme on which the product of
the coordinates of Aé equals 1. We consider the coordinates of the point g(Q) € (G}, o X@ Ga,0)(K) C
(AZ x@AgQ)(K). For all but finitely many valuations u of K all these coordinates of §(Q) are p-adic units.
Fix such a valuation p and let K, be the completion of K with respect to u. It is a finite extension of
Qq for a prime number ¢ (different from or equal to p). By continuity there is an open ball B around Q
in V(K,) such that for every P € B all the coordinates of g(P) are still p-adic units. We next prove the
following

Claim. Thereis a P € B such that the group g(P)% generated by g(P) is Zariski-dense in Gy, K, XK, Ga,x, -

If this is false, the closure of the group g(P)% is a proper closed subgroup W C G, K, XK, Ga,k,- Note
that for every such subgroup W the locus Ly C Vi, := V ®q K, where the map g from (Z2) factors
through W is a Zariski-closed subset. Moreover, Ly does not contain any irreducible component of Vi ,
because it does not contain any generic point 7 of Vi,. Namely, the residue field x(7n) of  contains L,
and so the element g(n) = g generates a Zariski-dense subgroup of G:nw(n) X(n) Ga,x(n) by assumption.
We claim that the intersection Ly (K,) N B is a proper analytic subset of B which is nowhere dense
in B (that is, has Baire category one), see [Bou98, Chapter 9, §5.1, Definition 1]. Indeed, assume that
there is a point € B and a small open neighborhood around x which is contained in Ly (K,) N B.
Since V' is smooth in z, an algebraic neighborhood of z in V is étale over some affine space A%M where



CRYSTALLINE CHEBOTAREV DENSITY THEOREMS 27

d = dim V. By shrinking the small open neighborhood around z if necessary, we can assume that it maps
isomorphically onto an open ball in A% (K] ). The latter ball is contained inside the scheme theoretic image
of Lyy C Vg, in AC}(M, which is a proper Zariski-closed subset of dimension < d. This is a contradiction
and proves that Ly (K,)NDB is nowhere dense in B. Now by Lemma[75 the set of proper closed subgroups
W C G:n,Ku XK, Ga K, is countable, so the union (Jy;, Lw (K,) N B C B is meager (that is, has still has
Baire category one) by [Bou98, Chapter 9, §5.2, Definition 2] and cannot equal B by [Bou98, Chapter 9,
§5.3, Theorem 1 and Definition 3]. Every point in the complement of (Jy;, Lw (K,) N B satisfies our claim.

Since all the coordinates of the generator g(P) of g(P)% are f-adic units, the f-adic closure C of g(P)Z
in (G}, g, ¥k, Ga,k,)(]y) is a compact group. By [CGPI0, Propositions A.5.1. and A.5.2] the Weil
restriction Y = ResK“ /Qq anﬁ K, XK. G, K, 1s a smooth linear algebraic group scheme over Qy, and
Y(Qr) = (G}, g, Xk, Ga,k,)(K,) contains C. By Theorem [T for Q, the group C is a Lie group over
Qv, and by [Ser92 Part 11, § V.8, Theorem] there is an open subgroup Cy of C' which is standard in the
sense of Definition This means that there is a commutative formal group law F' in N variables over
Zy and an isomorphism

: Cp = Gp
of Lie groups over Q, where Gp = Z} is equipped with the group law (ZI]) given by F. Since C is
compact the index m := [C' : Cp] is finite. Since C' is topologically generated by g(P), the finite group
C/Cy is also generated by g(P), and hence is cyclic of order m. This implies that the group g(P)™*
generated by g(P)™ is contained in Cy and Cj is the f-adic closure of g(P)™Z. Via its logarithm map log -
the Lie group G is isomorphic to the additive Lie group (¢Z),+). Since it is topologically generated by
one element, its dimension NV is 1.

Using again that the index of Cy in C' is finite, there is an h € C such that SNACY is still infinite by the
pigeonhole principle. Under the f-adic analytic isomorphism log o1 o h=t: hCy — £ Z, the intersection
H N hCy is mapped isomorphically onto an ¢-adic analytic subset A of ¢Z,, that is A is locally in the
{-adic topology on ¢Z, the zero locus of power series. The set H N hC{ contains the infinite set S N hCy,
so A contains an infinite set. Since £ Z; is compact, this infinite set has an accumulation point y. In a
neighborhood U = y + ¢"Z; of y for suitable n > 0 the power series defining A have infinitely many zeros.
But this implies, that A contains U, because the zeros of a power series in one variable are (-adically
discrete by [Laz62, Proposition 2]. Since U is the translate of an open subgroup of £Z,, it follows that
H contains a translate h'C{ of an open subgroup C{ of Cy. Let m’ = [C : C{] be the index. Since C
contains g(P)Z, it is also Zariski-dense in Gk, ¥k, Gak,. By Lemma [[3 we get that Cj = [m'](C)
is Zariski-dense in Gy, . Xk, Ga,k,, too. Therefore, the translate h'Cjy of Cj is still Zariski-dense in

an) K, XK. G, K- So H contains a Zariski-dense subset, but this is a contradiction. O

Corollary 7.6. Let L, T and G be as in Theorem[74} Let X be a linear algebraic group over L and let
v: X = T be a surjective morphism of algebraic groups over L. Assume that every connected component
of ker(p) contains an L-rational point. Let T¢ be a connected component of T and let H C ¢~ *(T€) be a
Zariski-closed subset which does not contain any irreducible component of ¢~ *(T¢). Then the set of those
g € GNTC such that H contains a connected component of ¢~ 1(g) is finite.

Proof. Let S C G NT*° be the set of all those elements for which H contains a connected component
of ¢71(g). For every connected component ker(p)” of ker(p) let x, € ker(p)’(L) be the L-rational
point whose existence was assumed. Then ker(p)” = z;, - ker(¢)°. We claim that the closed subscheme
U, z» - H contains ¢~ !(g) for every g € S. Namely, let g € S and let C' be a connected component
of p~1(g) which is contained in H. Let z € ¢~ !(g)(L) and let y € C(L) be points with values in an
algebraic closure L of L. Then ¢(zy™!) = o(z) - o(y)™' = g-g~! = 1, and so 2y~ ! € ker(p). Let
ker()? = a3 - ker(¢)° be the connected component containing 2y ~!. By multiplying y on the left with the
element xb_l -xy~ ! € ker()°(L), and hence y~! on the right with yz ! -z}, we can assume that xy~' = x;
without changing that y € C. Then x = a3, -y € a, - C C @ - H proving the claim. In particular | J, ;- H
contains the Zariski-closure W of ¢~1(S).

Now let V be the Zariski-closure of S in T¢. Since ¢~1(S) is invariant under the translation by the
closed subgroup ker (i), the same holds for the Zariski-closure W of ¢~1(S), and hence W = o~ (o(W)).
Therefore, (W) is a Zariski-closed subset of T which contains S, so it contains V. We get that ¢ =1(V) C

0o Hp(W)) = W. If S were infinite then V = T° by Theorem [T4, and hence ¢~*(T¢) C W is contained



28 URS HARTL AND AMBRUS PAL

in | J,zp - H. Let X’ be an irreducible component of ¢~ (7). Then X' is contained in |J, z;, - H, and
since it is irreducible it is contained in xp - H for one xj,. But this implies that H contains the irreducible
component x, ' X' of ¢~1(T°), which is a contradiction. Therefore, S is finite. O

To prove Theorem [[L8 we will need the following result of Oesterlé [Oes82]. Let ord,: Q; — Z be the
valuation on Q, with ord,(p) = 1. Let Z,(z1,...,2n) denote the integral Tate ring of restricted power
series in IV variables, i.e. the ring of formal power series whose coefficients converge to zero p-adically,
and let Qp(21,...,28) = Zp(21,...,2n) @z, Qp denote the Tate algebra over Q, in N variables. Let
0# f e Qpz,...,2zn) be a power series and let

Z(f) = {x:(xl,...,xN)EZZZ,V:f(x):()} C ZZ])V

be the analytic hyper-surface defined by f. Note that dim Z(f) = N —1 by [BGR84, §5.2.4, Proposition 1,
§5.2.2, Theorem 1, §5.2.3, Proposition 3 and the Remark after §6.1.2, Corollary 2]. For all v € N5 let
Z(f), denote the image of Z(f) in (Z,/p"Z,)~. Assume that f is normalized in such a way that all
its coefficients are in Z,, but not all are in pZ,. (Of course this is possible after multiplying f by a
suitable constant.) The reduction of f modulo p is a non-zero polynomial in 21, ..., zy with coefficients in
F, =Z,/(p). Let deg(f) denote the degree of this polynomial and call it the Oesterlé degree of f. Then
Oesterlé [Oes82, Theorem 4] proves the following inequality on the cardinality of Z(f),:

(7.3) #2(f), < deg(f)p*™ Y for every v > 0.

To apply this result we need a bound on the Oesterlé degree deg(f) of f. To this end consider the
following situation. Let | -[: @, — p” U {0} C Rx( denote the p-adic norm on Q, satisfying [p| = 1/p.
Let V be a finite-dimensional vector space over Q, equipped with a p-adic ultra-metric norm || - |. We

assume that || - || is normalized such that |V| = pZ U {0}. Let B C V be the unit sphere with respect to
this norm:

B={veV:|v| =1}

Note that by our normalization every vector 0 # v € V has a multiple which lies in B. The norm ||-|| induces
a norm on the dual space V¥ = Homg, (V, Q,) which we will also denote by ||- || by slight abuse of notation.
It is defined for ¢ € V'V by ||¢|| := inf{M € R: |c(v)] < M|jv| for all v € V} = sup{|c(v)|]: v € B}, see
Proposition 13.5], and hence satisfies |c(v)| < ||c|| - ||v]| for every v € V.

Lemma 7.7. Let ¢,, n € N be an infinite sequence of Qp-linear maps ¢, : V. — Q, such that ||c,|| < 1.
Assume that for every n € N there is an x, € B such that |c,(z,)| = 1. Then there is an x € B such that
len(z)| =1 for all but finitely many n.

Proof. Using that B is compact, we may assume that the sequence z,, converges to some x € B, by taking
an infinite subsequence, if it is necessary. Then

len () = en(@n)] = len(z — z0)| < lenll - |7 — znll < [l — 20|

Since the right hand side converges to 0 as n — oo, we get that |c, (x)| = |, (2, )| = 1 for sufficiently large
n. O

The bound on the Oesterlé degree mentioned above will be provided by the following

Proposition 7.8. Let V' be a finite dimensional Qp-linear vector subspace of the ring Qp(z1, 22, ..., zN).
Then there is a constant cy only depending on V' such that for every non-zero f € V' the Oesterlé degree
deg(f) of f is at most cy .

Proof. Let || - || denote the Gauss norm on Q,(z1,...,2zn) and restrict it to V. Note that it is also the
supremum norm, considered as functions on ZZ],V . Let B C V be the unit sphere as above. For every
multi-index k = (k1, ..., ky) € N let ¢ : V — @, be the k-th coefficient, that is f = 3, cg(f) 25 - - 25N
for every f € V. Then |e,(f)| < 1 for every f € B and every k by definition of the Gauss norm. So ¢y, is
a Qp-linear form on V' of norm at most 1. Now assume that the claim is false. This means that there is
an infinite sequence of multi-indices k;, ks, ..., k,,, ... such that for every n € N there is an f, € B such
that |cx (fn)] = 1. By Lemma [L7 there is an f € B such that |cx (f)| = 1 for infinitely many n. But
since f € Qp(z1,22,...,2n) the coefficients of f converge to 0, which is a contradiction. O
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For the rest of the section we use the following

Notation 7.9. Let L be a finite field extension of @, and let 7" be a commutative linear algebraic group
over L which is the product of a split torus Gy, ; for r > 0 with a finite abelian group and possibly an
additional factor G, . Let G C T(L) be a Zariski-dense subgroup in 7', which is infinite cyclic, G = Z,
and let g be a generator of G. We write the group G additively as G = {ng for n € Z}. Let Y and Z be
linear algebraic groups over L such that Z is of the same kind as T and assume that there are two surjective
homomorphisms ¢1: Y — Z and pa: T — Z of algebraic groups over L. Let X :=Y Xz T be the fiber
product of these two maps. Note that X is a closed subgroup of Y xp T. We denote by pri: X — Y and
pro: X — T the maps obtained as the restriction to X of the projection from Y x T onto the first and
onto the second factor, respectively. Let C' C Y(L) be a compact, but not necessarily open subgroup with
respect to the p-adic topology, let Y9¢° C Y be the kernel of ¢; and set C9°° = Y9¢°(L) N C. Finally let
C (Cx G)NX(L) be a subset.

FcC(CxGNX(L) Cc X =YxzT¢ Y x, T

/

C CcY(L) cC T >T(L) DG > ng, CxG

\/

Note that prq induces an isomorphism between ker(pre) C X and Y9¢° whose inverse is given as
(7.4) Y9 5 ker(pro) € X C Y xzT, y+— (y,1).
Theorem 7.10. Assume that the following hold:

(a) the Zariski-closure of C9°° is Y9,

(b) there is a positive constant € > 0 such that for every open normal subgroup D C C' there is an
infinite subset Sp C N such that for every n € Sp the image of pri(F ﬁprz_l(ng)) C C under the
quotient map C'— C/D has cardinality at least € - #(C9°° /D N C9°°).

Then the Zariski-closure of F' contains a connected component of X .

We begin with the preparations to prove Theorem [[.I0l Note that cond1t1on and the isomorphism
([C4) imply that every connected component of ker(prg) contains an L-rational point. Let (Y9°°)° be
the connected component of identity of Y9¢°. Since C is compact, and C9¢° and C9¢° N (Y9¢°)° are
closed subgroups we get that C9¢° and C9¢° N (Y9¢°)° are also compact. Let Y = Resp g, Y be the Weil
restriction of Y. By [CGPI0, Propositions A.5.1. and A.5.2] it is a smooth linear algebraic group scheme
over Q,. Then C9¢° N (Y9°)° c 9% ¢ C' C Y(L) = Y(Q,), and C and C9° and C9° N (Y9°)° are
Lie groups over Q, by Theorem [Tl Note that C9¢° N (Y9°°)° C C9°° has finite index, and hence is open,
because it is the kernel of the homomorphism C9¢° — Y 9¢°/(Y9¢°)°. By [Ser92] Part 11, § V.8, Theorem]
there is an open subgroup Cy of C9¢° N (Y9¢°)° which is standard in the sense of Definition This
means that there is a formal group law F' in NN variables over Z, and an isomorphism

(75) ’lﬁ: GFL> CQ

of Lie groups over Qp, where Gp = Z]JDV is equipped with the group law (1)) given by F. Since CY9¢° is
compact the index [C9°° : Cp] is finite.

Lemma 7.11. Under the assumptions of Theorem [7.10 every translate of Cy in Y9 is Zariski-dense in
the connected component of Y9¢° which contains it.

Proof. The Zariski-closure of a translate of Cj is the translate of the Zariski-closure of Cy, so it will be
enough to see that Cy is Zariski-dense in (Y9%°)°. Since C9°° is Zariski-dense in Y'9°° by assumption
of Theorem [TI0, also C9°° N (Y9¢°)° is Zariski-dense in (Y9°°)°. Let Cj be the largest subgroup of Cy
which is normal in C9°° 1 (Y9¢°)°. Since Cj has finite index in C9° N (Y9¢°)°, the same holds for Cy. Let
i be this index. Then the i-power map maps C9° N (Y9¢°)° into CO, and therefore C’O, and hence also Cy,
is Zariski-dense in (Y9¢°)° by Lemma [Z.3 O
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To establish Theorem we will choose closed embeddings Y € A% and T C A%, and consider the
induced embedding X C Y x; T C A%’ Recall that by [Ser92, Part II, §1V.9, Theorem 1] for every
v € Ny the subset p”ZéV C Gp = Z]JDV is actually an open normal subgroup under the group law (Z.I))
given by F', and two elements x,y of G are congruent to each other modulo the subgroup p”Z]JDV if and
only if x = y mod p”.

Lemma 7.12. Let T¢ be a connected component of T and let H C prgl(Tc) C A“L+b be a Zariski-closed
subset which does not contain any irreducible component ofprgl(Tc). Then there is a positive integer d. g
such that for all but finitely many n € Z and for every v € Nsg the image of prq (Hﬂprgl(ng)) NC under
the quotient map C' — C/1/}(p”ZfDV) has cardinality at most d. g - p*N =1,

Proof. We can write H C A‘frb as an intersection of finitely many hyper-surfaces defined by polynomials
he = he(y,t) € Lly,t], where y and ¢t denote the coordinates on A% and AY, respectively. Let dy be
the maximum of the degrees of these polynomials. Note that for ng ¢ G NT* the lemma holds trivially,
because then H N pry '(ng) is empty. On the other hand, Corollary implies that for all but finitely
many ng € G NT¢ the intersection H N pry 1(ng) does not contain an entire connected component of
pry H(ng). We now fix an ng € G N T¢ for which this holds.

We claim that X N (C x {ng}) is either a C9%° x {1}-coset in C' x {ng} or empty (in which case the
assertion of the lemma again holds trivially). Indeed, if this set is non empty, let z, = (yn,ng) be a
point in it with y, = pri(z,) € C. Then ¢1(yn) = w1pr1(zn) = papra(x,) = p2(ng) and so every other
point T, = (Jn,ng) € X N (C x {ng}) satisfies x - (y, 'Fn, 1) = Tn With 1 (y; ' n) = 01(y; ") - 01(Fn) =
©2(ng) "t pa(ng) = 1, that is y,, 14, € CNY9%° = C9°°. This implies X N (C x {ng}) C @, - (C9° x {1}).
For the converse inclusion note that for every ¢ € C9°° the point z,, - (¢,1) = (ync,ng) € (Y xp T)(L)
lies in X because ©1(ync) = ©1(yn) = w2(ng). This proves that X N (C x {ng}) = z,, - (C9° x {1}). So
X N(C x{ng}) is the pairwise disjoint union of m cosets z,,1-(Co x {1}), ..., Tnm - (Cox {1}) of Cp x {1},
where we let m := [C9°° : C] be the index.

By Lemma [TTT] this means that for every such coset C' = x,, ; - (Cp x {1}) the intersection H N C" is a
proper subset of C’. Namely, the lemma says that pr; (:v;t -C") = Cy is Zariski-dense in (Y9¢°)°. Under
the isomorphism from (4] this implies that ,T;li - (" is Zariski-dense in the unity component ker(prs)°,
and so C’ is Zariski-dense in x,; - ker(pra)°. The latter is a connected component of pry '(ng) and not
contained in H by our assumption on ng. Therefore, H N C’ is a proper closed subset of C’ cut out
by the finitely many polynomials h(y,ng) € L[y] of degree < dy obtained from hs(y,t) by plugging in
(the coordinates of) the point ng. Under the prgjection pr1, which induces like in (Iﬁl) an isomorphism
pri: pry t(ng) == pri(e,.) - Y9 of varieties, pri(H N C”) is a proper closed subset of pr(C”) cut out
by the same polynomials he(y,ng) € L[y]. We consider the images h,(y,ng) of these h(y,ng) in the
coordinate ring L[Y] of Y. - - -

For every such coset C' = iy, ; - (Co x {1}), we consider the subset HJ, ; = pri(zn:) "' - pri(HNC') C
Cy C Y9%° which is a proper subset of Cy cut out by finitely many hyper-surfaces of Y9¢°. Namely, if
we set yn i = pri(zn;) € O, then H! , is cut out by the pullbacks b/ , = tzm(i_u(g, ng)) € L[Y] of the

)t i

polynomials h(y,ng) under the translation t,, , by yn,i. Let W C L[Y] be the L-linear vector subspace
spanned by ¢%(h) for all y € Y(L) and all h € L[Y], which are images of polynomials h € Ly] of degree
< dy. Then W has finite dimension by [Bor91, 1.1.9 Proposition] which only depends on dg, and the
polynomials ]_7,2)”71- cutting out Hj, ; in Co belong to W. Let W C L[y] be a finite dimensional L-linear
subspace that surjects onto W and choose preimages hj ,, ; € W of all B})M-. Then H,, ; is cut out in Gy
by the polynomials hj ,, ;. We note that pri(H Npry ' (ng)) N C equals the disjoint union J[}"; yn; - H; ,
by using again the isomorphism pry: pry 1(ng) = pri(xy,,;) - Y9%°. So it remains to count the elements
in the finite set H,’l)i/w(p”ZéV) or equivalently its preimage w_l(H:m)/(p”Zp)N under the isomorphism 1)
from (ZH).

We claim that this preimage is contained in a proper analytic hyper-surface Z in Gp = ZIJ)V whose
degree is bounded independently of n and H,’” by a constant depending only on the degree dy and
the isomorphism . Indeed, we choose a Qp,-basis (cvu,...,as) of L, where we set s = [L : Q,].
The map ¢: Gp = Cy C Y(L) C (A9)(L) is given with respect to coordinates on A% by power
series ¥1,...,%, € L(z1,...,2zy) which converge for every z = (x1,...,2y) in Gp = Zév. Writing
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Wy € W for the polynomial equations cutting out H),; C Co we see that ¢~ '(H], ;) is the zero lo-
cus of the hy, (¢¥1,...,9%a) € L(z1,...,2n). With respect to the Q,-basis (a;); of L we can write
Wity %a) = 325 05 fonij With foni; € Qp(z1, ..., 2n). Then ¢~1(H}, ;) is the simultaneous zero
locus of all f; ;. More precisely, we view hj , ; as a morphism Y — Ay, and consider its Weil restric-
tion Resy,/q, hé,n,i: Resr g, Y — Resp g, Ar. Here Resp g, Ar is the Weil restriction of Ar, which is
isomorphic to Ag under the identification (Resy/q, AL)(Qp) = L = €D, ajQp. Then Y~(H] ;) is the

simultaneous zero locus of all the morphisms (for all £)

’
RCSL/QP hl,n,i

Gr =% Cy C (Resp/g, Y)(Qy) (Resz /g, AL)(Qp) = A (Qp).

X (fe,n,i,j(évh...,xN))j:l .

.....

Since H,, ; # Co, at least one fy ,, ; ; is non-zero. Let V' C Qp(z1,. .., 2x) be the Q,-vector space generated
by all f; where A’ runs through a Qp-basis of W and A'(¢1,...,%) = > ;- f;. Then V is a finite
dimensional Q,-vector space which only depends on dy and 1 and not on ng and z,, ;. By Proposition[7.8
there is a constant ¢y such that the Oesterlé degree deg(f) < ¢y for all 0 # f € V. It now follows
from Oesterlé’s result (Z3) that the cardinality of H, ;/1(p”Z)) is at most cy p*™ =1 Thus the image of

pri(HNpry ' (ng))NC under the quotient map C' — C/¢(p”Z))) has cardinality at most m cy prW-D O
After these preparations it is easy to finish the

Proof of Theorem [7.10 To establish Theorem we assume to the contrary that the Zariski-closure
of F' does not contain any connected component of X. Fix a connected component 7T°¢ of T" and let
H C pry (T°) be the Zariski-closure of F N pry '(T¢). Then the assumption implies that H does not
contain any irreducible component of pry ' (T€). Let d. g be the positive integer from Lemma [Z12l Then
for all but finitely many n € N and for every v € N5 the image of the set pri(F N prgl(ng)) under the
quotient map C — C/z/J(p”ZIJ)V) has cardinality at most d. g -p*N=1_ Let d be the sum Y e de, i of the
de, i over all connected components T¢ of T'. Taking the union over all T we see that for all but finitely
many n € N and for every v € Ny the image of the set pri(F N prgl(ng)) C C under the quotient map
C — C/¢(p”ZY) has cardinality at most dpr\N-1),

Now let € > 0 be the constant from assumption [(b)] of Theorem and choose v so large that
ep’N > dp*™=1. We consider the subgroup D := Y(pYZY) C C9%° which is open in C9*°. Then
#(C9°° /D) > #(Co/DI?°) = #(Z,/p* Zp)N = p"N. Since C9°° carries the subspace topology induced
from C and the topology on C' is the topology of C as a profinite group by [Ser92 Part II, §IV.8,
Corollary 2], there is an open normal subgroup D C C such that D9 := C9° N D C DI*“. By
assumption of Theorem [(.T0] there is an infinite subset Sp C N such that for every n € Sp the image
of pri(F Npry (ng)) C C under the quotient map C' — C/D has cardinality at least e - #(C9¢°/D9°°).
Since the map C' — C/D factors through C — C/D9° — C/D, the image of pri(F Npry*(ng)) C C
under the quotient map C' — C/ D9 has also cardinality at least e - #(C9°°/D9°°). The fibers of the map
C/D9° — C/Di* are principal homogeneous spaces under the group D{“’/D9¢°. This implies that the
number of points in the image of pri(F N pry *(ng)) in C/D9° which are mapped to the same point in
C/D{% is at most #(D{°° /D). In particular, the image of pri(FNpry ' (ng)) in C/DJ* has cardinality
at least e - #(C9°/D9%°) /#(D{°° | DI°) = ¢ - #(C9°°/D{*°) > ep”N. But this contradicts the estimate
from the previous paragraph. This completes the proof of Theorem [Z.10l O

We are now ready to give the

Proof of Theorem[L.8. Let F = @, F; be a direct sum of isoclinic convergent F-isocrystals F; on U. Let
“i with m; € Z and n € Ny be the slope of F;. Then the image (}'1-)(") of F; under the functor (B.I])
is isoclinic of slope m; and U; := (]—'i)(") ® C; is unit-root where C; is the pullback to U, of the constant
Fm™-isocrystal on SpecFg» given by (K, F™ = ™). Then U := @, U; is unit-root and C := @, C; is a
direct sum of constant F"-isocrystals of rank one. Moreover, F(™ lies in the Tannakian category (U ®C)),
and so the monodromy group Gr(U ® C/U,,u) surjects onto Gr(F /U, u). Here we assume that e is
divisible by n and that u € U, (F,.). Note that every connected component of Gr(F™ /U,,u) xx, K
maps isomorphically onto a connected component of Gr(F/U,u) x . K by Lemma By Lemma[3.4]
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it will be enough to see that Conjecture [[4] holds for U & C. Let ({U)) be the full Tannakian sub-
category of constant F-isocrystals in (/). It is generated by some constant unit-root F-isocrystal C.
Then (C)) C (U) N (C&C) C U const = (€Y. We now replace C by C @& C and thus may assume
that (U) N (C) = (U)),ons- We can assume that C is itself not unit-root, by adding a constant F-
isocrystal with non-zero slope to it if necessary. To ease notation we will pretend that n = 1 and say again
“F-isocrystal” instead of “F"-isocrystal”.

To prove Conjecture [ llet S C |U| be a subset of positive upper Dirichlet density. Choose a geometric
base point # above u and let 7$*(U, ) be the étale fundamental group of U. Let p: 7$¢(U, u) — GL,(K) be
the representation corresponding to the unit-root F-isocrystal & under the canonically tensor equivalence
between F-UR (U) C F-Isock (U) and Rep§; 75t (U, @) of Proposition[5.2l By Corollary 5.4l the restriction
of this tensor equivalence onto (({{)) induces a tensor equivalence between () and ((p)), and over a finite
field extension L of K, there is an isomorphism 3: wy|y,y @x L = wu|quy @, L between the forgetful
fiber functor wy on {(p)) and the fiber functor w,, on (U)).

Let Y = Gr(d/U,u) and T = Gr(C/U,u), and let X = Gr(U®C/U,u) and Z = Gr({U) N {(C))/U,u) =
Gr((U) const/U,u). Then Y9 := ker(Y — Z) is the geometric monodromy group Gr(U/U,u)%° of
U from Definition 9] and X is the fiber product Y xz T by Proposition After enlarging L if
necessary, the groups Z and T are each the product of a split torus with a finite group and possibly an
additional factor G, k, by Theorem EL§(b)] and [Bor91l I11.8.11 Proposition]. The isomorphism 3 induces
an isomorphism S, : Aut®(wy|,y) Xk L == Gr(U/U,u) x g, L and the image C := B,0p(7${*(U, 1)) of the
induced representation 3, o p: 7$*(U, u) — Gr(U/U,u)(L) is dense in Gr(U/U,u) Xk, L by Corollary 541
This image is a compact group, because 7$*(U, @) is pro-finite. By adding a constant unit-root, F-isocrystal
to U as in Corollary 510, we can assume that C9¢° := Y9¢°(L) N C equals the image S, o p(ﬂ'lét(U, ﬁ)geo).

