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Abstract

In 1997 Richard Pink has clarified the concept of Hodge structures over function fields in positive
characteristic, which today are called Hodge-Pink structures. They form a neutral Tannakian
category over the underlying function field. He has defined Hodge realization functors from the
uniformizable abelian ¢-modules and ¢t-motives of Greg Anderson to Hodge-Pink structures. This
allows one to associate with each uniformizable t-motive a Hodge-Pink group, analogous to the
Mumford-Tate group of a smooth projective variety over the complex numbers. It further enabled
Pink to prove the analog of the Mumford-Tate Conjecture for Drinfeld modules. Moreover, based on
unpublished work of Pink and the first author, the second author proved in her Diploma thesis that
the Hodge-Pink group equals the motivic Galois group of the ¢-motive as defined by Papanikolas
and Taelman. This yields a precise analog of the famous Hodge Conjecture, which is an outstanding
open problem for varieties over the complex numbers.

In this report we explain Pink’s results on Hodge structures and the proof of the function
field analog of the Hodge conjecture. The theory of t-motives has a variant in the theory of dual ¢-
motives. We clarify the relation between t-motives, dual t-motives and t-modules. We also construct
cohomology realizations of abelian ¢-modules and (dual) ¢-motives and comparison isomorphisms
between them generalizing Gekeler’s de Rham isomorphism for Drinfeld modules.
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1 Introduction

According to Deligne [Del71l, 2.3.8], a rational mized Hodge structure H consists of a finite dimensional
Q-vector space H, an increasing filtration W, H of H by Q-subspaces, called the weight filtration, and
a decreasing filtration F'*Hc of Hc := H ®g C by C-subspaces, called the Hodge filtration, such that
Gr?, Gr% G Hc = (0) for p + q # n where F9H¢ is the complex conjugate subspace F¢Hc C Hc.
The rational mixed Hodge structures form a neutral Tannakian category [DM82, Definition I1.2.19]
over Q, whose fiber functor sends a rational mixed Hodge structure H to its underlying Q-vector space
[Del94]. By Tannakian duality [DM82], Theorem II1.2.11] there is a linear algebraic group I'y over Q,
called the Hodge group of H, such that the Tannakian subcategory ((H)) generated by H is tensor
equivalent to the category of Q-rational representations of I'y;. We give more details and explanations
on Tannakian theory in Section

If X is a smooth projective variety over the complex numbers C, its Betti cohomology group

Betti (X, Q) is a Q-vector space. Via the de Rham isomorphism HE,;(X, Q) ®g C = Hji(X/C)
and the Hodge filtration on the latter, it becomes a rational (pure) Hodge structure. This provides a
functor from smooth projective varieties over C to rational mixed Hodge structures. Deligne [Del74]
§ 8.2] extended this functor to separated schemes of finite type over C. If X is smooth projective and
Z C X is a closed subscheme of codimension p then Z defines a cohomology class in HzBpetti(X ,Q)NFP.
The Hodge conjecture [Hod52, [Gro69bl, [Del06] states that every cohomology class in H2Bitti(X ,Q)NFP
arises from a QQ-rational linear combination of closed subschemes of codimension p in X.

Besides the Betti and de Rham cohomology, there are various other cohomology theories for X.
They are linked to each other via comparison isomorphisms. This inspired Grothendieck to propose
a universal cohomology theory he called “motives” [Gro69al. More precisely Grothendieck conjec-
tured the existence of a Tannakian category of motives such that the cohomology functors like X +—

Betti (X, Q) and X — Hfy (X/C) factor through this category of motives; see [Dem69, Kle72, Man68].
The motive associated with X is denoted h(X) and the various cohomology groups attached to
X are called the realizations of the motive h(X). In particular the Betti realization of h(X) is
H(X) = @*3m X Hr (X,Q) equipped with its rational mixed Hodge structure. In terms of the
conjectural category of motives, the Hodge conjecture is equivalent to the statement, that the Betti
realization functor (h(X))) — (H(X))) is a tensor equivalence, where (h(X))) is the Tannakian sub-
category generated by h(X). By Tannakian duality ((h(X))) is tensor equivalent to the category of
Q-rational representations of a linear algebraic group I';(x) over @ which is called the motivic Ga-
lois group of X. The Betti realization functor corresponds to a homomorphism of algebraic groups
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Cr(x) — Tpx) over Q. By [DMB82] Proposition 2.21] it is a closed immersion and the Hodge conjecture
is equivalent to the statement that this homomorphism is an isomorphism.

In this article we want to describe the function field analog of the above. There, a category of
motives actually exists in the t-motives of Anderson [And86]. We slightly generalize them to A-motives
in SectionBl An A-motive has various cohomology realizations. In this article we explain the Betti, de
Rham and ¢-adic realization. The p-adic and crystalline realization is discussed in the survey [HK16]
in this volume. In [Pin97b] Richard Pink invented mixed Hodge structures over function fields (which
we call mized Hodge-Pink structures) as an analog of classical rational mixed Hodge structures. He
discovered the crucial fact that instead of a Hodge filtration one needs finer information to obtain a
Tannakian category. This information is given in terms of a Hodge-Pink lattice. The definition is as
follows.

Let F, = Z/(p) for a prime p and let A = Fp[t] and Q = F,(t) be the polynomial ring and its
fraction field. They are the analogs in the arithmetic of function fields of the integers Z and the
rational numbers Q. (The theory is actually developed for slightly more general rings A and Q.)
Let Qoo = Fp((3)) be the completion of @ for the valuation oo of  which does not correspond to a
maximal ideal of A. Let C D () be an algebraically closed, complete, rank one valued extension,
for example the completion of an algebraic closure of Q. The fields @, and C are the analogs of
the usual fields R and C of real, respectively complex numbers. We denote the image of ¢ in C by
6 and consider the ring C[t — 6] of formal power series in the “variable” t — 6 and the embedding
Q—=C[t—0],t—=t=0+(t—0).

Definitions and 2.7 A mized Q-Hodge-Pink structure is a triple H = (H, W H, q) with
e [ a finite dimensional (Q-vector space,

e W,H C H for i € Q an exhaustive and separated increasing filtration by @-subspaces, called
the weight filtration,

e a C[t — 0]-lattice g C H ®¢g C((t — 0)) of full rank, called the Hodge-Pink lattice,

which satisfies a certain semi-stability condition; see Definition 2.7 The Hodge-Pink lattice induces
an exhaustive and separated decreasing Hodge-Pink filtration F'He C He == H ®q,usp C for i € Z
by setting F*Hc := (p N (t —0)'q) /((t —0)p N (t — 0)'q), where p := H ®¢g C[t — 0].

The mixed Hodge-Pink structures with the fiber functor (H,WeH,q) — H form a neutral Tan-
nakian category over @QQ; see Theorem 210l It was Pink’s insight that for this result the Hodge-Pink
filtration does not suffice, but one needs the finer information present in the Hodge-Pink lattice. Any
Hodge-Pink structure H generates a neutral Tannakian subcategory, and the algebraic group I'y
obtained from Tannakian duality is called the Hodge-Pink group of H; see Section

Hodge-Pink structures may arise from Drinfeld-modules or more generally from wuniformizable
abelian Anderson A-modules E = (E,p) over C, where E & Gg,c and ¢: A — Endc(F) such that
(¢ — 0)? annihilates the tangent space Lie E to E at 0 for some integer d; see Definitions and
Namely, E possesses an exponential function expy : Lie E — F(C) and if this function is surjective,
E is uniformizable. In this case the finite (locally) free A-module A(E) := ker(expy ) sits in an exact
sequence

0—sq— s AB)®@AC[t — 0] — s LiekE—— 0

A® Zz bi(t - 9)2 B Zz bi : (Lie O — H)Z(A) )
see (5.34). If E is mized (Definition [5.27) the @Q-vector space H := Hj pewi(£) = A(E) ®a Q

inherits an increasing weight filtration W, H and we define the mized Hodge-Pink structures of E as
H,(E) := (H,W,H,q) and H'(E) := H,(E)"; see Corollary .40



1 INTRODUCTION 4

Similarly to the classical situation, one can also associate with E a pure (or mixed) A-motive
M := Homc(E, G, c); see Definition By an A-motive of rank r we mean a pair M = (M, )
where M is a (locally) free C[t]-module of rank r and 75 : 0*M[25] = M[/1;] is an isomorphism of
C[t][15]-modules; see Definition B.Il Here o*M := Froby « M = M ®cy,,+ C[t] for the endomorphism
o* of C[t] sending ¢t to t and b € C to bP. For an A-motive we define its T-invariants over C(t) :=
{ Z bitii b; € (C, hm ’bl‘ = 0} as
i=0 11— 00

(1.1) AM) = (M ®cyy (C(t>)T = {m € M ®cyy C(t) : TM(FI‘Ob;’C m) = m} .

An A-motive of rank r is uniformizable if its T-invariants form a (locally) free A-module of rank r; see
Definition B.I7 and Lemma [3:221] We explain the results of Papanikolas [Pap08] and Taelman [Tae09a]
that the category A-UMotI of uniformizable A-motives up to isogeny together with the fiber functor
M — A(M) ®4 @ is a neutral Tannakian category over @; see Theorems and [£.23]l Considering
the Tannakian subcategory (M)) generated by M, the algebraic group I'js associated by Tannakian
duality, is called the motivic Galois group of M.

In unpublished work, the following function field analog of the classical Hodge conjecture was
formulated by Pink and proved by him for pure uniformizable A-motives and by Pink and the first
author for uniformizable mixed A-motives. Pink’s proof was worked out for dual A-motives (see
below) by the second author in her Diploma thesis [Jusi0]. There is a realization functor H' from
uniformizable mixed A-motives M to mixed Hodge-Pink structures as follows. The Q-vector space
H :=H}.;(M,Q) := A(M)®4Q inherits an increasing weight filtration W, H and admits a canonical
isomorphism h: H ®q C[t — 0] = (0" M) ®cjy C[t — 0]; see Proposition We set q := h™ 1o
o (M ®@cpy Clt—0]) C H®qC((t—0)) and define the mized Hodge-Pink structures of M as HY (M) =
(H,W,H,q) and H, (M) := H'(M)"; see Definition The functor H' restricts to an exact tensor
functor from the Tannakian subcategory (M)) of uniformizable mixed A-motives generated by M to
the Tannakian subcategory (H!(M)) of mixed Hodge-Pink structures generated by H'(M). This
induces a morphism from the Hodge-Pink group I'y (M) of H! (M) to the motivic Galois group I'ps of
M.

Theorems [B3.34] and (The Hodge Conjecture over Function Fields). The morphism
Pgiay — T s an isomorphism of algebraic groups. Equivalently, H': (M) — (HY(M)) is
an ezxact tensor equivalence.

The crucial part in the proof of this theorem is to show that each Hodge-Pink sub-structure
H' ¢ HY(M) is isomorphic to H!(M’) for an A-sub-motive M’ C M. This is achieved by associating
with H' a o-bundle over the punctured open unit disk. The theory of o-bundles was developed in
[HP04] and is explained in detail in Section [7] where we also show how to associate a pair of o-bundles
with a mixed Hodge-Pink structure, respectively with a uniformizable A-motive (or dual A-motive;
see below). Using the classification [HP04, Theorem 11.1] of o-bundles and the rigid analytic GAGA-
principle, one defines an A-motive M’ such that H'(M') = H'.

Large parts of this article are not original but a survey of the existing literature, which tries
to be largely self-contained. In Section 2l we review Pink’s theory of mixed Hodge-Pink structures.
In Section Bl we define pure and mixed A-motives and slightly generalize Anderson’s [And86, §2]
theory of uniformization of t-motives to A-motives. Also we define and study the mixed Hodge-Pink
structure H* (M) of a uniformizable mixed A-motive M and its Betti, de Rham and ¢-adic cohomology
realization, as well as the comparison isomorphisms between them. Actually the ¢-adic realization is
called “v-adic” by us where v C A is a place taking on the role of the prime ¢ € Z and H}) is our analog
of HY (., Zy).

For applications to transcendence questions like in [ABP04l [Pap08],[(CY07, [CPY10,[CPTY10,[CP11],
CPY11LICP12], it turns out that dual A-motives are even more useful than A-motives; see the article
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of Chang [Cha20] in this volume for an introduction. A dual A-motive of rank r is a pair M = (M, #y;)
where M is a (locally) free C[t]-module of rank r and y;: (*M)[:25] = M[15] is an isomorphism
of C[t][-25]-modules for 5* = (6*)~!. (Beware that a dual A-motive is something different then
the dual MV of an A—mptive M). A dual A-motive of rank r is uniformizable if its 7-invariants
AM) = (M Rcly C(t))", which are defined analogously to (L), form a (locally) free A-module of
rank 7; see Definition L14] and Lemma Also the category of uniformizable dual A-motives with
the fiber functor M — A(M) ®4 Q is a neutral Tannakian category; see Theorem E23l Actually
this is the category studied by Papanikolas [Pap08]. If M is uniformizable and mixed, the Q-vector
space H := Hl,Betti(Ma Q) = A(M) ®4 @ inherits an increasing weight filtration W, H and admits
a canonical isomorphism hy: H ®q C[t — 6] == M ®cp C[t — 0]; see Proposition We set
q:= hy Loty (6*M ®cpg Ct — 0]) € H ®q C((t — 0)) and define the mizved Hodge-Pink structures
of M as H, (M) := (H,W,H,q) and H* (M) := H,(M)"; see Definition This theory of pure and
mixed dual A-motives, their theory of uniformization, their associated mixed Hodge-Pink structures,
and their Betti, de Rham and v-adic cohomology realizations, as well as the comparison isomorphisms
between them are explained in Section [4l

In the longest Section [l we recall the theory of abelian Anderson A-modules, which generalize An-
derson’s [And86] abelian t-modules, and their associated A-motives including uniformizability, scat-
tering matrices (Remark [0.34)) and Anderson generating functions (Corollary (.22, Example [5.359]).
Moreover, in Sections [5.2] 5.3l and we reproduce from unpublished work of Anderson [ABP02]
the theory of A-finite Anderson A-modules F including uniformization and the description of torsion
points. These are the ones for which the C[t]-module M (E) := Homg¢ (G, ¢, E) is finitely generated,
and hence a dual A-motive. As described above, we associate a mixed Hodge-Pink structure with a
uniformizable mixed abelian, respectively A-finite, Anderson A-module and v-adic, Betti and de Rham
cohomology realizations. The latter go back to Deligne, Anderson, Gekeler, Yu, Goss, Brownawell and
Papanikolas. We generalize the approach of these authors in Section [5.7] and prove comparison iso-
morphisms between these cohomology realizations. We also explain in Theorem [5.47] how to recover
Gekeler’s comparison isomorphism |Gek89| § 2] between Betti and de Rham cohomology from ours.

Finally, in Section [6l we briefly report on applications to Galois representations and transcendence
questions due to Anderson, Brownawell, Chang, Papanikolas, Pink, Thakur, Yu and others.

Although this article is mainly a review of (un)published work, we nevertheless establish the
following new results: the theory of mixed Anderson A-modules (Section[5.4)) and the construction that
associates with a uniformizable mixed (dual) A-motive a mixed Hodge-Pink structure (Sections [3.4],
[44). Also we clarify the relation between a uniformizable mixed A-motive M = (M, 7ps) and the
associated dual A-motive M (M) := (Homgyy (0™ M, Q%?[t] /C), 7x;) in Propositions B3], E9] B17,
and Theorem and most importantly in the following

Theorem [5.13l Let E be an Anderson A-module over C which is both abelian and A-finite, and
let M = (M,7y) = M(E) and M = (M,7;;) = M(E) be its associated (dual) A-motive. Let
M(M) = (Homgy (0* M, Q<1C[t}/<c)= 7y;) be the dual A-motive associated with M. Then there is a
canonical isomorphism of dual A-motives Z: M(M) =~ M(E).

We illustrate the general theory with various examples, most notably Examples and
which for Drinfeld-modules explain Theorem [5.13lin concrete terms and relate it to scattering matrices.
Moreover, we prove the compatibility of the cohomology realizations and comparison isomorphisms of
A-motives, dual A-motives and abelian, respectively A-finite Anderson A-modules in Theorems B.37],
(4361 5.47], 5.51] and Propositions [£.38], 5.45] [5.48], and we prove the compatibility with a change of the
ring A in Remark .52, and with Gekeler’s comparison isomorphism |Gek89, §2] in Theorem [5.47l In
particular, we prove the following theorems.

Theorem [5.38. Let E be a uniformizable mized A-finite Anderson A-module over C and let M =
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M(E) be its associated mized dual A-motive. Then the mized Hodge-Pink structures Hy (E) and H, (M)
are canonically isomorphic.

Theorem Let E be a uniformizable mized abelian Anderson A-module over C and let M =
M(E) be its associated mized A-motive. Consider the Hodge-Pink structure Q = (H,WeH,q) which
1s pure of weight 0 and given by H = QQ/F = Qdt and q = C[[t — 0]dt. Then the mized Hodge-Pink
structures Hy (E) and H; (M) ® Q are canonically isomorphic.

Theorem 5. 411 Let E be a uniformizable mized Anderson A-module over C which is both abelian and
A-finite, and let M = M(E) and M(E) be the associated (dual) A-motive. Then the isomorphisms
above are also compatible with the isomorphisms from Theorems [{.33, [5.38 and[5.39 and the isomor-
phism Z: M (M) =~ M(E) from Theorem[5.13, in the sense that the following diagram commutes

. H,(2) .
H, (M (M) = H, (M (E))
Theorem T’E 2| Theorem [£.38]
= 0
H,(M) ® O Theorim H, (E)

Finally, we give a criterion in Theorem [Z.I3] which characterizes those mixed Hodge-Pink structures
that arise from uniformizable mixed A-motives.

Various categories of motives over C play a part in this article. To give the reader an overview
we list them in the following table. Note that the set of morphisms Hom g-yot (M, N) between two
A-motives M and N is a finitely generated A-module; see Remark B.7|(c). The same is true for dual
A-motives; see Remark [£.4](d).

Category Description Properties
A-Mot A-motives over C exact (Rem.
A-MMot mixed A-motives ) and [3.12))
A-MotI A-motives up to isogeny, that is with non-neutral

Hom g-os (M, N) := Hom peyos (M, N) @4 Q Tannakian
A-MMotI mixed A-motives up to isogeny (Prop. B4 and B.11])
A-UMotI uniformizable A-motives up to isogeny neutral Tannakian
A-MUMotI  uniformizable mixed A-motives up to isogeny Thm. B27)
A-dMot dual A-motives

A-dMMot mixed dual A-motives

and 4.170)

non-neutral
Tannakian

(Prop. 3] and [£.10])

} neutral Tannakian

(Thm. 23]

A-dMotI dual A-motives up to isogeny, that is with
Hom g-awot1 (M, V) := Hom a-qwot (M, N)®AQ
A-dMMotI  mixed dual A-motives up to isogeny

}
:
} exact Rem
i

A-dUMotI  uniformizable dual A-motives up to isogeny
A-dMUMotI uniformizable mixed dual A-motives up to
isogeny

I R a@ag
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1.1 Preliminaries

Throughout this article we will denote by

Fy, a finite field with ¢ elements and characteristic p,

C a smooth projective geometrically irreducible curve over F,,

oo € C(Fy) a fixed closed point, (To simplify the exposition in this article oo is supposed to
be F,-rational. The main results we present here hold, and are in fact proved in
[Pin97b, [HP1§|, without this assumption.)

C'=C~ {0} the associated affine curve,

A=T(C,0p4) the ring of regular functions on C' (the function field analog of 7Z),

Q =TF4(C) the function field of C, viz. the field of fractions of A (the analog of Q),

z€Q a uniformizing parameter at oo,

Qoo =TFy((2)) the completion of @ at co (the analog of R),

Ao =F[7] the ring of integers in Qu,

C D Qu an algebraically closed, complete, rank one valued extension, for example the
completion of an algebraic closure of Q) (the analog of the usual field of complex
numbers),

c:Q—C the natural inclusion,

¢ =c*(2) the image of z in C, which satisfies 0 < |{| < 1,

Ac = A®p, C  the base extension of A,

Qc = Q®r, C  the base extension of @, distinguishing between z and ¢ allows us to abbreviate

C(C =C Xspec]}rq SpeC(C

the element z ® 1 of Q¢ by z and the element 1 ® ¢*(z) by (,
the resulting irreducible curve over C,

J C Ac the (maximal) ideal generated by a ® 1 — 1 ® ¢*(a) for all a € A,

Ac[J1] the ring of global sections on the open affine subscheme Spec Ac \ V(J) of C¢,

Clz—(] the formal power series ring in the “variable” z — (. It is canonically isomorphic
to the completion of the local ring of Cc at V(J), see Lemma [[.3] and replaces
the ring C[[t — 6] from the introduction,

C(z—-0) the fraction field of C[z — (],

Qoo — CJz — (] the natural F -algebra homomorphism satisfying z — z = ¢ 4+ (¢ — () and given
by Dz’ = 32 (3 (5) asc™) (2 = ¢Y,

(2 J= =)
o: Cec— Cg the product of the identity on C' with the g-th power Frobenius on Spec C, which

acts on points and on the coordinates of C' as the identity, and on the elements
beCasb— b
the corresponding endomorphism a ® b — a ® b? for a € A and b € C,

for a non-negative integer ¢ € Ny,
the pullback oM := M ® Ac,oi+ Ac of an Ac-module M under o,
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o*(m):=m®1 the canonical image of m € M in 6*M = M ® 4., Ac,

5% = (o)} the endomorphism of Ac inverse to o* sending a ® b to a ® Vb for a € A and
b € C which exists because C is perfect,

5 = (6%)° for a non-negative integer ¢ € Np,

F*M the tensor product 5* M := M ® 4 siv Ac for an Ac-module M,

5*(m):=m®®1 the canonical image of m € M in 6*M = M ® 4. s+ Ac,
n .
C{r} := { bt n € No,b; € (C} the skew polynomial ring in the variable 7 with the
i=0
commutation rule 76 = b7 for b € C,

C{7}:= { '—zobﬁi: n € Ng,b; € (C} the skew polynomial ring in the variable 7 with the
commutation rule #b = b7 for b € C.

For any module M over an integral domain R and any non-zero element z € R we let R[%] and

M [%] = M ®pg R[%] denote the localizations obtained by inverting x. Any homomorphism of R-
modules M — N induces a homomorphism of R[1]-modules M[1] — N[1] denoted again by the same

letter.

Remark 1.1. The ring homomorphisms ¢*: Ac — A¢ and &*: Ac — Ac are flat because they arise
by base change from the flat homomorphisms C — C, b — b4, respectively C — C, b+ V/b.

For later reference we record the following two lemmas.

Lemma 1.2. (a) Ift € Q is a uniformizing parameter at a closed point P of C' then Q is a finite
separable field extension of Fy(t).

(b) There exists an element t € A such that Q) is a finite separable field extension of Fy(t). For every
mazximal ideal v C A one may even find such a t € A such that the radical ideal VA -t of A-t
18 V.

Proof. @ The point P € C' is unramified under the map C — IPIqu corresponding to the inclusion
Fy(t) C Q. Since all ramification indices are divisible by the inseparability degree, the latter has to
be one.

[(b)] Choose some a € A\ Fy. Then Fyla] < A is a finite flat ring extension and so Q/F,(a) is a finite
field extension. If it is not separable, let p® be its inseparability degree. Then Fy(a) is contained in
QP = {2 : x € Q} by [Sil86l Proof of Corollary 11.2.12]. So there is a t € Q with a = t?". We even
have t € A because A is integrally closed in (). By considering the inseparability degree in the tower
Fq(a) C Fy(t) C Q we see that Q/F,(t) is separable.

If a maximal ideal v C A is given, there is a positive integer n such that v™ = A - a is a principal
ideal. Continuing as above we obtain an element t € A with VA-t=+vVA-a = . O

Lemma 1.3. Let K be a field and let c*: A — K be an injective ring homomorphism. Let z € Q \TF,
be an element such that Q is a finite separable extension of Fy(z), and let { = c*(z). Then the power
series ring K[z — (]| over K in the “variable” z — ( is canonically isomorphic to the completion of the
local ring of Ck at the closed point V(J) defined by the ideal J .= (a® 1 —1® c*(a): a € A) C Ag.

Proof. The completion of the local ring of Cx at V(J) is l<£n Ag/J". Since this is a complete discrete

valuation ring with residue field K we only need to show that z —  is a uniformizing parameter.
Clearly, z — ¢ is contained in the maximal ideal. To prove the converse, let a € Q). Let f € Fy(z)[X]
be the minimal polynomial of a over F,(z) and multiply it with the common denominator to obtain
the polynomial F(X,z2) € F,[X,2]. The two-variable Taylor expansion of F at (c*(a),() € K? is

oF oF

F(X,2) = F(c"(a),0) + 55(c"(a), Q) - (X = ¢"(a)) + 5~(c"(a), ) - (# = ¢) mod J?
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Plugging in a for X yields F(a,z) = 0 and g—f;(a, z) # 0 by the separability of QQ/F,(z). Under the
injective homomorphism ¢*: @ — K we get F(c*(a),() = 0 and g—?(c*(a), ¢) # 0. This shows that
the element a — c¢*(a) € J/J? is a multiple of z — (, and so z — { generates the Ag-module .J/J?.
By Nakayama’s Lemma [Eis95, Corollary 4.7] there is an element f € 1+ J that annihilates the
Ag-module J/(z — (). Since f is invertible in l(iLnAK /J"™ we have proved that z — ( generates the

maximal ideal of lim Ay /J". O
—

1.2 Tannakian theory

As already alluded to in the introduction, a good framework to discuss Hodge structures is the theory of
Tannakian categories. Also Pink’s results which we explain in this article use this language. Therefore,
we briefly recall the definition and some facts about Tannakian categories from the articles of Deligne
and Milne [DMS82| [Del90. [Mil92].

Definition 1.4 ([Mil92, (A.7.1) and (A.7.2), page 222]). Let K be a field. A K-linear abelian tensor
category ¥ with unit object 1 is a Tannakian category over K if

(a) for every object X of € there exists an object X" of ¢, called the dual of X, and morphisms
ev: X® XY — T1and d: 1 - XV ® X such that

(ev® idx) o (idxy ®) = idx : X XD o xve x YEX, and
(idyxv @ev) o (3@ idyv) = idyv: XY “2MXV, xv g x g xv Y EV, yv

(b) and for some non-zero K-algebra L there is an exact faithful K-linear tensor functor w from %
to the category of finitely generated L-modules. Any such functor w is called an L-rational fiber
functor for €.

A K-rational fiber functor for € is called neutral. If € has a neutral fiber functor it is called a neutral
Tannakian category over K.

Remark 1.5. (a) According to [DM82| §1] being a tensor category means that there is a “tensor
product” functor € x ¢ — ¢, (X,Y) — X ® Y which is associative and commutative, such that ¢
has a unit object. The latter is an object 1 € & together with an isomorphism 1 =~ 1 ® 1 such that
€ — ¢, X — 1®X is an equivalence of categories. A unit object is unique up to unique isomorphism;
see [DM82, Proposition 1.3]. One sets X® := 1 and X®" := X ® X®"~! for n € Ny.

(b) Being K -linear means that Hom¢ (X,Y") is a K-vector space for all X,Y € %.

(c) Being abelian means that € is an abelian category. Then automatically ® is a bi-additive functor
and is exact in each factor; see [DM82] Proposition 1.16].

(d) By [Del90} §§2.1-2.5] the conditions of Definition [[4]imply that Endy (1) = K and that the tensor
product is K-bilinear and exact in each variable. It further implies that Hom(X,Y) := XV ®Y is an
internal hom in C, that is an object which represents the functor ¢° — Vecg, T +— Homy (T ® X,Y).
This means that Homg (T ® X,Y) = Homg (T, Hom(X,Y')). Then % is a rigid abelian K-linear tensor
category in the sense of [DM82, Definition 2.19]. This further means that the natural morphisms
X — (XVY)¥ are isomorphisms and that Q);; Hom(X;,Y;) = Hom(Q),; X, Q),Y;) for all X;,Y; € €.
The definition of a neutral Tannakian category over K in [DM82] Definition 2.19] as a rigid abelian
K-linear tensor category possessing a neutral fiber functor is equivalent to Definition [[.4]

(e) A functor F': € — ¢’ between rigid abelian K-linear tensor categories is a tensor functor if F(1)
is a unit object in ¢’ and there are fixed isomorphisms F(X ®Y) = F(X)® F(Y) compatible with the
associativity and commutativity laws. A tensor functor automatically satisfies F(X") = F(X)" and
F(Hom(X,Y)) = Hom(F(X),F(Y)); see [DM82, Proposition 1.9]. In particular, for an L-rational

~

fiber functor w this means w(1) = L.
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If G is an affine group scheme over K, let Repy (G) be the category of finite-dimensional K-rational
representations of G, that is K-homomorphisms of K-group schemes p: G — GLg (V) = GLgimx Vv, K
for varying finite dimensional K-vector spaces V. Together with the forgetful functor w®: (V,p) — V
it is a neutral Tannakian category over K; see [DM82, Example 1.24]. Tannakian duality says that
every neutral Tannakian category over K is of this form:

Theorem 1.6 (Tannakian duality [DM82l Theorem 2.11]). Let € be a neutral Tannakian category
over K with neutral fiber functor w, and let Aut®(w) be the set of automorphisms of tensor functors
of w; see [DM82, p. 116].

(a) There is an affine group scheme G over K that represents the functor Aut®(w) on K -algebras
given by
Aut®(w)(R) := Awt®(Ypow) for all K-algebras R,

where Yr: Vecg — Modg, V — V ®k R, is the canonical tensor functor.
(b) The fiber functor w defines an equivalence of tensor categories € = Repg (G).

Definition 1.7. A subcategory ¢ of a category % is strictly full if it is full and contains with every
X € ¢’ also all objects of ¢ isomorphic to X.

A strictly full subcategory 4’ of a rigid tensor category € is a rigid tensor subcategory if 1 € €’
and X @ Y, XV € ¢ forall X,Y € €.

If € is a neutral Tannakian category over K and X € ¥, the rigid tensor subcategory of %
containing as objects all subquotients of all @)_; X®™ @ (XV)®™i for all r,n;,m; € Ny is called the
Tannakian subcategory generated by X and is denoted ((X)). It is a neutral Tannakian category over
K.

Lemma 1.8 ([DM82| Proposition 2.20]). An affine K-group scheme G is (linear) algebraic, that is a
closed subscheme of some GLy, k¢, if and only if there exists an object X in Repy(G) with Repg (G) =
(X). In this case G = Aut®(w®) — GLk (w%(X)) is a closed immersion, which factors through the
centralizer of End(X) inside GL(w%(X)).

Proof. This was proved in [DM82] Proposition 2.20] except for the statement about the centralizer,
which follows from the fact that G is the automorphism group of the forgetful fiber functor w®. O

A homomorphism f: G — G’ of affine K-group schemes induces a functor w/: Repy(G’) —
Repy(G), p — po f, such that w® owf = wS . The same holds in the other direction:

Lemma 1.9 ([DM82, Corollary 2.9]). Let G and G’ be affine group schemes over K and consider a
tensor functor F: Repp(G') = Repy (G) such that w o F = w&'. Then there is a unique homomor-
phism f: G — G of affine K -group schemes such that F = w¥.

Under this correspondence various properties of group homomorphisms are reflected on the asso-
ciated tensor functor.

Proposition 1.10 ([DM82, Proposition 2.21]). Let f: G — G’ be a homomorphism of affine K -group
schemes and let w/: Repy(G') — Repg(G) be defined as above.

(a) f is faithfully flat if and only if wf is fully faithful and for every object X' in Repy (G') each
subobject of w!/(X') is isomorphic to the image of a subobject of X'.

(b) f is a closed immersion if and only if for every object X of Repy(G) there exists an object X'
in Repy (G') such that X is isomorphic to a subquotient of wf(X").
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2 Hodge-Pink structures

In this section we present Pink’s definition [Pin97b] of the Tannakian category of mixed @Q-Hodge
structures. Pink first defines pre-Hodge structures which form an additive tensor category. This
category is not abelian, so he introduces a semistability condition for pre-Hodge structures. The
semistable ones form a neutral Tannakian category and will be called Hodge structures. Compared to
the classical theories of the rational mixed Hodge-structures of Deligne [Del71] and the p-adic Hodge
theory of Fontaine [Fon82] there is one important difference in Pink’s theory. In the classical theories,
Hodge structures consist of a vector space over one field (with additional structures like weight filtration
or Frobenius endomorphism) and a decreasing Hodge filtration defined over a separable extension of
this field. In the function field setting C/Q is not separable and hence a semistability condition
solely based on the Hodge filtration cannot be preserved under tensor products. This is Pink’s crucial
observation and the reason why he replaces Hodge filtrations by finer structures and why we call all
these structures Hodge-Pink structures.

Definition 2.1. An ezhaustive and separated increasing Q-filtration WeH on a finite dimensional
Q-vector space H is a collection of Q-subspaces W,H C H for p € Q with W, H C W,H whenever
w' < p, such that the associated Q-graded vector space

w o w ._
GV H = @G H = @(WalH/ e Wi H)
peQ neQ
has the same dimension as H.

Remark 2.2. The jumps of such a filtration are those real numbers p for which
U:U'/<;Uf Wy/H g nﬁ>ﬂ W[LH .

The condition dimg Gt H = dimg H is equivalent to the conditions that all jumps lie in Q, that
W, H = (s, WaH for all p € Q, that W,H = (0) for p <0, and that W,,H = H for p>> 0.

Definition 2.3 (Pink [Pin97bl Definition 9.1]). A (mized) Q-pre Hodge-Pink structure (at co) is a
triple H = (H,WoH, q) with

e H a finite dimensional ()-vector space,
o W,H an exhaustive and separated increasing Q-filtration,
e a C[z — (J-lattice g C H ®q C((z — ¢)) of full rank.

The filtration W, H is called the weight filtration, q is called the Hodge-Pink lattice, and rk H := dim¢g H
is called the rank of H. The jumps of the weight filtration are called the weights of H. If GrEV H=H,
then H is called pure of weight p.

A morphism f: (H,WeH,q) — (H',WeH',q') of Q-pre Hodge-Pink structures consists of a mor-
phism f: H — H' of Q-vector spaces satisfying f(W,H) C W, H' for all p and (f ® id)(q) C q’. The
morphism f is called strict if f(W,H) = f(H) N W,H' for all u and (f ® id)(q) = ¢’ N (f(H) ®q
c((z- ).

Remark 2.4. The Hodge-Pink lattice of a mixed Q-pre Hodge-Pink structure H = (H,W,H,q)
induces an exhaustive and separated decreasing Z-filtration as follows. Define the tautological lattice
p:=H ®q C[z — (] inside H ®g C((z — ¢)) and consider the natural projection

p - p/(z—Cp = H®qC = Hc.

The Hodge-Pink filtration F*Hc = (F'Hc)iez of Hc is defined by letting F*Hc be the image of
pN(z—¢)'qin He for all i € Z; that is, F'Hc = (pN (2 — ¢)'q) /((z = Op N (2 — ¢)'q). One finds
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that any morphism is also compatible with the Hodge-Pink filtrations, but a strict morphism is not
necessarily strictly compatible with the Hodge-Pink filtrations.

The Hodge-Pink weights (w1, ...,wym) of H are the jumps of the Hodge-Pink filtration. They
are integers. KEquivalently they are the elementary divisors of q relative to p; that is, they satisfy
a/(z = )% = BisF Clz — /(2 — Q)¢ and p/(z — ()°q = DY Clz— ¢]/(z — )*~ for all e > 0.
We usually assume that they are ordered wy < ... < wyg.

A main source for Hodge-Pink structures are Drinfeld A-modules or more generally uniformizable
mixed abelian Anderson A-modules (see Section [).