For every = € |U| the Frobenius conjugacy class Frob, (i) C Gr(U/U,u)(K) is by Corollary 5.4 gen-
erated by the image with respect to 8. o p of the conjugacy class in (U, @) of the geometric Frobenius
Frob, ' at z. If g € T(K.) C T(L) is the image of the Frobenius of C then Frob, (C) consists of the single
element deg(z) - g for every = € |U| by Theorem EL§(c)] Since C was assumed to be not unit-root, the
group G C T(L) generated by ¢ is infinite cyclic and Zariski-dense in T', see Theorem Consider
the Frobenius conjugacy class Frob, (U @& C) C Gr(U @ C/U,u)(K). By Lemma it is mapped to the
conjugacy classes of Frob, (U) in Y (K), respectively of Frob,(C) in T(K). Since these have representatives
over L, also Frob, (U @ C) has a representative in X (L). Thus we set

F = | Frob,(U&®C)N(C xG) C (CxG)NX(L).
zeS

const

Theorem [L.8] is therefore a consequence of the following
Claim. The octuple (T,Y, Z, X, C, G, g, F) satisfies the hypothesis of Theorem [T.T0l
Denoting the morphism X — Y by pr; and the morphism X — T by pro, we see in particular, that for
n e N>0
Fpryt(ng) = J  Fob.@ec)n(CxG)

z€S: deg(z)=n

and
pri(F Npryt(ng)) = U Frob,(U)NC
z€S: deg(z)=n

=ps0 p( U conjugacy class of Frob;1 in wft(U, u)) .
z€S: deg(z)=n

Therefore, assumption of Theorem [T.1(] follows from Theorem [B.161 Moreover, Condition which
requires that C9°° := Y9°°(L)NC = B.op(n$"(U, u)9°°) is Zariski-dense in Y9°, follows from Corollary 5.8
O

8. THE THEORY OF MAXIMAL QUASI-TORI

We will need some results in the theory of algebraic groups in the following situation. In this entire
section L is an algebraically closed field of characteristic 0.
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Definition 8.1. For a not necessarily connected linear algebraic group G over L we let G° be its identity
component and we identify G with the group G(L) of its L-valued points. As usual we say that G is
reductive if G° is. For every h € G and closed subgroup H C G let H" := Zgo(h) := {g € H°: gh = hg}
denote the centralizer of h in H° and let H"° denote the connected component of H" containing 1. These
are closed subgroups of H°.

We will need the following mild generalization of a classical result of Steinberg. It was announced in
[KS99, Theorem 1.1A] with a brief sketch of proof. We include a full proof for the convenience of the
reader.

Theorem 8.2. Assume that G is reductive, let h € G be a semi-simple element which normalizes a Borel
subgroup B C G° and a mazximal torus T C B. Then G" is reductive, T"® is a mazimal torus in G"°,
and B"° is a Borel subgroup in G"°.

Note that T" and B" are not connected in general as can be seen from the following

Example 8.3. Let p be a prime number and let G be the p — 1-dimensional torus:
G=A{(x1,22,...,2p) €GE : 21 -2y = 1}.
Then the cyclic permutation
(x1,Z2,...,xp) = (2,23, ..., Tp, T1)
is an automorphism of G of order p whose fixed points are

(C?C""?C)’

where ( is any p-th root of unity. The semi-direct product G x Z/pZ where the generator h of Z/pZ
acts by the automorphism above is a counter-example to the connectivity of both the h-fixed points of a
maximal torus and a Borel subgroup of GG, since the latter are both equal to G.

Proof of Theorem[82 Steinberg [Ste68, Theorem 7.5 on page 51] proved the claim when G° is simply
connected. We are going to reduce the general case to this one via two reduction steps. First assume that
G° is semi-simple. In this case its étale fundamental group is finite, and hence the same holds for every
connected component of G, too. Let ¢ : G — G be the universal cover of G, which exits by the remarks
above. We may equip G uniquely with the structure of a linear algebraic group such that ¢ is a group
homomorphism. Let K C G be the kernel of . It is a finite normal subgroup and K N G° lies in the
center of G° by [CGP10, Corollary A.4.11] and [Bor91} 1V.11.21 Proposition].

Pick an element h € G in the pre-image of h, and let T B be the pre-image of T, B in G respectively.
Note that A is semi-simple, because when we write h= h h as a product of its semi-simple part hs and
its unipotent part hy, then hy, lies in K by m 1.4.4 Theorem], because <p(h) = h is semi-simple. If
we denote by n the order of K then A" = h”h” = h" is semi-simple. Therefore, already h is semi-simple

by Lemma [3

Since T' is connected the restriction ¢|z, : T° = Tis surjective with finite kernel KN éo, therefore the
connected group T° must be a torus. It has the same dimension as T, so it must be a maximal torus in
éo, as the ranks of G° and G° are the same. Likewise B° is an extension of the solvable group B by the
commutative group KnGe. Therefore, B° is connected solvable and of the same dimension as B, and
hence a Borel subgroup of G°. Since

o(h™'Th) = (b~ Y(T)p(h) = h™'Th =T,
we get that h normalizes T. A similar computation shows that h normalizes B too. Therefore, by
Steinberg’s theorem quoted above the subgroup G is reductive, The is a maximal torus in Gh and Bhe
is a Borel subgroup in Gh.
The regular map
0 N (G" — K, T h'Thi !

has finite image, so it is constant, hence 1 on ¢~ 1(G")°. Therefore, ¢~ 1(G")° C Gh. Clearly Gh
¢~ 1(G"), and hence Gho = @ 1(G")°. A similar argument shows that Tho = e Y(Th)° and Bhe =
@~ 1(B")°. Since ¢ is finite to one and the connected subgroup Ghe surjects onto G"° by [Bor91l I.1.4 Corol-
lary], we get that G"° is reductive by [Bor91, IV.14.11 Corollary]. Similarly Tho surjects onto T"°, so the
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latter is a maximal torus in G"° by [Bor91l, IV.11.14 Proposition]. The same reasoning shows that B"° is
a Borel subgroup in G"°.

Consider now the general case and let Z C G° be the connected component of the center of G°. It
equals the radical of G° and is a torus contained in 7' by [Bor91, IV.11.21 Proposition]. Set G' = G/Z
and let ¢ : G — G be the quotient map. Then G is semi-simple. Let 7', B be the image of T', B in G,
respectively. By [Bor91l TV.11.14 Proposition] the subgroup 7' is a maximal torus in G and B is a Borel
subgroup in G. Clearly T C B and ¢ (h) normalizes this pair, so by the case which we have just proven
the subgroup @w(f) 1s reductive, TY(M° is a maximal torus in G¥° and B¥("° is a Borel subgroup in
GY(M° Now let G, T,B denote the pre-image ofNGIZ’(h)7 TY(M° and B¥(M° with respect to 1, respectively.
Clearly G" ¢ G and T"° ¢ T° ¢ T and B"° € B° C B, because Z C T C B.

Proposition 8.4. The groups G"°,T"°, B"° surject onto G¥*"M° T¥(M° gnd BYM° with respect to 1,
respectively.
Proof. Since Z is a characteristic subgroup of G, we have h='Zh C Z. Therefore, the map

Z—2Z, z~hlzhz!
is a homomorphism of groups. Let J be the image of Z under this homomorphism. It is a closed subgroup
of Z invariant under conjugation by h as the computation h(h=tzhz"1)h=1 = h=t(hzh=Y)h(hz"th™1)
shows. Note that it will be enough to show that the regular map

kGO — éo, x> h teha !

has image in J. Indeed, if this is the case then for every x € G° there is a z € Z such that

h=lzha™t = h=tzhz71,
e}

h ez h(zz) " = hlehh ™ 2 thea ™ = b eha T eh T 2T h = A lghe T (W 2T ) T = 0

using that both z and h='271h are in the center of G°. Therefore, zz~! € G"°, but ¥(z) = ¥(z27!) as

z € Z. So G"° surjects onto 1/1(6?0) = G¥Y(Me° by [Bar91, 1.1.4 Corollary]. Using Z € T C B, a similar

(Mo and Eww)o

h)o

argument shows that 77° and B"° surject onto T with respect to 1, respectively.

The group G° is the extension of the reductive group G¥("° by the torus Z, so it is reductive. Therefore,
semi-simple elements are dense in G°. So it will be enough to show that x maps every maximal torus
V C G° into J , since the latter is closed. Since Z is a central torus, it is contained in V. Therefore,
Y~ 1(p(V)) = V. The image (V) is a torus on which the action of ¥(h) is trivial, in particular ¢(V) is
normalized by t(h). Therefore, h normalizes V. Since h € G" C é, for some positive integer m we have
h™m e (~¥°, so k™ is in the normalizer of V in G°. Since the normalizer of V in G° is a finite extension of
V', the conjugation action of A on V has finite order.

Conjugation by h leaves J invariant, as we have already remarked, so there is an induced action on
V =V/J. This action is trivial on the subgroup Z = Z/.J by definition. We also noted that the induced
action on the quotient V/Z = V/Z is also trivial, because under the morphism ¢ the latter is isomorphic
to ¥(V') on which ¢ (h) acts trivially. By Lemma below this implies that this action on V is trivial.
This is equivalent to x|y taking values in J. O

Lemma 8.5. Let T be a torus over a field of arbitrary characteristic, and let o be an automorphism of
T of finite order. Assume that there is a sub-torus T' C T, such that « fizes every point of T', and the
automorphism of the quotient T/T" induced by « is also the identity. Then « is trivial.

Proof. For every torus T let X.(T) denote the group of its cocharacters. Then the rule T +— X, (T) ®z Q
is a fully faithful exact functor. In particular we have a short exact sequence:

0— X, (T ®zQ — X.(T) @z Q —— X.(T/T'") @2 Q —— 0.

Let b’ be a Q-basis of X, (T")®zQ C X..(T)®zQ, and extend this to a Q-basis b of X, (1) ®z Q. Since the
induced action is trivial both on X, (T") ®7zQ and X.(T) ®7zQ/X.(T") 0z Q = X.(T/T") ®z Q, the matrix
of the action on X, (T) ®z Q in the basis b is upper triangular with ones on the diagonal. In particular it

is unipotent. But this is also a matrix of finite order, so it is semi-simple, too. Therefore, this matrix is
the identity by Lemma [3.7] O
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The Proof of Theorem [82is now easy. By the proposition above G° is the extension of G¥(M° by a
subgroup of Z". The group G¥") is reductive by the above, while the above-mentioned subgroup of Z"
is a subgroup of the torus Z, so it is also reductive. Therefore, G"° is also reductive. Since Z lies in T,
the subgroup Z"° lies in T"°. Therefore, T"° is the extension of a maximal torus in G¥") by a group
containing the connected component of the kernel of the restriction of ¥» onto G*°, so it is a maximal torus
in G"°. A similar argument shows that B"° is a Borel subgroup in G"°. O

Let a: G — G*9 denote the maximal reductive quotient of G, i.e. the quotient of G by its unipotent
radical R,G. Note that G/G° == G*4/(G™9)° because R, G is connected and hence contained in G°.
If v: G - H is a surjection of algebraic groups, then there is an induced surjection ~v"d: Gred — Hred
between the reductions, because the image of R, G is a closed connected unipotent normal subgroup, and
hence contained in R, H.

Definition 8.6. (a) If G is reductive (that is G° is reductive) a closed subgroup T' C G is called a
mazimal quasi-torus if T equals the intersection Ng(B°) N Ng(T°) of the normalizers in G of a
Borel subgroup B° C G° and a maximal Torus T° C B°.
(b) For general G, a closed subgroup T' C G is called a mazimal quasi-torus if the quotient morphism
G — G4 maps T isomorphically onto a maximal quasi-torus in the reductive group G™9.

Remark 8.7. If G is reductive and T' C G is a maximal quasi-torus of the form T' = N¢g(B°)NNg(T°) then
TNG® = Ngo(B°)NNgs (T°) = Ngo(T°) = Zge(T°) = T° by [Bordll IV.11.16 Theorem, IV.10.6 Theorem
and IV.13.17 Corollary 2|, where Zgo(T°) denotes the centralizer. In particular, the identity component
of T is the maximal torus 7° (and the notation is consistent).

Lemma 8.8. Let G be arbitrary and let T be a mazimal quasi-torus in G. Then the identity component
T° of T is a maximal torus in G and all elements of T are semi-simple.

Proof. Let R,G C G be the unipotent radical and let a: G — G/R,G = G*¢ =: G be the quotient
morphism. Then T := o(T) is a maximal quasi-torus in G and its connected component 7° = a(T°) is a
maximal torus in G by the above. In particular, T° is a torus and contained in a maximal torus 7’ of G.
It follows that 7° is contained in and hence equal to the torus a(T”). Since T’ Nkera = {1}, it follows
that a: T" — a(T’) = «(T°) is an isomorphism and so T° = T” is a maximal torus in G.

If g lies in T and n is the order of the finite group 7'/7° then g™ € T°. That is, g" is semi-simple, and
so g is semi-simple by Lemma 0

We need to establish a few more facts about maximal quasi-tori. We are grateful to Friedrich Knop for
providing a proof of part in the following theorem. Since we were not able to find a correct proof of this
statement in the literature we include Knop’s argument on https: //mathoverflow.net/questions/280874 for
the reader’s convenience.

Theorem 8.9. Assume that G is reductive.

(a) Let T be a mazximal quasi-torus in G. Then T/T° = G/G°. Every other maximal quasi-torus is
conjugate to T under G°.

(b) An element g € G(L) is semi-simple if and only if it is contained in a maximal quasi-torus, if and
only if its G-conjugacy class is closed.

(¢) Every connected component of G contains a dense open subset consisting of semi-simple elements.

Proof. @ If ¢g is semi-simple then it normalizes a maximal torus 7° and a Borel subgroup B° of G°
containing T° by [Ste68, Theorem 7.5], and hence lies in the maximal quasi-torus T'= Ng(B°) N Ng(T°).
The converse was proven in Lemma The characterization in terms of the G-conjugacy class of g is

given in [Spa82, Corollaire I1.2.22].

The conjugacy statement follows from the fact that all pairs T° C B° of a maximal torus and a
Borel subgroup in G° are conjugate under G° by [Hum75, §21.3, Corollary A]. To show that T surjects
onto G/G° fix a connected component of G and let g € G be an element in this connected component.
In its multiplicative Jordan decomposition g = gsg, the unipotent part g, lies in G° by Lemma
Therefore, gs € gG°. Let T' be a maximal quasi-torus containing g, which exists by@ In particular,
T’ intersects the connected component gG° of G. Since T is conjugate to 7" under G° which acts trivially


https://mathoverflow.net/questions/280874/are-the-semi-simple-elements-in-a-non-connected-reductive-algebraic-group-dense
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on G/G° we see that also T intersects gG°. It follows that T — G/G° is surjective. Since TN G° = T°
by Remark B we conclude that T/T° = G/G°.

Let T' C G be a maximal quasi-torus. By @ every connected component of G is of the form hG° for
an h € T. To show that hG° contains a dense open subset consisting of semi-simple elements, we consider
the conjugation action
®: G° xp hT" — hG°, (g,ht) — ghtg™!,

where T" := {g € T°: gh = hg} C T° as in Definition Bl All elements in the image of ® are conjugate to
elements in hT"° C T, and so are semi-simple by@ Since the image of ® is constructible by Chevalley’s
theorem [EGAL TVy, Corollaire 1.8.5], this image contains an open subset of its closure by [EGAL 03,
Proposition 9.2.2]. Tt thus suffices to show that ® is dominant. Under the isomorphism of varieties

~

hG° =+ G°, = — h~'z the morphism ® corresponds to the morphism

G xpTh® = G°, (g,t) — h™lghtg™!
To prove that ®' is dominant, we use Theorem B2 which says that T"° is a maximal torus in G". Therefore,
the conjugation action G* x T"° — G", (g,t) — gtg~"' is dominant by [Bor91], IV.11.10 Theorem and
IV.13.17, Corollary 2]. Note that gtg~' = h~'ghtg™!, because g € G". Thus it suffices to show that the
morphism

" G° xp, G" = G°, (g9,§)— h 'ghgg™"
is dominant. In the point (g,g) = (1,1) the morphism ®” has differential
(8.1)  (Ad(h™') —1)@ id: LieG° @ LieG" — LieG°,

(X,X) +— AL H-D)X)+X = b 'Xh—-X+X,

where Lie G° denotes the Lie algebra of G° and Ad: G — Auty (Lie G°) denotes the adjoint representation.
Since G" = {g € G°: h='ghg~! = 1} we obtain Lie G" = ker(Ad(h~!) — 1) and since h is semi-simple,
also Ad(h™!) is semi-simple, and hence ker(Ad(h~!) — 1) + im(Ad(h~!) — 1) = Lie G°. This shows that
the differential (8] is surjective in (1,1), and therefore ®” is dominant (for example by [BLRI0, §2.2,
Proposition 8]) and the theorem is proven. O

If G is not assumed to be reductive this implies the following

Theorem 8.10. Let G be a not necessarily connected, linear algebraic group over L.

(a) Let T° be a mazimal torus of G°. Then there exists a mazimal quasi-torus T C G with TNG® = T°.

(b) Any two maximal quasi-tori in G are conjugate under G°.

(c) An element g € G(L) is semi-simple if and only if it is contained in a mazximal quasi-torus.

(d) Every mazimal quasi-torus T in G satisfies T/T° = G/G° and normalizes a Borel subgroup of G°,
which contains the mazimal torus T° C G°. In particular, G° NT = T°.

(e) Conversely, a closed subgroup T C G is a maximal quasi-torus if T — G/G° is surjective, the
connected component T° is a mazimal torus of G°, and T normalizes a Borel subgroup B° C G°
containing T°.

Proof. Let U := R,G C G° be the unipotent radical, set G = Grd = G/U and let a: G — G
be the quotient map. Then G is reductive with G/G° = G/G° and T° := «(T°) C G° is a maximal
torus by [Bor9l, IV.11.20 Proposition]. Choose a Borel subgroup B° C G° containing T° and let T :

N~(§°) N Nx (TO) be the associated maximal quasi-torus in G. By [Bor9ll IV.11.19 Prop051t1on] all
such Borel subgroups B° are conjugate under the Weyl group W of G°, and therefore also all maximal

quasi-tori T containing T° are conjugate under W. We shall lift T to a maximal quasi-torus T in G with
TNG°=T°.

(i) We first consider the case that U = G° and T° = (1), in which G° = (1) and G = G/G° is a finite
group. In this case T = G is the unique maximal quasi-torus in G and the theorem asserts that the
sequence

(8.2) 1 U G G/G° —— 1

splits and any two splittings are conjugate. Using the nilpotent filtration of U we reduce to the case that
U = G, is commutative. Then the class of the extension G is an element of H? (G/G°,U(L)). If n is the
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order of the finite group G/G° then multiplication with n is an isomorphism on U = G, hence also on
all cohomology groups H'(G/G®°,U(L)) for i > 1. On the other hand n kills H'(G/G°,U(L)) by [Rot09),
Proposition 9.40] and so H (G/G°,U(L)) = (0) for i > 1. So the sequence (82) splits and the image
of a splitting is a maximal quasi-torus 7 in G. Moreover, H' (G/G°,U(L)) = (0) implies that any two
splittings are conjugate under U by [Rot09] Proposition 9.21].

(ii) To treat the general case we set H := a~*(T) C G. Then U C H is normal and o: H/U == T.
Its identity component is H° = o Y(T°) = U x T° with a: H/H° = T/T°. We will spell out in
terms of algebraic groups the following philosophy. The fact that any two maximal tori of U x T are
conjugate could be interpreted by saying that every stabilizing automorphism of U xT° is inner, and hence
H'(T°,U) = Stab(T°,U)/Inn(T°,U) = (0); compare [Rot09, §9.1.3]. As a consequence there should be
an exact sequence

00— S HA(G/Go,UT") — 1 g7, 1) B, g2(Te, 1)e/c?

as in [Rot09, Theorem 9.84], where UT" = Zyo(T°) N U is the group of fixed points in U under the
conjugation action of 7° and Zye(T°) denotes the centralizer. We interpret H as a class in H%(T,U)
which via pullback under T° T maps to its identity component H° = H x 7 TO, and hence to the trivial
class in H2(T°,U). From (&2) interpreted as H*(G/G°,UT") = (0) we should obtain that the class of H
is trivial, that is H 2 U x T, which provides a lift of T.

Note that we will not use this philosophy, but construct a lift of T as follows. Let N := N 1 (T°) be the
normalizer and consider the sequence of algebraic groups

(8.3) 1 ur’ N/T° G/G° 1,

which we claim is exact. Using the isomorphisms H/H® = T/T° = G/G° = G/G° every element of
G/G° has a representative g € H. The conjugate g7°g~"' is a maximal torus in H°, and hence of the
form hT°h~! for some h € H° by [Bor91l IV.11.3 Corollary]. Then h~'g € N maps onto g in G/G° and
this proves exactness on the right. The group N N G° = Ngo(T°) = Zyo(T°) is connected by [Bor91l
IV.10.6 Theorem], because H° is connected and solvable. It follows that N° = NN G° = T° x N2, where
N2 = N°NU = U"" is the group of unipotent elements in N°, use [Bor91l, IV.12.1 Theorem|. This proves
the exactness in the middle and on the left.

Since the identity component UT" of N/T* is a unipotent group, there is a section s: G/G°® — N/T°
by the the special case treated in (i) above. We now define T := 371 (s(G/G°)) where f: N — N/T° is
the quotient map. Then T/T° = (G/G° and this implies that T is a maximal quasi-torus with identity
component 7° and «: T =~ T.

@ We must show that any two maximal quasi-tori 77 and T» in G are conjugate under G° also in
the general case. Let T, and Ty be their isomorphic images in G under a. By Theorem B.9 we can
conjugate T2 into T1 under G° = a(G®) and thus assume that they are equal T:= T1 T2 In particular
T,T> C H := a‘l(T) and the two maximal tori T and 7% of the connected group a‘l(Tvo), which is
isomorphic to U x Ty by the above, are conjugate by [Bor91 1V.11.3 Corollary]. So we may assume
that they are equal 7° := 17 = T5. It follows that both 77 and T, are contained in the normalizer
N := Ny (T°) and we may consider the subsets 77 /T° and T>/T° of the group N/T° from (83]). Since
they both map isomorphically onto 7/T° under the map N/T° — G/G° = G/G° whose kernel is the
unipotent radical UT" of N/T°, we see that T} /T° and T,/T° are maximal quasi-tori in N/T°. By what
we proved in @(i), they are conjugate under U™ and this shows that T} and T} are conjugate under G°.

By Lemma B8 every element of a maximal quasi-torus is semi-simple. Conversely, to show that every
semi-simple element g € G lies in a maximal quasi-torus we use that g normalizes a Borel subgroup
B°® C G° and a maximal torus 7° C B® by [Ste68, Theorem 7.5]. Then T° := o(T°) and B° := a(B°)
are a maximal torus and a Borel subgroup of G° by [Bor91l TV.11.14 Proposition], which are normalized
by §:= a(g) € G(L). In particular j € T := Ng (BO) N Ng (T°) and by [(a)|ii) we can choose a maximal
quasi-torus T C G containing T° mapping isomorphically onto 7. Let ¢’ € T(L) be the preimage of g
under this isomorphism. Then g and ¢’ both lic in H := o~ *(T) and even in N := Ny (T°). Moreover,
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they map to the same element in T/T° = G/G° = (N/T°)/UT" = N/N°; see (83). Considering the
subgroup of G generated by g,¢’ and G°, which is automatically closed, we can assume that G/G° is
cyclic. Then both g and ¢’ define sections s and s’ of (83) and the argument of [(a)|i) above shows that
s and s’ are conjugate into each other by an element of N/T°. Since T was constructed in @l(ii) as the
preimage of s(G/G°) under N — N/T° this shows that g can be conjugate into T" by an element of N as
desired.

[(DJIf T C G is a maximal quasi-torus and T := a(T), then T/T° = T/T° = G/G° = G/G° by TheoremBJ]
and T° is a maximal torus in G° by Lemma To prove that T" normalizes a Borel subgroup of G, let
B° be a Borel subgroup of G containing 7° with T = N@(EO) NNg (T°); see Remark Bl Then o (B°)
is normalized by 7" and is an extension of B° by R,G, hence connected solvable. Moreover, a‘l(éo) is
contained in a Borel subgroup B° of G°. But a(B°) is connected solvable and contains £~3°, hence equals

B° by maximality of the Borel subgroup B°. This shows that B° = a‘l(go) is a Borel subgroup of G°
normalized by T

@Let n = #(G/G®). For every element of T its n-th power lies in the torus 7° and hence is semi-simple.
Therefore, all elements of T' are semi-simple by Lemma B7 and U N'T = (1). So the map « restricted to
T is injective, and maps T isomorphically onto a(T) C G. The connected component a(T)° = a(T°) is a
maximal torus in G° and a(B°) is a Borel subgroup in G° by [Bor91l IV.11.14 Proposition|. Since a(T)
normalizes the pair a(T°) C a(B°), it is contained in the maximal torus 7' = Ng(a(B°)) N Ng(a(T?)),
which satisfies 7° = «(T°) by Remark B Since T — G/G° = G/G° = T/T°, we conclude that
a: T = a(T) =T, and hence T is a maximal quasi-torus in G. O

Corollary 8.11. Let f: G — H be a surjection of algebraic groups. Then the image of a maximal
quasi-torus (resp. a maximal torus, resp. a Borel subgroup) in G is again a mazimal quasi-torus (resp. a
mazximal torus, resp. a Borel subgroup) in H. Moreover, every mazimal quasi-torus (resp. mazimal torus,
resp. Borel subgroup) in H arises in this way.

Proof. For maximal tori and Borel subgroups this is just [Bor91l IV.11.14 Proposition]. So let T' C G
be a maximal quasi-torus. By Theorem there is a Borel subgroup B° C G° which contains the
maximal torus T° C G° and is normalized by T. Then f(7T) normalizes the Borel subgroup f(B°) and the
maximal torus f(7°) C f(B°) of H. Since the surjection T — G/G° — H/H® factors through f(T), we
see that f(T) — H/H® is surjective, and hence f(T) is a maximal quasi-torus in H by Theorem BIT(e)]

Conversely, if T' C G and T’ C H are any maximal quasi-tori (resp. maximal tori, resp. Borel subgroups),
then by Theorem BIT(b)| (resp. [Bor91) IV.11.1 Theorem and IV.11.3 Corollary]) there is an element h € H
with 7" = h=! f(T)h. For any preimage g € G the maximal quasi-torus g~!7Tg in G surjects onto 7”. This
proves the corollary. O

The corollary leads to a very handy remark which will be used at least twice.

Remark 8.12. Let G = G x g, G2 be the fiber product of two linear algebraic groups G; and Gy over a
third G3 for epimorphisms G; — G3 and G — (3. This means that G is a closed subgroup of G X, Ga
and the restrictions of the projections m : G X, Go — G1 and 73 : G X, G2 — G are surjective. Let
T C G be a maximal quasi-torus. Then for ¢ = 1,2,3 the images T7; C G; of T" are maximal quasi-tori
by Corollary BTl Since T is a subgroup of G; X1, Go we get that the product m |7 X ma|r is a closed
immersion of T into Ty X Tb. Therefore, T is a fiber product of the maximal quasi-tori 77 and 7. In
particular, if G° = GY x 1 G35 then its intersection with 7" is the maximal torus 7° = 1Y x Ty, and if
GZGl XLG2 thenTle XLT2.