Example 2.5. (a) Let ¢: A — Endc(Ggc) be a Drinfeld A-module [Dri76] of rank r over C where
Gq,c is the additive group scheme. We set E = G,c and E = (F, ), and we write Lie E for the
tangent space to E at 0. Consider the exponential exact sequence of A-modules

(2.1) 0 — A(E) — LieE —25 B(C) — 0,

where A := A(E) := A(yp) := ker(expg ); see Section 5.1l or the survey of Brownawell and Papanikolas
[BP20, §2.4] in this volume. A(E) C Lie E = C is a discrete A-submodule of rank 7. Clearly, A(E)
generates the one dimensional C-vector space Lie E. Through the identification C[z — (] /(z — () =C
we make Lie F into a C[[z — (]-module. We obtain a C[[z — (]-epimorphism on the right in the sequence

(2.2) 0—q——A®sC[z—(]—— LieE——0
A@Zibi(Z—C)i)—ﬂ)o')\

and we let q be its kernel. By sequence (2.2]) the pair (A, q) determines the C-vector space Lie F
with the A-action on it, and the A-lattice A inside Lie F as the image of the A-homomorphism
A = A®4 CJz — (] — Lie E. Therefore, the pair (A, q) also determines the Drinfeld A-module ¢ by
sequence (2.I)). We further set

H ifu>—-=.

T

H = Hi(E) = AME)®4Q and WMH:{

—_

Then H, (E) := (H,W,H, q) is a pure Q-pre Hodge-Pink structure of weight —%. It satisfies (z—()p C
q C p and hence F~'Hc = He D FYHe D F'He = (0). Since dimg H = r and dimg(p/q) =
dimc Lie E = 1 we have dimc FOHc = r — 1. As we will explain in Section (.7 below, FOH: C
Hc = Hipewi(E,C) is the Hodge filtration studied by Gekeler [Gek89l (2.13)] using the de Rham
isomorphism Hp; (E,C) = His (E,C). See Example 20 for a continuation of this example. Also in
Section [5.6] we will generalize the present construction to Anderson’s abelian t-modules [And86]. Note
that this parallels the case of complex abelian varieties X, whose Hodge structure H; peti(X, Q) is
pure of weight —%.

(b) More specifically, if C = IP’Ilgq, A =T,[t],0 := c*(t) € C and E is the Carlitz-module [BP20), §2.2]
with ¢; = 6 + Frob, g, where Frob, g, : « — 29 is the relative ¢-Frobenius of G, ¢ = Spec C[z] over
C, then r =1 and

H:=H(E)=Q, GGty H=H, q=(2—¢)-p, F'Hc = (0).
(c) In (a) and (b) the subspace FYH¢ determines q uniquely as its preimage under the surjection
H ®q C[z — ¢] - Hc because (z —()-p C q.

However, note that in general q is not determined by F®*Hc. For example let H = Q%% and
q=(2—¢)?*+Clz— (] (vo+ (2 — {)v1) for v; € He with vy # 0. Then

F2Hc=He > F'He =C vy = F'He D F'He = (0).

So the information about v; is not preserved by the Hodge-Pink filtration.



2 HODGE-PINK STRUCTURES 13

To continue with the general theory let H = (H,WeH,q) be a @Q-pre Hodge-Pink structure. A
subobject in the category of Q-pre Hodge-Pink structures is a morphism H' — H whose underlying
homomorphism of Q-vector spaces is the inclusion H' <+ H of a subspace. It is called a strict
subobject if H' — H is strict. Likewise a quotient object is a morphism H — H" whose underlying
homomorphism of @Q-vector spaces is the projection H — H" onto a quotient space. It is called a
strict quotient object if H — H" is strict.

For any (Q-subspace H' C H one can endow H' with a unique structure of strict subobject H' and
H" := H/H' with a unique structure of strict quotient object H”. The sequence 0 -+ H' — H —
H" — 0 and any sequence isomorphic to it is called a strict exact sequence.

With these definitions the category of Q-pre Hodge-Pink structures is a ()-linear additive category.
Pink makes a suitable subcategory of it into a Tannakian category. In order to do this, he defines
tensor products, internal hom and duals.

Definition 2.6. Let Hy = (Hy,WeH1,q1) and Hy = (Ha, WeH>,q2) be two Q-pre Hodge-Pink
structures.

(a) The tensor product Hi ® H is the Q-pre Hodge-Pink structure consisting of the tensor product
H,®qH> of Q-vector spaces, the induced weight filtration W, (H1®qH3) := Zuﬁruz:u W, Hi®q
W, H2 and the lattice q1 ®@c[.—¢] 2. One defines for n > 1 the symmetric power Sym™ H and
the alternating power A"H as the induced strict quotient objects of H®™.

(b) The internal hom H = Hom(H, Hs) consists of the Q-vector space H := Homg(H,, Ha), the
induced weight filtration W, H := {h € H : h(W, Hi) C W4, Hy Vi1 }, and the lattice
q := Homgp,_¢7(q1, 92). The latter is a C[z — (]-lattice in H ®¢g C((2 — ¢)) via the inclusion

g “— 4®c—C(z—Y)
= Homg(.—¢) (01 @cpa—¢ C(2 = ¢)), 42 @c—¢) C(z = ¢))
= Homg(.—¢) (H1 ©q C(2 — (), H2 ®q C((z - ()
=+ HogC(z-)

obtained by applying [Eis95, Proposition 2.10].

(¢) The unit object 1 consists of the vector space @ itself together with the lattice q := p and is
pure of weight 0. The dual H" of a Q-pre Hodge-Pink structure H is then Hom(H,1).

The category of Q-pre Hodge-Pink structures is an additive tensor category but it is not abelian
because not all subobjects and quotient objects are strict. Indeed, the category theoretical image
(respectively coimage) of a subobject H' < H (respectively quotient object H — H') is the strict
subobject (respectively strict quotient object) with same underlying Q-vector space as H' (respectively
H"). In order to remedy this, Pink defines semistability as follows.

Definition 2.7. Let H = (H,W,H,q) be a Q-pre Hodge-Pink structure.
(a) for any Qeo-subspace H.  C Ho := H ®¢g Qoo consider the induced strict Qo-subobject
HYy = (Hbo, WaHl = Hi 0N (W H € Quc) @ = 0.0 (H ®q.. C(= - 0))

and (using the induced Hodge-Pink filtration F*®*H¢ from Remark 2.4) set

/ /

deg, H'. = degp Hb = S i-dimeGris H: = dime —— — P
egq_oo egr ¢ %Z Imc &r'p e mc p/ I q/ C p/ n q/
degW H' = Z p-dimg,, Gr)) Hl,

HEQ



2 HODGE-PINK STRUCTURES 14

(b) H is called locally semistable or a (mized) Q-Hodge-Pink structure (at oo) if for any (QQo-subspace
Hl, C Hy one has deg, H7,, < deg"' H'_ with equality for H., = (W, H)s for all p.

(¢) We denote by @Q-HP the full subcategory of all mixed Q-Hodge-Pink structures.

Remark 2.8. (a) Alternatively deg, H',, can be computed as dimc q'/t — dimc p’ /v for any C[z — (]-
lattice t which is contained in both g’ and p’. In particular, if (z — ()%’ C ¢ for some d € Z with
d > 0, then deg, H',, = dim¢ q'/(z — ¢)p’ — ddimq, H, , because dimc p’/(z — )%’ = d-dimq,, H,.

(b) The piecewise linear function on [0,rk H| whose slope on [i — 1,7] is the i-th smallest Hodge-Pink
weight is called the Hodge polygon of H and is denoted HP(H). Analogously one defines the weight
polygon W P(H) of H using the weights of H. A @Q-pre Hodge-Pink structure is locally semistable if
and only if for every strict Qs-subobject H’_ the weight polygon lies above the Hodge polygon, and
both have the same endpoint whenever H., = (W, H); see [Pin97hl, Proposition 6.7].

Example 2.9. We continue with Example

(a) If E is the Carlitz-module over A = F,[t] then H,(£) is a pure Q-Hodge-Pink structure of
weight —1, because degV H,(E) = —1 = deg, H; (£) and there are no non-trivial Quc-subspaces of

Hl(E) ®Q Qoo = Qoo'

(b) The same is true for a Drinfeld A-module ¢. Indeed, assume that H, (E) is not locally semistable.
Then there is a non-trivial Qu-subspace HY,, C Ho, with deg, Hl, > deg" H',. Since H, (E) is pure
of weight —2 we find deg" H, = —1 - dimg__ H., > —1 and degy H,, > 0. Since (z —()p Cq Cp
the same is true for ¢ = q N (H., ®q., C(z — () and p' = H  ®q., C[z — (]. So deg, H’,, can only
be non-negative if p’ = p’ Nq’; that is, p’ = q’. This implies

H,, C Ht = p'/(z=Qp" = d'/(z=Qp" C q/(z—)p = ker(Hc — LieE).

But A(¢) C Lie E is discrete, which by definition means that the natural morphism Ho, = A(p) ®4
Qo — Lie E is injective. Therefore, also H.  — Lie E must be injective and we obtain a contradiction.

One of the main results of Pink [Pin97b| is the following

Theorem 2.10 ([Pin97b, Theorem 9.3]). The category Q-HP together with the Q-rational fiber functor
wo: Q-HP — Vecq, (H,W,H,q) — H, is a neutral Tannakian category over Q).

See Section for some explanations.

Remark 2.11. (a) The assertion that Q-HP is abelian rests on the relatively easy fact that in @Q-HP
any subobject and quotient object is strict.

(b) The difficult part of the proof is to show that the condition of local semistability is closed under
tensor products. For this it is essential to work with Hodge-Pink lattices instead of Hodge-Pink
filtrations. Indeed, if one works with triples (H, WoH, F*H¢) consisting of @Q-vector spaces H with
weight filtration WeH and decreasing Hodge-Pink filtrations F'*Hc and defines local semistability
analogous to Definition 2.7] then this local semistability would not be closed under tensor products
due to the inseparability of the field extension C/Q; see [Pin97bl Example 5.16]. This is Pink’s
ingenious insight.

This theorem allows to associate with each @-Hodge-Pink structure H = (H, W, H, q) an algebraic
group 'y over @ as follows. Consider the Tannakian subcategory (H)) of Q-HP generated by H. By
[DM82, Theorem 2.11 and Proposition 2.20] the category ((H)) is tensor equivalent to the category of
Q-rational representations of a linear algebraic group scheme I'y over ) which is a closed subgroup

of GLg(H).
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Definition 2.12. The linear algebraic ()-group scheme I'; associated with H is called the Hodge-Pink
group of H.

Pink proves that I'y is connected and reduced and that any connected semisimple group over @
can occur as 'y for a @-Hodge-Pink structure [Pin97bl Propositions 9.4 and 9.12]. Note however,
that in general I'y does not even need to be reductive.

If the Hodge-Pink structure H comes from a pure (or mixed) uniformizable abelian t-module E,
Pink (respectively Pink and the first author) also proved in unpublished work, that Iz equals the mo-
tivic Galois group of E as considered by Papanikolas [Pap08|] and Taelman [Tae09a]; see Remark
If H comes from a pure dual A-motive, Pink’s proof was worked out by the second author in her
Diploma thesis [Jusl10]. We will explain these proofs in Theorems [3.34] and 4.33] below. In the spe-
cial case when E' is a Drinfeld module, there are further results of Pink on the structure of I'; see
Section

3 Mixed A-motives

The functor £ — H,;(E) from Drinfeld A-modules to @-Hodge-Pink structures from Examples
and 2.9] extends to the uniformizable abelian ¢-modules of Anderson [And86], the higher dimensional
generalizations of Drinfeld-modules. We will define the functor in Section below. In order to prove
that H, (E£) is a pure @Q-Hodge-Pink structure when E is a pure uniformizable abelian ¢t-module, we
need to review Anderson’s theory of t-motives [And86] or more generally A-motives. We do this first
because it also allows to define mixed abelian t-modules and their associated mixed @-Hodge-Pink
structures.

3.1 A-motives

Recall that we denote the natural inclusion ) — C by ¢* and consider the maximal ideal J :=
(a®1—-1®c*(a):a € A) C Ac := A®r, C. The open subscheme Spec Ac \ V(J) of Cc is affine. We
denote its ring of global sections by Ac[J~!]. For example if C = IPIqu and A = F,[t] then J = (t — 0)
for @ := c*(t). In this case Ac[J~!] = C[t][;Z5].

Definition 3.1. (a) An A-motive over C of characteristic ¢* is a pair M = (M, ) consisting of a
finite projective Ac-module M and an isomorphism of Ac[J~!]-modules

T o M[JTY 2 MJTY).

where we set o*M[J 1] := (6" M) ®a. Ac[J7] and M[J7Y] := M ®a. Ac[J71]. A morphism
of A-motives f: M — N is a homomorphism of the underlying Ac-modules f: M — N that
satisfies f o Ty = 75 o o* f. The category of A-motives over C is denoted A-Mot.

(b) The rank of the Ac-module M is called the rank of M and is denoted by rk M. The virtual
dimension dim M of M is defined as

dimM := dime¢ M /(M N7y(c*M)) — dime Tar(0" M) /(M N1ar(0*M)).

(¢) An A-motive (M, 1ys) is called effective if Tp; comes from an Ac-homomorphism o*M — M.
An effective A-motive has virtual dimension > 0.

(d) For two A-motives M and N over C we call QHom (M, N) := Hom gyt (M, N) ®4 Q the set of
quasi-morphisms from M to N

(e) The category with all A-motives as objects and the QHom(M, N) as Hom-sets is called the
category of A-motives over C up to isogeny. It is denoted A-MotI.
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Remark 3.2. (a) If C = IP’Ilgq, A =T,[t] and Ac = CJt], we set 0 := ¢*(t) and then J = (¢t — ). In
this case, our effective A-motives are a slight generalization of Anderson’s t-motives [And86], which
are called abelian t-motives in [BP20), §4.1]. Namely, Anderson required in addition, that M is finitely
generated over the skew-polynomial ring C{7}, where 7 acts on M through m +— 7p;(c*m).

(b) We will explain in Remark B.7lc) below, that the set of morphisms Hom g-yot (M, N) between
A-motives M and N is a finite projective A-module of rank at most (rk M) - (rk N).

(c) By definition, for every quasi-morphism f € QHom (M, N) there is an element a € A \ {0} such
that a - f € Hom g-yot (M, N) is a morphism of A-Motives. Moreover,

QHom(M,N) = {f: M ®4. Quot(Ac) = N ® 4, Quot(Ac) such that fory =7yo0o™f },

where Quot(Ac) denotes the fraction field of Ac and f is a homomorphism of Quot(Ac)-vector spaces.
Indeed, the inclusion C is obvious and the equality was proved in [BHI1I), Corollary 5.4] and also follows
from [Pap08|, Proposition 3.4.5] and [Tae09al, Proposition 3.1.2]. Note that this is not equivalent to
the inclusion f(J"- M) C N for n>> 0, as can be seen from f = idy ® 1 € QEnd(M) for a € ANF,.

(d) The name for the category A-MotI stems from the fact that a morphism f: M — N in A-Mot is
an isogeny, that is injective with torsion cokernel, if and only if it becomes an isomorphism in A-MotI;
see for example [Harl7, Theorem 5.12] or [Tae09al Proposition 3.1.2].

The tensor product of two A-motives M and N is the A-motive M ® N consisting of the Ac-module
M ®4. N and the isomorphism 7p; ® 7. The A-motive 1(0) with underlying Ac-module Ac and
T = id . is a unit object for the tensor product in A-Mot and A-MotI. Both categories possess finite
direct sums in the obvious way. We also define the tensor powers of an A-motive M as M®° = 1(0)
and as M®" := M®"~1 @ M for n > 0. The dual of an A-motive M is the A-motive M = (MY, Tprv)
consisting of the Ac-module M"Y := Homu.(M, Ac) and the isomorphism

T oMY [T = Homa (0" M, Ac)[J ™Y == MY[J7Y, hw hory,.

If M = (M,7p) and N = (N,7n) are A-motives the internal hom Hom(M,N) is the A-motive
with underlying Ac-module H := Homa (M, N) and 77: o*H[J '] == H[J ], h+ 7y ohory!. In
particular, MY = Hom(M,1(0)). Moreover, there is a canonical isomorphism of A-motives MY ®@ N =
Hom(M,N) sending >, my ®n; € MY @4, N to [m+— >, my(m)-n;] € Homa. (M, N). Indeed, this
is an isomorphism on the underlying finite locally free Ac-modules, and it is obviously compatible
with the isomorphisms 7. This implies that there are morphisms in A-Mot

(3.1) ev: MoMY — 1(0), > m;®@m! — > m/(m;) and

(2 3

(3.2) 0: 10) — MM = Hom(M,M), a+— a-idp,

which satisfy the conditions of Definition [[.4)(a)l We also note the following formulas for the rank and
the virtual dimension

rk1(0) =1, dim1(0) =0,
tkHom(M,N) = (kM) - (tkN),  dimHom(M,N) = (tk M) - (dim N) — (tk N) - (dim M),

(3.3) kMY =1k M, dim MY = —dim M ,
KM ® N = (tk M) - (tk ). dim M & N = (rk ) - (dim M) + (tk M) - (dim V)
tkM & N = (kM) + (tkN), dimM @ N = (dim M) + (dim N),

which follow easily from the elementary divisor theorem.
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Proposition 3.3. Let f: M — M’ be a morphism of A-motives.
(a) Then

ker f = (ker f, sl (o+ ker £)[s-1]) and i f = (im f, 7ar|(or im pys-1))
are A-motives, which are called the kernel, respectively image A-motive of f.

(b) Let N = M'/f(M) and let Niyors C N be the Ac-torsion submodule. Then Tpp induces an
i80MOoTphism Ty /Ny, * 0*(N/Niors)[J 1] == N/Niors[J ] and

coker f := (N/Niors; TN/Neors) and coim f := ker(M' — coker f)

are A-motives, which are called the cokernel, respectively coimage A-motive of f. The A-motive
coim f equals the saturation {m' € M': 3h € Ac,h # 0 withh -m’ € f(M)} of im f and
the natural inclusion im f — coim f is an isogeny, and hence an isomorphism in A-MotI. In
particular, rk(im f) = rk(coim f).