A useful condition for being a maximal quasi-torus is given in the following

Theorem 8.13. Let G be reductive, and let H C G be a closed subgroup with the following properties:

(a) the connected component H® of H is a mazimal torus in G°,
(b) the natural map H/H® — G/G° is surjective,
(¢c) the group H is commutative.
Then H is a maximal quasi-torus in G, and it is the only maximal quasi-torus in G containing H®.

To prove the theorem we will need the following
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Lemma 8.14. In the situation of the theorem, two elements of H are conjugate under G° if and only if
they are conjugate under the normalizer Ngo(H®) of H® in G°. In particular, the intersection of every
G°-congugacy class with H is finite. (Note however, that there is no action of Ngeo(H®) on H in general,
because Ngo (H®) only normalizes H® and not necessarily H.)

Proof. In order to prove the first claim, note that one direction follows from the inclusion Ngo (H®) C G°.
To prove the converse, let h,h’ € H be conjugate under G°, say h = x~'h/z for an € G°. Since H is
commutative by condition R centralizes H°, and hence the conjugate h = z~1h’z centralizes ! H°z.
But h also centralizes H°, so we get that H° and x~'H°z lie in the centralizer G" of h in G°. Since H°
and z~'H°x are maximal tori in G° by condition they are maximal tori in G", too. So by [Bor91]
IV.11.3 Corollary] there is a y € G" such that y 'z~ !H°zy = H°. Set w = zy. Clearly w € Ngo(H®),
but also w™h'w = y~lz~'h'zy = y~'hy = h, as y € G". Therefore, h is conjugate to h’ under Ngo(H®).

To prove the second claim, note that the identity component of Ngo(H®) is H® by assumption and
[Bor91l TI1.8.10, Corollary 2 and 1V.13.17, Corollary 2]. By assumption the latter acts trivially by
conjugation on H, therefore the action of Ngo(H®) factors through the Weyl group W = Ngo(H®)/H®,
which is finite. O

Proof of Theorem [813. By condition [(a)]and Remark B there is a maximal quasi-torus T C G such that
T° = H°. We have to show that T'= H. To this end fix at € T". By condition@there is an h € H such
that h~' € G°, and hence tG° = hG°.

Proposition 8.15. We have h=t € T°.

Proof. Since T° is commutative, every element tz € tT° centralizes T? C T°. Therefore, the quotient
group Q = T°/T* acts faithfully on ¢7° by conjugation. By [MFK94, Chapter 1, §2, Theorem 1.1] the
categorical quotient Y of tT° by this action of @ exists as an affine scheme. Let Y™ be the reduced
scheme underlying Y, and let 7: t7° — Y**d be the quotient map. Consider the set

C ={(z,y) € AT° x Y™4: Ja € tT° Ib € G° such that 7(a) =y and b~ 'ab=z) }.
We claim that C' is a constructible set. Namely consider the morphism
@: tT° x G° — hG° x Y™ (a,b) — (b tab,7(a)).

The preimage ¢~ (hT° x Y™4) C T° x G° is a closed subset, and C = (¢~ (hT° x Y*%)). Therefore,
C' is a constructible set by Chevalley’s theorem [EGAl TV;, Corollaire 1.8.5]. Let m: C — hT° and
mo: C — Y™ be the projections onto the first and the second factor, respectively. Every element of
hT° = hH® C H is semi-simple by Lemma [3.7] because some power of it lies in the torus H°. Therefore,
this element is conjugate under G° to an element of t7° by Theorem B a)li(b)l Thus the map m is
surjective, and hence the dimension of C is at least dim(7°) = dim(h7°) by [GW10, Proposition 14.107].
For every y € Y4 the points in the fiber 771(y) of m: tT° — Y™ are conjugate under T°, so the fiber
of my: C' — Y™ above y € Y™, which equals

{zehT°:Facn ' (y),3beG° withe=b"tab} = HN{b tab:acn '(y),be G°},

is the intersection of a G°-conjugacy class with H. This is a finite set by Lemma BI4l The image
72(C) C Y™ is constructible by Chevalley’s theorem, and the fibers of the surjective map m2: C' — m2(C)
are finite by the above, so dim(m(C)) = dim(C) by [GWI0, Proposition 14.107], and this is at least
dim(7°) = dim(¢tT°). Thus dim(Y*™?) > dim(m2(C)) > dim(¢tT°) > dim(Y*™*?). This means that Q is
zero-dimensional and connected as a quotient of 7°, and hence T'* = T°. Therefore, both h and ¢ centralize
T°, and so h™'t centralizes T°, too. But h='t € G° and the centralizer Zgo(T°) of T° in G° is T° itself
by [Bor91l IV.13.17, Corollary 2]. O

Proof of Theorem [813 continued. By the proposition above t7° = hh=T° = hT° = hH°, so we get that
H contains T'. Now we only need to show the reverse inclusion. Let h € H be again arbitrary. Since the
natural map T/T° — G/G° is surjective by Theorem Bd(a)] there is a ¢ € T' such that t71h € G°. Since
T is in H, we get that t~'h is in H, too. But H centralizes H°, so t~'h is in Zgo(H®°). However, the
latter is H® itself, therefore hH® = tt"'hH® = tH° = tT°, and hence T contains H, and so T' = H. This
finishes the proof of Theorem RI3l O

We end this section by proving the following
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Theorem 8.16. Let ¢: G — H be an injective homomorphism of algebraic groups, and assume that there
is a closed normal subgroup N<G such that o(N)<H is also normal. Let T C G be a maximal quasi-torus.
If its image in H/p(N) is a mazimal quasi-torus, then also its image in H is a maximal quasi-torus.

To prove it we start with a

Lemma 8.17. Let v: G — H be a surjective homomorphism of linear algebraic groups whose kernel is
a unipotent group, and let T' C G be a closed subgroup such that the restriction of v to T is injective. If
~Y(T) is a maximal quasi-torus in H, then T is a mazimal quasi-torus in G.

Proof. Let m: H — H™ be the maximal reductive quotient. Then the composition 7 o~y: G — H™ is a
surjective map onto a reductive group. Its kernel is an extension of unipotent groups, so it is unipotent
and hence connected by Lemma Therefore, moy: G — H*4 is the maximal reductive quotient for
G. Since T == ~(T) == 7o (T) is an isomorphism onto the maximal quasi-torus 7 o y(7) in H™? we
conclude that T is a maximal quasi-torus in G. 0

Definition 8.18. We say that a closed subgroup B in a linear algebraic group G is a quasi-Borel subgroup
if its identity component B° is a Borel subgroup, and there is a maximal quasi-torus 7' C G such that T
lies in B and B is generated by B° and 7.

Remark 8.19. (a) Every maximal quasi-torus is contained in a quasi-Borel subgroup. Namely, by The-
orem there is a Borel subgroup B° C G° normalized by T with T° C B°. Let B be the group
generated by B° and T'. Since B° is normalized by T', the semi-direct product B° x T — B surjects onto
B with kernel B°NT = T°. We conclude that B is an extension 1 — B® — B — T'/T° — 1. In particular,
the connected component of B is B°, and hence B is a quasi-Borel subgroup.

(b) For every quasi-Borel subgroup B C G the map B/B° — G//G° induced by the inclusion of B into G
is an isomorphism. Indeed, in the situation of the definition, 7" normalizes B® and T° C B°. Therefore,
B arises as described in (a), and this shows that G° N B = B°, whence B/B° — G/G° is injective. The
surjectivity follows from the surjectivity of T'— G/G°.

(¢) If v: G — H is a surjection of algebraic groups, then the image v(B) of every quasi-Borel subgroup
B in G is again a quasi-Borel subgroup. Indeed, in the situation of the definition v(7') is a maximal
quasi-torus in H by Corollary [R1T] which is contained in v(B). Moreover, ¥(T') and v(B°) generate v(B)
and the identity component v(B)° = ~«(B°) is a Borel subgroup of H by [Bor91l 1.1.4 Corollary and
IV.11.14 Proposition].

Lemma 8.20. Let v: G — G’ be a surjection of linear algebraic groups, let T C G be a maximal quasi-
torus in G, and let B C G be a quasi-Borel subgroup which contains T'. Then T is a mazimal quasi-torus

in H =y~ (y(B)).

Proof. We will use Theorem for the pair " C H. The identity component 7 is a maximal torus
in G, so it is a maximal torus in the smaller group H, too. Since B° is a Borel subgroup of GG, and clearly
B° C B C H, we get that B° is a Borel subgroup in the smaller group H. By choice B° is normalized
by T and B° contains 7°. So by Theorem we only need to show that the map H/H® — G/G°
induced by the inclusion H < G is injective, because then the surjection 7" — G/G° will factor through
a surjection T — H/H®.

So let h € G° N H. Then ~(h) lies in v(G°) = G’° and in y(H) = 7(B), which is a quasi-Borel
subgroup of G’ by Remark BI9%c). Therefore, v(h) € G'° N v(B) = v(B)° = v(B°) by Remark BI9(b),
and hence y(h) = ~(b) for an element b € B® C H° C G°. Thus we have to show that the element
h:=hbteG° Nker v actually lies in H°. For this purpose note, that (ker~)® is a characteristic subgroup
of ker «, which in turn is normal in G. Therefore, (ker~)® is normal in G. Let 7: G — G/(kerv)°® =: G be
the quotient morphism and set H := 7(H) and B° := n(B)° = 7(B°). The latter is a Borel subgroup in
G by [Bor91l IV.11.14 Proposition]. Now m(h) lies in the finite group C' := G~ N ker~/(ker~)®, which is
normal in G_. The operation of G by conjugation on C' factors through the finite automorphism group
of C, and hence is trivial because G is connected. It follows that C is contained in the center of @O, and
hence in B° = x(B°) by [Bor9ll IV.11.11 Corollary]. Thus that 7 (k) = 7(b) for an element b € B°, and
so hb~'b~! = hb~! € kerm = (kervy)° € H°. We conclude that h € H°, and hence G° N H = H° and
H/H° — G/G" is injective as desired. This proves the lemma. O



CRYSTALLINE CHEBOTAREV DENSITY THEOREMS 41

Proposition 8.21. Let v: G — G’ be a surjection of linear algebraic groups, and let T C G be a mazimal
quasi-torus in G. Then T is a mazimal quasi-torus in H =y~ 1(y(T)).

Proof. Let B be a quasi-Borel subgroup which contains 7. By the lemma above T is a maximal quasi-
torus in y~1(y(B)). Therefore, we may replace G by v~ (y(B)) and G’ by v(B) without loss of generality.
In other words we may assume that G’° is solvable. The idea is to show that the inclusion H — G
induces an isomorphism H*d -~ G™d. Let U be the unipotent radical of K := ker(y). Since U is a
characteristic subgroup in K, which is a normal subgroup both in G and in H, the group U is also normal
both in G and in H. Therefore, v(U) is also normal in G'. Set G = G/U and G = G'/v(U) and let
7: G — G be the map induced by 7. By Corollary BT the image T of T in G is a maximal quasi-torus.
Set H = H/(H NU); then the kernel H NU of the quotient map H — H is unipotent, and intersects 7'
trivially by Theorem m So by Lemma RI7 it will be enough to see that T is a maximal quasi-torus
in H. We obtain the two upper exact rows in the following diagram.

1 K/U H 5(T) 1
[

1 K/U G G 1
H | |

1 K/U a G'red 1.

Since H is the extension of a reductive group by another reductive group, it is reductive, i.e. H = H™d,
The intersection (K/U)NR,G of K/U with the unipotent radical R, G of G is a closed unipotent normal
subgroup of K/U, hence connected by Lemma BZ[(b)] Since K/U is reductive, we obtain (K/U) NR,G =
(1). Moreover, R,G ° = 5(R,G) by [Bor9ll, IV.14.11 Corollary]. This shows that the bottom row in the

diagram is also exact. Since F(T)° is a maximal torus in the connected solvable group 6/0, the composition

of the morphisms in the right column is an isomorphism on the identity components 7(T)° -~ (é/red)o by
[Bor91l I11.10.6 Theorem]. Since F(T) is a maximal quasi-torus in G by Corollary BIT] the composition
of the morphisms in the right column is also an isomorphism on the group of connected components by
Theorem B0 This proves that H —~- @md is an isomorphism. In particular, T is a maximal quasi-torus
in H and the proposition follows. O

Proof of Theorem [810. Let m1: G — G/N and mo: H — H/p(N) be the quotient maps. Then w1 (T) C
G/N is a maximal quasi-torus by Corollary B TTand its image mop(7T') in H/¢(N) is a maximal quasi-torus
by assumption. Note that ¢ maps the pre-image F; = 7, *(m1(T')) C G isomorphically onto the pre-image
Fy = w5 Y (m29(T)) C H. By Corollary Bl there is a maximal quasi-torus 7" in H with ma(T") = ma(T).
By Proposition the subgroup T is a maximal quasi-torus in F; and the subgroup 7" is a maximal
quasi-torus in Fy. Since ¢|p, : F1 — Fb is an isomorphism, ¢(T') is a maximal quasi-torus in Fy. Therefore,
©(T) is conjugate to T” under Fy by Theorem Since T” is a maximal quasi-torus in H, we get
that p(T) is conjugate to a maximal quasi-torus in H, so itself is a maximal quasi-torus in H. O

9. INTERSECTING CONJUGACY CLASSES WITH MAXIMAL QUASI-TORI

In this section we continue to consider linear algebraic groups G over an algebraically closed field L of
characteristic 0. We collect several results which we will need in the following sections.

Notation 9.1. Let G be a linear algebraic group, let 7' C G be a maximal quasi-torus. Note that T°
commutes with 7" := {g € T°: gh = hg} for every h € T. So we have T" = T" for every t € T°. The
conjugation action of 7° on hT° is given for t € T° and hx € hT° by that~ = hh=*that™! = hah~'tht=1,
because h~'th € T° commutes with 2 € T°. Therefore, the map

(9.1) ©:T° —T°, t+— h~1tht™!

satisfies that~! = hap(t) for every t € T° and hx € hT°. Moreover, ¢ is a homomorphism of algebraic
groups, namely the product of the endomorphisms ¢ — h~'th and ¢t — ¢t~ ! of the commutative group 7°.
The kernel of ¢ is T". Let Qj, be the quotient 7°/T". Then ¢ induces a closed immersion of tori

?:Qn—T°, t=tmodT"— httht™!.



42 URS HARTL AND AMBRUS PAL

Proposition 9.2. In the situation of Notation[91] the following holds:

(a) The natural group homomorphisms T"° x 1, Qn — T°, (to,t) — to-@(t) and T"® — T°/B(Q}) are
surjective with finite kernels.

(b) Every element of hT° is conjugate under T° to an element of hT"°,

(c) The intersection of KT with any G°-conjugacy class (respectively G-conjugacy class) is finite.

Proof. The kernel of the first homomorphism is the set {(to,%): to = P(f)~* = th~'t~th}. This
condition is equivalent to h™'th = to_lt. Since to € T" we obtain h~"th" = ty "'t for every positive integer
n. If n equals the order of h in the group T'/T° of connected components, then h™ € T° and h~"th" = t.
This shows that t§ = 1 and p(t™) = p(f)" = t, " = 1. In particular, the kernel of the first homomorphism
is contained in the n-torsion subgroup of the torus 77° x 1 @}, and the kernel of the second homomorphism
is contained in the n-torsion subgroup of the torus 7"°. Both are finite groups. By [Bor91, I1.1.4 Corollary]
the surjectivity now follows from this, from the irreducibility of the targets, and from the comparison of
dimensions dim Q;, = dim 7° — dim 7" and dim 7°/%(Q;) = dim T° — dim Qj, = dim T" = dim T"°.

[(B)] By [(a)] every ha € hT® is of the form ha = htop(t) = htop(t) = t(hto)t~* for htg € hT"° and ¢ € T°.

Since the projection onto the maximal reductive quotient G — G™¢ maps T isomorphically to its
image, and it maps conjugate elements to conjugate elements, we may assume that G is reductive without
loss of generality. (Note that there may be elements in 7' which are not conjugate under G, but whose
images are conjugate under G™?. So the cardinality of the intersection in question may grow by passing
to G™4.) The proposition is now a consequence of the following more precise statement. O

Proposition 9.3. In the situation of Notation[J1l let G be reductive, let Ng(T"°) be the normalizer and
let W C {w € Ng(T"°): whw=' € hT"°} be a finite subset which is mazimal (under the inclusion of
subsets) such that W — Ng(T"°)/Ng(T"°)° is injective. Moreover, let m > 0 be the smallest positive
integer with h™ € T"® and consider Z := {z € T"°: 2™ = 1}, which is a finite group. If two elements

u,v € hT"° are conjugate under G, then there are elements w € W and z € Z with u = zwvw™".

Remark 9.4. (a) The set {w € Ng(T"°): whw~=! € hT"°} is a subgroup. But in general it does not
contain Ng(T"°)°.

(b) Note that we do not claim that for every w € W and z € Z the element zwvw ™!

(c) When G is connected, T = T° and so h € T° and T" = Th° = T° is a maximal torus in G. Thus
we can take W as (a system of representatives of) the Weyl group of T°. Also m =1 and Z = {1}. In
this way we recover the result of Steinberg §I11.3.4, Corollary 2]: Two elements of T are conjugate
under G if and only if they are conjugate under W.

is conjugate to v.

Proof of Proposition[3.3. First note that some power of h lies in T°, and since this power commutes with
h, it also lies in T". Multiplying the exponent further by the order of 77 /T"° produces an integer m > 0
such that h™ € T"°. Also note that Z is a finite group because 7"° is commutative.

Let u,v € hT"® be conjugate under G, and pick an = € G such that v = zvz~'. Since v centralizes
Tv° = The = Tu° the conjugate u = zvaz~' centralizes 2T%°2~'. But u also centralizes T"°, so we get
that T“°, zT%°z~1 C G*°. By Theorem B2 the subgroups T%° C G*° and T"° C G° are maximal tori,
and hence zT°°x~! = 2T%°z~! is also a maximal torus in *G*°x~! = G*°. So there is a y € G*° such
that yoT%x 1yl = T"°. Then w := yx € Ng(T"°), but also v = yuy~' = yrvz~ly~! = wow™!, as
y e G".

Writing u = h@t = @h and v = ho = 0h with 9,4 € T"°, we see that hit = v = wow™' = whw ™ 'wiw™
and thus whw™! = hi(wd~'w™!) € hT"°, because & € T"° which is normalized by w. So there is an
element @ € W such that w = wn for an n € Ng(T"°)°. Let t € Th® with whiw~! = ht = th. Then
ut(wvw™t) = a th Y (whow ) = e t(wow ) = (wvw )t = (wohw H)h e = (wvwHuL,
because T"° is commutative. We set 2z := u(wvw~1)~! and compute 2™ = u™(wv™w 1)~!. By [Bor9ll
I11.8.10, Corollary 2], Ngo(T"°)° = Zgo(T"°)°, that is T"° centralizes Ngo(T"°)°. Now, v™ = h™3™
lies in 7"°, and hence commutes with n. We conclude that v™ = wo™w ™! = Wnv™n" 1w~ = @™~ L.
Therefore, 2™ = 1 and z € Z, whence v = zv@ ! as claimed. ]

1 1

Corollary 9.5. In the situation of Notation [T let C' be the intersection of hT° with a G°-conjugacy
class (respectively a G-conjugacy class) in G. Then C is a finite union of T°-conjugacy classes on hT°.
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Proof. Write C' as a disjoint union:
c=]]c
il
such that each ) £ C; C hT° is a T°-conjugacy class. By Propositionfor each ¢ € I the intersection
C;NRT"° is non-empty. Therefore, #(CNAT"°) > #I. But the set CNAT"® is finite by Proposition
O

Definition 9.6. For a closed subgroup H C GG and a set C C G let IC' = J gCg~! be the union of the
geH

H-conjugacy classes of elements of C. Clearly the map C' +— H#C on subsets of G preserves inclusions and
satisfies Z(H1C) = HC.

Proposition 9.7. In the situation of Notation [l let C C hT° be a subset and let H C G be a closed
subgroup containing T°. Then HONKT"® is Zariski-dense in hT"° if and only if "CNhT® is Zariski-dense
i hT°.

Proof. We set C := fIC' N hT"° and observe that “C; = #C, because the inclusion #C; ¢ #C' is obvious
and the opposite inclusion follows from Proposition because T° C H.

First assume that hT"° equals the Zariski-closure C; of Cy, and let € hT°. By Proposition
there is a t € T° C H with txt~! € hT"° = C,. Then x € t—1Cit = t—1C;t. Since t~1Cit is contained in
HOy N AT° = HC N AT° we conclude that = € t—1Cit € HC N hT°. Therefore, “C' N hT° is Zariski-dense
in AT°.

For the converse implication we assume that C; # hT"° and consider the subset

D := {(c1,b,9) € Cy x hT° x H such that b= gc,g7'} € Cy x hT° x H

and the projections 71: D — C; and mo: D — hT°. Then mo(D) = #Cy N hT° = #C N hT°. We consider
the following diagram which is not commutative

2

D hT*°

N |

O e — B e o)

where  is induced from the homomorphism from Proposition Although the diagram is not com-
mutative, we claim that yme (D) C Bm1(D). Indeed, let x € yma(D) and let (¢1,b,g) € D be a preimage of
x, that is b = gc1g~ . By Proposition there is an element ¢t € T° C H such that ¢ := tbt~+ € hT"°.
Then ¢ = (tg)ei(tg)~t € #Cy N hTH® = Cy. Moreover, b = t~lct = cp(t), and hence (c,b,t~!) € D. This
shows that x = yma(c1,b,9) = b-B(Qn) = ¢ - B(Qp) = fr1(c,b,t™ 1) € Bri(D) and proves the claim.
Since C; # hT"° and hT"° is irreducible, we get the inequality dim C; < dim AT"° for the dimensions.
By [EGAL IVy, Théoréme 4.1.2] we have dim 3(C1) < dim C; < dim hT"° = dim hT° /3(Q}), and therefore
B(C1) is a proper closed subset of hT°/%(Q}) which contains (D). Since 7 is surjective, the preimage

of (C7) under + is a proper closed subset of hT° which contains mo(D) = #C N AT°. This shows that the
Zariski-closure of C' M hT® is strictly contained in hT° and finishes the proof. O

Proposition 9.8. Let G be a linear algebraic group, let T C G be a maximal quasi-torus, let h € T', and
let C C hT° be a subset. Let a: G — G = G/R,G be the projection onto the mazimal reductive quotient
of G. Let HC G and H C G be closed subgroups with T° C H and al(H) C H. Then fC N hT° is
Zariski-dense in h'T° if and only if ﬁa(C) Na(hT®) is Zariski-dense in a(hT®).

Remark. Note that the “if”-direction is not obvious, because there may be elements in h7T° which are not
conjugate under H, but whose images are conjugate under o(H).

Proof. Note that o(HC) C Ha(C), and hence a(#C N hT°) C ﬁa(C) Na(hT?). Since a: hT° = a(hT°)
is an isomorphism, the “only if”-direction is clear.
To prove the converse, we use Notation and let Cy := Hon hThe, Then Hoy = ~HC as in the

proof of Proposition Moreover, fa(C1) = Ha(C), because the inclusion Ha(Cy) C Ha(C) follows

from «(C1) C a(HC) C Hoz(C’), and the opposite inclusion follows from o(C) C «(#C;) € Ha(C1). So
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by Proposition @7t suffices to show that C is Zariski-dense in hT"° provided that Hoz(C’l) Na(hT") is
Zariski-dense in a(hT"°).

Let u € 7 (Cy) N a(hThe), that is u = Gug—! for some § € H and v € a(Cy) C a(hT"®). Then
in the notation of Proposition applied to a(T"°) C é, there are elements z € Z and w € W with
u = zwvw~'. We conclude that

ﬁa(Cl)ﬂa(hTho) C U zwa(Cw™ C a(hTh?).
zeEZweW

If the Zariski-closure C; of Cj is strictly contained in hT"°, then a(Cy) = «(C)) # a(hT"°) and we
obtain an inequality of dimensions dim a(C;) < dima(hT"°), because a(hT"°) is irreducible. On the
other hand the Zariski-closure

Ho(Cy) Na(hThe) C U zwa(Cr)w™ C a(hTh?),
zeEZweW

because the union is closed as a finite union of closed subsets. Since dim zw a(C;)w™! = dim a(C;) <
dim a(hT"°) ‘and a(hT"°) is irreducible, it cannot be the finite union of proper closed subsets. This

implies that fa(Cy) Na(hT"°) is not Zariski-dense in a(hT"°) and proves the proposition. O

Lemma 9.9. Let G be reductive (but not necessarily connected) and let T C G be a maximal quasi-torus.

(a) For every g € G(L) we have ¢{g} N T = “{gs} NT, where g5 is the semi-simple part in the
multiplicative Jordan decomposition of g.
(b) Let {C,: x € S} be a collection of conjugacy classes in G(L) and leth € T(L). Then hG°NJ, g Ca

is Zariski-dense in hG° if and only if hT° N Uwesc_x is Zariski-dense in hT°.
Proof. Let ¢: G x G — G be the map given by the rule (h,g) — hgh~!.

[(2)] Theorem Bd(a)] [(b)]implies that “{g} is Zariski-closed in G if and only “{g}NT # 0. So if “{g}NT =0
there is a ¢’ € ¢{g} \ “{g}. By Chevalley’s theorem [EGAL IV, Théoreme 1.8.4] “{g} = ¢(G x {g}) is
constructible, so there is a non-empty Zariski-open subset of its closure O C @ with O C “{g} by
[EGA] Oryy, Proposition 9.2.2]. In particular %{g'} € %{g} ~ O and &{g'} € {g}. Proceeding in this way
will eventually produce a g’ € @ﬂ T. Now we use that the map s: h +— hg on @ sending h € G to its
semi-simple part hg is actually a morphism of schemes by Lemma below. Since “{g} is mapped into
Glgs} under s, its Zariski-closure “{g} is mapped into {gs}. But gs is semi-simple, so “{gs} is closed,
and hence the image of &{g} under s lies in “{g,}. Therefore, ¢’ = ¢/ also lies in “{g,}, and this shows
that “{g.} = %{¢'} C G{g}. It moreover shows that all semi-simple elements h = h, € G{g} are mapped

under s to “{g,}. Since h = s(h), we conclude that “{g} NT C “{g,} NT proving[(a)|

[B) Let A :=hG°NU,cqCs and B := hT°N|J, g Cr denote the Zariski-closures. Note that A contains
B, and since A is invariant under conjugation by G°, it also contains ¢(G° x B). From Theoremm
we conclude that the set of semi-simple elements in hG°, which equals ¢(G° x hT°), is dense in hG°, that
is ¢(G° x hT°) = hG°.

Now, if B = hT° then this implies that A contains ¢(G° x hT°) = hG°.

So we only have to show that A = hG° implies B = hT°. Assume that this is not the case and let
V' C RT*® be the open complement of B. We claim that the Zariski-closure of ¢(G° x V') equals hG°. Indeed,
(G° x hT°) ~ ¢ (e(G° x V)) is open in G° x hT° and its image in hT° with respect to the projection
does not meet V. Since the projection G° x hT° — hT° is flat of finite presentation, this image is open
by [EGAL IV,, Théoréme 2.4.6], and hence empty because V is open and dense in the irreducible variety
hT°. Thus (G° x hT°) C ¢ Hc(G® x V)) and ¢(G® x hT°) C ¢(G° x V). Since ¢(G° x hT°) = hG°,
we have ¢(G° x V) = hG°, which is our claim. By Chevalley’s theorem [EGAL TV;, Théoreme 1.8.4]
¢(G° x V) is constructible, so it must contain a non-empty Zariski-open subset O C hG° by [EGAL Oy,
Proposition 9.2.2]. Because hG° N |J,cg C. is Zariski-dense in hG°, we get that there is an 2 € S such
that C,, N O # (. Hence there is a h € G° such that h"'Vh N C, # 0, and since C,, is a conjugacy class,
we get VN C, # (. This is a contradiction. O
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Lemma 9.10. Let G be a linear algebraic group, and consider the maps of sets s: G — G, h — hg and
u: G —= G, h— hy, which send every element h to ils semi-simple part hs, respectively unipotent part h,
in the multiplicative Jordan decomposition. Let g € G. Then the restriction of these maps to the reduced
closed subscheme G{g}, where “{g} is the conjugacy class of g, are morphisms of schemes.

Proof. Let p: G — GL,, =: H be a faithful linear representation. Since p(“{g}) C #{p(g)} and the
multiplicative Jordan decomposition is compatible with p by [Bor91l 1.4.4 Theorem], it will be enough to
show the claim for #{p(g)}, or in other words we may assume that G = GL,, without loss of generality.
Note that the characteristic polynomial, as a conjugation-invariant regular function, is constant on “{g}.
Let x(t) € L[t] be this value, and write

T

x(t) = J—=x)",

j=1
where )\; € L are pairwise different, and the r; are positive integers. Since the polynomials
Pi(t) =x@®)/t=X)", (G=12...,7)
have no common divisor, and L[t] is a principal ideal domain, there are Q1,Q2, ..., Q, € L[t] such that
l=@QiPi+ Q2P+ + QD
In particular Q;(¢)P;(t) = 1 mod (¢t — ;)" for all j, because (t — \;)"7 divides P;(t) for every i # j, and
hence (Q;P;)* = Q;P; mod x. Let h € &{g}. Then the characteristic polynomial of h equals y and the

Cayley-Hamilton theorem implies that the endomorphism Q;(h)P;(h) € End(L™) is the projection onto
the generalized eigenspace ker(h — ;)™ of h for the eigenvalue );. Thus the polynomial

P(t) = AlQl(t)Pl (t) + )\gQg(t)Pg(t) + -+ )\TQT(t)PT(t) S L[t]

satisfies

s(h) = P(h) = MQ1(h)Pi(h) + X2Q2(h)Pa(h) + -+ + A\ Qr(h)Pr(h) € Mpxn(L)
for every h € ©{g}. Clearly this is a polynomial map, hence a morphism of schemes. Thus u(h) = s(h)~!-h
is also a morphism. O

Corollary 9.11. Let G be a reductive group (which is not necessarily connected). Let F C G be a union
of conjugacy classes and let F* = {gs: g € F} be the set consisting of the semi-simple parts gs of the
elements g of F'. Then F is Zariski-dense in a connected component of G if and only if F*° is Zariski-dense
in that connected component.

Proof. For every g € G the Zariski-closure @ of the conjugacy class “{g} of g contains the conjugacy
class “{gs} of the semi-simple part g, of g by Lemma So the Zariski-closure of F'** lies in the Zariski-
closure of F', and hence one implication holds. On the other hand let hG° C G be a connected component
in which F N hG° is Zariski-dense. By Theorem there is a dense open subset O C hG° such that
O only contains semi-simple elements. Then F' N O is also Zariski-dense in hG°, but F NO C F*° N hG°.
Therefore, F*S N hG° is also Zariski-dense in hG°. O

10. THE WEAKLY PINK HYPOTHESIS AND ITS CONSEQUENCES

Conjecture 10.1. Consider an open sub-curve f:V — U and a base point v € V(Fge). Let F €
F-Isock (U) be a convergent F-isocrystal on U. Then Gr(f*F/V,u) C Gr(F/U,u) is a parabolic subgroup.

In private conversation with one of us this was formulated by Richard Pink as a question in the
special case when F comes from a p-divisible group on U. Note that by [Bor91l IV.11.2 Corollary] and
the following lemma, the conjecture is equivalent to the assertion that the natural injective morphism
Gr(f*F/V,u) — Gr(F/U,u) maps every Borel subgroup of Gr(f*F/V,u) x g, K onto a Borel subgroup

of Gr(F/U,u) xk, K.
Lemma 10.2. The natural morphism Gr(f*F/V,u) — Gr(F/U,u) always is a closed immersion.

Proof. Every object of ((f*F)) is a subquotient of an object of the form @, f*F®™ @ (f*FY)®" =
(D, F&™ @ (FY)®"i). Now the statement follows from Proposition [AT(D)| O
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Definition 10.3. Let F € F-Isock (U) be a convergent F-isocrystal on U and let f: V < U be an open
sub-curve with a base point u € V(Fge).

(a) We will call F pink [] with respect to f: V < U if under the inclusion Gr(f*F/V,u) C Gr(F/U, )
a Borel subgroup of Gr(f*F/V,u) x g, K is also a Borel subgroup of Gr(F/U,u) xx, K.

(b) We will call F weakly pink with respect to f: V < U if under the inclusion Gr(f*F/V,u) C
Gr(F/U,u) a maximal quasi-torus of Gr(f*F/V,u) xk, K is also a maximal quasi-torus of the
group Gr(F/U,u) xk, K.

(c) We will call F conservative with respect to f if Gr(f*F/V,u) — Gr(F/U,u) is an isomorphism.
Note that F is (weakly) pink with respect to f: V < U if and only if every Borel subgroup (resp. every
maximal quasi-torus) of Gr(f*F/V,u) x, K is also a Borel subgroup (resp. maximal quasi-torus) of
Gr(F/U,u) x g, K, because they are all conjugate by [Bor91 IV.11.1 Theorem] (resp. Theorem B.10).

The reason why we are interested in this concept is the following theorem, which reformulates Theo-
rem [[L.TT] and which we will prove at the end of this section.

Theorem 10.4. Let F € F-Isock (U) be a convergent semi-simple F-isocrystal on U which is weakly pink
with respect to an open sub-curve f:V < U for which f*F has a slope filtration on V' (with isoclinic
subquotients). Then F satisfies Conjectures 1.2, and [I3}

Note that by the specialization theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there always
is an open sub-curve f: V < U on which the Newton polygon of F is constant, and by the slope filtration
theorem [Kat79, Corollary 2.6.3] the restriction f*F has a slope filtration with isoclinic subquotients. Our
assumption is that F is weakly pink with respect to such an f.

Before we prove the theorem (after Definition [[0.15)) let us establish a few facts about (weakly) pink
F-isocrystals.

Proposition 10.5. Let F € F-Isock (U) be a convergent F-isocrystal on U and let f: V < U be an open
sub-curve with a base point u € V (Fge).

(a) If F is pink with respect to f, then it is weakly pink with respect to f.

(b) If F is weakly pink with respect to f then the natural inclusion B: Gr(f*F/V,u) — Gr(F/U,u)
induces an isomorphism on the groups of connected components and every maximal torus of
Gr(f*F/V,u) is also a mazimal torus of Gr(F/U,u). (See Warning [LIA for the converse.)

(¢) Without assumption on F, the inclusion Gr(f*F/V,u) C Gr(F/U,u) always induces a surjection
(Gr(f*F/V,u)/ Gr(f*F/V,u)°) xg, K — (Gr(F/U,u)/ Gr(F/U,u)°) xg, K on the groups of
geometrically connected components.

Proof. [(b)|Let Ty be a maximal quasi-torus of Gy := Gr(f*F/V,u)x kK and set Gy := Gr(F /U, u)x g, K.
If F is weakly pink with respect to f, then T5 := S(71) is a maximal quasi-torus of Gy and 3(I7) = T5 is a
maximal torus of G by Lemma[R8 Furthermore, Theorem RI0 implies that G1/GS = Ty /TY = Ts /Ty =
G/G$ is an isomorphism on the groups of connected components over K. Since this isomorphism is
already defined over K., this proves @

Let U be an object of ((F)) such that the surjective homomorphism Gr(F/U,u) — Gr(U /U, u) has
kernel equal to the characteristic subgroup G§ C Ga; see Remark [A 17 and Corollary Then U
is unit-root by Lemma Bl and hence the inclusion map Gr(f*U/V,u) C Gr(U/U,u) is an isomorphism
by Corollary BI0l Since f*U is an object of ((f*F)) the corresponding homomorphism Gr(f*F/V,u) X k.,
K — Gr(f*U/V,u) xx, K = Gr(U/U,u) xx, K = G2/GS is surjective by Lemma B3 It follows that
G1/GS — G2/G3 is surjective.

Let T7 be a maximal quasi-torus in G7 and let a: Go — G2/ R,G2 =: G5 be the maximal reductive
quotient of G, where R, (G5 is the unipotent radical of Go. We have to show that o maps S(7}) isomor-
phically onto a maximal quasi-torus of G3. By Theorem [0 there is a Borel subgroup B of G5 which is
normalized by T;. Since 5(G1) C G2 is parabolic, B(TY) is a maximal torus and (BY) is a Borel subgroup
of G$ by [Bor91l, IV.11.2 Corollary and IV.11.3 Corollary]. Now [Bor91l IV.11.14 Proposition] shows that
T3 := af(TY) is a maximal torus and BS := «f(BY]) is a Borel subgroup of G§. The latter is normalized

las an abbreviation for “die Monodromie-Gruppe wird parabolisch unter der Inklusion von Kurven” (the monodromy
group becomes parabolic under the inclusion of curves)
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by aB(T1). Therefore, «f(T}) is contained in the maximal quasi-torus T3 := Ng,(BS) N Ng, (Ty). Since
all elements of §(77) are semi-simple by Theorem and the kernel of « is unipotent, the restriction
of @ to B(11) is injective, and therefore the map «f induces an injection T4 /T < T5/Ty5. On the other
hand, this injection equals the surjection T /Ty = G1/GS — G2/G§ = G3/GS = T3/T5 from[(c)} This
shows that « maps §(T1) isomorphically onto T5 as desired. O

Warning 10.6. If we consider a closed subgroup G of a non-connected linear algebraic group G and
a maximal quasi-torus 77 in (G; one can ask whether there is a maximal quasi-torus of G2 containing
T;. We believe that this is not true in general, even under the assumption that G1/GS = G2/G35 and
that 77 is a maximal torus in G§, but see Theorem below. That is, we believe that the converse
of Proposition does not hold in general. In order to prove this converse one would have to show
that (in the notation of the proof of Proposition [[(LT) every maximal quasi-torus T; of G; is mapped
isomorphically to a maximal quasi-torus in the maximal reductive quotient G3 of G2. By our hypothesis
we obtain an isomorphism G1/GS == G2/G == G3/GS. The proof now reduces to the following group
theoretic statement. By hypothesis T5 = of(Ty) is a maximal torus in G§ and we choose a Borel subgroup
B C G5 containing T%. Then T3 := Ng,(B3S)NNg, (T5) is a maximal quasi-torus in Gs. The isomorphism
G3/GS = T3/T5 C Ng,(T¥)/Ts from Theorem B9 yields a split exact sequence of groups

(10.1) 1 —— Ngg(13) /15 — Ngy (1) /Ts —— G3/G3 —— 1.

Here W := Ngs5(75)/T5 is the Weyl group. The morphism G3/G§ =~ G1/G{ == T1/TY N Ne, (T9) /T3
yields another splitting of (I0J]). One has to show that the two splittings are conjugate. Every conjugacy
class of splittings s: G3/G§ — N, (T5)/Ts defines a cohomology class ¢: G3/GS — W in H' (G3/GS, W)
as follows. Let g € G3/G3. Since s(g) normalizes Ty it conjugates B3 to another Borel subgroup containing
Ty. The latter is of the form s(g) "' B$s(g9) = ¢(g9)Bs¢(g9) ! for a uniquely determined element ¢(g) € W
by [Bor91l 11.11.19 Proposition]. The cohomology class ¢ is trivial if and only if the splitting comes from a
maximal quasi-torus, because if s(g) € T5 C Ng,(B5) then ¢(g) = 1. So af(T1) is a maximal quasi-torus
if and only if the corresponding cohomology class is trivial. Now it is not difficult to construct a group
G5 with Hl(G3/G§, W) # 0 and to choose a splitting s with non-zero cohomology class. Unfortunately
we were not able to show that this situation cannot arise from a group homomorphism G; — G2 or from
a convergent F-isocrystal F € F-Isock (U).

Proposition 10.7. Let F € F-Isock(U) be a convergent F-isocrystal on U which is weakly pink with
respect to an open immersion f: V < U, and let G be a convergent F-isocrystal on U which is conservative
with respect to f. Then F @ G is weakly pink with respect to f.

Proof. By Proposition B:f(c)| there are two Cartesian diagrams
Gr(f*(F) & f*(9)/V,u)

Hm/ \»
Gr(f*F/V,u) O Gr(f*G/V,u)
\» @o/l
Gr((f* (PN N LGN/ V,u)
and
) Gr(Fa® G/U,u)
— \»
Gr(F/U,u) 0 Gr(G/U,u)

\9 /

Gr((F) N (9)/U,w),

of algebraic groups, where the maps are all induced by the inclusion functors on the respective Tannakian
categories. Let N7 and Ns denote the kernel of m; and me, respectively. Then N; and Ny are closed
normal subgroups in Gr(f*(F) ® f*(9)/V,u) and Gr(F @ G/U,u), respectively. We claim that N7 maps
isomorphically onto Ny with respect to the map:

o: Gr(f*(F)® f(9)/V,u) = Gr(F & G/U,u)
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induced by pull-back with respect to f. The map ¢ extends to a map of the Cartesian diagrams above
which is also induced by pull-back with respect to f. Therefore, p(N1) C No. Now Nj and N can be

described as the fiber products

Gr(f*G/V,u)
—
Gr((f*F) N (f*G)/V,u)
and
/ \ Gr(G/U,u)
\ —

N(GN/U,w),
of algebraic groups, respectively. Since the map
p: Gr(f*G/V,u) = Gr(G/U, u)

is an isomorphism by the assumption that G is conservative, and since

p: Gr((f*FN OGN/ Viu) = Gr((F) N (G) /U, u)
is a closed immersion by Lemma [[0:2] we conclude that ¢|y, : N7 — Ns is an isomorphism. Note that

Gr(f*(F)@ f*(9)/V,u)/Ny = Gr(f*F/V,u) and Gr(F ® G/U,u)/Ny = Gr(F/U,u),

and the group homomorphism

p: Gr(f*(F) @ f7(9)/V,u) /Ny —= Gr(F © G/U,u) /N2
induced by ¢ is the map:

Gr(f*F/V,u) = Gr(F/U,u)

induced by the pull-back with respect to f. If T' C Gr(f*(F)® f*(G)/V,u) x i, K is a maximal quasi-torus,
its images in Gr(f*F/V,u)x i, K and in Gr(F /U, u) x i, K are maximal quasi-tori by CorollaryBITand by
the assumption that F is weakly pink with respect to f. Therefore, the image of T in Gr(F &G /U, u) x . K
is a maximal quasi-torus by Theorem BI0] and hence F & G is also weakly pink with respect to f. (]

Definition 10.8. Let «v: G; — G2 be a homomorphism of linear algebraic groups over an algebraically
closed field L of characteristic 0. We say that ~ is pink, if it maps a Borel subgroup of G; onto a Borel
subgroup of Gy. Similarly, we say that v is weakly pink, if it maps a maximal quasi-torus of G onto a
maximal quasi-torus of Gs.

Note that « is (weakly) pink if and only if it maps every Borel subgroup (resp. every maximal quasi-
torus) of G; onto a Borel subgroup (resp. maximal quasi-torus) of Gs, because they are all conjugate
under G by [Bor91l, IV.11.1 Theorem]| (resp. Theorem BI0).

Lemma 10.9. Let

GlL)GQ

HlL)Hg

be a commutative diagram in the category of linear algebraic groups over an algebraically closed field L of
characteristic 0, such that m and 7o are surjective. If vy is pink (resp. weakly pink), then x is also pink
(resp. weakly pink).
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Proof. Let T be a Borel subgroup (resp. maximal quasi-torus) in Gy. Since 7 is surjective, its image
71(T) is also a Borel subgroup (resp. maximal quasi-torus) in Hy by Corollary RIIl By assumption the
image v(T') is also a Borel subgroup (resp. a maximal quasi-torus) in Gs. Since 7 is surjective, the image
ma(y(T)) of (T") is also a Borel subgroup (resp. a maximal quasi-torus) in Hy by Corollary BTl But
w2 (y(T)) = x(m1(T)), so x is pink (resp. weakly pink). O

Proposition 10.10. Let F € F-Isockx (U) be a convergent F-isocrystal on U which is pink (resp. weakly
pink, resp. conservative) with respect to an open sub-curve f:V < U, and let G be an object of {(F)).
Then G is pink (resp. weakly pink, resp. conservative) with respect to f.

Proof. We have a commutative diagram:

Gr(f*F/V,u) —— Gr(F/U,u)

| |

Gr(f*G/V,u) —— Gr(G/U, u)

such that the vertical maps are surjective and the horizontal maps are induced by the inclusion f: V — U.
If the top horizontal group homomorphism is pink (resp. weakly pink), the lower horizontal group homo-
morphism is also pink (resp. weakly pink) by Lemma[I0.9 On the other hand, if the top horizontal group
homomorphism is an isomorphism, the lower horizontal group homomorphism is also an isomorphism,
because it is a surjective closed immersion. O

Next we will establish the following

Proposition 10.11. Let F be a direct sum of isoclinic convergent F-isocrystals on U and let f: V — U
be an open sub-curve with a base point u € V(Fye). Then F is conservative with respect to f, i.e. the map
Gr(f*F/V,u) — Gr(F/U,u) induced by the inclusion f:V < U is an isomorphism. In particular F is
pink with respect to f.

Before proving the proposition, we note the following

Corollary 10.12. Let F be a convergent F-isocrystal on U such that the identity component Gr(F /U, u)°
of its monodromy group is a torus. Let f:V < U be an open sub-curve with a base point u € V(Fye).
Then F is conservative with respect to f.

Proof. There is a finite field extension K, of K. over which the torus Gr(F/U,u)° splits. Let n be the
inertia degree of K/ over K. Then K is a totally ramified field extension of K,. By Corollary [6.5] we

may find a finite étale covering g: U — U and take K/ and n large enough, such that u lifts to a point
a € \N/(Fqn) for V := U xy V, and such that Gr(g*F/U, @) == Gr(F/U,u)° is an isomorphism. We
consider the functor F-Isoc (U) — F"-Isocg (Uy), g*F — (9" F)™ @, K/ which is the composition of
the functor (.)™ from @) on U and the extension functor @, K, of the coefficients from K, to K.
We get by Lemma m an open and closed immersion

(10.2) Cr(g*F™ @k, K. JU,, @) = CGr(g*F/U, @) xx, K, .

Since Gr(g*F/U, ) is geometrically connected, the map ([[ILJ) is an isomorphism and Gr(g*F™ @
K/ ﬁn, @) is a split torus. Therefore, its one-dimensional K/ -rational representations generate the Tan-
nakian category of all its representations. So g* F(™ @y, K’ belongs to the Tannakian sub-category ((]T" ) C
F"-Isockr, (ﬁn) generated by an F"-isocrystal F on U, which is a sum of one-dimensional F "-isocrystals.
For each one-dimensional F™-isocrystal the slope filtration is constant, so F is a direct sum of isoclinic
convergent F"-isocrystals. By Propositions and [T the Fm-isocrystals F and g*F(™ ®K, K
are conservative with respect to the open sub-curve prg: Ve U. By ([I02)) this implies that the closed
immersion Gr(prg*F/ V, @) < Gr(g*F/U, @) is an isomorphism after the faithfully flat base-change from
K. to Kj,. Thus it is an isomorphism already over K.. Since goprz = fopry: V> U, Lemmas
and provide closed immersions of group schemes Gr(ﬁr%g*]—"/f/, ) = Gr(f*F/V,u) = Gr(F/U,u)
whose composition is an isomorphism onto the identity component by the above. Now Proposition
implies that Gr(f*F/V,u) — Gr(F/U,u) is an isomorphism and F is conservative. O
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Next we prove Proposition [I0.11] which by Proposition[A.T4|(a)| follows immediately from the following
two lemmas:

Lemma 10.13. The full sub-category S(U) of direct sums of isoclinic convergent F-isocrystals is a full
Tannakian sub-category.

Proof. Clearly S(U) is closed under direct sums. Since the tensor product and duals of isoclinic F-
isocrystals are isoclinic, the category S(U) is closed under tensor products and taking duals, too. Therefore,
it will be sufficient to show that if F is a direct sum of isoclinic F-isocrystals and G C F is a sub F-
isocrystal, then G and F/G are also direct sums of isoclinic F-isocrystals with the same slopes than F. By
looking at the dual (F/G)¥ C F¥ and observing that the dual of an isoclinic F-isocrystal is again isoclinic
with the negative slope, it suffices to prove the statement for G. Write F as

F=F1&Fd - BF,,

where each F; is an isoclinic F-isocrystal of slope A; and the slopes A; are pair-wise different. We are
going to show the claim by induction on n. The case n = 1 is trivial.

Now assume that n > 2 and the claim is true for n — 1. Let 7;: F — F; be the projection onto the i-th
factor for each ¢ = 1,2,...,n. Set G = ker(m) NG; it is a sub F-isocrystal of G. It is also isomorphic
to a sub F-isocrystal of ker(my) = Fo @ -+ @ Fy, so it is a direct sum of isoclinic F-isocrystals by the
induction hypothesis. Set Go = ker(my @ --- @ m,) N G; it is a sub F-isocrystal of G. It is also isomorphic
to a sub F-isocrystal of Fi, so it is isoclinic. Since G; NG C ker(m) Nker(ms), the intersection G; N Gs is
the trivial crystal, and therefore we have an injection

G ® G — F

which is an isomorphism onto G; 4+ G2, the sub-isocrystal generated by G; and Gs. Since G contains both
Gy and Go, it contains G; + Ga, too. The quotient G/(G1 + G2) is isomorphic both to a subquotient of
Fy and Fo @ --- @ F,. By our induction hypothesis, every subquotient of Fj is isoclinic with slope A

and every subquotient of F» @ --- & F, is a direct sum of isoclinics with slopes in {Aa,..., A, }. Since \;
does not lie in {A2,..., A\, }, this can only be the case if the quotient G/(G1 + Gz) is trivial, and hence
G =2 G1 ® Gs. The claim follows. u

Lemma 10.14. Let f: V < U be the inclusion of a non-empty open sub-curve and let F be an object
of S(U). Then the pull-back functor G — f*G from (F)) to (f*F)) is a tensor equivalence of Tannakian
categories.

Proof. The pull-back functor is obviously a tensor functor. It is fully faithful by Kedlaya’s full faithfulness
theorem Theorem 1.1]. So it remains to show the following: if F is a direct sum of isoclinic
F-isocrystals on U and G C f*F is a sub F-isocrystal (over V'), then G is of the form f*H for some
sub F-isocrystal H C F. By the proof of the lemma above G is the direct sum of sub F-isocrystals of
pull-backs of the isoclinic direct summands of F via f. So we may assume without loss of generality that
F is isoclinic of slope A\. Then there are two constant F-isocrystals Dy, D> of slopes A\ = —A and Ay = A,
respectively, such that F ® D; is unit-root and D; ® Do is trivial of rank n? for some positive integer
n. Then G ® f*D; C f*(F ® Dq) is of the form f*H; for a unique F-isocrystal H; C F @ D; on U by
Corollary 5111 Therefore

G 2 G [*D1® [*Da C f*(F) @ f*(D1 @ D) = f*(FE)

is of the form f*(H; ® Dy) for the F-isocrystal H; ® Dy C Fen’ on U. By projecting onto a direct
summand of F®"" we get the claim. O

After these general results we now turn towards the proof of Theorem [0l We make use of the following

Definition 10.15. Let F be a convergent F-isocrystal and fix a maximal quasi-torus T' C Gr(F, u) with

connected component 7° and an element ¢t € T'(K). For every closed point  of U let

Frob®*(F,tT°) := Froby(F) NtT°.
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We will frequently use the following useful fact: let G be an object of (F)) and let h: Gr(F,u) —
Gr(G, u) be the corresponding surjective homomorphism. Choose two maximal quasi-tori Ty C Gr(F,u)
and Ty C Gr(G,u) such that h maps T} into Ts. Let t; € T1(K) and t5 := h(t;). Then for every closed
point = of U the morphism h maps Frob;*(F,t;77) into Frob;*(G,t2T5). (This is clear since h maps
Frob, (F) into Frob,(G) by Lemma B3])

Proof of Theorem[I0.4 Let F be a convergent semi-simple F-isocrystal on U and let S C |U| be a set of
positive upper Dirichlet density. By assumption there is an open sub-curve f: V < U which respect to
which F is weakly pink, such that f*F has a filtration

FoCF1 C--CFm

with isoclinic factors F;/F;_1. We replace S by SN|V| which has the same Dirichlet density as S because
|U| ~ |V] is finite. Moreover, set

g= @(}1‘/}1‘71)55

Then a: G := Gr(f*F/V,u) — G := Gr(G/V,u) is the maximal reductive quotient and « induces an
isomorphism on the groups of connected components G/G° — G / G° by Lemma [3.8] By Theorem [
there exists a maximal quasi-torus 7' C G. Then 7 is a maximal torus in G by Lemma[8.§and T := o(T)
is a maximal quasi-torus in G with identity component T° = = o(T°) and afp: T = T is an isomorphism.

By Theorem [[R Conjecture [ holds for G/V. Let € T(K) be an element such that the connected
component {G° of Gr(G/V,u) is contained in the Zariski-closure of the set U,eg Frob.(G). We claim that
this is not changed if we remove from S all points = for which Frob, (G) does not consist of semi-simple
elements or does not meet 1G°. Namely, by Theorem there is an open set O in IG° consisting
of semi-simple elements. Since the Zariski-closure X = {G°(K) of X := {G°(K) N |J,cq Frob,(G) is
irreducible and contained in the union of X N O(K) and X ~ O(K) C (iG° ~. O)(K), we conclude that
iGe equals the Zariski-closure of X N O(K) which consists of semi-simple elements only.

Since G is reductive the semi-simple conjugacy class Frob,(G) is Zariski- closed in G for every z € S
by Theorem [B Therefore, Frob®*(G,71°) = #T° N Frob,(G) and Lemma [0 implies that #7° i
the Zariski- closure of C :=iT° N UzGS Frob,(G) = U,cg Froby’ (G, iT°). We now lift the situation to
G = Gr(f*F/V,u). Let t := (a|7)"(#) € T(K) and view it as an element of Gr(F/U, u) by Lemma [0.2]
Since F is weakly pink with respect to f, T is also a maximal quasi-torus in Gr(F /U, u). By Lemma
and Proposition the theorem is now a consequence of the following

Claim. The set C := J g Frob}”(F,tT°) is Zariski-dense in ¢7°.

To prove the claim, let 2 € S be arbitrary and pick a g € Frob,(f*F) NtG°(K). Write g = gs - g, for
the multiplicative Jordan decomposition of g, where gy, g, € G are the semi-simple and unipotent parts
of g, respectively. Since g5 is semi-simple, Theorem shows that gs lies in a maximal quasi-torus
of G and can be conjugate by an element h € G°(K) such that h='gsh lies in T N tG° = tT°. Then
h~'gh is also an element of Frob,(f*F)(K), and its multiplicative Jordan decomposition is h=*gh =
(h=Ltgsh) - (h~tgy,h), where h=tgsh,h=tg,h € Gr(f*F/V,u) are the semi-simple and unipotent parts of
h~1gh, respectively. So we may assume without loss of generality that g, € tT°(K). Since g5 is also the
semi-simple part of g in the larger group G := Gr(F /U, u) (see [Bor91] 1.4.4 Theorem]) which is reductive,
and Frob, (f*F) C Frob,(F) by definition, we get that g, € Frob3*(F,¢T°) using Lemma @d(a)| and that
Frob?* (F,tT°) = Frob, (F)NtT° = “1{gs}NtT°. Therefore, also “1Frobs®(F,tT°)NtT° = Frobs®(F,tT°).