Proof. Since Ac is a Dedekind domain, the kernel and image of f and N/Nys are again finite, locally
free Ac-modules and therefore A-motives with the inherited isomorphism 7. That coim f is the satu-
ration of im f follows from the definition of Ni,s. Therefore, the inclusion im f < coim f is injective
with torsion cokernel, hence an isogeny and an isomorphism in A-MotI by [Harl7, Theorem 5.12] or
[Tae09al, Proposition 3.1.2]. O

Proposition 3.4. The category A-MotI is a Q-linear (non-neutral) Tannakian category, and in par-
ticular, a rigid abelian tensor category.

Proof. Since the o-invariants in Ac equal A, we have End g-yot (1(0)) = A and Endg-pot1 (1(0)) =Q.
In particular, A-MotI is a Q-linear tensor category. If f: M — N is a morphism in A-MotI we may
multiply f with an element of () and assume that f is a morphism in A-Mot. Therefore, it follows
from Proposition B3] that A-MotI is abelian.

To show that A-MotI is Tannakian we use the morphisms (3] and (82)). In addition, we have to
exhibit an exact faithful Q-linear fiber functor over some non-zero (Q-algebra. For example, we can
take the quotient field Quot(Ac) of Ac and the functor M = (M, 7a) — M ®4. Quot(Ac). This
functor is faithful, because M C M ® 4. Quot(Ac). Moreover, it is exact, because a sequence 0 —»
M’ EEIN M —%5 M” — 0 in A-MotI is exact if and only if f is injective, im f = ker ¢, and im g = M”
in A-MotI. By the definition of morphisms in A-MotI as quasi-morphisms, these isomorphisms are
in general not isomorphisms of the underlying Ac-modules, but they provide isomorphisms of the
associated Quot(Ac)-vector spaces. O

Remark 3.5. (a) Fiber functors over C, respectively @,, are also provided by the de Rham cohomology
realization Hig (M, C), respectively the v-adic cohomology realization H.(M,Q,); see Section A
neutral fiber functor only exists on the full subcategory of uniformizable A-motives; see Theorem [3.27]

(b) The category A-Mot is an exact category in the sense of Quillen [Qui73| §2] if one defines the

class F of short exact sequences to be those sequences 0 — M’ —f> M N M" — 0 of A-motives
whose underlying sequence of Ac-modules is exact. Then f (respectively g) is called an admissible
monomorphism (respectively admissible epimorphism).

Indeed, this means that f is the kernel of g and g is the cokernel of f in A-Mot, that every canonical
split sequence 0 — M’ — M' ® M" — M"” — 0 lies in E, that E is closed under isomorphisms,
pullbacks via morphisms N” — M” and pushout via morphisms M’ — N’, and that the composition
of admissible monomorphisms is an admissible monomorphism and the composition of admissible
epimorphisms is an admissible epimorphism. All this is straight forward to prove.

Moreover, with the analogous definition of F, also the subcategories of A-Mot consisting of A-
motives which are effective, respectively effective and finitely generated over C{7}, are exact.
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Example 3.6. An effective A-motive of rank 1 with 7p/(c*M) = J - M is called a Carlitz-Hayes
A-motive. It has virtual dimension 1. Carlitz-Hayes A-motives can be constructed as follows. Let
P € C¢ be a (C-valued) point whose projection onto C' is the point co € C. (Under our assumption
oo € C(F,) there is a unique such point P.) The divisor (V(J)) — (P) on Cc has degree zero
and induces a line bundle O((V(J)) — (P)). Since the endomorphism id —Frob, of the abelian
variety Picd, /v, 18 surjective, there is a line bundle £ of degree zero on Ct with o((V(J)) — (P)) =
(id — Froby)(£) = L® ¢*LY in Pic%/]Fq (C). The Ac-module M := T'(Spec Ac, L) is locally free of
rank one and the isomorphism ¢*£ = £ ® O((P) — (V(J))) of line bundles yields an isomorphism
Ty o M[JY = M[JY with 7y (0*M) = J - M. So M = (M, 1) is a Carlitz-Hayes A-motive.

If M is a Carlitz-Hayes A-motive and M’ is any A-motive of rank 1, then 7y (c*M') = J¢ . M’
for a uniquely determined integer d by the elementary divisor theorem. Under our assumption that
oo is Fy-rational, we claim that M’ is isogenous to M ®d_ So in particular all Carlitz-Hayes A-motives
are isomorphic in the category A-MotI. Namely, consider the A-motive N := M’ ® (M®?)" of rank
one. It satisfies 7v: 0*N = N and its 7-invariants Ny := {f € N : 75 (c* f) = f} form a locally free
A-module of rank one with N = Ny ®4 1(0). Indeed, one can extend N to a locally free sheaf N on
Cc of degree zero and, by reasons of degree, 7y will extend to an isomorphism 75: o*N =~ N at the
one missing point coc = C¢ ~ Spec Ac. This means that the element N € Pic% /Fq((C) arises from an
F,-rational point Ny of Pic%/]Fq. It follows that N = Ny ®4 1(0) for Ny := I'(Spec A, Ng) as claimed.
Now the A-module Ny is isomorphic to an ideal of A which we again denote by Ny. Tensoring the
inclusion Ny — A with M®? yields the desired isogeny M’ = Ny ® 4 M® — M@,

We may therefore denote any Carlitz-Hayes A-motive by 1(1). We also define 1(n) := 1(1)®" for
n > 0and 1(n) = 1(—n)" for n < 0. Then dim 1(n) = n. In the special case where C' = ]P’lq, A =TF[t]
and 0 := c*(t) € C, all Carlitz-Hayes A-motives are already in A-Mot isomorphic to the Carlitz t-
motive M = (M, 1) with M = CJ[t] and 7py = t — 6, because in this case the A-module Ny is free
and isomorphic to A.

Remark 3.7. (a) Every A-motive is isomorphic to the tensor product of an effective A-motive and
a power of a Carlitz-Hayes A-motive. In fact, if M is an A-motive with 7p;(0*M) C J~%. M Then
M' = M ® 1(1)®¢ satisfies Ty (c* M) C M'; hence, M’ is effective and M = M’ ® 1(1)®~¢. Note
that tk M’ =1k M and dim M’ =dimM +d -tk M.

(b) This implies that for A = F,[t] the category A-Mot is equivalent to Taelman’s category tMc of
t-motives [Tae09al, Def. 2.3.2] and A-MotI is equivalent to Taelman’s category tMg of t-motives up
to isogeny [Tae09al §3]. Indeed, Taelman defines t M¢ as the category of effective A-motives with the
formally adjoined inverse of a Carlitz-Hayes A-motive.

(c) Let us explain why the set of morphisms Hom 4-yot (M, N) between A-motives M and N is a finite
projective A-module of rank at most (rtk M) - (tk N). By (a) we may write M = M’ ® 1(1)®~¢ and
N = N' @ 1(1)®? for effective A-motives M’ and N’. Then Hom g-yot (M, N) = Hom g-yot (M, N')
and for the latter the statement was proved by Anderson [And86, Corollary 1.7.2].

3.2 Purity and mixedness

We fix a uniformizing parameter z € QQ = F,(C) of C at co. For simplicity of the exposition we assume
that oo € C(F;). The main results we present here hold, and are in fact proved in [Pin97bl, [HP18],
without this assumption. The assumption implies that there is a unique point on C¢ above co € C,
which we call coc. The completion of the local ring of Cc at coc is canonically isomorphic to C[z].

Definition 3.8. (a) An A-motive M = (M, 7p) is called pure if M ® 4.C((2)) contains a C[z]-lattice
M such that for some integers d,r with r > 0 the map

Th = Tmoat(ta)o... 00" ¥ (1ar): 0™ M ®a. Quot(Ac) ~ M ®4. Quot(Ac)
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induces an isomorphism szg/[: 0™ Myo == Mq,. Then the weight of M is defined as wt M = £

(b) An A-motive M is called mized if it possesses an increasing weight filtration by saturated A-sub-
motives W, M for p € Q (i.e. W,M C M is a saturated Ac-submodule) such that all graded
pieces GrEV M =W, M/ W,y M are pure A-motives of weight p and ) 10 Tk GrEV M =
rk M.

W<p

(¢) The full subcategory of A-Mot consisting of mixed A-motives is denoted A-MMot. The full sub-
category of A-MotI consisting of mixed A-motives is denoted A-MMotI.

Example 3.9. For A = F,[t] the Carlitz t-motive M = (C[t], 7;s = t — 6) is pure of weight 1 with
My = C[z] on which z73; = 1— 0z is an isomorphism, where z = % For general A, any Carlitz-Hayes
motive (Example B.0)) is pure of weight 1 by Proposition below, because 27y : 0* My — Moo
is an isomorphism for the lattice Mo 1= L ®0,, C[2].

Remark 3.10. (a) The weights of M are the jumps of the weight filtration; that is, those real numbers
u for which

U wep WM G < N i Wa M
The condition 4EQ rk GrEV M = rk M is equivalent to the conditions that all weights lie in Q, that
W,M = ﬂﬂ>u W5 M for all 4 € Q, that W, M = (0) for p < 0, and that W, M = M for ;i > 0;
compare Remark

(b) Every pure A-motive of weight s is also mixed with W,y M = (0) for p/ < p, and Wy M = M for
#' > p, and GI‘ZVM =M.

To explain this definition we use the notion of z-isocrystals over C; see [HK16, Definition 5.1].
These are defined to be pairs M = (M, 7 ) consmtmg of a finite dimensional C((z))-vector space M

together with a C((2))-isomorphism g o*M == M. They are also called Dieudonné-F ¢(2))-modules
in [Lau96l §2.4] and local isoshtukas in [BH11L §8]. Some of the following results were proved by
Taelman [Tae09al, [Tae09b].

Proposition 3.11. Let M = (M, 1y) be an A-motive and consider the z-isocrystal M\ = M ®a.
C(z) = (M ®ac C(2)), 7 ® id). Then M is isomorphic to @, Mg, ,, where for d,r € Z,r >
0,(d,7) =1 and m := [g} we set

(3.4) My, = (C((z))@’"ﬂ- N ~ z >

1-m

and where in the matriz the term z occurs exactly mr — d times. In particular,

(a) M is pure of weight p if and only if % = u for all i.

(b) M is mized if and only if the filtration WMM\ = EB ]/\_4\%” comes from a filtration of M by
Ly
saturated A-sub-motives /I/TV/ M C M with W, M= (/VIV/ M) ®4c C((2)). In this case the filtration

W M equals the weight filtration W, M of M and the T—l are the weights of M. In particular,
the weight filtration of a mized A-motive M is uniquely determined by M.
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(c) Any A-sub-motive M' < M and A-quotient motive f: M — M" of a pure (mized) A-motive
M s itself pure (mized) of the same weight(s), (by letting W, M' := M' N W, M, and letting
W, M" be the saturation of f(W, M) inside M", if M is mized).

(d) Any A-motive which is isomorphic in A-MotI to a pure (mized) A-motive is itself pure (mized).

(e) The weight of a pure A-motive M is wt M = (dim M)/(rk M). The tensor product of two pure
A-motives M and N is again pure of weight (wt M) + (wt N).

(f) The category A-MMotI is a full Q-linear (non-neutral) Tannakian subcategory of A-MotI, and in
particular, a rigid abelian tensor category.

(9) Any morphism f: M' — M between mized A-motives satisfies f(W,M') C W, M. More pre-
cisely, the saturation of f(W, M') inside f(M') equals f(M')NW, M.

Remark. We do not know whether in [(g) the submodule f(W,M’) C f(M') is always saturated, that
is, whether the equality f(W,M') = f(M') N W, M always holds.

Proof. The fact that over the algebraically closed field C any z-isocrystal is isomorphic to a direct
sum of standard ones is proved in [Lau96, Theorem 2.4.5]. It is analogous to the Dieudonné-Manin
classification of F-isocrystals over an algebraically closed field of positive characteristic [Man63]. That
the standard z-isocrystals in [Lau96] are isomorphic to our standard ones ]/\_4\ d,r follows by an elementary
computation.

[(2)] 1f M= A/Z@(rkM)/r with p = g and (d,r) = 1, we can take for M., the tautological C[z]-lattice

(C[[z]]@rkM inside M ; @(rk M7 46 see that M is pure. Conversely, if there is an ¢ with p = ¢ 7& di , then

rld i rld —d;r
v

z cannot be an isomorphism for any C[z]-lattice My, in M . So M is not pure of
weight p. (Compare [Tae09al, Proposition 5.1.4].)

@ If M has a weight filtration W, M C M with respect to which it is mixed, then @ implies that

w
(GrZV M) ®a. C((2) = M\igk(}r“ T for i = < with (d,r) = 1. Since the category of z-isocrystals is

semi-simple by [Lau96l Theorem 2.4.5] the sequences

=z

0—— (Upy < W) @4 C(2) — (W M) @ . C(2) — (Gr M) @4, C((2) — 0

W<p
split canonically for all y. This inductively yields M = € H(GrZV M) ®a. C((2)) and (W, M) @24,
C(2) =6 ,<M(GrW M) ®a. C(2) =W, M. So the filtration W, M comes from W, M.

Conversely, if there is a filtration W M C M satisfying W, M = (Wu M) ®a. C((2)) then
(GrW M) ®4. C((2)) = @ﬂzu My, .. So GrEVM is pure of weight y by [(a)] and M is mixed with
WM]\_J as a weight filtration. In this case WMM cCMN W;ﬂ/\_f\ =: N are two saturated A-sub-motives

of M. Since - . .
W, M ®4. C((2) C N®a.C(2) C WM C W, M ®a4.C((2)

they have the same rank. This implies Wu M=MnW, M\ . Thus, the weight filtration W, M is
uniquely determined by M if M is mixed.

If M is pure of weight u = % with (d,r) = 1, we see that M = M@(rkl\_ﬂ)/r and M' ¢ M and

M — M". By [Harll, Proposition 1.2.11] also M’ = M@(rkM)/r and M” = MEB(rkM 8o M!
and M" are likewise pure of weight p by [(a)l If M is mlxed we set W, M' == M u NW, M and we
let W, M" be the saturation of f(W, M) inside M"”. Then W, M' C ]\_4/ is a saturated A sub-motive
with GrEV M C GrZV M. Thus the graded piece GrZV M’ is pure by the above and M’ is mixed. Also



3 MIXED A-MOTIVES 21

GrZVM — GrEV M" has torsion cokernel because W, M — W,M" has, and hence, the z-isocrystal

GrZV M" is a quotient of GrZV M and pure by [Harlll Proposition 1.2.11]. Therefore, GrZV M" is pure
by [(a)] and M” is mixed.

@ If f: M' — M is an isomorphism in A-MotI and M is pure (mixed), we can multiply f by a non-
zero element of A and assume that f is a morphism in A-Mot. Then f realizes M’ as an A-sub-motive
of M and M’ is pure (mixed) by

@ If M, C ]\_7 and Ny C ﬁ are C[z]-lattices on which the maps szfM: 0™ My == M., and

zd’T]’\‘;: o"* Ny == N, are isomorphisms, then M ®c[z] Noo C ]\_7 ®c((2) ﬁ is a C[z]-lattice with

Zd?“’-l—?“d’ TﬂéN (O,rr’*(Moo ®(C[[zﬂ Noo)) _ Zdr’Tﬂ’(O_rr’*Moo) ®<C[[z}] Zrd’TJT\’TT”(O_T’r’*NOO)
= Moo ®(C[[z] Noo

So M ® N is pure of weight drl”d =444 4 — (wt M)+ (wt N). The formula wt M = (dim M)/(rk M)
follows from [And86, Lemma 1.10. 1] if M is effective and from Remark 3.7 in the general case.

“ Clearly a direct sum M & N of mixed A-motives is mixed with the direct sum weight filtration
W,M&N)=W,M)®(W,N). If fis a morphism in A-MMotI, we may multiply it with a non-zero
element a € A to obtain a morphism in A-MMot. Then its kernel, cokernel, image and coimage in
A-Mot from Proposition [3.3] again belong to A-MMot by This shows that A-MMotI is an abelian
subcategory of A-MotI. Moreover, A-MMotI is strictly full by @ and contains 1(0), which is pure
of weight 0. Also the tensor product of two mixed A-motives M and N, equipped with the weight
filtration Wx(M @ N) := 3, ., \ WuM @ W, N is again mixed, because Gr{¥(M ® N) is a quotient
of the pure A-motive @ =2 GrWM ® Gr'V' N of weight A and therefore is itself pure of weight
A by [(c)l Furthermore, the dual M Y of a mixed A-motive M, equipped with the weight filtration
W,MY = {m" € MY: m"(WyM) = 0 VA < —p} is mixed. Indeed, one easily computes that
GrKV(MV) = (GrKVA M)V and the latter is pure of weight A by @ and the fact that (M\d’r)v o ;M\—d,r
in the category of z-isocrystals. So also the internal hom Hom(M,N) = N @ MY of two mixed (pure)
A-motives M and N is mixed (pure).

By the image A-motive f(M’) C M is mixed both as a sub-motive of M with W, f(M') =
F(M")NW, M and as a quotient motive of M with W, f(M’) being the saturation of f(W,M'). By
[(b)] both filtrations coincide, so f(W,M") C W, M. O

Remark 3.12. The category A-MMot is an exact subcategory of A-Mot in the sense of Quillen [Qui73],

§2] if one takes as class E of ezact sequences 0 — M’ ——f—> M N M" — 0 of mixed A-motives those
which are exact in A-Mot, that is whose underlying sequence of Ac-modules is exact; see Remark B.0(b).
Indeed, the only statement that does not directly follow from Remark B5l(b) is that F is closed under
pullbacks via morphisms A”: N” — M" and pushout via morphisms h': M’ — N’. For this one
has to show that the pullback (h”)*M = ker((g,—h"): M & N” — M") and pushout h, (M) =
coker ((f,h'): M’ — M @& N') in the category A-Mot are mixed. This follows from Proposition
and because (h")*M is a submotive of M & N”, and h/ (M) is a quotient of M ¢ N'.