Since by [Bor91, I.4.4 Theorem| the homomorphism «: Gr(f*F/V,u) — Gr(G/V,u) preserves Jor-
dan decompositions we get that a(g) = a(gs) - @(gy) is the multiplicative Jordan decomposition of a(g),
where a(gs),a(gn) € Gr(G/V,u) are the semi-simple and unipotent parts of «(g), respectively. More-
over, as a(g) € Frob,(G) by Lemma and Frob,(G) is semi-simple by our assumption on S we get
a(gs) = a(g) € Frob,(G). Therefore, Frob,(G) = G{a(gs)} in terms of Deﬁmtlonlm, and this means that
Ca(Frob?’ (F,tT°)) contains Frob, (g) Therefore, also “a(Frob’®(F, tTo))ﬁtTO contains Frob, (g)ﬂtTO =
Frobss(g #T°), and hence o<(C')ﬁtTO = UxES a(FrobSS(]: tTO))ﬂtTO contains  J, . 4 Frob;’ (G, iT°) = C.

Since C is Zariski-dense in £7°, also a(C)ﬂtTO is Zariski-dense in #7°, and by Proposition[@8we conclude
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that “C'NtT° is Zariski-dense in t7°. Finally “CN¢T° C “1CNIT° = J, g @' Froby* (F,tT°) NtT° = C.
So C' = GC' NtT° is Zariski-dense in tT° as claimed. O

11. THE WEAKLY PINK CONJECTURE FOR WEAKLY FIRM F-ISOCRYSTALS

In this section we will show that Chebotarév density is equivalent to the weakly pink property for the
locally weakly firm F-isocrystals from Definition The following claim provides examples of locally
firm and locally weakly firm F-isocrystals.

Proposition 11.1. Let F be a convergent F-isocrystal on U. Consider the following list of properties:

(a) the rank of F is two and F is not isoclinic.

(b) each slope of the generic Newton polygon of F has multiplicity one,

(c) each isoclinic component of the generic slope filtration of F has an abelian monodromy group,
(d) the convergent F-isocrystal F is locally firm.

(e) the convergent F-isocrystal F is locally weakly firm.

Then@ééé@é-

Proof. If F is not isoclinic, then every isoclinic component of the generic slope filtration of F has rank
strictly less than the rank of F. Therefore, if the rank of F is two then the former must have rank one.
So @ implies @ If @ holds let V' C U be a dense open subset over which the Newton polygon of F
is constant. By [Kat79, Corollary 2.6.2] the restriction of F to V has a slope filtration whose factors are
isoclinic of rank one. Thus the monodromy group of each factor is a closed subgroup of the multiplicative
group G, k.. In particular it is abelian, so holds. Now assume that is true for F. Let V. C U
be the dense open subset over which the Newton polygon of F is constant and let F; be the isoclinic
components of the slope filtration of 7 on V. Then F|{f is an object of (Fi,Fo,...)), so Gr(F|3¥/V,u)
is the quotient of a subgroup of the product of the Gr(F;/V,u). The latter are abelian, so the same holds
for their product, and hence for their subgroups, the quotients of the latter, and so for Gr(F|f/V, u), too.
So holds. We already explained in Definition why @ implies @ O

Proposition 11.2. The sub-categories consisting of convergent F-isocrystals which are successive exten-
sions of isoclinic convergent F-isocrystals on U is a full Tannakian sub-categories of F-Isock (U).

Proof. We will call an F-isocrystal which is a successive extension of isoclinic convergent F-isocrystals
on U isofiltered. Obviously the trivial F-isocrystal is isofiltered, so we need to check that the category of
isofiltered convergent F-isocrystals on U is closed under taking directs sums, tensor products, duals, and
subobjects. Let F and G be two isofiltered F-isocrystals on U, and let

FonCFopp1C--C Ty and G, CG 41 C--CGy

be filtrations on F and G, respectively, such that the subquotients F;/F;_1 and G;/G,;_1 are isoclinic of
slopes of valuation —i (assuming that the valuation is suitably normalized to take only integer values).
Note that the definitions

(Fog),=F®G and (F®G§G);= Z Fi @Gy,
Jk<i
furnish filtrations
(FOG) n C(FOG)pp1 C--C(FOG)pand (FRG) 2, C(F®G) 2041 C--- C(FRG)om

on F @G and F®G, respectively, such that the subquotients (F®G);/(F®G);—1 and (F®G);/(F®G)i—1
are quotients of
Fi/Fic19Gi/Gi—1 and @ Fi/Fj-1® Gr/Gr-1,
j+k=i
respectively. Any quotient of these is isoclinic. We get that F @ G and F ® G are isofiltered. The dual F
has a filtration:
Fy CFl C---CFY,

such that F;Y/F;,, is isomorphic to the dual of F;;1/F;, and in particular is isoclinic, too. Thus F" is
isofiltered, too. Finally let £ C F be a sub F-isocrystal. Then

FoNHCF ppuNHC---CF,NH
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is a filtration on H such that F; N H/F;—1 NH is a subquotient of F;/F;_1. In particular, it is likewise
isoclinic. Therefore H is isofiltered, too. O

Proposition 11.3. The sub-categories consisting of firm, locally firm, weakly firm, and locally weakly firm
convergent F-isocrystals on U are full Tannakian sub-categories of F-Isock (U).

Proof. Obviously the trivial F-isocrystal is firm, so we need to check that the categories of (locally) firm
convergent F-isocrystals on U are closed under taking direct sums, tensor products, duals, and subobjects.
Since these operations commute with shrinking U, we only need to treat the firm case. Let F and G be
two firm convergent F-isocrystals on U, and let H € ((F,G)). By Proposition [[T.2] above H is isofiltered.
Moreover H®*® € ((F®%,G*%)), so Gr(H®*,u) is a quotient of a fiber product of Gr(F**,u) and Gr(G**, u)
by Proposition Since the fiber products and quotients of abelian groups are abelian, we get that
Gr(H?®%,u) is also abelian, and hence H is firm, too.

The proof for weakly firm and locally weakly firm F-isocrystals is similar. By shrinking U, we only
need to treat the weakly firm case. Let F and G be two weakly firm convergent F-isocrystals on U, and
let H € (F,G)). By Proposition above H is isofiltered. Moreover Gr(H,u) is a quotient of a fiber
product of Gr(F,u) and Gr(G,u) by Proposition so we only need to show that the category of
linear algebraic groups whose maximal quasi-torus is abelian is closed under quotients and fiber products.

The latter can be proven as follows. If F' is a linear algebraic group and G is a quotient of F' by a closed
normal subgroup, and T' C F is a maximal quasi-torus then its image 7" in G is a maximal quasi-torus
in G by Corollary RIIl If T is abelian, then so its quotient 7", and hence the maximal quasi-torus of
G is abelian. Now the maximal quasi-torus of a fiber product H of two linear algebraic groups F' and
G is isomorphic to a fiber product of the maximal quasi-tori of F' and G by Remark If the latter
are abelian, so is this fiber product, so in other words the maximal quasi-torus of the fiber product H is
abelian, too. (I

Definition 11.4. Let F be a convergent F-isocrystal on U and let f: V < U be a non-empty open sub-
curve. We say that F is almost weakly pink (with respect to the inclusion f: V < U) if every maximal
torus of the monodromy group Gr(f*F/V,u) of the crystal on the shrunken curve is a maximal torus in
the monodromy group Gr(F /U, u) of the crystal, too.

Theorem 11.5. Let F be a semi-simple convergent F-isocrystal on U and let f: V — U be a non-empty
open sub-curve. Assume that |J, ¢y Frob,(F) C Gr(F/U,u) is Zariski dense. (This is a weak form of
the Chebotarév density Conjecture L) Then F is almost weakly pink with respect to f: V — U.

Remark. We believe that the conclusion of the theorem does not imply that F is weakly pink; compare
Warning [[0.6] but see Theorem below.

Proof. Let G = Gr(F/U,u)(K) be the K-valued points of the monodromy group of F and let H :=
Gr(f*F/V,u)(K) C G be the K-valued points of the monodromy group of f*F on the shrunken curve.
We view both groups as linear algebraic groups over K. Let F = Uwe\V\ Frob, (f*F) C H be the union
of the Frobenius conjugacy classes (conjugacy under H), and let F** = {g,: g € F'} C H be the set of the
semi-simple parts g, of the elements g of F. For a subset X of G let “X be the union of the conjugacy
classes under G of the elements of X. Then “F = Uzev| Frobg (F) C G is the union of the Frobenius
conjugacy classes (conjugacy under G), and “(F**) = (°F)** := {gs: g € “F} C G. By our assumption
GF is dense in G. By Corollary we get that (“F)%* is Zariski-dense in G, too. Let T C H be a
maximal quasi-torus. Since every element of F** is conjugate to an element of T' by Theorem [B.9a)li(b)}
we get that ©T is also Zariski-dense in G, and hence that “T' N G° is Zariski-dense in G°.

At this point the proof is now purely group-theoretical: We consider conjugation under G° and we write
G, respectively @“T° for the union of the conjugacy classes under G° of the elements of T, respectively of
T°. Then T/T° = H/H°® surjects onto G/G° by TheoremBY(a)]and Proposition [I.Hc)} Thus T = T,
because every element g € G can be written as ¢ = goh with go € G° and h € T, and so gTg~ ! = gngal.
Therefore, ““T' N G° is Zariski-dense in G°. We observe that TN G° = (T N G°). Now let A C G°
be a maximal torus in G° containing 7°°. Recall that there is a finite group I' acting on A such that any
two elements of A in the same conjugacy class under the action of G° actually lie in the same orbit under
the action of T' by Steinberg’s result §I11.3.4, Corollary 2], see also Remark [@4(c). If T° were a
proper closed subscheme of A then the same would hold for the union of its images under the action of T,
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because the latter is finite and A is irreducible. Therefore, GO(T NG°)N A is a proper closed subscheme of
A. By Lemma this contradicts that (7' N G°) is Zariski-dense in G°. We conclude that T° = A

is a maximal torus in G°. O

Our main result of this section is the following equivalence:

Theorem 11.6. Let F be a semi-simple convergent F-isocrystal on U and let f: V — U be an open
sub-curve for which f*F is locally weakly firm. Then the following properties are equivalent:

(a) F is weakly pink with respect to f,

(b) F is almost weakly pink with respect to f,

(¢) F satisfies Conjecture [1.7),
(d) F satisfies Conjecture (L2

Proof. The implications |(a)=1(c)l [(c){(d)} and |(d)E{(b)| were already proven in Theorem [[0.4] Propo-
sition [ and Theorem [[T.H respectively. Now we only need to concern ourselves with |(b)={(a)l By

assumption G = f*F is the successive extension of isoclinic convergent F-isocrystals G; on V' and the
maximal quasi-torus of the monodromy group Gr(G**/V, u) is abelian, that is the direct product of a torus
with a finite abelian group H; use [Bor91l I11.10.6 Theorem (4)]. Let us fix the following notation. We
write

G :=Gr(F/U,u) xg, K and
G:=Gr(G/V,u) xg, K and
G = Gr(G% /V,u) xk, K

for the linear algebraic groups over K obtained by base-change. Let T' C G be a maximal quasi-torus, and
consider T as a closed subgroup of GG via the embedding G = G furnished by f: V — U. By Theorem[RI3
we only have to show the following:
(i) the connected component T° of T is a maximal torus in G°,

(ii) the natural map T/T° — G/G° is surjective,

(iii) the group T is commutative.
First we establish (ii). By Theorem BIT(d)| the map T/T° = G/G° is an isomorphism, since T is a
maximal quasi-torus in G. By Proposition the map é/éo — G/G° is surjective for every F-
isocrystal F on U, so (ii) holds. Claim (iii) holds, because the maximal quasi-torus in Gred ig abelian,
since G is weakly firm, and the maximal quasi-torus 7" maps isomorphically onto its image under the map
G — G d which is a maximal quasi-torus in Gred by Corollary BT1l Finally, by our assumption @ we
have condition (i). This finishes the proof of Theorem O

Proposition 11.7. Let F be a semi-simple convergent F-isocrystal on U whose monodromy group G =
Gr(F/U,u) has semi-simple rank at most one. This means that the mazimal tori in the semi-simple
quotient G/RG of G by the radical RG have dimension at most one. Then F is weakly pink with respect
to any open sub-curve f:V — U as above.

Remark 11.8. Note that the monodromy group of every rank two semi-simple convergent F-isocrystal
has semi-simple rank at most one, so the proposition above applies to this case.

Proof of Proposition[11.7 We will use the set-up and notation in the proof of Theorem and write
G := Gr(F/U,u)x g, K and G := Gr(f*F/V,u) x k. K. We use PropositionBdand let S, T € (F)) be the
convergent F-isocrystals whose monodromy groups are Gr(S/U,u) x x, K = G/Z and Gr(T /U, u) x x, K =
G/|G°,G°], where Z C G° is the center and [G°, G°] is the derived group of G°, which are both character-
istic subgroups defined over K.. Then S has semi-simple monodromy group by [Bor91l 1V.11.21 Propo-
sition] and the identity component Gr(7/U,u)° of the monodromy group of 7 is a torus, use [Bor91l
IV.14.11 Corollary and II1.10.6 Theorem]. We consider the diagram

G = CGr(F/Uu xg, K——" 5 CGr(S®T/U,u) xx, K = H

] N ]

G = Gr(f*F/V,u) xx, K —"— Ge(f*( S @ T)/V,u) xx, K = H
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We claim that it suffices to show that S is weakly pink with respect to f. Indeed, T is conservative with
respect to f by Corollary 012 and so S @ T will be weakly pink with respect to f by Proposition 0.7
Let T C G be a maximal quasi-torus and let 7" be the image of T in G. Then the images %(T) C H and
m(T) C H of T are maximal quasi-tori by Corollary Bl and by the property that S @ 7T is weakly pink.
Let C C G be the kernel of 7, which is a finite group contained in the center of G° by Proposition 3.9l Let
B C H° be a Borel subgroup with 7(7°) = 7(T)° C B which is normalized by the maximal quasi-torus
7(T) C H, and let B C G° be a Borel subgroup with B = m(B); use [Bor91 IV.11.14 Proposition).
Since C' C B by [Bor91l IV.11.11 Corollary] we must have B = 7~(B) and hence T° C B. We now use
Theoremto show that T C G is a maximal quasi-torus. Firstly, every ¢t € T' normalizes B, because
tBt™' cr H(w(tBt™)) =71 (x(t) - B-w(t™')) =7 1(B) = B. Secondly, T — n(T) - H/H° = G/G°,
because m(T') is a maximal quasi-torus in H and the kernel of 7 is contained in G°. And finally, T° surjects
onto the maximal torus 7(7)° in H°. On the other hand T° is contained in a maximal torus 77 of G°
which also surjects onto m(7T")°. Since the kernel of 7 is finite, the tori T° and T} both have the same
dimension as 7(T)°. So they coincide, and it follows from Theorem BI0(e)| that T C G is a maximal
quasi-torus. Thus F is weakly pink.

We now prove that S is weakly pink, and to this end, we replace F by §. Then F is still semi-simple and
locally firm with respect to f by Lemma B8 and Proposition [T.3] and moreover G := Gr(F/U,u) xx, K
is semi-simple of rank at most one. If this rank is zero, then {1} is the maximal torus in G and G° is
a unipotent group by [Bor91l IV.11.5 Corollary]. Being semi-simple, G° is trivial. By Lemma and
Proposition the map G = Gr(f*F/V,u) xg, K < G is a closed immersion which is surjective
on é/éo — G/G° = G. This implies that G =5 @ is an isomorphism, and F is weakly pink (and even
conservative).

If G has semi-simple rank 1, then the maximal tori in G are one-dimensional. If F were not weakly
pink, then 7° = {1} would be the maximal torus in G°. Then G° is actually a unipotent group by
[Bor9ll IV.11.5 Corollary]. Therefore, by [Hum75| 17.5 Theorem] there is a filtration W, on the K-
linear space W := wy, (F) left invariant by G° such that G° acts trivially on the successive quotients. Let
(0) = 7—[0 CHiC F be the convergent F-sub-isocrystal on V' correspondlng to the fixed vectors of G°
on W by Proposition I8 Iterating this we obtain a filtration (0) = Ho C Hy C Hy C --- C f*F of f*F
by convergent F-sub- isocrystals on V' corresponding to the filtration W, above by successwely applying
Proposmon [AT18] to the F-isocrystals f*F/ 7—[ for all i. Having finite monodromy group, all quotients

Hit1 /’H are unit root by Lemma 5.1l Therefore, f*F is also unit root. By the Katz-Grothendieck semi-
continuity theorem [Kat79l Corollary 2.3.2] we get that F itself is unit root, and hence conservative by
Corollary T0.12} This contradicts that F is not weakly pink. O

Combining Propositions [[0.7 [[0.11] and [T.7 we have the following immediate

Corollary 11.9. Let F be a semi-simple convergent F-isocrystal on U whose monodromy group G =
Gr(F/U,u) has semi-simple rank at most one. Let G be a direct sum of isoclinic convergent F-isocrystals
onU. Then F ® G is weakly pink with respect to f, and hence Conjecture [I4] holds for it. O

12. MAXIMAL COMPACT SUBGROUPS OF COMPLEX LINEAR ALGEBRAIC GROUPS

In the rest of this article we want to look at the overconvergent analog of Conjectures [[2] [[3] 4] and
prove Theorem To this end we start with some facts about maximal compact subgroups of complex
linear algebraic groups in the present section. If G is a linear algebraic group over C, then G(C) has the
structure of a complex analytic group such that G°(C) is the connected component of the identity in the
usual topological sense. In particular the group of connected components of the Lie group G(C) is finite.
Therefore, [Hoc65, Chapter XV, Theorem 3.1] applies to G(C), and provides the following result:

Theorem 12.1. There is a compact (and hence closed) Lie subgroup K C G(C) and a closed differentiable
sub-manifold E C G°(C) diffeomorphic to R™ for some n € N and containing the identity such that

(a) the multiplication map E x K — G(C) is a diffeomorphism,
(b) we have x7'Ex = E for every z € K,
(c) for every compact subgroup L C G(C) there is an e € E such that e ' Le C K. O
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Definition 12.2. We will call a subgroup K C G(C) as in Theorem [[2.1] a maximal compact subgroup. It
is easy to derive the following basic properties of these subgroups:

Remark 12.3. Recall that by Cartan’s theorem, (that is, by the original R-version of Theorem [[T]above)
every closed subgroup of G(C) is a real Lie group and a real sub-manifold of G(C), see[Ser92, Part II,
§V.9, Corollary to Theorem 1 on page 155].

Proposition 12.4. The following hold:

(a) For every maximal compact subgroup K C G(C) the inclusion K C G(C) induces an isomorphism
K/K° = G(C)/G(C)° =2 G/G*® of groups of connected components. In particular, KNG(C)° = K°,
and this is a mazimal compact subgroup of G(C)°.

(b) Any two mazximal compact subgroups in G(C) are conjugate by an element in G°(C).

(¢) For every automorphism ¢ of the complex Lie group G(C) and every mazimal compact subgroup
K in G(C) the image ©(K) is a mazimal compact subgroup in G(C).

(d) Ewery compact subgroup L C G(C) is contained in a mazimal compact subgroup of G(C). In
particular, a subgroup L C G(C) is compact and maximal with respect to the inclusion of subgroups
if and only if it is a mazximal compact subgroup in the sense of Definition 122

(e) Every element x of a compact subgroup L C G(C) is semi-simple.

Proof. Let G and K be as in the claim, and let E be as in Theorem [2.1] To prove the surjectivity
of K — G(C)/G(C)° let g € G(C) and write it as g = ec with e € E and ¢ € K. Then g € Ec C G(C)°¢c
as desired. Since both E and K° are connected, so is their product, and hence the multiplication map
restricted onto E x K° is a diffeomorphism E x K° — G(C)°, and KNG(C)° = K°. Since K° is a subgroup
of K, part [(b)] of Theorem 2 also holds for K° trivially. Now let L C G(C)° be a compact subgroup.
Then by Theorem [2.fc)} there is an e € E such that e !Le C K. As E is connected and contains the
identity, we have e € E C G(C)°. Since also L C G(C)° we get e 'Le € KN G(C)° = K°. So K° is a
maximal compact subgroup of G(C)°.

@ Let Kq,Ky € G(C) be two maximal compact subgroups and view them as real Lie groups by Re-
mark [23] Then there is an e € E such that e 'K;e C Ky by Theorem because K; is a compact
subgroup and Ky is a maximal compact subgroup. Therefore, dim(K;) < dim(Ks). By reversing the roles
of K; and Ky we get that dim(Ksy) < dim(K;), too, and hence dim(e !'Kje) = dim(K;) = dim(Kz). It
follows that the connected components are equal: e~ 'K¢e = K3. By claim [(a)] above we get that

e 'Kie/(e'Kie)® 2 K /K = G(C)/G(C)° =2 Ky /K3 .
So e 'K;e and Ky must be equal and is proven.

Let E be as in Theorem[IZTlabove. Then ¢(E) is diffeomorphic to E, so it is also a closed differentiable
sub-manifold in G(C) diffeomorphic to R™ for some n € N and containing the identity. We get that the
multiplication map ¢(E) x ¢(K) — ¢(G(C)) = G(C) is a diffeomorphism. If x € ¢(K) then z = ¢(y) for
some y € K, and hence

T p(E)r = o(y) " eE)p(y) = vy~ Ey) = ¢(E),
so part [(b)] of Theorem 2 holds for (K) and ¢(E), too. If L C G(C) is any compact subgroup
then also ¢~!}(L) € G(C) is a compact subgroup. So there is an e € E such that e"1p~1(L)e C K
by Theorem MZI[c)] Then ¢(e) € ¢(E) satisfies ¢(e) ' Lp(e) = ¢(e "t~ (L)e) C ¢(K), so part of
Theorem [2Z1] holds for ¢(K). This proves claim [(c)]

@ Now let L € G(C) be a compact subgroup and let K be an arbitrary maximal compact subgroup of
G(C). By Theorem [Zf(c)| there is an e € E such that e~'Le C K. Then L C eKe™'. However, eKe ! is a
maximal compact subgroup of G(C) by claim[(c)] and so claim[(d)|follows. To prove the second statement
let K be a maximal compact subgroup in the sense of Definition and let L C G(C) be a compact
subgroup which contains K. Then there exists a maximal compact subgroup K’ containing L, and hence
also K. Arguing as in the proof of@ above shows that dimK = dimK’, and hence K = K’ and K = L.
It follows that K is maximal under inclusion. Conversely if L is any compact subgroup which is maximal
under inclusion there exists a maximal compact subgroup K in the sense of Definition containing L.
Since L is maximal under inclusion, it is equal to K.
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@ Let H C G be the Zariski closure of the group z% generated by x. Then H is commutative and is
isomorphic to the product Hs x H, of the closed subgroups Hs; and H, consisting of all semi-simple,
respectively unipotent elements of H; see [Bor91l 1.4.7 Theorem]. The element z lies in H(C) N L, which
is a compact group, because L is compact and H C G is a closed subgroup. The image of z under
the projection homomorphism m,: H — H,, lies in the compact subgroup m,,(H(C) N L). Since H, is a
successive extension of additive groups G, c and G, ¢ contains no compact subgroups other than {0}, the
image 7, (H(C) N L) must be {0}. This shows that x € H,, and proves the claim. O

Proposition 12.5. Let G be a (not necessarily connected) reductive linear algebraic group over C and let
K c G(C) be a mazimal compact subgroup. Then K is Zariski dense in G. Moreover, G has in a unique
way the structure of an algebraic group over R such that K = G(R).

Remark. Tt is important to note that we need to assume that G is reductive. The claim is not true for
G = G, for example, where the maximal compact subgroup is just the identity.

Proof of Proposition IZ3 By [Ser93, §5.2 and Théoréme 1] the R-linear algebraic envelope Gg := K*-2l
of K, see Definition 1] is a linear algebraic group satisfying Gg(R) = K. By [Ser93, Beginning of §5.3
and Théoreme 4 and Remarque] it satisfies Gg xg C = G, and is thus the desired unique real form. If
H C Grg is the Zariski closure of K in Gr then the universal property of Gr implies that H = Gg, see
[Ser93l §4.3 and Exemple b]. So K is Zariski-dense in Gg and G. O

Example 12.6. The group G = Gj, o = SpecClzf!: v = 1,...,n] is commutative, and hence has a
unique maximal compact subgroup K by Proposition I2:4(a)ll(b)] A real structure on G is given by Gg :=
SpecClay,by: v =1,...,n]/(a24b2—1) with isomorphism given by a,, = (2,42, ') and b, = 5-(z,—2, 1),
as well as z, = a, +1ib, and z, ! = a, —ib,. Clearly Gg(R) = (S!)" is compact, so by Proposition
it is contained in the maximal compact subgroup K C G(C). Under the map t — (log |z, (¢(t))[) _,  the
quotient Lie group G(C)/Gr(R) is isomorphic to (R™,+), whose only compact subgroup is the identity.
Since the image of K under the continuous quotient map G(C) — G(C)/Ggr(R) is compact, it is the
identity. Therefore, Gr(R) = K and hence Gg(R) is the maximal compact subgroup in G and G is the
unique associated compact real form of G from Proposition (2.5

Proposition 12.7. Let G C GL,, be a closed subgroup over C and let K C G(C) be a maximal com-
pact subgroup. Let z € G(C) be a semi-simple element such that every eigenvalue of z on the standard
representation C™ of GL,, has complex norm 1. Then z is conjugate to an element of K under G°(C).

Proof. It will be enough to find a compact subgroup C' C GL,,(C) which contains z. In this case the
subgroup C' N G(C) € G(C), being the intersection of a compact and a closed subgroup, is compact, so
there is an x € G°(C) such that 2~ (C N G(C))z C K by Theorem [2c)} and hence z~'zz € K, too.
Since z is semi-simple, the standard representation C™ of GL,, has a basis B in which the matrix of z is
diagonal. Let C' C GL,,(C) be the subgroup of all elements which in the basis B are diagonal such that
all diagonal entries have norm 1. Then C' is isomorphic to (S*)" as a Lie group, so C' is compact, and it
clearly contains z. 0

We will also need the following lemma due to Deligne:

Lemma 12.8. Let G be a linear algebraic group over C, let K C G(C) be a mazimal compact subgroup,
and let z,y € K be two elements conjugate under G(C), respectively under G°(C). Then they are already
conjugate under K, respectively under K°.

Proof. Deligne’s proof in Lemma 2.2.2] lacks references, and is only really formulated in the
connected semi-simple case, so here is a short proof using the results from [Hoc65]. Let E be as in Theorem
[ZT above. Let a € G(C) be such that ara™! = y. Then we may write a uniquely as a = ec, where e € E
and ¢ € K. If a € G°(C) then E C G°(C) implies that ¢ € KNG°(C) = K°; use Proposition [Z4(a)}] Then
e(cze e ! = y. Since ¢ € K, the element z = cxc™! is in K, so it will be enough to show that z = y.

Note that eze™ = y implies
ezyil = yeyil.
By Theorem MZIfb)] we have yey~! € E. Since y,z € K we have zy~! € K, therefore yey~' = e and

2y~ =1 by Theorem [2.fa)| O
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We next combine the above with the theory of maximal quasi-tori from Section [8

Definition 12.9. A linear algebraic group T over C is a quasi-torus if its connected component 7° is
a torus, i.e. T is isomorphic to Gy, ¢ for some n. A real Lie group T is a compact quasi-torus if it is

compact and T° is a compact real torus, i.e. T° is isomorphic to (S')" for some natural number n. (Here
St ={z€C: |z| =1} as usual.)

Definition 12.10. A subgroup T C G(C) is a mazimal compact quasi-torus in G(C) if there is an
(algebraic) maximal quasi-torus T' C G in the sense of Definition [B6] such that T is a maximal compact
subgroup in 7'(C). By Example every such T is a compact quasi-torus, so the terminology is at least
partially justified.

Proposition 12.11. The following holds:

(a) any two maximal compact quasi-tori in G(C) are conjugate under G°(C),

(b) every subgroup in G(C) conjugate to a maximal compact quasi-torus under G(C) is a mazimal
compact quasi-torus,

(c) every maximal compact subgroup K C G(C) contains a maximal compact quasi-torus T,

(d) for every K and T as m the following holds: every x € K is conjugate under K° to an element
of T.

Proof. Let T1,Ty C G(C) be two maximal compact quasi-tori. Let 77,75 C G be two maximal
(algebraic) quasi-tori in G such that Ty, Ty is a maximal compact subgroup in T (C), T2 (C), respectively.
Then there is an a € G°(C) such that a=*Tya = T by Theorem BIT(b)} Since the map x — a~'za is an
isomorphism from T} onto T5, the image a 'Tia of Ty under this map is a maximal compact subgroup
in Ty. So a~!Tja is conjugate to Ty under an element of 75 (C) by Proposition and hence T is
conjugate to Ty by an element of G°(C).

[[B) Let T ¢ G(C) be a maximal compact quasi-torus and let a € G(C) be arbitrary. Let T C G be a
maximal quasi-torus in G such that T is a maximal compact subgroup in 7'(C). Since the map z — a~'za
is an isomorphism from T onto a~'Ta, the image ¢~ 'Ta of T under this map is a maximal compact
subgroup in the algebraic maximal quasi-torus a~'7Ta.

Let T C G(C) be again a maximal compact quasi-torus and let K ¢ G(C) be a maximal compact
subgroup. Note that T exists by Theorems BI0(a)| and 21 By Theorem M2]|(c)| there is an « € G(C)°
such that 27 'Tz C K. By claim [(b)| the group #~'Tz is a maximal compact quasi-torus.

@Finally let K, T and = € K be as in claim@ Then z is semi-simple by Proposition Let T C G
be an algebraic maximal quasi-torus in G such that T is a maximal compact subgroup in T'(C). Then there
is an a € G°(C) such that a=*xa C T(C) by TheoremBI0 Since L = a~'KaNT(C) is the intersection of
a compact and a closed subgroup, it is a compact subgroup in T(C). Therefore, there is a b € T°(C) such
that b='Lb C T by Theorem IZIfc)] Then (ab) 'wab =b"'a tzab € b='Lb C T. Claim [(d)] now follows
from Deligne’s Lemma [[2.8] applied to the two elements 2 € K and (ab) " 'zab € T C K. O

Next let us prove the analog of Proposition for maximal compact quasi-tori. We consider the
following situation: Let G C GL, be a closed algebraic subgroup over C, let K C G(C) be a maximal
compact subgroup, and let T C G(C) be a maximal compact quasi-torus contained in K, such that T is
a maximal compact subgroup of a maximal quasi-torus 7" of G. Let h € T and recall that we defined
Th :={g € T°: gh = hg} in Notation @1l Set T" = {g € T°: gh = hg} = T"(C) N T°.

Lemma 12.12. The group T" is a mazimal compact subgroup in T". In particular, it is a compact

quasi-torus.

Proof. Since T" = T"NT® is the intersection of a closed algebraic subgroup with a compact Lie group, it is
a compact subgroup. Let S be a maximal compact subgroup of 7" which contains T". Then S is contained
in a maximal compact subgroup of T°. Since T° is abelian, it has a unique maximal compact subgroup
by Proposition TZ4(b)] which is T° = TN T° by Proposition IZ4(a)l We get that S ¢ T" N T° = T", so
S = T”, and hence the latter is a maximal compact subgroup in T". O

Let T"° denote the connected component of the identity of T", as usual.

Proposition 12.13. The following hold:
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(a) every element of hT® is conjugate under T° to an element of hRT"°,
(b) there is a positive integer M such that the intersection of hT"® with any G(C)-conjugacy class has
at most M elements.

Before we start the proof of this proposition, we will need a lemma. Every torus 1" over C is abelian,
so it has a unique maximal compact subgroup by Proposition [ZZ(b), which we denote by ¢(T).

Lemma 12.14. Let P,Q be two tori over C. Then the following holds:

(a) we have ¢(P x¢c Q) = ¢(P) x ¢(Q),
(b) every surjective homomorphism ¢ : P — Q maps c(P) onto ¢(Q).

Proof. By Tychonoft’s theorem ¢(P)x¢(Q) is a compact subgroup of Px¢ Q. Therefore, ¢(PxcQ) contains
¢(P) x ¢(Q). On the other hand the image of ¢(P x¢ Q) with respect to the projection P x¢ @Q — P is a
compact subgroup of P, so it lies in ¢(P). Similarly the image of ¢(P X¢ Q) with respect to the projection
P xc Q — @Q lies in ¢(Q). Therefore, ¢(P x¢ Q) lies in ¢(P) x ¢(Q), so claim [(a)] holds.

Now we are going to prove claim @ First assume that ¢ is an isogeny, that is it has finite kernel.
Recall that the maximal compact subgroup of a torus R is a real torus whose real dimension is the same
as the dimension of R by Example Since ¢ induces an isomorphism on tangent spaces we get that
©(c(P)) is a compact Lie group whose dimension is the same as the dimension of ¢(Q), which contains it.
Since both groups are connected, they are equal.

Next assume that P = R x @ and ¢ is the projection R x @ — @ to the second factor. Then
¢(P) = ¢(R) x C(Q) by part so claim holds in this case, too. Finally let ¢ be arbitrary. The
connected component of the kernel of ¢ is a torus R. Since over the algebraically closed field C any
extension of tori splits, we have P = R x¢ S for S := P/R. Then ¢ : P = R X¢ S — @ is the composition
of the projection R x¢ S — S followed by the isogeny S — . By the above the claim holds for the
composition of a projection and an isogeny, so it holds for ¢, too. O

Proof of Proposition[12.13. Let T C G be maximal quasi-torus such that T is a maximal compact subgroup
in T(C). Let ¢ : T° — T° be the map ¢(t) = h~'tht~!. As we saw in Notation [I.] this map is a group
homomorphism. The restriction of this homomorphism maps T° into itself, because ¢(T°) is contained in
the maximal compact subgroup T°. We denote the resulting homomorphism T° — T° by ¢ as well. In
order to prove @ it will be sufficient to show that for every hz € hT° there are elements t, € T"° and
t € T° with
ha = htop(t) = ho(t)tg = hh™'tht 'tg = tht 'ty = t(hto)t .

So it will be sufficient to show that the map T"° x T° — T° given by (to,t) — top(t) is surjective.

Let ¢ : Th° xT° — T° be the homomorphism defined similarly, i.e. given by the formula (to,t) > t,p(t).
By Proposition we know that v is surjective. By Lemma and Lemma the group
T"° x T° is a maximal compact subgroup of T"® x T°. Therefore, claim @ holds by Lemma
Claim @ is an immediate consequence of Proposition [0.3 0

Lemma [[2.T4] also implies the following

Corollary 12.15. Let ¢: G — G be an epimorphism of linear algebraic groups over C and let T C G be
a mazimal quasi-torus and T C T(C) C G(C) a mazximal compact quasi-torus. Then ¢(T) is a mazimal
compact quasi-torus in o(T) and G.

Proof. By Corollary BITlthe image ¢(T) is a maximal quasi-torus in G. Since ©(T) C ¢(T) is compact, it
is contained in a maximal compact subgroup T of ¢(7T'). We must show that ¢(T) = T. In the connected
component of unity we have p(T°) = ¢(c(T°)) = c(o(T°)) = T° by Lemma [I2.14(b)l The claim now

follows from the surjectivity T/T° = T/T° = G/G° — G/G° = T/T° for which we use Proposition T2Z.4(a)|
and Theorem BI0(d)] O

13. CHEBOTAREV FOR OVERCONVERGENT F-ISOCRYSTALS

Finally in this section we shall prove Theorem [[L.T2] about Chebotarév density for overconvergent F-
isocrystals. For every field K and curve U as above let F' -ISOCTK(U ) denote the K-linear rigid tensor

category of K-linear overconvergent F-isocrystals on U. There is a forgetful functor fy: F' —IsocTK(U ) —
F-Isock (U) which is fully faithful by a fundamental theorem of Kedlaya Theorem 1.1]. Fix a
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point u € U(F4). Then the composition of fiy and the fiber functor w,, on F-Isock (U) corresponding to
u makes F —Isoc}((U) a Tannakian category. By abuse of notation we denote w, o fy again by w,. For
every object F of F -ISOCTK(U ) let ((F)) be the Tannakian sub-category of F -ISOCTK(U ) generated by F,
see Definition [A3] and let Gr'(F/U,u) or Grf(F,u) denote the automorphism group of the fiber functor
wy: ((F)) — K-vector spaces. The category ((F)) is tensor equivalent to the K,-rational representations of
a K,/ K-groupoid &t (F /U, u), see Definition A5 and Theorem[AI1] and Grl (F,u) = &l (F/U, u)? is its
kernel group. It is a smooth linear algebraic group over K. by Proposition [A. 13l With every closed point
z € U one can associate a (stable) Frobenius conjugacy class Frob! (F) c Gr'(F,u) in the same way as for
Cr(F,u); see Definition BIl Note that the functor fr; induces a homomorphism Gr(fy (F),u) — Grl (F, u)
which is not an isomorphism in general.

Lemma 13.1. The natural morphism Gr(fu(F),u) — Gr'(F,u) always is a closed immersion and in-
duces an epimorphism Gr(fu(F),u)/ Gr(fu(F),u)° — Grl(F,u)/ Gr'(F,u)° on the groups of connected
components.

Proof. Every object of (fu(F))) is a subquotient of an object of the form €@, fu (F)®™ @ (fu(F)¥)®"™ =
fu (@, F&m™i @ (F¥)®™). So the first statement follows from Proposition [AT4b)]

To prove the second let & be an object of ((F)) such that the surjective homomorphism Gr'(F,u) —
Gr' (U, u) has kernel equal to the characteristic subgroup Gr!(F,u)° C Gr'(F,u); see Remark [A17 and
Corollary Then U has finite monodromy group and is unit-root by Lemma 5.1l Moreover, every
convergent F-isocrystal G € ((fu(U))) has finite monodromy, and in particular finite local monodromy at
the points in the complement of U. By Tsuzuki’s monodromy theorem [Tsu98| Theorem 7.2.3 on page 1165]
this implies that G has an overconvergent extension on U. Therefore, fy: (U)) == (fu(U))) is a tensor
equivalence of Tannakian categories and the inclusion map Gr(fy(U),u) C Gr' (U, u) is an isomorphism.
Since fu(U) is an object of ((fu (F))) the corresponding homomorphism Gr(fy (F), u) — Gr(fu(U),u) =
Crl (U, u) = GrT(F,u)/ Gr'(F,u)° is surjective by Lemma 33 This proves the claim. O

Using the p-adic version of Deligne’s equidistribution theorem due to Crew and Kedlaya [Ked06] and
arguments inspired by the proof of Theorem we will now prove Theorem [[LT2] that is we prove the
following

Theorem 13.2. For every semi-simple overconvergent F-isocrystal F and for every subset S C |U|
of positive upper Dirichlet density the Zariski-closure of the set |J
component of the group Gr'(F/U,u) x ., K.

zes Frob! (F) contains a connected

In other words, the overconvergent analog of Conjectures [[L4] and hold for every semi-simple over-
convergent F-isocrystal F. This implies as in Proposition that also the overconvergent analog of
Conjecture hold:

Corollary 13.3. For every semi-simple overconvergent F-isocrystal F and for every subset S C |U| of

Dirichlet density one the set |J, g Frob! (F) is Zariski-dense in Gr'(F /U, u). O

We immediately have the following further

Corollary 13.4. Let S C |U| be a subset of Dirichlet density one and let F,G be two overconvergent F-
isocrystals such that for every x € S we have Tr(Frob] (F)) = Tr(Frob! (G)). Then the semi-simplifications
of F and G are isomorphic.

Proof. Note that F°° @ G*° is also an overconvergent F-isocrystal, so by Theorem [[3.2] we know that the
set Uyes Frob! (F** @ G*%) is Zariski-dense in Gr' (F** @ G5 ). Now we may argue exactly as we did in
the proof of Corollary [l O

Remark 13.5. This corollary was proven by Nobuo Tsuzuki when F and G are --mixed (see Definition [[3.9]
below) via a simpler direct method, see [Abel8bl, Proposition A.4.1], but his argument also uses the p-
adic analogue of Weil II, like ours. (Note that the proof of this claim in [Abel8al Proposition in Section
3] is incorrect.) Note that the natural p-adic analogue of the Langlands correspondence was proven by
Tomoyuki Abe in [Abel8b], so the condition of being -mixed is not very restrictive. (See Remark 3111
below for an explanation.)
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We will continue by showing how Corollary [3.4] yields a

p-adic proof of Theorem[I.1l We only need to show that when V,(A) = V,(B) then there is an isogeny
f:+ A — B. As in the l-adic proof above we may assume that for every x € |U| the abelian varieties A and
B have good ordinary reduction at x. For every such x let A, and B, denote the reductions of A and
B over z, respectively. Arguing as in the [-adic proof in Section 2] we can conclude that the L-functions
L(A,,t) and L(B,,t) are equal for every = € |U|. By slight abuse of notation let A, B also denote the
unique abelian schemes over U whose generic fiber is A, B, respectively.

Let Z4 and QQ, denote the ring of Witt vectors of IF, of infinite length and its fraction field, respectively.
For every abelian scheme C over U let DT(C) denote the overconvergent (rational) crystalline Dieudonné
module of A over U (for a construction see [KT03], sections 4.3-4.8). It is a Qg-linear overconvergent
F-isocrystal equipped with the g-Frobenius which is semi-simple by Theorem 1.2]. Moreover by
[PAI15, Theorem 1.1] we also know the following:

Theorem 13.6. The map:
Hom(A, B) ®7 Q, -+ Hom(D'(A),D'(B))
induced by the functoriality of overconvergent Dieudonné modules is an isomorphism.

Note that for every abelian scheme C over U the convergent F-isocrystal underlying DT(C) is the
convergent Dieudonné module of the p-divisible group C[p]. In particular for every z € |U| the factor
of the L-function L(U,DT(C),t) of DT(C), defined by Etesse Le Stum (see [ES93]), at z is equal to the
L-function L(C,,t) of the reduction of C' over z. In particular DT(C) is pure of weight 1. We get that
the trace of the Frobenius elements Frob!(DT(A4)) and Frob! (Df(B)) are the same for every z € |U]|.
Therefore, by Corollary [3.4] the overconvergent F-isocrystals DT(A) and DT(B) must be isomorphic, so
by Theorem above the abelian varieties A and B are isogenous and the p-adic proof of Theorem [T
is complete. 0

In order to prove Theorem [[3.2] we next describe the overconvergent analog of Definition A9 Re-
mark 410l and Proposition 1Tl

Definition 13.7. Let ISOCTK(U ) denote the category of K-linear overconvergent isocrystals on U. Fix a
point u € U(Fge). The pull-back with respect to u furnishes a functor from Isoc}{(U) into the category of
finite dimensional K .-vector spaces which makes Isoc}((U ) into a Tannakian category, see [Cre92] §2.1]. By
slight abuse of notation let w, be the corresponding fiber functor on Isoc;((U). Let ()~ F—Isoc}((U) —
ISOCTK(U ) denote the functor furnished by forgetting the Frobenius structure. For every object F of
F —IsocTK(U ) let DGal(F,u) denote the Tannakian fundamental group of the Tannakian sub-category

{(F~) of ISOCTK(U ) generated by F~ with respect to the fiber functor w,. Moreover for every such F let
(FN const and W(F,u) denote the Tannakian sub-category of constant objects of ((F)) and the Tannakian
fundamental group of ((F)).,,..; with respect to the fiber functor w,, respectively. Then W(F,u) is
commutative by Theorem

The monodromy group DGal'(F, ) was introduced by Crew [Cre92]. Next we describe its relationship
to Grf(F,u). Let a: DGal'(F,u) — Grf(F,u) be the homomorphism induced by the forgetful functor
()™ (F) = (F~), and let B: Gr!(F,u) — W(F,u) be the homomorphism induced by the inclusion
{FDeonst < (F)-

Proposition 13.8. If F~ is semi-simple, then the sequence:

0 — DGall (F,u) —%— Grt (F,u) -2 W(F,u) —— 0.
is exact. This is the case for example if the overconvergent F-isocrystal F is semi-simple.

Proof. This follows by the same proof as in Proposition .11l or alternatively like in Proposi-
tion 3.8]. The last statement follows from [Cre92, Corollary 4.10], which states that for a semi-simple
F the group DGalf (F,u)° is a semi-simple group. Since it is the monodromy group of F~, the latter is
semi-simple by Lemma [B.8§ O



62 URS HARTL AND AMBRUS PAL

In the rest of the section we shall prove Theorem [13.2] by reducing to the case when F is (-mixed as in
the following

Definition 13.9. Fix an isomorphism of fields ¢: K — C and let |- |: C — Rxq be the usual archimedean
absolute value on C. We say that an overconvergent F-isocrystal F on U is (point-wise) ¢-pure of weight
w, where w € Z, if for every z € |U| and for every eigenvalue a € K of Frob! (F) acting on w, (F) ®x.,., C

wdeg(z)/2 We say that an overconvergent F-isocrystal F is t-mized if it is a successive

we have |c(a)| = ¢
extension of t-pure overconvergent F-isocrystals. Let F -ISOC}’(L(U ) denote the the full sub-category of

F —IsocTK(U ) whose objects are (-mixed overconvergent F-isocrystals on U.
Proposition 13.10. The category F—IsockL(U) is a full Tannakian sub-category of F—Isoc}((U).

Proof. The category F' -IsochL(U ) contains the trivial (constant, hence overconvergent) F-isocrystal 1;;
and is closed under forming direct sums by definition. Because tensor products, duals and subquotients
of t-pure overconvergent F-isocrystals are also t-pure, we get that F’ —IsocTIy(U ) is also closed under tensor
products, duals and subquotients. 0

Remark 13.11. We would like to clarify what we mean by the natural p-adic analogue of the Langlands
correspondence in Remark [[3.5], and why such a claim would imply that a large class of overconvergent
F-isocrystals on U is t-mixed. Let A denote the ring of adeles of k = Fy(U). Let F be an absolutely
irreducible K-linear overconvergent F-isocrystal on U of rank n, by which we mean that for every finite
field extension L of K the L-linear overconvergent F-isocrystal F @ g L on U we get from F by extension
of scalars from K to L is irreducible. Also assume that the determinant det(F) = A"(F) of F is
a unit-root F-isocrystal with finite monodromy and let p be the corresponding p-adic representation
p: ¢ (U, u) — K “: see Proposition Then the aforementioned p-adic Langlands correspondence of
Abe [Abel8al Theorem 4.2.2] claims that there is a cuspidal automorphic representation IT of G'L, (A)
such that the central character of II is p under the identification furnished by class field theory, and
if Il = ®,¢|x|Il; is the factorization of II into the tensor product of local representations then II, is
unramified for every z € |U| and its Hecke parameters are equal to the eigenvalues of Frob] (F). Because
by [Laf02] Théoreme VI.10(i)] the Ramanujan-Petersson conjecture holds for II we get that F is t-pure of
weight zero.

Next we will state a convenient form of the p-adic version of Deligne’s equidistribution theorem. For
the rest of the section we keep the following

Notation 13.12. We fix a (-pure overconvergent F-isocrystal U € F' -ISOC}%L(U ) on U of weight zero. We
call G*** .= Grl (U, u) and G := DGal' (U, u) its arithmetic and geometric monodromy groups, re-
spectively. Assume that the connected component (G2t1)° of G211t is a semi-simple group. By (the analog
of) Lemma B this implies that U is a semi-simple overconvergent F-isocrystal. Therefore, the connected
component (G8°™)° of G8°°™ is semi-simple by [Cre92, Corollary 4.10] and equals the derived group of the
connected component (G*ith)° of Garith by [PAIT5, Proposition 4.12]. By [Bor91l 1V.14.2 Corollary] we
have (G#rith)° = (G&*°m)° and it follows from Proposition [3.8 that W (U, u) is finite. It follows further
that W (U, u) is cyclic, because it is generated by the Frobenius f of a tensor generator (W, f) of ({U))
by Theorem EL(b)]

Using the embedding ¢ we may extend scalars and define the semi-simple algebraic groups Gt and
GE°™ over C. Let G**™(C) and G&°™(C) denote their complex points, which we regard as complex
semi-simple Lie groups. We will denote by K*th and K&°™ maximal compact subgroups of G*t?(C)
and G&°™(C) such that K&eo™ C Karith Clearly (K&eom)° C (K#rith)°, Since (G#rith)° = (G&*°™)° hoth
(Keem)° and (K*1h)° are maximal compact subgroups in (G*1th)° = (G&°™)° by Proposition [2Z4(a)}
Therefore, they are conjugate by Proposition and hence have the same dimension. Since they are
also connected we get that (K*)° = (K&°°™)° and therefore we deduce from Proposition [2Z4(a)| that

Karith/Kgcom (Karith/(Karith)o)/(Kgcom/(Kgcom)o)
o (G%rith/(G%rith)o)/(G%com/(G%com)o)
o G%rith/G%com

WU, u)(C) =T

const

Il

2

2

1%
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is a finite cyclic group with canonical generator being the Frobenius f from the previous paragraph. In
what follows we consider the group homomorphism

(13.1) Z—»T, m — [m] = f™

Definition 13.13. Fix an element v € T' = Karith /Kseom and Jet Kimh denote the inverse image of v
in K&th - We denote the set of K*t_conjugacy classes in K"t by Karith# and the ones which meet
Karth by Karith#. - We equip these sets with the quotient topology. K2*™"# is a union of connected
components of K&th# because it equals the preimage of v under the induced map Kth# — T Let
HHaar,y be the K& translation invariant measure on K?fith of total mass 1. (We may take the left or
right invariant measure as either is bi-invariant by [Bou04, Chapitre VII, § 1.3, Corollaire].) Let uﬁaarw
be its push-forward onto K?f“h’#, see Definition [B.1l The main equidistribution statement will be that a
suitably normalized sum of point masses corresponding to Frobenius elements converges to the measure

#
:u‘Haar,’y'
Lemma 13.14. The space K@""# is a compact topological Hausdorff space.

Proof. By [Bou95, Chapter I, §8.3, Proposition 8] it suffices to show that the quotient map K*ith —
K2rith:# is open and the graph of the conjugation action K ith x Rarith —y [arith [Rarith (5 gy s (2, gzg™!)
is closed. The openness of the quotient map follows from [Bou935, Chapter 111, § 2.4, Lemma 2], and the
graph is closed because K*ith x Kaith i5 compact and HausdorfF. O

We will need more results on the structure of the quotient, which are due to Brumfiel by viewing Karith

as a closed, bounded affine semi-algebraic group, see [DKS&1L § 7, Definition 3].

Theorem 13.15 ([Bru87, Corollary 1.6]). If H is a closed, bounded affine semi-algebraic group which
acts continuously and semi-algebraically on an affine semi-algebraic space X then the quotient space X/H
exits as an affine semi-algebraic space and the quotient map X — X/H is continuous and semi-algebraic.

Remark 13.16. Theorem [[3.15 applies to all real closed fields, but we will only use it for the real number
field R. It is pointed out in [Bru87, Remark 1.3] that in the latter case the quotient map X — X/H is
topological, which implies that the topology on X/H is the usual quotient topology. We conclude that
Karith# j5 an affine semi-algebraic space and the quotient map K2'ith — Karith.# g semi-algebraic.

Definition 13.17. We consider the semi-simplification Frob! (1/)** of the Frobenius conjugacy class
Frob! (i{). The eigenvalues o € K of Frob! (i) and of Frob] (i) acting on w, (i) are the same. Since
U is t-pure of weight zero, all these eigenvalues have complex norm 1 in the action on w, (U) ®k,,, C. So
Frob! (14)%* is conjugate under G***(C)° to an element of K*'*" by Proposition 27} The K**"_conjugacy
class of this element is well-defined, because by Lemma two elements of K" which are conjugate
under G*t1(C) are already conjugate under K", We denote this K**"-conjugacy class by #(z). Note
that by definition of W (U, u), the image of Frob (/) and Frob! ()** in T = W (U, u)(C) is just the image
7 := [deg(x)] of deg(z) under the map ([[3J). Thus the conjugacy class 6(x) is an element of Karith#,

Definition 13.18. For each integer m let U,, denote the set of points in U of degree m. For every
y € K¥ith# Jet §, denote the Dirac delta of y on Kh:# We define a measure p,, on the set of
conjugacy classes K#ith:# to be the discrete measure:

1
Mm = #Tm Z 59(1)

z€Um
Note that this measure is supported on K2*"# where v is equal to the image [m] of m in T from (I3.).

Theorem 13.19 (p-adic version of Deligne’s equidistribution theorem). For every v € T’ the measures
tm, for which [m] =~ € T in (31), converge weakly to ,uﬁaarﬁ on Kgmh*# as m — oo.

Proof. In the l-adic case Ulmer [UIm04, §9.4] attributes this theorem to Katz—Sarnak [KS99, Theo-
rem 9.7.10] and points out that this is a mild generalization of Deligne’s original result [Del80, Theo-
rem 3.5.3]. The p-adic case can be handled in the same way, based on the work of Crew, Kedlaya, Abe

and Caro [ACTS] [Cre98, [Ked06]. O
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Finally we are ready to give the

Proof of Theorem[I3.2. The proof is very similar to the proof of Theorem at the end of Section [1
We start with similar reduction steps. Let F be a semi-simple overconvergent F-isocrystal with simple
summands ;. Fix an ¢ and look at the element «; := FrobL (det F;) := u*F* in the (abelian) monodromy
group Gr'(det F; /U, u)(K.) C K, . We take an (r;e)-th root &; of a; where r; is the rank of F;, and at
the expense of replacing K by the finite extension K (c;) we let C; be the constant, hence overconvergent
F-isocrystal on U induced from the F-isocrystal (K,F = &;') € F-Isock(SpecF,) on F,. Set U; :=
F; ® C;. Then the conjugacy class Frob! (detl4) of detl; = det(F; ® C;) = (det Fi) ® C2™ is equal
to {1} ¢ Grl(det;/U,u)(K,) C K,. In particular, detlf; is unit root at u. Since it has rank one,
it is unit root on the entire curve U. By Lemma also the tensor generator & of ((detlf;)),.,, ., has
Frob! (&) = {1} and so Gr'(&; /U, u) is a finite group by Theorem L (b)| and [(c)] By Proposition [3.8] this
implies that the monodromy group of detl{; is finite, since its geometric monodromy group is also finite
by [Cre87, 4.13 Corollary]. Moreover, U; is irreducible, because F; is. So U; is t-pure of weight zero by
Abe’s result, see Remark I310l Now we let U := @, U; and C := @, C;. Then F belongs to (U & C)) and
by Lemma [B.3]it is enough to show the theorem for U @& C. So we may assume that F =U & C, where U is
a semi-simple and (-pure overconvergent F-isocrystals of weight zero and C is the direct sum of irreducible
constant F-isocrystals of varying weights.

The group DGal' (U, u)° is semi-simple by [Cre92, Corollary 4.10] and equals the derived group of the
connected component Gr! (U, u)° by Proposition 4.12]. Let Z; be the center of Gr' (U, u)°. We use
(the overconvergent analog of) Proposition B9 and let S, 7 € (U)) be the overconvergent F-isocrystals
whose monodromy groups are Gr' (S, u) = Grl (U, u)/Z; and Gr'(T,u) = Gr' (U, u)/ DGal (U, u)°. There

is a commutative diagram:

Gr' (U & C,u) —— Gr' (U, u) xx, Gr'(C,u)

| |

Cri(S®T @C,u)— Grl(S® T,u) xx, Gl (C,u).

By Proposition 3.9 the vertical map on the right has finite kernel. Since the horizontal maps are injective
by Proposition we get that the vertical map on the left has finite kernel, too. By Lemma [3.3] it is
enough to prove Theorem for S @ T @ C. Since t-pure overconvergent F-isocrystals of weight zero
form a full Tannakian sub-category, the first claims in the two following lemmas are clear.

Lemma 13.20. The overconvergent F-isocrystal S is v-pure of weight zero such that Gr' (S,u)° is semi-
simple and has trivial center.