Example 3.13. Not every A-motive is mixed. For example, let A = F[t], z = %, 0 = c*(t) € C,

2

and M = AE? with 1y = = < ot
0— M/ - M — M — 0 with M' = (Ac, 7y = (t — 0)?) and M" = (Ac, Ty = (t — 6)). Since
M’ = M2 1 and M” = Ml 1 and any sequence of z-isocrystals splits, we see that M M1 1D M21

Hence, if M were mixed, its weights must be 1 and 2. But M contains no pure A-sub-motive of
weight one. Indeed such a sub-motive would be isomorphic to M” and generated by a non-zero vector

>. Then there is an exact sequence of A-motives
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(4) € AL with @ - <ZE$;) = (t—0)-(%). This amounts to (t — §)?c*(u) + o*(v) = (¢t — 6)u and
o*(v) = v, whence v € A. Since A — C, t — 6, is injective (t — ) { v = 0*(v) in Ac if v # 0. We
conclude that v = 0 and (¢ — 0)o*(u) = wu, which is impossible by reasons of degree. Hence, M is
not mixed. The reason is of course that M is an extension of two pure A-motives but “in the wrong

direction”.

Proposition 3.14. Let M = (M, 7p) be an A-motive whose z-isocrystal M =M ®ac C((2)) is
isomorphic to @, Mg, », for di,r; € Z with r; > 0 and (d;,r;) = 1 for all i; see Proposition [311]

(a) If M is effective and M 1is a finitely generated module over the skew-polynomial ring C{1}, where
T acts on M through m — Tpr(0*m), then d; > 0 for all i.

(b) If d;/r; < n for all i and Tpr(0* M) C J=¢M for d € Z, then M extends to a locally free sheaf M
on Cg with 7: 0*M — M (n-ooc +d- V(J)), where the notation (n-ococ+d-V(J)) means that
we allow poles at coc of order less than or equal to n and at V(J) of order less than or equal to

d.

T
M extends to a locally free sheaf M on Cc such that szJ’\‘/j 18 an isomorphism o™ M o == M

on the stalks at ooc.

(c) If M is not necessarily effective, then M is pure of weight p = ¢ with (d,v) = 1 if and only if

Proof. [(a)] (compare [Tac09bl, Proposition 8]) We may assume that % > % for all 7. By the explicit

description of M di,r; i (B.4]) there is a C((2))-basis B of M and an integer s > 0 such that (ty®id)®isa
diagonal matrix with entries z=5%/" with respect to B. Assume that d; < 0. Since M is finitely gener-
ated as a C{7}-module there are finitely many elements m; € M such that M =, ;- C-7y7(07*m;).

By definition of M = M ®ac C((2)) the set M[z] = M ®a Aclz] = 32, 40C - P (05T my) s -
adically dense in M. We write m; with respect to the basis B as a vector (mits...,mir)T € C(2)%".
Then the first coordinates of the elements of M[z] have the form >, ;g bij k2 Ta (0% m ) =
Zm‘,kzo bi,j7kzk_5jd1/’"108j*mi71 for b; ;1 € C. Since k — sjdy/r1 > 0 for all j and k, all these terms lie
in 2VC[z] for a suitable N € Z. In particular, elements of M with first coordinate outside zV C[~]
can not belong to the z-adic closure of M[z]. This contradiction shows that our assumption was false
and d; > 0.

If the described extension M of M exists, then M ®0¢,. Clz] is a C[z]-lattice inside M on which
z47%, is an isomorphism and M is pure of weight % by Definition B.§(a)}

We prove @ and the remaining implication of Since m; := (f—ﬂ < n for all i, we can define M by
requiring that M ®0¢,. C[#] is equal to the sum of the tautological C[z]-lattices C[2]®" inside M iy
in ([3.4). Then M has the desired properties. O

Proposition 3.15. If d; > 0 for all i, then the set Un€N>o ™1 (M) is z-adically dense in M =
M ®a. C((2)).
1

Proof. We choose a finite flat inclusion Fy[t] < A and set Z := . Then M is a finite (locally) free
C[t]-module, say of rank r and M=M ®cpgC((2)). We choose a C[t]-basis B of M. By Proposition3.11]
there is a C((z))-isomorphism M =~ P, M diri- We let B be the C((2))-basis of M obtained from the
standard basis of the M di.r; given by ([B4) and from the choice of a C[Z]-basis of C[z]. The base
change between B and B is given by a matrix U € GL, (C((2))). There is an integer N > 0 such that
UU ez N C[z]"™". By our assumption d; > 0 and the explicit form of the M\ dyr; from (34) there
is a positive integer s such that the matrix 7" representing 7,,° with respect to the basis B lies in
Z2NFIC[2]™". Therefore, the matrix o (U)TU~! representing 7;,° with respect to the basis B lies
in 2C[2]"™". Now the proposition is a consequence of the following O
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Lemma 3.16. If 7, € ZC[z]"*". Then for allz € C((2))" and for all n € Ny there ezists ay € C[t]"
such that x — 5*™* 1" (y) € 2" T1C[Z]".

Proof. Write T57 (0™ (x)) = >, b2 with b; € C” and set y := <0 bit=* € C[t]". Then x —
5 (y) = 55 (e biZ') € 2"TIC[Z]" because Y, b2 € 2C[z]". O

3.3 Uniformizability

In order to define the notion of uniformizability (also called rigid analytic triviality) for A-motives we
have to introduce some notation of rigid analytic geometry as in [HP04, [HP18]|. See [Bos14] or [BGR&4]
for a general introduction to rigid analytic geometry. With the curve C¢ and its open affine part C'c one
can associate by [BGRS4, §9.3.4] rigid analytic spaces €c := (Cc)"® and €¢ := (Cc)"® = €¢ ~ {ooc}
where, using our convention that the point co € C' is F -rational, oo € Cc is the unique point above
o0 € C. By construction, the underlying sets of €¢ and €¢ are the sets of C-valued points of Cg
and Cg, respectively. For any open rigid analytic subspace { C €¢ we let O(4) := T'(4, Og) denote
the ring of regular functions on Y. The endomorphism ¢ of C¢ induces endomorphisms of €¢ and ¢¢
which we denote by the same symbol o.

Let Oc¢ be the valuation ring of C and let k¢ be its residue field. By the valuative criterion of
properness every point of €¢ = C¢(C) = C(C) extends uniquely to an O¢-valued point of C' and in
the reduction gives rise to a kc-valued point of C. This yields a reduction map red: €c — C(kc). The
curve Cy,. is non-singular and, due to our convention co € C(IF,), the subscheme {00} X gpec F,Spec ke C
Cl. consists of a single point which we call co,.. So [BL85, Proposition 2.2] implies that the preimage
D¢ of 0o, under red is an open rigid analytic unit disc in €¢ around ooc. Without the convention
oo € C(F,) the subscheme {00} Xgpecr, Speckc C Ck. decomposes into finitely many points and
there is a corresponding disc for each one of them; see [HPI8, §11]. Let further D¢ = D¢ ~{ooc}
be the punctured open unit disc around ooc in €¢. By [BL85, Proposition 2.2] both discs have z
as a coordinate. By Lemma [[.3] the power series ring C[z — (] is also canonically isomorphic to the
completion of the local ring of €¢ at the closed point V(J), respectively of D¢ and D¢ at the point
{z = (} € D¢. The complement €¢ \ D¢ of D¢ in €¢ equals the preimage of the open affine curve
C’w under the reduction map red and is hence affinoid.

For example, if C' = IPIqu and A = F,[t] we can give the following explicit description

(3.5) O(€c ~D¢) = Ct) = {;bit 1b; € C, lim by| =0}

and €c \ D¢ = SpC(¢t) is the closed unit disc inside C'(C) \ {ooc} = C on which the coordinate ¢
1

has absolute value less or equal to 1. Also we can take z = 3 as the coordinate on the disc D¢. For
general C' we may choose an element a € A\, and consider the finite flat morphisms F,[t] — A and
C[t] = Ac which send t to a. Then O(&c \ D¢) = Ac ®c[y C(t) and € \ D¢ = Sp(Ac ®¢py C(1)).
The spaces €¢, D¢ and D¢ are quasi-Stein spaces in the sense of Kiehl [Kie67, §2]. In particular,
the global section functors are equivalences between the categories of locally free coherent sheaves
on these spaces and the categories of finitely generated projective modules over their rings of global

sections; see Gruson [Gru68, Chapter V, Theorem 1 and Remark on p. 85].

Definition 3.17. For an A-motive M, we define the 7-invariants
AM) == (M ®@a. O(€c\D¢))" == {meM®@s. O€c~D¢): Tm(e*m)=m}.

We also set H' (M) := A(M) ®4 Q.



3 MIXED A-MOTIVES 24

Since the ring of o*-invariants in O(€c \ D¢) is equal to A, the set A(M) is an A-module. By
[BHO7, Lemma 4.2(b)], it is finite projective of rank at most equal to rk M. Therefore, also H'(M) is
a finite dimensional -vector space.

Definition 3.18. An A-motive M is called uniformizable (or rigid analytically trivial) if the natural
homomorphism

har: AMM)®4 O0(€cND¢c) — M ®@4. O(Cc D), A@fr—= f-A

is an isomorphism. The full subcategory of A-MotI consisting of all uniformizable A-motives is denoted
A-UMotI. The full subcategory of A-MMotI consisting of all uniformizable mixed A-motives is denoted
A-MUMotI.

Remark 3.19. If A = F,[t], then the category A-UMotI is canonically equivalent to the category
tM$ ;. of Taelman [Tae09al Def. 3.2.8] in view of Remark B.71

Example 3.20. (a) 1(0) = (A¢, T = ida.) is uniformizable, because A(1(0)) = A and A ®4 O(€c
D) = Ac ®ac O(€c N D).

(b) Let C' = IP’Hl;q, A=TFyft], z=1,0:=c(t) = % € C. The Carlitz t-motive M = (Ac, 7 =t — 0)
is uniformizable. Namely, we set £, := [12,(1 — ¢9't) € O(€e) and choose an element 7 € C with

n?~1 = —¢. Then nl; € A(M)~{0}. Since nf; has no zeroes outside D¢ it generates the O(Cc \Dc)-
module M ® 4. O(€c N\ D¢) = O(€c \D¢) and so hyy is an isomorphism and M is uniformizable.

The following criterion for uniformizability is well known.
Lemma 3.21. Let M be an A-motive of rank r.
(a) The homomorphism hy is injective and satisfies hpy o (idpp) ® id) = (Ty ® id) 0 0¥ hyy.
(b) M is uniformizable if and only if rky A(M) = r.

Proof. Assertion [(a)] follows for example from [BHO7, Lemma 4.2(b)], and assertion [(b)] from [BHOT,
Lemma 4.2(c)]. O

Lemma 3.22. Let C = IP’Ilpq, = F,ft], A C[t] and 6 = c*(t). Then O(€c \ D¢) = C(t); see
BE). Let @ = (9;5);; € GL,(C[t][55]) represent v with respect to a Clt]-basis B = (mq,...,m;)
of M, that is Tar(o*myj) = > iy ®ijm;. Then M is uniformizable if and only if there is a matriz
U € GL,(C(t)) such that

vl = 97 .,

In that case, V is called a rigid analytic trivialization of ®. It is uniquely determined up to multiplica-
tion on the right with a matriz in GL,(F,[t]). The columns of (¥1)~1 are the coordinate vectors with
respect to B of an F[t]-basis C of A(M). Moreover, with respect to the bases C and B the isomorphism
hyy is represented by (W1)~1

Remark 3.23. Here (...)T denotes the transpose matrix. The matrix ¥ will turn out to be Anderson’s
scattering matriz and this is the reason why we work with U7 here; see Remark [5.34] below.

Proof of Lemma[3.22. Assume that M is rigid analytically trivial and choose an F,[t]-basis C of A(M).
Let (7)~! be the matrix representing the isomorphism hys: A(M) ®p .1 Ct) == M ®¢py C(t) with
respect to the bases C and B. Then ® - o*(¥7)~! = (UT)~! and ¥ € GL,(C(t)) is a rigid analytic
trivialization. Conversely, if there is a rigid analytic trivialization ¥, then the columns of (¥7)~!
provide a C(t)-basis of M ®@cy C(t), with respect to which 7, is represented by the identity matrix
VT @ o*(¥T)~! = Id,. Therefore, the columns of (¥T)~! form an F,[t]-basis C of A(M) and hy is
represented with respect to the bases C and B by (\I/T)_l. Therefore, hjps is an isomorphism and M
is uniformizable. U
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Before we can conclude that A-UMotI and A-MUMotI are neutral Tannakian categories over () with
fiber functor M ~ H' (M), we need to state the following

Proposition 3.24. (a) Every A-motive which is isomorphic to a uniformizable A-motive in A-MotI
1s itself uniformizable.

(b) Every A-motive of rank 1 is uniformizable.

(¢c) If M and N are uniformizable A-motives, then also M ® N and Hom(M,N) and M" are
uniformizable with

AMeN) = AM)®a4ADN) and
A(Hom(M,N)) = Homyu(A(M),AN)) and
A(MY) = Homu(A(M),A).

(d) If M and N are uniformizable, the natural map QHom(M, N) — Homg (H' (M), H'(N)),

=

fear— H'(f®a) = a-(hy"" o (f® id) o harlmi )
for f € Homgot (M, N) and a € Q, is injective.

Proof. @ Let M be uniformizable and let f: M =~ N be an isomorphism of A-motives in A-MotI.
By multiplying f with an element of A we can assume that f: M <— N is an A-sub-motive in A-Mot.
Then f: A(M) — A(N) and tk M = rkg A(M) < 1kg A(N) <tk N =rkM. So N is uniformizable
by Lemma

[(b)] is proved in [HPI8, Propositions 12.3(b) and 12.5]. In the special case where C = ]P’Ilﬁ-q, A =TF,[t]
and 6 = ¢*(t) € C, assertion@ follows from and from Examples[3.6land B.20], because all t-motives
of rank 1 are tensor powers of the Carlitz t-motive (Cl[t],t — 0).

If M and N are uniformizable, then hys and hy induce an isomorphism

har®h
AM) @4 AN) @4 O(Cc ~ De) ——5 M @ 4. N @4, O(€c ~ De)

satisfying (hy ® hy) o (ida) ® idavy® id) = (7 ® 7v ® id) o 0*(hy ® hy). Therefore, the
T-invariants are

AM@N)=(M®@a. N®@a. O(€c~D¢)) 2 AM) @4 A(N).
Likewise, by applying [Eis95, Proposition 2.10], the uniformizability of M yields an isomorphism

h Vvy—1
Hom(A(M), A) ©4 O(€c ~ D¢) 24 MY @4, O(Ec ~ De)

satisfying (hasY) ™" o (idpom 4 (A(m),4) ® 1d) = (Tarv ® id) 0 0¥ (has¥) ™. Therefore, the 7-invariants are
AMY) = (]\4v ®4ac O(Cc @(c))T >~ Homy(A(M), A).

From this also the statement about Hom(M,N) = N @ M" follows.

[(d)] Since hps and hy are isomorphisms, f ® a can be recovered from H'(f ® a). O

Lemma 3.25. Let 0 — M' — M — M"” — 0 be a short exact sequence of A-motives. Then M 1is

uniformizable if and only if both M' and M" are. In this case the induced sequence of A-modules
0— AM') — AM) — A(M") — 0 is exact.
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Proof. The first assertion follows from Anderson [And86, Lemma 2.7.2 and 2.10.4]. For the second
assertion observe that A(M') = ker(id—7: M’ ®4, O(€c \ D¢) = M’ ®a. O(€c \ D¢)). Since
the map id —7 is surjective by [BHO7, Proposition 6.1] the snake lemma proves the exactness of the
sequence 0 — A(M') — A(M) — A(M") — 0. O

Remark 3.26. If a mixed A-motive M is uniformizable, then all filtration steps W, M and factors
GrZV M of the weight filtration of M are uniformizable by Lemma [3.251 Therefore, M could equiva-
lently be called a uniformizable mixed A-motive or a mized uniformizable A-motive.

Theorem 3.27. The category A-UMotI of uniformizable A-motives up to isogeny and its rigid tensor
subcategory A-MUMotI of uniformizable mized A-motives up to isogeny are neutral Tannakian categories
over Q with fiber functor M s H'(M).

Proof. By Propositions and A-UMotI and A-MUMotI are closed under taking tensor prod-
ucts, internal homs and duals, contain the unit object 1(0) for the tensor product, and M ~ H! (M)
is a faithful @Q-linear tensor functor, which is exact by Lemma Moreover, H'(M) is finite-
dimensional for any uniformizable A-motive M by Lemma As strictly full subcategories of
the Q-linear abelian category A-MotI also A-UMotI and A-MUMotI are @-linear. Let f: M — N be a
morphism in A-UMotI. Then the kernel, cokernel, image and coimage of f in A-MotI are uniformizable
by Lemma and belong to A-UMotI. Therefore, A-UMotI and A-MUMotI are abelian. O

This theorem allows to associate with each (mixed) uniformizable A-motive M an algebraic group
I'pr over @ as follows. Consider the Tannakian subcategory (M)) of A-UMotI, respectively A-MUMotI
generated by M. By Tannakian duality [DM82l Theorem 2.11 and Proposition 2.20], the category
(M)) is tensor equivalent to the category of @Q-rational representations of a linear algebraic group
scheme I'p; over @ which is a closed subgroup of GL¢g(H!(M)).

Definition 3.28. The linear algebraic )-group scheme I'y; associated with M is called the (motivic)
Galois group of M.

Example 3.29. The trivial A-motive 1(0) has trivial motivic Galois group I'ygy = (1).

For any A-motive 1(n) of rank 1 with n # 0 (see Example B.6)) the motivic Galois group equals
L0 = G- Indeed, since H' (1(n)) = Q, the group Iy, is a subgroup of GLq (H' (1(n))) = G-
If it were a finite group, it would be annihilated by some positive integer d. This implies that it
operates trivially on 1(n)®? 2 1(dn) € (1(n))). Therefore, 1(dn) must be a direct sum of the trivial
object 1(0), that is 1(dn) = 1(0), which is a contradiction.

3.4 The associated Hodge-Pink structure

We associate a mixed ()-Hodge-Pink structure with every uniformizable mixed A-motive. Note that
(a variant of) this is used by Taelman [Tae20] in this volume to study 1-t-motives.

For i € Ny we consider the pullbacks 0*J = (a ® 1 — 1 ®tc*(a)qzz a € A) C Ac and the points
V(0™ J) of C¢ and €¢. They correspond to the points V(z — (?') € D¢ and have oo as accumulation
point. Therefore, €¢ ~ UiENo V(o*.J) is an admissible open rigid analytic subspace of ¢e.
Proposition 3.30. Let M be a uniformizable A-motive over C.

(a) Then A(M) equals {m € M ®4. O(¢c ~ Uien, V(@™J)) = 7ar(o*m) = m'} and the isomor-
phisms hyr and o*hyy extend to isomorphisms of locally free sheaves
har = AM) ®4 Oge Vo)~ M ®ac Qe gy, Vio)
AQf — A,

O'*h]\_/[l A(M) XA OéC\U V(o) =~ oM ®A(C OéC\UieN>O V(oi*J)

i€ENs

AR f — [f-0o*A,
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satisfying hpy o (ida) ® id) = (Ty @ id) 0 6% hyy.
(b) If moreover M is effective, then A(M) equals {m € M ® 4, O(¢c): tu(o*m) = m} and the

isomorphism hy extends to an injective homomorphism
ha: AM) ©4Og, — M®a. Op., A®fr [
with hyy o (idya ® id) = (7a @ id) oo™ hyy. At the point V(J) its cokernel satisfies coker hyr @
Clz = ¢l = M/7p(c"M).
Proof. If M is effective, the claimed equality for A(M) was proved in [BHO7, Proposition 3.4].
This allows to extend hps to a homomorphism
har: A(M )®AO(Q:<C) — M ®a, O(é@), AQf— f-A.

which satisfies hys o (id(a) ® id) = (T ® id) 0 0*hyy and is injective because O(€¢) C O(€¢ \ D).
Let D := coker hjs and consider the following diagram, in which the first row is exact because of the
flatness of o*; see Remark [Tl

o*h

00— AM) ©4 0" O(Cg) — 2 5 "M @ 4. O(¢c) — "D ——30
ldA(M) X ld‘/% [TM ® id ™D
0———— A(M) @4 O(€c) ———— M @4, O(¢c) D 0

~Y

By the snake lemma, 7p is injective and coker 7ay = coker 7p. The support of D is contained in
Dc. So we now look at the points in D¢ and use z as a coordinate on D¢. Let a # ¢ and consider
the point {z = a} in D¢. Since {z = a} # V(J) and coker 75; is supported at V(J), we find
o*(D®C[z — 04‘171]]) = (0*D) ® C[z — a] = D ® C[z — «]. Since the support of D is discrete on
¢c it cannot have a limit point on the affinoid space €¢ \ {P € D¢ : |2(P)| < |¢|}. This implies
D&Clz—a] = (0) for all a & [J; ey, {¢7 "} and proves that hyy is an isomorphism outside Uien, V(o = J).
Moreover, (6*D) ® C[z — ¢]] = (0) and coker 7ps = coker 7oy ® C[[z — (] = D ® C[z — (], and so oc*hy
is an isomorphism outside ey, V(o *J).

@ If M is not effective, then M is isomorphic to N ® 1(—n) by Remark B.7] for an effective A-motive
N and some positive integer n. By Proposition B.24] the A-motives 1(n) and N = M ® 1(n) are
uniformizable. Since N and 1(n) are effective, our proof of @ yields isomorphisms

hy : AN) ®4 Ogo Y, Viors) = N ®ac Ogo gy viersy 20

hagn): A(L(n)) ®4 OéC\UieNo V(o™J) == 1(n) @ac OéC\UiENo V(oi*J)
Dualizing and inverting the second isomorphism and tensoring with the first yields the isomorphism

hy @ () ™" AY) @4 AL(R)” @4 Og o,y viingy =

N ®ac 1(n)” ®ac Ogey, oy, Vo)
which satisfies

Combined with the isomorphisms N ® 4. 1(n)” = M and A(M) = A(N) ®4 A(1(n))Y, this yields the
desired extension of hjs

ADM) ®4 Oy, Vo sy =7 M ®ac Ogey, Vi)

and proves A(M) = {m € M ®4, O(é(c N Uien, V(e™J)): tm(o*m)=m}. O
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Corollary 3.31. In the situation of Lemmal3.22 let ¥ € GL,(C(t)) be a rigid analytic trivialization
of ®. Then the entries of ¥ and ¥~ converge for all t € C with [t| < |0|. If M is effective, then the
entries of W~ even converge for all t € C.

Proof. In view of J = (t—0) this follows from the fact that hy is represented by the matrix (¥7)~1. O

Proposition 330 implies that o*hy, is an isomorphism locally at V(J) = {z = ¢} € ®¢. This
allows us to associate a Q-pre Hodge-Pink structure with any uniformizable mixed A-motive as follows.
Namely, hps induces isomorphisms

o*hy®ide(z—¢)

(3.6) AM) ®4 C((2 - () = o*M ®4. C(z — Q)
day ® id«:«zo)% %‘W@dcazc»
hpr®ide(z—¢y)
A(M) ®4C((z - () = M ®a. C((z = ().

Here hys ® idg(.—¢) is an isomorphism because the three others are. Therefore, the preimage q :=
(har @ idg(a—cy) (M @4 Clz —(]) is a C[z — (J-lattice in A(M) ®4 C((z — ¢)). The tautological
lattice is p := A(M) ®4 C[z — (] = (0*hpy @ idepo—ep) (0" M @4, Clz — (]).

Definition 3.32. Let M be a uniformizable mixed A-motive with weight filtration W, M. We set
H' (M) := (H,W,H, q) with

e H = HI(M) = AM)®4Q,
o« W,H = Hl(Wu]\_/[) = AW, M)®4Q C H for each n € Q,
o q:= (hy ® ide(a—¢)) " (M ®ac Clz — ().

We call H! (M) the Q-Hodge-Pink structure associated with M. (This name is justified by Theorem [3.34]
below.) We also set H, (M) := H!'(M)Y in Q-HP. The functor H' is covariant and H, is contravariant
in M.

Remark 3.33. (a) If M = M(E) is the A-motive associated with a Drinfeld A-module E, then
H' (M) = H,(E)" =: H'(E). We will prove this more generally for a uniformizable pure (or mixed)
abelian Anderson A-module F in Theorem below.

(b) We draw some conclusions from the description of q and p := A(M) ®4 C[[z — (] given before the
definition: If J™ - 1y (6c*M) C M C J" - 7p(0* M) for some integers n < m, then (z — ()™p C q C
(z — ¢)"p. For example, if M is effective, that is mas(c*M) C M, then p C q and there is an exact
sequence of C[z — (]J-modules

Ry ®ideg .
0—p—q M>M/TM(J*M) — 0.

Note that M /1p(0* M) is a C[z — (]-module because it is annihilated by some power of z — (.
(c) In terms of Definition 2.7] the virtual dimension of M is dim M = deg, H' (M).
The following theorem is the main theorem of [HP1§].
Theorem 3.34. Consider a uniformizable mized A-motive M.
(a) HY(M) is locally semistable and hence indeed a Q-Hodge-Pink structure.

(b) The functor H': M — HY(M) is a Q-linear exact fully faithful tensor functor from the category
A-MUMotI to the category Q-HP.
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(c) The essential image of H' is closed under the formation of subquotients; that is, if H' C H(M)
is a Q-Hodge-Pink sub-structure, then there exists a uniformizable mized A-sub-motive M' C M
in A-MUMotI with H'(M') = H'.

(d) The functor H' defines an exact tensor equivalence between the Tannakian subcategory (M) C
A-MUMotI generated by M and the Tannakian subcategory (H'(M)) C Q-HP generated by its
Q-Hodge-Pink structure H'(M).

Assertions and @ are the function field analog of the Hodge Conjecture [Hod52, |Gro69bl,
Del06]. We will prove Theorem [B.34] in Section [7] and discuss its consequences for the Hodge-Pink
group I'g1 (/) in Section [6l

Example 3.35. Let C' = ]P’Ilﬁ-q, A=Ft], z=10=c(t) = l € C. Let M = AZ? with 7y = @ :=
( tBH (t—b0)3 > Then M = (M, 1) is mixed with Grl¥ M = Wi M = (Ac,7 = (t — 6)) and
Cr¥ M = (Ac, 7 = (t—0)3). So M has weights 1 and 3. Moreover, M is uniformizable by Lemma 3.25]

and Proposition _
We set £, = J[;Z,(1 - ¢7't) € O(&c) and choose an element 5 € C with n9~! = —¢. Then

AWIM) = {AeOe): (t—0)0" () = A} = nt; Fylt],
AGH M) = () Byl and

AMD) = (") Foft] @ iy ) - Falt]

for an f € O(¢¢) with (t —0)a*(f) +b-nlc* (¢, -)3 = f. Putting \; := < K ) and g := ((n€§)3>’ we
get HM)=X1-Q @ Ay - QandWlH )—)\1 Q.
With respect to the bases ( ) of M and (A1, A2) of A(M) the isomorphism hj; is given by

77€

(M
(1))
the matrix (¥7)~1: ) Therefore, the Hodge-Pink lattice is described by

nl;  f t—6 b\
qZ( 0 (7754)3)"0:( 0 (t—9)3>'p'

Since EE has a simple zero at z = (, one sees that q/p (which is also isomorphic to coker 7j) is
isomorphic to C[z—(]/(z =) ®C[z — (] /(2 — ¢)? if (t —0)|f (equivalently, if (¢t —6)|b) and isomorphic
to Clz — ¢]/(z — O if (t — 0) { f (equivalently, if (¢t — 0) { b). So the Hodge-Pink weights of H' (M)
are (1,3) or (0,4), and the weight polygon lies above the Hodge polygon with the same endpoint
WP(M) > HP(M) in accordance with Theorem and Remark 2.8

In particular, if b = (t —6) -V then the equation deﬁnlng f shows that f vanishes at t = 09" for all
i € No, whence f = n(; f for an f € O(&c) satistying o* (f) + b - n*io* (ﬁc)2 = f.

3.5 Cohomology Realizations

Let M = (M, Tpr) be an A-motive of rank r over C. Anderson defined the Betti cohomology realization
of M by setting

Hpei (M, B) := A(M)®4 B and Hj eti(M, B) := Homa(A(M), B)

for any A-algebra B; see [Gos94, §2.5]. This is most useful when M is uniformizable, in which case

both are locally free B-modules of rank equal to tk M and H' (M) = Hb ., (M, Q); see Lemma3.21l By
Theorem this realization provides for B = () an exact faithful neutral fiber functor on A-UMotI.
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Moreover, the de Rham cohomology realization of M is defined to be
Higr(M,C) :=0*M/J-c*M and H;q4r(M,C) :=Homc(c*M/J "M, C).
We define a decreasing filtration of HéR(M ,C) by C-subspaces
F'HiR(M,C) = image of (c*M N J* 7,(M)) in Hijg(M,C) forallic Z,

which we call the Hodge-Pink filtration of M; see |Gos94l §2.6].
If M satisfies J - M C 1pr(0*M) C M then

F* = H\y(M,C) > F' = 7/(J-M)/J-0*M > F? = (0).

For example, this is the case if M is the A-motive associated with a Drinfeld A-module. In this case the
Hodge-Pink filtration coincides with the Hodge filtration studied by Gekeler, see Proposition
and Lemma [5.44]

As noted in Remark 2. 1Tland Example2.5(c), more useful than the Hodge-Pink filtration is actually
the Hodge-Pink lattice q, and the latter cannot be recovered from the Hodge-Pink filtration in general.
We therefore propose to lift the de Rham cohomology to C((z —()) and define the generalized de Rham
cohomology realization of M by

Hip(f,Cle —C]) = o0°M o4, Clz —(] and
Hig (M,C(z = () = o*M®a.C(z~C) and
Hiar(M,Clz—(]) = Homu.(c*M, C[z—(]) and
Hiar(M,C((z—()) := Homu.(c*M, C((z—()).

In particular by tensoring with the morphism C[z — (] — C, z — ¢ + 0 we get back Hiy (M,C) =
HéR (M, Clz— C]]) ®c[z—¢) C and Hy qr (M, C) = Hy gr (M, Clz— (]]) ®c[z—¢] C. We define the Hodge-
Pink lattices of M as the C[z — (]-submodules

g = T3 (M) ® 4. Clz — (] C Hag(M,C((z—¢)) and
aM = (T]\\/J ® id(c((z_c)))(HOHlAC(M, (C[[Z - C]])) - Hl,dR (M)C((Z - C))) .

Then the Hodge-Pink filtrations F* HéR(M ,C) and F'H gqgr(M,C) of M are recovered as the images
of HéR(M, Clz — (]]) N (z — ¢)'qM in Hiz (M, C), respectively of Hl,dR(]\_47 Clz — (]]) N (z — ¢)fqu in
H; gr (M, C) like in Remark 2241 All these structures are compatible with the natural duality between
H GllR and Hj gr. The de Rham realization provides (covariant) exact faithful tensor functors

(3.7) Hig(.,C): A-MotI — Vectc, M +— Hliz(M,C) and
Hig(.,Clz = (]): A-MotI — Modc.—(], M +— Har(M,C[z —]).

This is clear for Hiz (., C[z — ¢]) and for Hig(.,C) exactness follows from the snake lemma applied
to multiplication with z — ¢ on H}z(.,C[z — ¢]). To prove faithfulness for Hiz(.,C) note that
every morphism f: M’ — M can in A-MotI be factored into M’ — im(f) == coim(f) — M.
If H g (f,C) is the zero map the exactness of Hig(.,C) shows that Hig(im(f),C) = (0). Since
dimg HYg (M, C) = rk M it follows that the A-motive im(f) has rank zero and therefore im(f) = (0)
and f =0.

Finally, let v € C be a closed point. We say that v is a finite place of C. Let A, be the
v-adic completion of A, and let @), be the fraction field of A,. Consider the v-adic completions
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Acy = @Ac/UnAC of Ac and M, = @M/U"M of M. Note that 7: m +— 7p(c*m) for m € M

induces a 0*® id4,-linear map 7: M, — M,. We let the 7-invariants of M, be the A,-module

M} :=={m € M, | 7(m) = m}.

It is isomorphic to AZ™M and the inclusion M7 C M, induces a canonical T-equivariant isomorphism

M} ®a, Acy == M, by [TW96, Proposition 6.1]. The v-adic cohomology realizations of M are given
by

H (M, A,) = M and  HL(M,Q,) = M]®a, Q, and

v

Hl,v(MaAv) = Homy, (M, Ay) and Hl,v(M,Qv) == Homy, (M7,Qy);

see [Gos94| §2.3]. If M is defined over a subfield L of C (with L = C allowed) then they carry a
continuous action of Gal(L*P/L) and the v-adic realization provides (covariant) exact faithful tensor
functors

(38) H11)( .y Av) : A-Mot — MOdAU [Gal(LsP /L)] 5 M +— H}) (M, Av) and

H11)( .y Qv) : A-MotI —» Monv[Gal(Lscp/L)} s M — Hi(M, Qv) .

This follows from the isomorphism H}) (M, Ay) ®a, Ac,y = M, because A, C Ac,, is faithfully flat.
Moreover, if L is a finitely generated field then Taguchi [Tag95b] and Tamagawa [Tam94l § 2] proved
that

(3.9) HY(.,Ay): Hom(M,M")®4 A, == Homy,Gayzser/ry (Hy (M, Ay), H (M, Ay))
is an isomorphism for A-motives M and M’. This is the analog of the Tate conjecture for A-motives.

Proposition 3.36. Let M be a pure or mized A-motive, which is defined over a finite field extension
L of Q. Let P be a finite place of L, not lying above co or v, where M has good reduction, and let Fp
be its residue field. Then the geometric Frobenius Frobp of P has a well defined action on HL(M, A,)
and each of its eigenvalues lies in the algebraic closure of Q in C and has absolute value (#Fp)H for
a weight p of M. These eigenvalues are independent of v.

Remark. The geometric Frobenius Frobp of P is the inverse of the arithmetic Frobenius Frob;l, which
satisfies Frob;l(a;) = 27 mod P for x € O.

Proof. Let py,a: Gal(L*P/L) — Auta, HL(M,A,) be the associated Galois representation. By
Gardeyn’s criterion [Gar02, Theorem 1.1] for good reduction, the inertia group of Gal(L*P/L) at
P acts trivially on HL(M, A,) for every v # oo not lying below P, and therefore the Frobenius Frobp
of P has a well defined action p, (Frobp) on Hi(M,A,). Let Mp be the reduction of M at P.
Then there is a canonical isomorphism H (M, A,) =~ H.(Mp, A,) under which the action of Frobp
corresponds to the action of the Frobenius endomorphism

T][\]I;;):Fq} = TMP OO'*TMP o... OO_([FPZFq}—l)*TMP: M'P[J_l] — U[FP:FQ]*MP[J—l] ~_> M'P[J_l] .