Proof. The group Grf(S,u)° is semi-simple by [Bor91, IV.11.21 Proposition and IV.14.11 Corollary].
Let Z be its center. For an element z € Z(K) and a preimage z € Gr'(U,u)°(K) of Z the map
CriU,u)° — Zy N [Grf U, u)°, Grl (U, u)°], g — gzg~ 'z~ factors through the connected component of
Zy N [Gr' (U, u)°, Gr (U, u)°] which is trivial by [Bor91l IV.14.2 Proposition]. Thus z € Z; and 2 =1. [

Lemma 13.21. The overconvergent F-isocrystal T is t-pure of weight zero such that GrT('T, u)® is a torus
and DGal' (T, u) is finite.

Proof. The second claim follows from the fact that the connected commutative reductive group Z7 surjects
onto Gr' (7, u)° by [Bor9ll I.1.4 Corollary, IV.14.2 Proposition, I11.8.4 Corollary and IIL.8.5 Proposition].
The last claim follows from the fact that we divided out Grf (U, u) by DGal' (U, u)° and that DGall (U, u)°
surjects onto DGal' (T, u)°, because T € (UU)). O

Let £ be a tensor generator of (7)) ., It is a constant F-isocrystal whose monodromy group is
Grl(&,u) = W(T,u) = Gr' (T, u)/DGal' (T, u) by Proposition I3:8l There is a commutative diagram:

Gri(S® T @ C,u) —— Gr'(S,u) xx, Gr' (T, u) xx, Gr'(C,u)

l l

Cri( S @& @ C,u) —— Gr'(S,u) xk, Gr'(&,u) xx, Gr'(C,u).
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By Lemma [[3:2T] the map on the right has finite kernel. Since the horizontal maps are injective by
Proposition we get that the vertical map on the left has finite kernel, too. By Lemma it is
enough to prove Theorem [[3.2 for S& &£ & C.

Note that £ @ C is the direct sum of constant (-pure F-isocrystals of varying weights. By slight abuse
of notation writing ¢ for § and C for £ & C we may assume without the loss of generality that F =U &C,
where U is a semi-simple and t-pure overconvergent F-isocrystals of weight zero such that GrT(U,u)O
is semi-simple with trivial center, and C is the direct sum of constant :-pure F-isocrystals of varying
weights. In this case Grf(F,u) is the fiber product of Gr' (U, ) and Gr'(C,u) over Grf((U) N {(C),u) by
Proposition B.6(c)] Let f € Grf(C,u)(K,) be the Frobenius of the constant F-isocrystal C. Then Gr'(C, u)
is the Zariski closure of f% and is commutative by Theorem Lb)] Since Crl((U) N {C),u)° is a quotient
of the commutative group Gr'(C,u)°, it is commutative. Since Gr'({(U) N (C)),u)° is also a quotient
of Gr'(U,u)°, which has no commutative quotients by [Bor91, IV.14.2 Proposition], we conclude that
Cri((U) N {C),u)° is trivial. So Grf(F,u)° is actually the direct product of Gr' (U, u)° and Gr!(C,u)°.

We now consider the base change of these groups to C via ¢

Gy = Grl(F,u) xk, ., C, Gy == GrfU,u) xx, , C, Gs = Grf(C,u) xk,, C.

Let 77 C G1 be a maximal quasi-torus. It is the fiber product of two maximal quasi-tori 7> C G2 and
Ts3 C G with TP = T x¢ T by Remark BT2l Note that actually 75 = G5, because G is a torus. Let Ty
be a maximal compact quasi-torus in 77, see Definition and let T; for j = 2,3 be the image of T,
under the projections 71 — T;. Then T} is a maximal compact quasi-torus in T} and G; by Corollary I2.T5

Let S C |U| be a subset of positive upper Dirichlet density §(S) > 0. For every connected component
h1GS of Gy we consider the subset S(h1) of those & € S for which h;GS contains a point of Frob! (F).
Then S is the finite union of the subsets S(hy). By Lemma [312] at least one of them has positive upper
Dirichlet density. We replace S by this subset and then consider the connected component hiGS of
G which meets Frob! (F) for every z € S. Since Ty C Gy is a maximal quasi-torus, we may assume
that h; € Ty by Theorem B and Proposition [Z4(a)] For j = 2,3 let h; € T; be the image of hy
under the projection 77 — Tj. Then Tgf”‘ = {ts € T5: tshs = hgts} = T5 using Notation 0.1 because
Ts = G5 is commutative. Therefore, T} := {t; = (to,t3) € TP = Ts xc T5: t1hy = hit1} = To* xc T§
and thlhlo = h2T2h20 X ¢ h3Ts. Moreover, 'H‘;” = T;” N T is a maximal compact subgroup in Tjhj for
j=1,2,3 by Lemma [2.12

We consider the semi-simplification Frob] (F)* of the Frobenius conjugacy class Frob! (F) and similarly
for the F-isocrystal ¢. In order to show that h1Gf N J,cg Frob! (F) is Zariski-dense in hiGS, it is by
Lemma [B9(b)| and Proposition enough to show that hiT}"° N Us.es Frob! (F)** is Zariski-dense in
hi T e, Also note that hyT7"° N Frob] (F)5* # § for every 2 € S by our choice of h; and by Theorem B
and Proposition

As in Notation [3.12 we now consider maximal compact subgroups K3t of Gy and K5°™ of G§™™ :=
DGal' (U, u) x k., C such that K&'th contains K5°°™. By Theorem M[Zfc)] and Proposition [Z4c)| there

is an element e € G§'*h(C)° such that K§'th = eK3*he~! contains Ty and is a maximal compact
subgroup of Gs. Since G§°“™ is normal in G conjugation by e is an automorphism of G§°°™, and hence

K§™™ :=e ]K%eomefl is a maximal compact subgroup of G§°°™ contained in K§"*" by Proposition IZ4(c)}
To lighten the notation we drop the superscript “arith” and just write Ky := K§*h, We let v € T be
the image of the element hy € T2, and we denote by Ky, the preimage of v in K,. It is a union of
connected components containing hsK$, where we write K$ for the connected component of Ks. Note
that by Lemma two elements of Ky which are conjugate under Go(C) are already conjugate under
Ky. We denote the set of conjugacy classes of Ky by Kf , the ones which meet K, by Kf ~» and the
ones which meet hoK$ by (hoKS)#. We equip these sets with the quotient topology. Then (h2K$)# is a

connected component of Kf ~- We consider the following diagram

(132) hQKSC—>K27’Y

bk

haTh?® ——» (hoK3)# ——— K¥ .
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In this diagram the map v is surjective by construction, and ¢ is surjective by Propositions T2.11{d )| and
T2.T4(a)} In particular, it follows from this and Definition [3.17 that 6(z) € (h2K$)#, and hence

(13.3) hoTh2° N Frobl (U)** = o 1 (0(x)) # 0 for every z € S.
Lemma 13.22. (a) The continuous map ¢ between compact Hausdorff spaces is nice in the sense of
Definition [B.3

(b) There is a positive integer M such that all fibers of ¢ have cardinality at most M.

(¢) For every semi-algebraic subset X C (hoTh?°) we have dim X = dim ¢(X).

(d) Every closed semi-algebraic subset Y C (hoKS)# with dim Y < dim(hoKS)# has volume ,uflaan,y(Y) =
0.

(e) There is a closed semi-algebraic subset Z C (hoK$)# with dim Z < dim(heK$)# whose complement
is a finite disjoint union (hoK3)# N\ Z = [, Y; of open subsets Y; such that ¢ is trivial over Y; in
the sense that there is a finite discrete set F; and a semi-algebraic isomorphism <p71(Yi) = F; xY;
compatible with the projections onto Y;.

Proof. @ follows from Proposition

By Lemma [[3.14] the quotient (h2K$)# is compact. By Remark the quotient map hoK§ —
(hoK$)# is continuous and semi-algebraic as the restriction of Ky — K¥ to the connected component
hoKS, and (hoK$)# is an affine semi-algebraic space. So also ¢ is continuous and semi-algebraic as
the composition of the inclusion hng“ — hoK$ and the quotient map hoK$ — (hoK$)#. Moreover,
hoTh?° is semi-algebraic and compact, hence complete by [DKSI, Theorem 9.4]. Then [DK85, Chapter I,
Remark 5.5(v) and § 6, Definition 4] implies that ¢ is a finite semi-algebraic map. Therefore, [DK85, Chap-
ter II, Theorem 6.13] implies that there are semi-algebraic triangulations 71, 72 of hg'}l‘gw and (hoK$)#
respectively, such that the restriction of ¢ onto any simplex of 7 is a simplicial map to a simplex of 72, up
to continuous semi-algebraic isomorphism. Since every finite to one simplicial map between simplices is
trivially injective, we get that each such restriction is injective. The claim now follows from Remark [B-4

[(e)] By Hardt’s Local-Triviality-Theorem [DK82, Theorem 6.4] for the semi-algebraic map hoTh2o —
(hoK$)# there is a decomposition (thO) ]_[711 Y, into finitely many semi-algebraic subsets Y; C
(hoK9)#, such that ¢ is trivial over Y; in the above sense. By [DKRIl Proposition 8.2(b)] there is an
n < 7 with dim(hoK$)# = dimY; = ... = dimY, > dimY; for all i > n. For i < n let Y; be the open
interior of ¥;, which is a seml-algebralc subset of (hoKS)#. Let further Z := Ul<n(Y- NY) U Ul>n
Then dim Z < dim(hoK3)# = dimY; for every i < n by [DK&1, Theorem 8.10]. Indeed, if dim(Y; ~ YZ)
was equal to dim(hoKS)# then Y; \Y; would contain a non-empty open subset by loc. cit. in contradiction
to Y; being the largest open subset of }71 This proves

The inequality dim X > dim¢(X) follows from [DKS8I, Proposition 8.3]. We next consider the de-
composition (heK$)# =[], i from the previous paragraph and the semi-algebraic subsets ¢(X)NY; of
(h2K$)#. Then X N~ 1(Y;) C o~ (p(X)NY:) 2 F, x (p(X)NY;). Therefore,
dim X = max{dim X Ny ' (¥;): 1 <i <@} < max{dimep(X)NY;:1<i<n} = dimep(X)

by [DKS&Il Proposition 8.2(b)].

@ By the semi-algebraic set ¢~ 1(Y) satisfies dimp~1(Y) < dim hgTh”. By definition this means
that the Zariski closure p=1(Y) in hoTy?° is strictly contained in hoTy2°. Let “2¢~(Y) be the union of
the Ga-conjugacy classes of the elements of ¢~ *(Y') C hoGG§. The preimage ¢~ (Y') equals the intersection
of @2~ 1(Y) with hoK$. If ¢~ 1(Y) was Zariski-dense in hoGS, then “2¢p~1(Y") would be Zariski-dense in
h2G3, too. This would imply by Lemma@d(b)|and Proposition@.7 that “2¢~* (Y)NhyT22° is Zariski-dense
in hyT2°. In the notation of Proposition @3] we have G20~ (V') N hoT02° C Uwew ez zwe L (Y)w™t C
hoT22°. This is a finite union. Since hyTy2° is irreducible, already one component zwp (Y )w ™!
must be Zariski-dense in h2T2 for certain w and z. But then ¢ 1(Y) would be Zariski-dense in

w27 (hoT92°)w = heTy?° which ylelds a contradiction. Therefore, 1)~1(Y") must be contained in a
proper hyperplane H C hoG$ and then ¥ ~1(Y) C H NhoK$ C hoKS$, the latter being a strict inclusion by
Proposition [12.5l Since H is defined by a polynomial equation in the coordinates of hoG5 and pmaar,y is
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absolutely continuous with respect to the Lebesgue measure on the charts of the differentiable manifold
ho K3, we conclude 0 = ppaar,y (v 1(Y)) = uﬁaar,’y(y)' O

We continue with the proof of Theorem [321 On the sets in Diagram (I3:2) we consider various
measures: On Ks , and hoK$ the (restriction of the) Haar measure fiaar,y from Definition 313 and on
K;%v and (hoK$)# its push-forward uﬁaarﬁ. Moreover, on K;%v and (hoK$)# we consider the (restriction
of the) measures p,, from Definition I3.I8 By the equidistribution Theorem [[3:19 when m — oo the
measures [, for which [m] =~ € I' in (I3)), converge weakly to ,uﬁaarﬁ on Kf ,, and on (hoK$)#. Since
@ is nice by the previous lemma, we can pull back measures along ¢, see Definition By Lemma [13.22)
and Proposition [B the pullback measures ¢*i,,, for which the class [m] of m in T' equals 7, converge
weakly to the measure \ := cp*uﬁaarﬁ on hng“ when m — oo.

Lemma 13.23. The pull-back measure \ := <p*ufmarﬁ satisfies A(haTh2°) < oo and AN(H N hyTh2°) = 0

for every proper hypersurface H C h2T2h2°.
Proof. By Lemma [I3.24(b)| the cardinality of every fiber ¢ ~!(y) is at most M. Therefore,

A(hoTh2°) = /(h s #07) difinr (1) < M- pifi o (B2K#) = M - pigtaar (hoK3) < M
289

by Definition of the measure ftHaar,~-

Next let H be as in the second statement. By [DKS81, §8, Definitions 1 and 2] the dimension of
H N hyTh>° is the dimension of its Zariski closure in hoTy2°. Therefore, dim(H N hoTh?°) < dim H <
dim h2T2h2° = dim hg'}l‘g” = dim(thg)#, because h2T2h2° is irreducible. Here the second-to-last equality
follows from [DKS8I, Proposition 8.6] by considering a real structure on T52° with Th2° = T'*°(R) as in
Proposition The last equality follows from Lemma By [DKS8I1l Proposition 8.3] we have

dim o(H N heTh2°) < dim(H NheTh2°) < dim(hoK$)¥
and hence Lemma implies uﬁaarw (e(H N hg']I‘g“)): 0. Now for a point y € (haK$)# the

cardinality of ! (y)NHNhoTh2° is zero if y ¢ @(HNhoTh2°) and otherwise at most M by Lemma I32ZHDb)
Thus we compute

MHORTE) = [ 7 00 H AT dify ) < M g (o0 O 12T52)) = 0
289
as desired. O

The pullback measure ¢* i, on hg']I‘g?o has the following description. Recall, that for every m € N we
set Uy, :={x € U: degz =m}. Let A C hyTh2° be a Borel-subset. Then by Definition [B7

1 1
Um(A) = —— g ) (A) = —— ANFrob, (U)*%).
©" i (A) U zeZUm(@ 6(2))(A) U zGZUm#( ™)
Now let S, := SN U,,. Then Lemma B.17] gives us an infinite subset R C N such that
i—é’: > @ for every m € R.

In particular, for every m € R we have S, # 0, and hoTh2° N Frob! () # () for every x € S, by (I33).
Thus the image [m] of m in I' = W (U, u)(C) under the map (I31]) coincides with the image of hy which
we called 7.

Consider closed immersions hoTy?° < C% and hsTy < C%. Tt will be sufficient to prove that no
proper hyper-surface H ¢ C%*% with HN thlhlo C thlh“’ = hQTQhQO xc hsTs C C% x C9% contains
h e N Uses Frob! (F)**. Assume the contrary and let H be such a counterexample. Let D be the
degree of H in the variables of the first factor C%2 and for every m € R set

H,, ={z€C%: (z,f™) € H}.
Note that f™ = Frob! (C) = Frob!(C)** € hsTy for every z € S,,. Then Frob!(F)* = Frob! (U)* x
{fdes=} implies that hoT0'° N Frob! (U)* C H,, for every z € S,,. Each H,, is a hyper-surface in C%
of degree < D such that H,, N hQTQh20 is properly contained in hQTQhQO for all but finitely many m by
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Corollary [Z.6 (applied with L = C,T = T3,G = f2, X = G1,T¢ = h3T§). So by shrinking R we may
assume that H,, mh;2T2h20 is properly contained in h2T2h2° for every m € R. By considering a real structure
on T with hoTh?° = hyT?°(R) as in Proposition [235] using Theorem [BI0, and shrinking R further
we may even assume that there is a proper hyper-surface H C h2T2h2° C C? of degree at most D such
that the sequence H1 N hng“, HonN hng“, Y h2T§2O, ... converges to H N hngzo in the sense of
Definition B9 Then H N hyTh2° C hoTh?° by Proposition TZH and A(H N hyTh2°) = 0 by Lemma [3:23
By Lemma [B.I2 there is a small ¢ > 0 such that A((H N hoTh?°)(2¢)) < $3(S). By the triangle
inequality (H N hoTh2°)(2¢) contains the closure (H N hoTh2°)(e) of (H N hyTh2°)() in the metric space
hoTh2° | and hence AM(HN hgT};“)(a)) < 15(5). Choose an m. € N such that for every index m € R with
m > m. we have H,, NhoT52° C (H NhyTh2°)(e). For every x € S, the intersection hoTh?° N Frob] (14)*
is contained in H,, N hngzo by assumption. Moreover, hngzo N Frobl (U)** is non-empty by (I33). So
for every m € R with m > m. and for every € Sp, we have # ((H N hoTh2°)(g) N Frob, U)**) > 1, and
hence
1

S L #Sn | BS)
#Unm 2

> #((H N hyTh2°)(e) N Frob, (U)**) > S,

x€Um,

"t ((H 0 h2T529)(e))

But taking lim sup,,,_, . and by the weak convergence of ¢* 1, to A and the Portemanteau theorem [KleT4l
Theorem 13.16] we have

@ < limsupgo*um((Hﬁhng“)(s)) < )\((HﬂhQT§2O)(E)) < @

2 m—ro0 2

which is a contradiction. This rules out the existence of H and finishes the proof of Theorem [13.2 O

)

Theorem [13.2] has the following consequence for convergent F-isocrystals.

Theorem 13.24. Let F be a semi-simple convergent F-isocrystal on U. Assume that F has an over-
convergent extension whose monodromy group GrT(]: /U, e) has an abelian mazimal quasi-torus. Then

Congectures [.2 and [1-4] hold true for F.

Remark 13.25. Of course by the assumption in the theorem we mean that there is an overconvergent
isocrystal FT such that the convergent isocrystal underlying F' is isomorphic to F. Note that F' is
necessarily semi-simple. Indeed if GI € FT is an overconvergent sub-isocrystal, then it has a convergent
complement H C F. This A is isomorphic to the convergent isocrystal underlying the quotient Ff/GT, so
by Kedlaya’s extension theorem Theorem 1.1] the embedding H < F extends to an embedding
F1/Gt < FT, and hence G' has an overconvergent complement, too.

Proof of Theorem [T3.27) Let Gr'(F', u) be the monodromy group of F' and let Gr(F,u) c Grf(Ft u)
be the monodromy group of F, see Lemma[I3l We view GT := Gr'(F', u)(K) as an algebraic group over
K. Let S C |U| be a subset of positive upper Dirichlet density. Let F = J, g Frob,(F) C Gr(F,u)(K)
be the union of the Frobenius conjugacy classes, and let F** = {gs: g € F'} be the set consisting of the
semi-simple parts g of the elements g of F. Using the sub-additivity of upper Dirichlet density from
Lemma [B12] we may assume without the loss of generality that every element of F' and hence F*¢ lies in
the same conjugacy class C of connected components of Gr(F,u) by shrinking S, if it is necessary. For
every subset X of an algebraic group H let X be the union of the conjugacy classes of elements of X.
By our overconvergent density Theorem and by Corollary the set ¢'Fs is Zariski-dense in a
connected component hGt° of Gt. We want to deduce that F'** is Zariski-dense in a connected component
of Gr(F,u). By Corollary this is enough to prove Conjecture [[4] for F. Choose any connected
component C' C Gr(F,u) lying in C and in hGT°. We will actually show that F** N C is Zariski-dense in
C.

Let T be a maximal quasi-torus in Gr(F,u) and let 77 be the unique connected component of T
contained in C. Let Z be the Zariski-closure of F'** NT’. Since every element of F'*® lies in C, it can be
conjugate into C. By Theorem it is thus conjugate under Gr(F,u) to an element of Z. Therefore,
G'Z contains GTFSS, and hence ¢'Z is Zariski-dense in hGt°, too. Let TT C G be a maximal quasi-torus,
whose connected component 7° contains the maximal torus 7° of Gr(F,u)°, use Theorem By
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Theorem Bd(a)| we may assume that h € TT. Consider the set
D ={(z,t) € Zx hT™:3g € GT such that g~ 'zg =1t) }.
We claim that D is a constructible subset of Z x hT'T°. Namely consider the morphism
0: ZxGl — Zx G, (2,9) — (2,97 29).

The preimage ¢~ (Z x hT7°) C Z x G is a closed subset, and D = ¢(p~'(Z x hT1°)). Therefore, D is a
constructible set by Chevalley’s theorem [EGAL IV, Corollaire 1.8.5]. Let 71: D — Z and mo: D — hTt°
be the projections onto the first and the second factor, respectively. Since ¢'Z is Zariski-dense in hGT°
and is the union of semi-simple conjugacy classes, Lemma tells us that mo(D) = G'7Z A KTt is
Zariski-dense in KTT°. This implies dim(D) > dim(hT7°) = dim(7'*°) by [EGAL IVy, Théoreme 4.1.2].
Fix an element (z,t) € D. For every other point (z,t') in D with 71(z,t) = m1(2,t') the two elements
t and ' of hTT° are conjugate under GT. Since TT is assumed to be commutative, we have (77)" :=
{g € T™®: gh = hg} = T'°. So Proposition @3 implies that there are only finitely many ¢’ € hTT° with
m1(z,t) = mi(z,¢'). In other words, the fibers of the surjective map m1: D — (D) are finite, and so
dim(D) = dim(m (D)) < dim(Z) by [GWI0, Proposition 14.107]. On the other hand dim(7”) = dim(7°) <
dim(7°) < dim(D), because T° is contained in T7°. Since Z C T’ with dim(Z) > dim(D) > dim(7"),
and T" is irreducible, we get that Z is T”, so F**NT" is Zariski-dense in 7”. By Lemma[@.q(b)| we get that
F*s N (C is Zariski-dense in C' as desired. O

The proof of the following theorem will use most of the results which we prove in our paper up to this
point. This theorem will imply Theorem [LLT0 in the introduction, as we shall see shortly.

Theorem 13.26. Let F be a semi-simple convergent F-isocrystal on U which has an overconvergent
extension F' on U, and such that F is locally weakly firm with respect to an open sub-curve f: V « U.
Then F is weakly pink with respect to f.

Proof. By Theorem it is enough to show that F is almost weakly pink with respect to f. Let
Gt = Gr!(F1/U,u)(K) be the K-valued points of the monodromy group of F! and let Gr(F/U,u) C
Cr!(F1/U, u) be the monodromy group of F; see LemmaI3dl Let H := Gr(f*F/V,u)(K) C Gr(F/U,u)(K) C
G be the K-valued points of the monodromy group of f*F on the shrunken curve; see Lemma 0.2 We
view all three groups as linear algebraic groups over K. Now the proof proceeds exactly as the proof of
Theorem [I.5] Namely, let F' =, e|v| Frobg(f*F) € H be the union of the Frobenius conjugacy classes
(conjugacy under H), and let F** = {gs: g € F} C H be the set of the semi-simple parts g, of the elements
g of F. For a subset X of GT let G'X be the union of the conjugacy classes under Gt of the elements
of X. Then ¢'F = Uze|V\ Frobl(]j) C G is the union of the Frobenius conjugacy classes (conjugacy

under G1), and ¢'(F**) = (¢'F)* .= {g,: g € ¢'F} ¢ G!. By Remark [3.28 and Corollary 33 the set
G'F is dense in G By Corollary @11 we get that (GTF)SS is Zariski-dense in GT, too. Let T C H be a
maximal quasi-torus. Since every element of F** is conjugate to an element of T' by Theorem B9 a)li(b)}
we get that G'T is also Zariski-dense in GT, and hence that G'T NGt is Zariski-dense in GT°. As in the
second (the purely group theoretic) part of the proof of Theorem [IT.5 we see that T° is a maximal torus
in Gt° = Gr!(F1/U,u)(K)°, and hence T° must be a maximal torus in the subgroup Gr(F/U,u)(K)°,
too. O

Proof of Theorem[L.I0. Let f: U < V be an open sub-curve on which f*F is weakly firm. Then F and
G are weakly pink with respect to f by Theorem and Proposition Since J is conservative
by Proposition [[0.11] we see that G & J is weakly pink with respect to f by Proposition [0.71 Moreover,
G @ J is semi-simple by Lemma 3.8 because F and J are by assumption. Therefore, Conjectures [.2]
and [[L4] hold true for G & J by Theorem [[0.4 O

APPENDIX A. NON-NEUTRAL TANNAKIAN CATEGORIES AND REPRESENTATIONS OF GROUPOIDS

In this appendix we briefly recall the basics about Tannakian categories, groupoids and how they relate
to monodromy groups of F-isocrystals. We closely follow the articles of Deligne and Milne [DM82], [Del89]

[Del90, [Mil92].
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Definition A.1 ([Mil92] (A.7.1) and (A.7.2), page 222]). Let K be a field. A K-linear abelian tensor
category ¢ with unit object 1 such that K = End(1) is a Tannakian category over K if

(a) for every object X of € there exists an object X of €, called the dual of X, and morphisms
ev: X®@ XY = Tlandd: 1T — XV ® X such that

idx ®06 ev® idx

(ev®@ idx)o (ldx®)) = idy : X — XXX ——— X and
(idxv ®ev)o (6 ® idyv) = idyv: XV 22XV, xvg x g xv JXVEY, wv

(b) and for some non-zero K-algebra L there is an exact faithful K-linear tensor functor w from %
to the category of finitely generated L-modules. Any such functor w is called an L-rational fiber
functor for €.

A K-rational fiber functor for € is called neutral. If € has a neutral fiber functor it is called a neutral
Tannakian category over K.

Remark A.2. (a) According to [DM82 § 1] being a tensor category means that there is a “tensor product”
functor € x€ — ¢, (X,Y) — X ®Y which is associative and commutative, such that ¢ has a unit object.
The latter is an object 1 € % together with an isomorphism 1 =~ 1® 1 such that ¥ — ¢, X — 1®X is an
equivalence of categories. A unit object is unique up to unique isomorphism; see [DM82, Proposition 1.3].
One sets X®0:= 1 and X®" := X ® X®"~! for n € N5.

(b) Being K -linear means that Home (X,Y) is a K-vector space for all X,Y € 7.

(c) Being abelian means that € is an abelian category. Then automatically ® is a bi-additive functor and
is exact in each factor; see [DM&2, Proposition 1.16].

(d) By [Del90] §§2.1-2.5] the conditions of Definition [A-J] imply that End (1) = K and that the tensor
product is K-bilinear and exact in each variable. It further implies that Hom(X,Y) := XV ® Y is an
internal hom in C, that is an object which represents the functor ¢° — Vecg, T — Homg (T®X,Y’). This
means that Home (T® X,Y) = Home (T, Hom(X,Y)). Then % is a rigid abelian K-linear tensor category
in the sense of [DM82] Definition 2.19]. This further means that the natural morphisms X — (XV) are
isomorphisms and that @, Hom(X;,Y;) = Hom(Q), X;, Q,Y;) for all X;,Y; € €.

(e) A functor F': € — €’ between rigid abelian K-linear tensor categories is a tensor functor if F(1)
is a unit object in ¥’ and there are fixed isomorphisms F(X ® V) = F(X) ® F(Y) compatible with
the associativity and commutativity laws. A tensor functor automatically satisfies F/(XV) = F(X)" and
F(Hom(X,Y)) = Hom(F(X),F(Y)); see [DM82, Proposition 1.9]. In particular, for an L-rational fiber
functor w this means w(1) = L.

Definition A.3. A sub-category %’ of a category % is strictly full if it is full and contains with every
X € ¢’ also all objects of ¢ isomorphic to X.

A strictly full sub-category €’ of a rigid tensor category € is a rigid tensor sub-category if 1 € €’ and
XQY, XV e forall X,Y € €. If in addition C is abelian and C’ is closed under forming direct sums
and subquotients, we call C' a rigid abelian tensor sub-category.

If € is a Tannakian category over K and X € ¥, the rigid abelian tensor sub-category of € containing
as objects all subquotients of all @._; X®™ @ (XV)®™i for all r,n;,m; € Ny is called the Tannakian
sub-category generated by X and is denoted ((X)). Any L-rational fiber functor w on % restricts to an
L-rational fiber functor w|;xy on (X)) and makes (X)) indeed into a Tannakian category over K.

To describe the Tannakian duality in the non-neutral case, we need the following

Definition A.4. A groupoid in sets is a category in which every morphism has an inverse. Thus to give
a groupoid in sets is to give a set S (of objects), a set G (of arrows), two maps ¢,s: G — S (sending an
arrow to its target and source respectively), and a law of composition
o: G x G — @G, where G x G = {(h,9) € GXG:s(h)=1t(9)},
s,5,t s,S,t
such that o is a map over S x .S, each object has an identity morphism, composition of arrows is associative,
and each arrow has an inverse.
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In the rest of this appendix let K be a field and let K, be a (finite or infinite) field extension which is
Galois with Galois group ¢. Let Sy := Spec K and S := Spec K. If ¢ is finite, then the isomorphism

K@k Ko = [[Ke, a®b— (0(a) D),
2

gives rise to a commutative diagram

(A1) S xg, S = Spec K, @ K, = [l Spec K. =: ¥
- |
S Spec K. ,

in which we view ¢ ¢ as a finite étale group scheme over S. If ¢ is infinite, it is the projective limit of its
finite quotients. Therefore, we can view & ¢ as a profinite affine group scheme over S and the projective
limit of the diagrams (AJ]) over the finite quotients of ¢ induces the corresponding diagram (AJ]) also in
this case.

Definition A.5. (a) A K./K-groupoid (or a K-groupoid in schemes acting on K,.) is a scheme &
over K together with two morphisms t,s: & — Spec K., called target and source, and a law of
composition

0: & x & — &,
s,S5,t

which is an S x g, S-morphism such that for all K-schemes T the category with objects S(T),
morphisms &(T'), target and source maps ¢ and s, and composition law o is a groupoid in sets.
(b) The K-groupoid & is transitive if the morphism (¢,s): & — S xg, S is surjective, it is affine if &
is an affine scheme and it is algebraic if & — S xg, S is of finite type.
(¢) The kernel of a K./K -groupoid & is the pullback

G = 6% = A"
of & under the diagonal morphism A: S — § xg, 5. It is a group scheme over S which is affine if
& is affine.
(d) A morphism between K./ K-groupoids & and §) is a morphism of S x g, S-schemes «: & — §) which
is compatible with the composition laws and induces a homomorphism of group schemes o™ : & —

$H”2. Equivalently, « induces a functor between the categories (S(T),(T)) — (S(T),$(T)) which
is the identity map S(T") — S(T') on objects.

Remark A.6. Let ® be a K./K-groupoid with kernel G := 4. Then prjG acts on & over S xg, S and
makes it into a right G-torsor. The groupoid & acts on G by conjugation:

(A.2) (g,7) — goxog ! for ge®(T) and ze G(T)
for any K-scheme T

Definition A.7. If Gy is a group scheme over K then & := G x g, (S xg,.5) together with the composition
induced by the group law of Gy is a K./K-groupoid. It is called the neutral groupoid defined by Go. It
is affine, respectively algebraic, if G is.

Example A.8. Let V be a finite dimensional vector space over K. Let &[(V') be the scheme over S x g, S
representing the functor that sends a scheme (b,a): T — S xg,S over S x g, S to the set Isomp,. (a*V,b*V)
of Op-isomorphisms from a*V to b*V. Then the composition of isomorphisms makes &[(V) into a K./K-
groupoid which is affine, algebraic and transitive.

Example A.9. Here is a generalization of the previous example. Let V be a finite dimensional vector
space over K, and let Vo = (0=V, C V4 C ... CV, =V) be a flag of K.-linear subspaces V; C V. Let
&1(V4) be the scheme over S x g, S representing the functor that sends a scheme (b,a): T'— S x g, S over
S xg, S to the set

Isomo, (a*Ve,b*Vs) = { f € Isomo, (a*V,b*V): f(a*V;) = b*V; for all i }.

We explain that this subfunctor is representable by a closed subscheme of &[(V). Namely, by induction
on i the condition f(a*V;) = b*V; is equivalent to the condition that the composite Op-homomorphism
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a*V; = a*Viq BN Vigr = b*(Vig1/V;) is the zero homomorphism. The latter is represented by a closed
subscheme by [EGAL T,,¢y,, Proposition 9.7.9.1]. Again the composition of isomorphisms makes &[(V,) into
a K./K-groupoid which is affine, algebraic, transitive, and is a closed subgroupoid of &I(V'). Obvioiusly,
S0 C V) =61V).

For every i the restriction to V; defines a morphism &[(Vy) — &I(V;) of groupoids, which is an epimor-
phism onto the closed subgroupoid &I(0 =V, C ... C V;) C B(V;).

Definition A.10. A representation of a groupoid & is a morphism p: & — &I[(V) of groupoids for a
finite dimensional K.-vector space V. We let Rep(K.: &) be the category of representations of & for
varying finite dimensional K.-vector spaces V. It has a natural tensor structure relative to which it forms
a Tannakian category. The forgetful functor wp: (p, V) — V is a fiber functor over K..

Tannakian duality says that every K-linear Tannakian category which has a fiber functor over K. is of
this form:

Theorem A.11 (Tannakian duality Théoreme 1.12], Theorem A.8]). Let € be a K-linear

Tannakian category with a fiber functor w over K.
(a) There is an affine transitive K./K-groupoid & that represents the functor Aut% (w) sending an
S xg, S-scheme (b,a): T — S xg, S to the set of isomorphisms of tensor functors a*w == b*w;

see [DM82] p. 116].

(b) The fiber functor w induces an equivalence of tensor categories € = Rep(K.: &).

Conversely, let & be an affine transitive K./K-groupoid, and let wy be the forgetful fiber functor of
Rep(K.: &). Then the natural map & — Aut%(wo) is an isomorphism of groupoids.

Definition A.12. The groupoid & = Aut}e}(w) is called the Tannakian fundamental groupoid of (C,w).

Proposition A.13. The K./K -groupoid & is algebraic if and only if Rep(K.: &) has a tensor generator
X ; compare Definition[A_3 In this case & — Sl(wo(X)) is a closed immersion.

Proof. By construction §6.8], & = Spec L (wo,wp), where Lg(wo,wp) is defined in §4.7
and §4.10(iii)] as an inductive limit of quotients of w(X)¥ ®x wo(X) where X runs through all objects
of Rep(K.: ®). In particular, if Rep(K.: &) has a tensor generator X then Ly (wo,wo) is a quotient of
wo(X)Y @k wo(X) and a finitely generated algebra over [[, K.. Conversely, if Lx(wo,wo) is a finitely
generated algebra over [ [, K., then it is a quotient of wy(X )" ® g wo(X) for some object X of Rep(K.: &),
which necessarily must be a tensor generator. Obviously & < &l(wo (X)) is a closed immersion. O

Proposition A.14. Let a: & — ) be a homomorphism of affine transitive K. /K -groupoids, and let w®
be the corresponding functor Rep(K.: ) — Rep(K.: &).
(a) Then « is faithfully flat if and only if w®™ is fully faithful and every subobject of w*(Y), for Y €
Rep(K.: $), is isomorphic to the image of a subobject of Y.
(b) « is a closed immersion if and only if every object of Rep(K.: &) is isomorphic to a subquotient
of an object of the form w*(Y') for an object Y € Rep(K.: 9).

Proof. This was proven in [DM82 Proposition 2.21] for neutral Tannakian categories and group schemes
instead of groupoids. But the proof likewise works in the non-neutral case for groupoids. 0

Proposition A.15 ([Del89, §10.8]). Let & and § be K./ K -groupoids with kernels G := &> and H := $H*,
and let ¢: G — H be a homomorphism of group schemes. If there is given an action of & on H compatible
with its action on G from (A2), then the proH-torsor deduced from & by pushing out by the morphism
priw: priG — priH is endowed with the structure of a groupoid whose kernel is H. We denote it by ¢.®.

We apply this proposition in the following form.
Corollary A.16. Let € be a K-linear Tannakian category equiped with a K.-linear fiber functor w. Let

F be an object of € and let & := Aut’y (w|(xy) be the Tannakian fundamental groupoid of F.

(a) Every Tannakian sub-category of (X)) has a tensor generatorY € (X)) and the natural fully faith-
ful embedding (Y)) — (X)) of Tannakian categories induces an epimorphism of K./ K -groupoids
& = Aut® (wl(xy) = Aut® (w|(yy) =: H and an epimorphism &> — H2 of the kernel groups.



CRYSTALLINE CHEBOTAREV DENSITY THEOREMS 73

(b) Conversely, let p: &> — H be an epimorphism of algebraic groups over K. whose kernel is
invariant under the conjugation action of & on & from ([AZ2). Then there exists an object
Y € (X)) and an epimorphism of groupoids oz & — § 1= Aut®(w|(yy) whose restriction to the
kernel groups a®: & — $2 is isomorphic to p: &> — H.

Proof. @ Since the kernel of ¢ is stabilized by the conjugation action of & on &% from ([A.2), this induces
a compatible action of & on H, and by Proposition [AT5 we can form the groupoid § := ¢, ® with kernel
$H2 = H. Since p: & — H is faithfully flat, also its extension a: & — § is faithfully flat by Remark [A6]
and so the functor Rep(K.: ) — Rep(K.: &) = (X)) is an isomorphism onto a full Tannakian sub-
category by Proposition [AI4(a)] Since & is of finite type over S x g, S by Proposition [AI3] also ) is of
finite type over S xg, S, and Rep(K.: $) has a tensor generator Y again by Proposition [AT3l

follows directly from Proposition [A.I4(a)l The existence of a tensor generator was just proven in
(b)) O

Remark A.17. Recall that a subgroup of an algebraic group G which is invariant under all automorphisms
of G is a characteristic subgroup. In particular, if the kernel of ¢: & — H is a characteristic subgroup
of &2, then it is stabilized by the conjugation action of & on & from ([A.2), and so the hypotheses of
Corollary [A.16(b)| are satisfied.

Proposition A.18. Assume that K has characteristic zero. Let p: & — &I(V') be a representation of an
affine transitive K. /K -groupoid & on a K.-vector space V and let H C &> be a closed algebraic subgroup
over K, which is stable under the conjugation action of & on &> from (A2). Let W C V be the K -linear
subspace of fized vectors of H and consider the flag Vo = (0 C W C V). Then the representation p factors
through the K./ K -groupoid &l(Vy) C SI(V) from Example[A 9. In particular, the representation (pw, W)
of & is a subrepresentation of (p,V), where pw is the composition of p: & — &U(V,) followed by the
epimorphism S(Vy) — SI(W) from Ezample A9

Remark A.19. The subspace W in the proposition is defined as follows. Let K be a separable closure
of K, and let

W = {veV:=Veg K:ph)(v)=vforall he H(K)}.

Since H is defined over K. the subspace W C V descends to a K,-linear subspace W C V satisfying
wW=Ww XK, K.

Proof of Proposition[A.78 We use Remark and let S := Spec K. By faithfully flat descent [EGA]
IVy, Proposition 2.2.1] it suffices to prove that the morphism p: & — &I(V) factors through &I(V,) after
base-change from S x g, S to S xg, S. Since in characteristic zero * is smooth, and hence &> and & are
reduced schemes, we have to show that for every S x 5, S-scheme of the form (b,a): T = Spec K — S x g, S
the map &(T) — &V )(T) factors through &I(V4)(T). In addition, we consider T' via the morphism
Aoa:T =S — § X S, S as another S X S, S-scheme, which we denote by T,. Likewise, we define Ty.
Let g € &(T) and let h € H(Ty) C 2(Ty) = &(T}). Then g~'hg € H(T,) C &*(T,) = &(T,) by the
assumption that H is stable under the conjugation action of ® on & from ([A2). We have to show that
p(g) € SV )(T) = Isomo, (a*V,b*V) satisfies p(g)(w) € b*W for all w € a*W. Since p(g~thg)(w) = w
in a*V, we compute in b*V

p(h)p(g)(w) = plg)p(g~"hg)(w) = plg)(w).
As this holds for all h € H(T}), we obtain that p(g)(w) € b*W, and hence p factors through &I(V,) as

desired. The last assertion is clear. O

Remark A.20. Recall from [DM82 p. 155ff] that for a Tannakian category ¢ over K there is an ex-
tension of scalars ¥ ®x K. which is a Tannakian category over K. It is equipped with a tensor functor
Rk Ko: € — € x Ko, X — X ®k K., which satisfies

Homcg(X,Y) R K, = H0m<g®KK€(X R K., Y QK Ke).

If w is a K,-rational fiber functor on € then w extends canonically to a K.-rational, hence neutral fiber
functor on € @k K.. Then Proposition A.12 and Example A.13] implies that Theorem [ATT]
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induces a commutative diagram of Tannakian categories

(A.3) X ¢ ——— 5 Rep(K. : 6) p:® = &IV)

| ] | [

Xox K. €2k K. +> Rep(K, : &2) PR B8 — BI(V)A
where the right vertical map is the restriction to the kernel groups.

Proposition A.21. Let X and Y be two objects of a Tannakian category € over K. If there is a field
extension L O K which is Galois and an isomorphism f: X Qg L =Y ®x L in the category € Qx L,
then there is an isomorphism g: X ==Y in €.

Proof. Consider the group scheme Autey Y over K which is defined for any K-algebra R by its R-valued
points
(Auty Y)(R) := (Endg(Y) @k R) .

For every o € Gal(L/K) let hy == foo*f~! € (Aut¢ Y)(L) = Autgg,r(Y @k L). They satisfy
hor = hy 0 o(h;) and form a cocycle in H' (Gal(L/K), Auty Y'). However, this group is trivial by [Ser79,
Chapter X, §1, Exercise 2]. So there is an element h € (Auty Y)(L) with h, = h™! o 0*h. In particular,
g:=hof: X®KkL=5Y ®g L satisfies g = o*¢g for every o € Gal(L/K). Therefore g: X == Y is the
desired isomorphism in % . 0

Proposition A.22. Assume that K has characteristic zero and let L O K be a finite Galois extension.
Let € be a Tannakian category over K and let X be an object of €. Then X is semi-simple if and only
if the object X @i L of € @k L is semi-simple.

Proof. Tf X is semi-simple then X ®f L is semi-simple by [Sta08, Proposition 1.5.1]. Conversely let
X ®g L be semi-simple and let f: X — Y be an epimorphism in %. Since the extension functor ¢ ®x L
has a right adjoint, it is right exact and f ® 1: X ® ¢ L — Y ®k L is an epimorphism. Since X Qg L is
semi-simple, there exists a morphism g € Homegg, (Y ®x L, X ®x L) with (f®1)og = idyg,r. Then
g = ﬁ Y oeal(r/x) 0 (9) € Homege, L (Y ®x L, X @k L) satisfies (f ®1)og = idyg,r and 6*(3) =g
for every o € Gal(L/K). Therefore g € Homy (Y, X) splits f, and hence X is semi-simple. O

APPENDIX B. RESULTS FROM MEASURE THEORY AND REAL ALGEBRAIC GEOMETRY

Definition B.1. Let f: X — Y be a continuous map between two topological spaces, each equipped
with the Borel o-algebra. For a measure p on X the push-forward measure f.p is defined as (f.p)(V) :=
u(f~1V) for every Borel-measurable subset V' C Y. It satisfies [}, h(y) d fup(y) = [ h(f(x)) du(z) for
every measurable function h on Y.

Our next aim is to define the notion of a pull-back of measures under certain nice maps.

Lemma B.2. Let f: X — Y be an injective continuous map between compact Hausdorff spaces. Then f
maps Borel-measurable sets in X to Borel-measurable sets in'Y .
Proof. Tt will be enough to show the following:

e the image of every closed subset of X is Borel-measurable,
e the collection of subsets of X:

C={Zc X| f(Z) CY is Borel-measurable}

is a o-algebra.

We first show the first claim. Since X is compact and Y is Hausdorff, the image of every closed subset of
X is compact, and hence closed, and these are Borel-measurable. Now we prove the second claim. Since
() and X are closed in X, we get that (), X € C by the above. If B € C, then

F(X N B) = f(X)~ f(B)
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using that f is injective. Since Borel-sets form a o-algebra, the right hand side is a Borel-set, and hence
X~ BeC(. If B; € C, where i € N, then

f(U B = rB),
€N €N

so using that Borel-sets form a o-algebra, we get that | J, . B: € C. O

iEN
Definition B.3. Let f: X — Y be a continuous map between topological spaces. We say that the map
f is nice if there is a countable pair-wise disjoint decomposition

(B.1) X = ]O_o[Xl-

of X into Borel-measurable subsets X; such that the restriction of f onto the closure X; of each X; is
injective.

Remark B.4. Note that a continuous map f : X — Y is nice if and only if there is a countable cover
{Zi}ien of X by closed subsets such that f|z, is injective for every ¢ € N. Indeed if f is nice and

X = ]O_o[Xi
i=1

is a decomposition of X as in (B) above, then {X;}ien of X is such a cover. On the other hand if
{Z;}:ien is a countable cover of X by closed subsets such that f|z, is injective for every i € N then
Xl' = Zz AN U Zj
j<i
is Borel-measurable, and

XzﬁXi

i=1
is a decomposition of X. Since X; C Z;, we have X; C Z; = Z;, and hence f |Yi is injective for every
1€ N.
Lemma B.5. Let f: X — Y be a nice continuous map between compact Hausdorff spaces. Then [ maps

Borel-measurable sets in X to Borel-measurable sets in'Y .

Proof. Fix a decomposition of X as in (B above. For every Borel-measurable Z C X we have:
f2)=J rznx),
i€N
so it will be sufficient to show that f(Z N X;) is Borel-measurable for every i € N. Since X is closed, it

is a compact Hausdorff space. Also the restriction of f onto X, is injective by assumption. As Z N X, is
Borel-measurable in X;, the claim follows from Lemma O

Lemma B.6. Let f: X — Y be a nice continuous map between compact Hausdorff spaces. For every
Borel-measurable subset Z C X the counting function czy : Y — R U {oo} given by the rule:

y=#(f7Hy)NZ)

is measurable.

Proof. Fix a decomposition of X as in (B above. Clearly

czy(y) =Y cily),

i=1
where for every ¢ € N the function ¢; : Y — R U {oo} is given by the rule:
ye #(FHy) NZNX).
Since the latter are non-negative, ¢,y is the point-wise supremum of the sequence (Zgzl ci)j eN® So it
will be enough to show that each ¢; is measurable. However, the restriction of f onto X; is injective, so
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¢; is just the characteristic function of f(Z N X;). By Lemma Bl the set f(Z N X;) is Borel-measurable,
since Z N X is, so ¢; is also measurable. O

Definition B.7. Let f : X — Y be a nice continuous map between compact Hausdorff spaces. Let u be
a Borel-measure on Y. We define the pull-back measure f*u on X by the formula:

(F'u)(2) = /Y ¢zyv W)du(y)

for every Borel-measurable Z C X. By the lemma above the integrand is measurable, and it is also non-
negative, so the integral is well-defined. When there is an upper bound on the cardinality of the fibers of
f, we get that f*(u) is bounded, too, i.e. it only takes finite values if the same is true for pu.

Proposition B.8. Let f: X — Y be a nice, continuous, surjective map between compact Hausdor(f spaces
and let pu,, form € N be a sequence of measures on'Y which converge weakly to a measure v on'Y . Assume
that there is a positive integer M such that all fibers of [ have cardinality at most M. Assume further
that there is a closed subset Z C'Y of measure v(Z) = 0 whose complement is a finite disjoint union
Y\ Z =11, Y of open subsets Y; such that f is trivial over Y; in the sense that there is a finite discrete

set F; and a homeomorphism g;: F; x Y; == f~1(Y;) compatible with the projections onto Y;. Then the
pullback measures f* ., converge weakly to f*v.

Proof. We first observe that

(f*v = /#f (y) < M-v(2) = 0
and likewise
(F* tom)( - /#f Y) dim(y) < M - pm(Z).

Since limsup,,, . im(Z) < v(Z) = 0 by the weak convergence and the Portemanteau theorem [Klel4
Theorem 13.16], we conclude that lim,, oo (f*pm)(f~1Z) = 0.
Let U C X be an open subset. Then

()W) = (FUNFT2)+ 3 (fUnfTY) = ZZ )(UNgi(x x V7))

and likewise
n

lim inf () (U) = D Y lminf(f ) (U N gi(x x Vi),
1=1 x€F;

and similarly for limsup. Since the projection map z x Y; — Y; is a homeomorphism, the set f(U Ngi(x x

Y;)) C Yiis open and (f*v)(UNgi(zxY;)) = v(f(UNgi(zxY;))) and (f*pm) (UNgi(x % Y3)) = pm (F(UN

9i(zxY;))). From this and the weak convergence of 11, to v we obtain lim inf,, .eo (f*tm ) (U) = (f*v)(U).
If U = X we also must show that limsup,,,_, . (f*1m)(X) < (f*v)(X). Note that

lim sup(f*pm) (9i(z x ;) = limsup pn,(¥;) = limsup p,(Z UY:) < v(ZUY)
m— o0 m—»o0 m—o0
because Z UY; is closed in Y and u,, converges weakly to . We compute
v(ZUY;) = v(Z) +v(Yy) = v(Yi) = (f*v)(gi(e x Yi)).

This implies lim sup,,,_, o (f*um)(X) < (f*v)(X) and shows that the sequence of measures f* ., converges
weakly to f*v. ]

In the rest of this appendix we consider the following

Definition B.9. As usual let |z| denote the absolute value of a complex number z € C. Let Y C Ag be
a smooth affine scheme over R, and assume that its set of real points

C =Y(R) c R?
is compact and Zariski-dense in the base-change Yc C A% of Y to C. Let
(B.2) I
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be the Lebesgue measure furnished by the volume form of the Riemannian metric specified on C. Let
d(-,+) : R? — R>( be the usual Euclidean metric. For every e > 0 and every subset A C C' let A(¢) denote
the open e-neighborhood of A in C:

A(e) := {z€ C: Iy e Asuch that d(z,y) <e} = U{zeC:d(z,y)<a}.
yeA

Note that for a subset A C C which is closed, and hence compact, the closure A(e) with respect to the
metric on C' is contained in A(2¢). We say that a sequence Ay, As, ..., A, ... of subsets of C' converges
to a subset A C C' if for every £ > 0 there is an index m. € N such that A,, C A(e) for every m > m..

Theorem B.10. Let D € N, and let Hy,Hs, ..., H,,,... be a sequence of algebraic hyper-surfaces of C¢
of degree at most D such that the intersection H,, NYc is a proper hyper-surface in Y¢ for every m. Then
there is a subsequence Hy,,, Hpy, ..., Hy, o ... and an algebraic hyper-surface H C C? of degree at most
D with HNYe € Ye, such that the sequence Hy,y, NC,Hy, NCy ... Hyy, NC, ... converges to HNC in
the sense of Definition [B-9.

To prove the theorem we let Pp C Clxy,x9,...,24] denote the complex vector space of all com-
plex polynomials on C? of total degree at most D and we let Pp be its image in the coordinate ring
Clx1, za,...,xq]/I(Yc) of Ye. Here I(Ye) is the ideal of functions vanishing on Y¢. The images of the
monomials x}'z5? - - :v&_d for i = (i1,i9,...,i4) € N¢ with i1 + iy + -+ +ig < D form a generating system
of the C-vector space Pp. We may shrink this generating system to a basis B. For every

F(xy,22,...,2q) = Zci-xzfx? .att € Pp with ¢; € C
icB
let
F| = il
IF] = i
This is clearly a norm on Pp.

Lemma B.11. Let M € R, M > 1 be such that d(0,z) < M for all z € C.
(a) For every z,y € C and for every F € Pp we have:

|F(2) = F(y)l < ||F - d(z,y) - MP~" - D - #B.
(b) For every x € C and for every Fy, F> € Pp we have:
|Pi(z) = Fa(2)] < ||y = Fa| - M7 - 8.
Proof. Write x = (x1,22,...,24) and y = (y1,Y2,--.,Yd). Then
|z — yi] < d(z,y) and |z, lysl < M (Vi=1,2,...,d).

In particular for every multi-index i = (i1,142,...,44) € B by telescoping we get:
i1 .02 id i1, 42 id _ i1 .02 id i1 .02 id i1 .02 id i1, 42 i3 id
|xlx2...xd_y1y2...yd — |(xlx2...xd_ylxz...xd)+(ylx2...xd_yly2x3...xd)+...
d

N S N ST L BRI 7
< E |9Cj yj| Y1 Yj—1 " Tjp1 Ty

IN
M- 1
&

— - |x§j_1 + x;j_zyj 4t y;»j_l| Mot
Jj=1
d
< d(w,y) - MO ZZJ
j=1
< d(z,y)-MP1.D

Write

Pty ta, ... ta) = Y ci- tit7 -t
€8
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By the above:

[Fe) = F(y)l = D e (@ay o —yiys i)l
i€B
< Y leif-d(z,y)- MP~H D
i€B

< || d(z,y)- MP=Y-D - #B.

[(0)] Writing Fy (t1, ... ta) = epbi- 11 -+ -ty and Fo(ty, ..., ta) = Y epci- 11 -+ 1y we compute

|Fi(z) = Ba(@)] < Y Jbi—cil - | [ o] - [l
ieB
< ZHFl - B -MmP
ieB
< B = FBy| - MP - #B.

O

Proof of Theorem [BI0. For every m € N let F,,, € Pp be a polynomial such that ||F,,| = 1 and the zero
set of Fy,, in Y¢ is H,,NYc. Because the unit sphere {FF € Pp: ||F|| = 1} is compact, there is a subsequence
Foyy By ooy By, ... and an element F' € Pp such that || F|| = 1 and the sequence Fy,,, Fryy ooy Frny s - -
converges to F' with respect to the norm || .||. We may even assume this subsequence is the full sequence
after re-indexing.

We claim that in this case Hy N C,Ho N C,...,H, N C,... converges to H N C, where H N Y is the
zero set of F'. Assume that this is false. Then there is a small ¢ > 0 such that, after taking a suitable
subsequence, H,,, NC does not lie in (H NC)(e) for every m € N. Choose an x,,, € (H,,, NC)~ (HNC)(¢)
for every m. Since the set C' . (H N C)(e) is closed in C| it is compact, so we may assume, after taking a
suitable subsequence, that z,, converges to a point x € C'\. (H N C)(g). Note that

|Fon(2)] = [Fn (@) = Fyn(2n)] < MP™1- D - #B - d(x, 2m)
and
|F(x) = Fin(x)] < MP - #B- |F — Fp||
by Lemma [B.T1l Therefore
F() = lim_ Fu(z) + lin (F(z) - Fa(z)) =0,

and z € HNC'. But this is a contradiction and so our claim is proven. To finish the proof of Theorem [B.10)
we note that F' # 0 in Pp, because |F|| = 1, and so H N Y¢ is a proper hyper-surface in Y. O

To prove Theorem we will also need the following

Lemma B.12. Keep the notation of Definition[B.9. Let A be a measure on C' satisfying A\(C') < oco. Then
for every algebraic hyper-surface H C C* with HNC € C and \(H N C) = 0 we have:

shg(l) MHNC)(e) =0.
Proof. Assume that the claim is false. Then there is a strictly decreasing sequence e1,€2,...,&,,... such
that ¢, — 0, and

MEHN C)(en)) >4,

for some positive 6. Set A,, = (HNC)(e,)— (HNC)(gp+1). Then by o-additivity applied to (HNC)(e,) =
(HNC)UTl,,>, Am we have

(B.3) MHENC) () = MHNC)+ Y X = ) AMAn)

m>n

m>n
Since A((H N C)(g,)) < MC) < oo the sum Y AM(Ay,) is convergent. Therefore, we have:

Jim, > A4 -

m>n
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So by taking the limit in (B:3) we get A(H N C) > §, which is a contradiction. O
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