Indeed, the action of Frob;1 = olfPfas on HL(Mp, A,) is computed as pU,M(Frob;Dl) = hlo
(Frobgl)*h via the vertical isomorphisms A in the following commutative diagram

(Fp:Fql
-
_ _[FpF Mp
(M'P)U ®AH“73»U A]F?,lg,v - O-[ F q}*(M,P)U ®A]F7;.,U A]F?)lgﬂ) m—> (MP)U ®AIF73,U A]F?)lgﬂ;
th (Frobpl)*hT% th
Po, M (Frob;,1 )®id

(Mp); ®a, Amg’v = (Mp)] ®a, AF;I% (Mp)] @a, AF;Ig,U :
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In particular h o p, p(Frobp) = T][\E;’:Fq} oh on H(Mp,A,). Since Q ®4 Endp,(Mp) is a finite

dimensional Q-algebra, TEZFQ] satisfies a polynomial equation with coefficients in ) and its eigenvalues

on H,lj (Mp, A,) satisfy the same equation. In particular, these eigenvalues are independent of the place
v # oo not lying below P. Now our formula for the absolute values of the eigenvalues was proved
for pure M by Goss [Gos96, Theorem 5.6.10] and follows for mixed M, because the eigenvalues of
Frobp coincide with the eigenvalues on the graded pieces GrZV M of M by considerations of triangular
matrices. This motivates our convention that the weights of an effective A-motive are non-negative;

see Proposition B.ITje) O

The morphism hjp; from Proposition .30l induces comparison isomorphisms between the Betti and
the v-adic, respectively the de Rham realizations as follow.

Theorem 3.37. If M is a uniformizable A-motive there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

PBetti, v: Hberes (M, Ay) = AM) @4 A, == HY(M,A,), A®f— (f- A mod v")en
and

hBetti,dR = O'*hM X id(C[[z—C}]: H%Betti(M7(c[[z — d]) = H(liR(M, (C[[Z — C]]) s
RBetti,dr =  o*hy mod J : Hii (M, C) ~5 Hiz(M,C).

The latter are compatible with the Hodge-Pink lattices, respectively the Hodge-Pink filtration provided
on the Betti realization Hy (M, Q) = H' (M) via the associated Hodge-Pink structure H'(M).

Proof. Since v # oo the points in the closed subscheme {v} xF, C C C¢ do not specialize to 00, € Ci,
and so this closed subscheme lies in the rigid analytic space €c ~\ D¢. This yields isomorphisms
O(€c N D¢)/v"O(€c \ D¢) == Ac/v™Ac for all n. The isomorphism hj; induces a T-equivariant
isomorphism

A(M) ®4 @O(Cc\@c)/vnO(Cc\Qc) = M®Acl<iinA(C/UnA(c = M,.
Taking 7-invariants on both sides and observing
. n o=id . n o=id
(l(in O(€c N\ D¢)/v"O(Cc CDC)) = ({El Ac/v Ac) = A,

provides hpetti, v-
The compatibility of the Betti-de Rham comparison isomorphism with the Hodge-Pink lattice and
the Hodge-Pink filtration follows from diagram (B.6)). O

Remark 3.38. (a) If M = M(E) is the A-motive associated with a Drinfeld A-module E, the iso-
morphism Apeti, gr coincides with the period isomorphism studied by Gekeler [Gek89, Theorem 5.14];
see Section B.7], in particular Theorem [5.47] and Proposition [5.45]

(b) Note that there are no A-homomorphisms between A, and C and therefore no comparison isomor-
phism between H (M, A,) and Hig (M, C) or Hi (M, C[z —(]). However, if one considers A-motives
M over an algebraically closed, complete extension K of the v-adic completion @, instead of over
C, there is a comparison isomorphism between Hj (M, A,) and Hjg (M, K ((z — ¢))); see [HKI6] Re-
mark 4.16].
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Example 3.39. Let C' = IP’Ilpq, A=F,t],z=10=c"(t) = % € C, and let M = (C[t], 7ps =t —0) be
the Carlitz t-motive from Example As in Example B.20(b) we obtain

AM) = {neO(Ce): (t=0)0"(\) = A} = nl; - Fylt]

for £ := H?io(l—g“qit) € O(€¢) and n € C with 797! = —¢. The comparison isomorphism Apetsi, dr =
0*hy ® idcp,—¢] sends the basis n¢; of Hp i (M, Fy[t]) = A(M) to the element o*(nl;) = —Cno*(L;) €
Hig (M, C[z — ¢]) = C[z — (], respectively to the element —C(no*(€;)li=o = —Cn 21— qu_l) €
Hiz(M,C) = C. The latter is the function field analog of the complex number (2i7)~!, the in-

verse of the period of the multiplicative group G, g. It is transcendental over F,(f) by a result of
Wade [Wad41]. See Example [5.49] for more explanations.

4 Mixed dual A-motives

For applications to transcendence questions like in [ABP04, [Pap08, [CY07, [CPY10, [CPTY10, [CP11],
CPY11LICP12], it turns out that dual A-motives are even more useful than A-motives; see the article
of Chang [Cha20] in this volume for an introduction. Beware that a dual A-motive is something
different then the dual MY of an A-motive M. We clarify the relation between dual A-motives and
A-motives, also in view of purity, mixedness and uniformizability in this section.

4.1 Dual A-motives

We continue with the conventions made in Section [3Jl In particular, we denote the natural inclusion
Q < C by c* and consider the maximal ideal J := (a® 1 -1®c*(a):a € A) C Ac := A®p, C. The
open subscheme Spec Ac \ V(J) of C¢ is affine. We denote its ring of global sections by Ac[J ™).

Definition 4.1. (a) A dual A-motive over C of characteristic ¢* is a pair M = (M, #y;) consisting
of a finite projective Ac-module M and an isomorphism of Ac[J~!]-modules

Fap: GFMJ T = M[J 7
where we set 6*]\:4[{_1] = (6*M)®@a. Ac[J 7] and M[J Y] := M @4, Ac[J 7). A morphism of
dual A—mf)tives fiM— N is a homomorphism of the underlying Ac-modules f: M — N that
satisfies f o7y, = 7y 0 6" f. The category of dual A-motives over C is denoted A-dMot.

(b) The rank of the Ac-module M is called the rank of M and is denoted by rk M. The virtual
dimension dim M of M is defined as

dim M := dime¢ M /(M N+ (6*M)) — dimg 75 (6*M) /(M N+ (5*M)).

(c) A dual A-motive (M,7,;) is called effective if 7; comes from an Ac-homomorphism &*M — M.
An effective A-motive has virtual dimension > 0.

(d) For two dual A-motives M and N over C we call QHom (M, N) := Hom g-quot (M, N) ®4 Q the
set of quasi-morphisms from M to N.

(e) The category with all dual A-motives as objects and the QHom (M, N) as Hom-sets is called the
category of dual A-motives over C up to isogeny. It is denoted A-dMotI.

Again, if C' = ]P’]qu and A = Fy[t], our effective dual A-motives are a slight generalization of the

abelian dual t-motives in [BP20), §4.4], who in addition require that M is finitely generated over C{7}
where 7 acts on M through m — 7, (6 m).
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The tensor product of two dual A-motives M and N is the dual A-motive M ® N consisting of
the Ac-module M ® Ac N and the isomorphism 7;; ® 7. The dual A-motive 1(0) with underlying
Ac-module Ac and 7 = id4. is a unit object for the tensor product in A-dMot and A-dMotI. Both
categories possess finite direct sums in the obvious way. We also define the tensor powers of a dual
A-motive M as M®° = 1(0) and as M®" := M®" '@ M for n > 0. If M = (M, 7;) and N = (N, 7g)
are dual A-motives the internal hom Hom(M,N) is the dual A-motive with underlying Ac-module
H := Homu.(M,N) and #5: 6*H[J Y] = H[J Y, h+s g oho 7‘]\741. The dual of a dual A-motive
M is the dual A-motive M" := Hom(M,1(0)) consisting of the Ac-module M"Y := Hom 4. (M, A¢)
and the isomorphism (7‘];[)_1.

Remark 4.2. The reader should be careful not to confuse dual A-motives M with the duals MY of
A-motives M, which are again A-motives. In fact, the relation between A-motives and dual A-motives
is the following. Let 9114 /F, be the A-module of Kéhler differentials. Then ch c= 9114 /¥, OF, C=
o*Q

11% c= é*Q}% /C under the Fy-isomorphism Frob, c: C = C.

Proposition 4.3. Every A-motive M = (M, 7)) induces a dual A-motive M (M) := (M, ;) where

M := Homgu.(c"M, th/(c), hence, &*M = Hom 4. (M, Q}%/C), and
fig = ()" = Homac(rar, Qy_e): (6°M) @ac Ac[J '] = M @4, AclJ 7],

' —  F'rhomyy.
Every morphism f: M — N of A-motives induces a morphism f := Homa. (0" f, Q}%/C): M(N) —
M (M) of the associated dual A-motives.
Conversely, every dual A-motive M = (M, #;) induces an A-motive M (M) := (M, 7y;) where

M := Homa.(6*M, th/(c), hence, o*M = Homa.(M, th/(c), and
™ = (Fy)" = Homa.(fyp, Qye): (0°M) @ac Ac[J '] =5 M @4, AclJ ),

* * ~
g m — O Mo Tyr.

Every morphism f: M — N of dual A-motives induces a morphism f = HomAC(c}*f, ch/c):

M(N) — M(M) of the associated A-motives.

These mutually inverse functors induce exact tensor-anti-equivalences of categories A-Mot <—
A-dMot and A-MotI +— A-dMotI. They map effective A-motives to effective dual A-motives and vice
versa. In particular, the category A-dMotI is a Q-linear (non-neutral) Tannakian category, and hence

a rigid abelian tensor category.
The motivation to throw in the Kéahler differentials is given by Theorem [£.13] below.

Proof of Proposition[].3. Since o* and &* are flat by Remark [Tl and M and M are locally free,
it follows fron} [Eis95, Proposition v2.10] that ¢* Homa, (0% M, Q}%/C) = Hom . (M, ch/c) and
o* Homy.(6*M, ch /C) = Hom 4. (M, ch /(C). With this observation the proposition is straight for-
ward to prove, and the final statements about the category A-dMotI follow from Proposition 3.4 [

Remark 4.4. (a) A neutral fiber functor only exists on the full subcategory of uniformizable dual
A-motives; see Theorem [4.23]

(b) The category A-dMot is an exact category in the sense of Quillen [Qui73| §2] if one calls a sequence
of dual A-motives exact when its underlying sequence of Ac-modules is exact; compare Remark B.5(b).
The same is true for the subcategories of dual A-motives which are effective, respectively effective and
finitely generated over C{7}.
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(c) For the rank and (virtual) dimension of dual A-motives the formulas (3.3) hold correspondingly
and rk M (M) =1k M and dim M (M) = dim M.

(d) Tt can be proved directly, but also follows from Proposition 3] and Remark B.7(c) that the set of
morphisms Hom 4_guot (M N ) between two dual A-motives M and N is a finite projective A-module
of rank at most (rk M) - (rk NV).

Example 4.5. An effective dual A-motive of rank 1 with 7,;(5*M) = J - M is called a dual Carlitz-
Hayes A-motive. Clearly, M(1(1)) is a dual Carlitz-Hayes A-motive for any (non-dual) Carlitz-Hayes
A-motive 1(1). Therefore, Example proves the existence of dual Carlitz-Hayes A-motives and that
they are all isomorphic in A-dMotI. So we may denote any one of them by 1(1). We also define
1(n) := 1(1)®" for n > 0 and 1(n) := 1(—n)¥ for n < 0.

If C = ]P’Hl;q, A =T,[t] and 0 = c¢*(t) € C, again all dual Carlitz-Hayes A-motives are already in
A-dMot isomorphic to the dual Carlitz t-motive with M = C[t] and 7y; = t — . The latter is obtained
via the functor M(.) from the Carlitz t-motive M = (C[t], 73y = t — 6) from Example

Every dual A-motive is isomorphic to the tensor product of an effective dual A-motive and a power
of a dual Carlitz-Hayes A-motive. In fact, if M is a dual A-motive with 7,;(6*M) C J~¢- M, then
N = M ® 1(1)®? satisfies 7‘]\7(6*]\7) C N; hence, N is effective and M = N @ 1(1)®~?. Note that
tk N = rk M and dim N = dim M + d - rk M.

4.2 Purity and mixedness

As in Section we fix a uniformizing parameter z € Q = F,(C) of C at co and assume that
oo € C(F,;). We denote the unique point on C¢ above co € C' by ooc. The completion of the local
ring of C¢ at oo is canonically isomorphic to C[z].

Definition 4.6. (a) A dual A-motive M = (M, #y;) is called pure if M ® 4. C((2)) contains a C[z]-
lattice M, such that for some integers d,r with r > 0 the map
P o= Fyp o0 (Fyy) o0 T (Fy): 67 M @4, Quot(Ag) = M ®4. Quot(Ac)
induces an isomorphism zdi'gz : 6" Moo~ Moo. Then the weight of M is defined as wt M = —%.

(b) A dual A-motive M is called mized if it possesses an increasing weight filtration by saturated
dual A-sub-motives W, M for p € Q (i.e. WHM C M is a saturated Ac-submodule) such
that all graded pieces GrZV M = WMM /U < Wi M are pure dual A-motives of weight y and
EueQ rk GrZV]\_Z =rk M.

(¢) The full subcategory of A-dMot consisting of mixed dual A-motives is denoted A-dMMot. The
full subcategory of A-dMotI consisting of mixed dual A-motives is denoted A-dMMotI.

Example 4.7. For example the dual Carlitz t-motive M = (C[t],7;; = t — ) is pure of weight —1
with Mo, = C[[z] on which z7,; = 1 — @2 is an isomorphism, where z = 1.
Remark 4.8. (a) The weights of M are the jumps of the weight filtration; that is, those real numbers
u for which

U,u’<,uWH'—M —»C«— nﬁ>uWﬂ—M'

The condition 4EQ rk GrEV M = rk M is equivalent to the conditions that all weights lie in Q, that
W“]\_Z = nﬂ>u WQJ\_Z for all u € Q, that W“]\_Z = (0) for p < 0, and that W“]\_Z = M for pn > 0;
compare Remark

(b) Every pure dual A-motive of weight 4 is also mixed with W, M = (0) for i/ < p, and WMJ\_VJ =M
for ¢/ > p, and GrZV]\_Z = M.
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Proposition [£3] extends to mixed (dual) A-motives as follows.

Proposition 4.9. A dual A-motive M is mized (pure) if and only if the corresponding A-motive
M(M) from Proposition [7-3 is mived (pure). In that case the weights of M (M) are the negatives of
the weights of M. More precisely, if M is mized with weights iy < ... < u, then the weight filtration
on M = (M, 1y) = M(M) := (HomAC( *M, QA /C), X/[) s given by
(4.1) W_,M = {me M =Homu,(c*M, QA@/C) m(c*W,y M) =0 forally/ <p},

that is, by W_,M = (0) for all —p < —pp, by W_, M = ker(M - M(W, M)) for all —pi1q <
—u < —pi, and by W_,,M = M. In particular the functors M ~ M(M) and M > M(M)
from Proposition [{.3 induce exact tensor-anti-equivalences of categories A-dMMot <— A-MMot and
A-dMMotI +— A-MMotI.

Proof. First assume that M is pure of weight p = —%. This means that there is a C[[z]-lattice My, C
M®a.C((2)) such that zdi';’;[ is an isomorphism 6"* Mo~ Moo. Then My, := Homg[,(6* Moo, C[2]d2)
is a C[z]-lattice in

M (M) ®4ac C((2) = HomAC(c}*M, Q}%/(c) ®4ac C(2)) = Homgyy) (5% M ®ac C((2)), C((2)d=)

such that J"_l*(zdiﬁ[)v = z¢ ;“J(M) defines an isomorphism ¢"* My, =~ M,,. Therefore, M (M) is

pure of weight —p = %.
Conversely, a C[z]-lattice Mo, C M (M) ®a. C((2)) with 24 M( 1)

0" My == My induces the
lattice Moo := Homep,)(0* Moo, C2]dz) € M ®4. C((2)) with &7 1*(2¢ ]’\"/[(M))V = zdi’]’\}: 5" Moo =
M. This proves that M is pure of weight p if and only if M (M) is pure of weight —p.

Now we consider a mixed dual A-motive M. Applying the exact contravariant functor M +— M (M)

gives for all u exact sequences
0 — M(GrY M) —s M(W, M) — M( U WMIJ\_Z/) 50
W <p
Thus we can define an increasing filtration WM of M by saturated A-sub-motives by letting
WM = ker(M - M(U WyA))

W<p
= {m e M =Homa.(5*M, Q}%/C): m(* W,y M) =0 forall  <p}.

More explicitly, if j; < ... < pn are the jumps of the weight filtration W, M, we set in addition
fo := —00, tipt1 := +00, and W, M = (0). Then W, M = W, M C W“ZHM for all p; < p/ < pisq
and hence, for any g with p; < p < p;11 we have the equahtles U W, M = W, M and W_, M =

ker (M — M(W,, M)) In particular, if p; < p < it < piy1, then e
(4.2) W_iM = ker(M — M(W,, M)) = ker(M — M(W,M)).
This yields the following diagram with exact rows
0— U WM M M(W,M)———0
—fi<—p
.
0O —W_, M M M(U WyM)——0.

W<p
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By the snake lemma GrKVMM = ker (M(WNJ\_Z) — M( U WHr]\_Z)> = M(erv M) is pure of weight

W <p
—p and M (M) is mixed with weight filtration W,M which jumps at —fn < ... < —p1. A similar
argument for the inverse functor M + M (M) shows that conversely M is mlxed provided M (M) is
mixed. This proves the proposition. U

The following proposition follows from Propositions 4.9, B.11] and BI4l but can also be proved
directly along the lines of Propositions [B.11] and B.14] without using (non-dual) A-motives.

Proposition 4.10. Let M be a dual A-motive and consider the z-isocrystal

M = (M7) = (M @a C(2), 0" @ id: 0" M = M).

Then M s isomorphic to D, M\di,n where for d,r € Z,r > 0,(d,r) =1,m := [%l we set

1-m

and where in the matriz the term z occurs exactly mr — d times. In particular,

(a) M is pure of weight p if and only if p = % for all i.

(b) M is mized if and only if the filtration WMM\ = @ ;M\diﬂ"i comes from a filtration of M by

d.
T—;Su
—_—

saturated dual A-sub-motives /W“]\_Z C M with WMM\ = /VIV/“]\_Z In this case the filtration /W“]\_Z
equals the weight filtration W, M of M and the % are the weights of M. In particular, the weight
filtration of a mized dual A-motive M is uniquely determined by M.

(¢c) Any dual A-sub-motive M’ — M and dual A-quotient motive f: M — M" of a pure (mized)
dual A-motive M is itself pure (mized) of the same weight(s), (by letting W, M =MnW,M,
and W, M" be the saturation of f(W,, M) inside M", if M is mized).

(d) Any dual A-motive which is isomorphic in A-dMotI to a pure (mized) dual A-motive is itself
pure (mized).

(e) The weight of a pure dual A-motive M is wt M = —(dim M) /(xk M). The tensor product of two
pure dual A-motives M and N is again pure of weight (wt M) + (wt N).

(f) The category A-dMMotI is a full Q-linear (non-neutral) Tannakian subcategory of A-dMotI, and
i particular, a rigid abelian tensor category.

(9) Any morphism f: M' — M between mized dual A-motives satisfies f(W M) c W, M. More
precisely, the saturation of f(W, M') inside f(M') equals f(M') N\W, M.

(h) If M is effective and M is a finitely generated module over the skew-polynomial ring C{7}, where
7 acts on M through m v+ Ty7(5%1m), then d; < 0 for all i.

(i) IfM is effective and di/r; > —n for all i, then M extends to a locally free sheaf]\7 on Cc with

5*M — M(n - ococ), where the notation (n - ooc) means that we allow poles at coc of order

less than or equal to n. Moreover M is pure of weight j = —; with (d, 7‘) =1 if and only if there

dy

Ty s an isomorphism " M s = Moo on the stalks at coc.

is an M such that in addition, z
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Remark 4.11. The category A-dMMot is an exact category in the sense of Quillen [Qui73|, §2] if one
calls a sequence of mixed dual A-motives ezact when its underlying sequence of Ac-modules is exact;
compare Remarks 4(b) and B2

We have seen in Example B.I3] that not every A-motive is mixed; thus the same is true for dual
A-motives.

Example 4.12. Let C = IP’Ilgq, A=TF,t], z = %, 0 =c*(t) = % € C, and recall the mixed A-motive

M from Example with Gr}¥ M = WiM = (Ac,t — 6) and GrY M = (Ac, (t — 6)?). Via an
identification Q}% ic= C[t]dt = C[t] its corresponding dual A-motive is isomorphic to

M = (A2 8= ( tze (t—09)3 >)

As in the previous proposition, we set

WM = Ker (M = M (U W M) = M

and
(1,0)

wadt = ter (31 1rmian) = () - (.o -9,

such that Gr!} M = (Ac, (t — 0)) and G5 M = (Ac, (t — 0)®). Thus M has weights -3 and -1.

4.3 Uniformizability
Recall the notation introduced at the beginning of Section B3l

Definition 4.13. For a dual A-motive M, we define the 7-invariants
AM) = (M ®a. O€c~Dc)) = {meMes O ~Dc): Fy(d*m)=m},
and let Hy (M) := A(M) ®4 Q.

Since the ring of g-invariants in O(€¢ \ D¢) equals A, the set A(M) is an A-module. It is finite
projective of rank at most equal to rk M by the analog for dual A-motives of [BHOT, Lemma 4.2(b)].
Therefore, also H(M) is a finite dimensional Q-vector space.

Definition 4.14. A dual A-motive M is called uniformizable (or rigid analytically trivial) if the
natural homomorphism

hyp: AM) @4 O(€c~ D) — M @4, O(€c D), AD [ f-A

is an isomorphism. The full subcategory of A-dMotI consisting of all uniformizable dual A-motives
is denoted A-dUMotI. The full subcategory of A-dMotI consisting of all uniformizable mixed dual
A-motives is denoted A-dMUMotI.

Remark 4.15. In [Pap08, 3.4.10] Papanikolas defines a neutral Tannakian category 7 over F,(t)
which is equivalent to A-dUMotI if A = F,[¢t]. This can be seen as follows. Let M be an object of
A-dUMotI. Then M ® A Quot(Ac) is a rigid analytically trivial (dual) pre-t-motive in the language of
[Pap08 §3.3.1]. The latter form a neutral Tannakian category R over @) by [Pap08, Theorem 3.3.15]
and M — M® Ac Quot(Ac) is a fully faithful functor A-dUMotI — R. Papanikolas defines the category
T as the Tannakian subcategory of R generated by the effective dual A-motives in A-dUMotI. It thus
follows from Example and Proposition below that T coincides with the image of A-dUMotI in
R. By Proposition .17 below, the category A-dUMotI is also anti-equivalent to A-UMotI and hence
also to Taelman’s category t My, by Remark
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Lemma 4.16. Let M be a dual A-motive of rank r.
(a) The homomorphism hy; is injective.
(b) M is uniformizable if and only if kg A(M) = r.

(c) If M is uniformizable then the following sequence of A-modules is exact

. hy . .
0—>A(M)i>M®AC O(Q:((j\gc)—>M®AC O(Cc\@c)—)().

i Fip(G*m) — 10

Proof. Assertions @ and @ can be proved for general A as in [Pap08, Lemma 3.3.7 and Proposi-
tion 3.3.8]; see also the proof of Lemma B.21]

To establish we must prove exactness on the right. We choose a finite flat ring homomorphism
Fglt] < A of degree d. Then O(€c \ D¢) = A ®p,y C(t); see BH). We view M as a (locally)
free C[t]-module of rank dr and A(M) as a (locally) free F,[t]-module of rank dr. With respect to
a basis of the latter we identify M ®a. O(€c \ D) = A(M) ®4 O(€c ~ D¢) = C{H)®¥. In this
basis 7; is given by the identity matrix. Now let m € M ®4. O(€c \ Dc) be given as Y, b;t’ with
bi = (b, .- ,der)T € CI . Since C is algebraically closed there is for every i and j a ¢ ; € C with

¢l ;= cij = bij. I [bij| <1 we may even take ¢;; = > bg;-, whence |¢; j| = |b;;|. With this
choice 1/ 1= Y200 (Cin,- .- Ciar) t! € C(H)PU satisfies 7y;(5*m/) — 1/ = m. This proves O

Proposition 4.17. A dual A-motive M is uniformizable if and only if the corresponding A-motive
M = M(M) from Proposition [{.3 is uniformizable. Moreover,

hyy = (0har)™" == Homoecoc) (0" har, Qe @ac O(Cc ~ Dc))”

and A(M) = Hom 4 (A (M), Q}4/Fq) under the perfect pairing
A(_M) X A(M) — Qil/]qu (5‘7)‘) — hM(j‘) (U*h]\_/[()‘))

obtained from M = Hom . (0" M, Q}%/(c). In particular, the functors M ~ M(M) and M

M(M) from Proposition [J.3 restrict to evact tensor-anti-equivalences A-dUMotI <— A-UMotI and
A-dMUMotI +— A-MUMotI.

Proof. We assume M is uniformizable, that is
har: A(M) ©4 O(€c \Dc) == M @4, O(Cc D), AR f—=f-A
is an isomorphism. Applying ¢* and Hom@(%\gc)( ., Q}% /c ®4c O(Cc N CD(C)) yields an isomorphism
o*hy: M @4z O(Ec ~ De) == Homa(A(M), 2 5 ) @4 O(Ec ~ De).
Since the 7-invariants of M = M (M) are
A(M(M)) = (M @4, O(€c ~ Dc))” = Homa(AM), 2 s,
by = (0*hp¥)~! provides a rigid analytic trivialization for M.

The converse assertion follows similarly and the statement about the exact tensor-anti-equivalence
follows from Propositions [4.3] and O
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Lemma 4.18. Let C = IP’Ilpq, A = Fy[t], Ac = Cl[t] and 0 = c*(t). Then O(€c \ D¢) = C(t); see
B5). Let & = (®;)i; € GL,(C[t][;25]) represent #y; with respect to a C[t]-basis B = (... ,1mh,)

of M, that is T (0 m) = >0, i)ij mi. Then M is uniformizable if and only if there is a matric
U € GL,(C(t)) such that

FU =09,
In that case, U is called a rigid analytic trivialization of ®. It is uniquely determined up to multipli-

cation on the left with a matriz in GL,(F4[t]). The columns of U~ are the coordinate vectors with
respect to B of an F[t]-basis C of A(M). Moreover, with respect to the bases C and B the isomorphism

hyy is represented by Ut

If M(M) = (M,7y) and ® € GL,(C[t][;5]) is the matriz representing Tpy with respect to the
basis B of M which is dual to B, then ® = ®T and ¥ := (5*W)~! is a rigid analytic trivialization of
.

Proof. This was proved by Papanikolas [Pap08|, Proposition 3.3.9] (in terms of row vectors, whereas
we use column vectors); see also the proof of Lemma 322l The formula ¥ = (5*W)~! follows from an
elementary calculation. O

Example 4.19. Let C = ]P’Hl;q, A=TFt, z=1210=c@) = % € C. Via the identification
ch/c = CJt]dt = CJ[t], dt — 1, the Carlitz t-motive M = (C[t],7ay = t — ) and the dual Carlitz
t-motive M = (C[t],7); = t — 0) from Examples and A7 satisfy M = M(M) and M = M(M).
Furthermore, M is pure of weight 1 and M is pure of weight —1. In Example we saw that M is
uniformizable with A(M) = nl; - Fo[t] for £, = [12,(1 — ¢7t) € O(€c) and an element 1 € C with
ni~t = —¢. Tt follows that

A(M) = {AeO(Cc\Dc): (t=0)5"(N) = A} = o"(nl;) ™" - Fylt]

The pairing A(M) x A(M) — QA/FQ = F,[t]dt, (\, ) hyy (A) (c*has (X)) sends (0*(7765)_1,7755) to
dt, because hy; (0*(7765)_1) = a*(nﬁg)_l and o*hy (nl;) = o™ (nl; ).
Before we conclude that A-dUMotI and A-dMUMotI are Tannakian categories over () with fiber

functors M + H; (M), we note that Proposition EiI7 together with Proposition 324 and Lemma [3.25]
implies the following

Proposition 4.20. (a) Every dual A-motive which in A-dMotI is isomorphic to a uniformizable
dual A-motive is itself uniformizable.

(b) Every dual A-motive of rank 1 is uniformizable.

(c) If M and N are uniformizable dual A-motives, then also M @ N and Hom(M,_N) and M are
uniformizable with

AMT @ N) = AM) @ AN)  and

1%

A(Hom(M,_N))

12

Hom (A(M), A(N)) and
A(

=

V) = Homu(A(M),A).
(d) If M and N are uniformizable, the natural map QHom (M, N) — Homg (H; (M), Hy(N)),
foa — Hl(f@)a) = q- (h_]\v,_1 o (f@ id) OhA_Z,|H1(]\_7[))

for f € Hom A_gmot (M,_N) and a € Q, is injective. O
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Lemma 4.21. Let 0 — M’ — M — M" — 0 be a short exact sequence of dual A-motives. Then M

s umfotmz'zable z'fv and only if both M’ and M" are. In this case the induced sequence of A-modules
0= AM') — AM) — A(M") — 0 is exact. O

Remark 4.22. If a mixed dual A-motive M is uniformizable, then all filtration steps WMJ\_Z and
factors GrZV M of the weight filtration of M are uniformizable by Lemma F.2]l Therefore, M could
equivalently be called a uniformizable mixed dual A-motive or a mized uniformizable dual A-motive.

Summarizing these properties of A-dUMotI, we obtain the analog of Theorem [3.27]

Theorem 4.23. The categories A-dUMotI and A-dMUMotI of (mized) uniformizable dual A-motives
up to isogeny are neutral Tannakian categories over @ with fiber functor M s Hy(M). [

This theorem allows to associate with each (mixed) uniformizable dual A-motive M an algebraic
group I'y; over @ as follows. Consider the Tannakian subcategory (M) of A-dUMotI, respectively

A-dMUMotI generated by M. By Tannakian duality [DM82, Theorem 2.11 and Proposition 2.20], the
category ((M)) is tensor equivalent to the category of Q)-rational representations of a linear algebraic

group scheme I'y; over @ which is a closed subgroup of GLq(H1(M)).

Definition 4.24. The linear algebraic @-group scheme I'y; associated with M is called the (motivic)
Galois group of M.

Proposition 4.25. If M is a uniformizable mized dual A-motive and M := M (M) is the associated
uniformizable mized A-motive, then the motivic Galois groups I'y; and 'y are canonically isomorphic.

Proof. This follows from the anti-equivalence of the categories A-dMUMotI <+— A-MUMotI and the
compatibility of the fiber functors Hy (M) = H; (M (M)) ®4 QY /r, from Proposition 41n O

Remark 4.26. Let M be a uniformizable dual A-motive. By Remark the Tannakian subcate-
gories (M) of A-dUMotI, respectively of Papanikolas’s category 7T, generated by M are canonically
equivalent. Therefore, our motivic Galois group I';; is canonically isomorphic to the one defined by
Papanikolas [Pap08], § 3.5.2]. -

4.4 The associated Hodge-Pink structure

We keep the notation introduced at the beginning of Section B.4] where we associated a mixed Hodge-
Pink structure H'(M) with a uniformizable mixed effective A-motive M.

Proposition 4.27. Let M be a uniformizable dual A-motive over C.

(a) Then A(M) equals {1 € M ®4. O(€¢ Uienw, V(o™J)) : Fy(5*m) =m} and the isomor-
phisms h M and 6*h M extend to isomorphisms of locally free sheaves

~

hM: A(M) ®a OéC\UieN>o V(et*J) — M ®A‘C Oéc\UieN>o V(e™J)»

0 hyy s MM) ®4 Oy, Vo) T T M ®ac Oy, Vior )

satisfying (Ty; @ id) 0 &*hyy = hyy o (idy ) ® id).

(b) If moreover M is effective, then the isomorphism (hy;)™! extends to an injective homomorphism

hM_lz M®Ac Oéc — AM) @4 Oé@’

with hA_Z,_l o (yr ® id) = (idy () ® id) oc}*hM_l and coker 6*hM_1 ®@Clz — (] = M /#y;(6*M).
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Proof. Tt would be possible to adapt the proof of Proposition [3.30] to the dual setting.
Instead we use the associated A-motive M = M (M) and recall from Proposition 17 that hy; =

(0*har¥)™t. We deduce from Proposition that hy; is an isomorphism outside the discrete set
Uiens, V(o™.J) and that 6 hy = (hpr¥)~! is an isomorphism outside Uien, V(c™*J). By dualizing
the equation Ay o (idpy) ® id) = (7m @ id) 0 0*hy and observing 7 = (7ar)” we obtain Ay o
(idA(]\_Z) ® id) = (7y; ® id) 0 6*hy;. The given description of A(M) follows from that.

Moreover, if M is effective, then also M is effective. So follows from Proposition B30(b)l O

Remark 4.28. Note that if M is effective then it is in general not true that A(M) is equal to the
A-module {1 € M ®4, O(€c) : 7;(6%m) = m }. Namely, this is true if and only if 7y, (5*M) > M,
and hence equivalent to 7;;(6*M) = M by the effectivity of M.

Corollary 4.29. In the situation of Lemma [J-18 let U € GL,(C(t)) be a rigid analytic trivialization

of ®. Then the entries of U and W~ converge for all t € C with |t| < |0|/9. If M is effective, then
the entries of U even converge for all t € C.

Proof. In view of J = (t—6) this follows from the fact that (h M)_l is represented by the matrix U. [

In order to encode the relative position of 5*M and M under 757 at the point V(J), we make the
following

Definition 4.30. Let M be a uniformizable mixed dual A-motive with weight filtration WuM . We
set H, (M) := (H,W,H,q) with

e H = Hl(M) = A(M) ®aQ,
o W,H := H1(WuM) - A(WuM) ®AQ C H for each pu € Q,
© 1= (67hy @ ide(e—g)) T (6"M @4c Clz = ().

We call H; (M) the Q-Hodge-Pink structure associated with M. (This name is justified by Theorem Z.33]
below.) We also set H' (M) := H, (M)" in Q-HP. The functor H; is covariant and H' is contravariant
in M .

Remark 4.31. (a) If M = M(E) is the dual A-motive associated with a Drinfeld A-module E then
H, (M) = H,(E). We will prove this more generally for a uniformizable pure (or mixed) A-finite
Anderson A-module E in Theorem below.

(b) If M is effective, that is %M(c}fM) C M, then q C p := A(M) ®4 C[z — ¢]. More generally, if
J" Ty (6*M) C M C J™ - 7y;(6* M) for integers n < m, then (z — () "p C q C (2 — ¢)™™p. Indeed,
from Proposition we obtain a commutative diagram of isomorphisms

5" by ® ide((z—¢))

(4.3) A(M) ®4 C((z —¢)) 5*M ® 4. C(z = C))

o

iy ® idc«zc»l%

AQT) @4 C(e — () —— 225D W, €2 - €)).

%lw@? idg(z—¢y)

Here 6*h m ® id(c((z_g)) is an isomorphism because the three others are. This implies
q = (hy ® idga—cy) "o (Fiy ® idg(aac))(6*M ®4, C[z —(])  and
po= (hy ® ide(a-)) (M ®ac Clz —¢]).-

(¢) In terms of Definition 2.7 the virtual dimension of M is dim M = — deg, H,; (M) = deg, H (M).
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Theorem 4.32. Let M be a uniformizable mized dual A-motive and let M = M(M) be its as-
sociated uniformizable mized A-motive from Proposition [{.3 Consider the Q-Hodge-Pink structure
Q = (H,WeH,q) which is pure of weight 0 and given by H = QQ/F =Qdz and q = C[z—(]dz. Then
there are canonical isomorphisms in (Q-HP

H'(M) = Hom(H,(M),2) = H'M)®Q and
H,(M) = Hom(H'(M),Q) = H,(M)2Q.

Proof. By Proposition .17 there is a canonical identification A(M) = Homa(A(M ) Q}4 /R, ) which
gives rise to H!(M) = Homg (H; (M), Qé}/ﬁ? ) = HY(M) ®¢ QQ/IF By Definition [Z.6{(b)| the weight
filtration of H := Homg (H; (M), QQ/IFq) is given by

W_,H = {xe H: \(W,H(M)) =0 forall o/ <pu}.

On the other hand the weight filtration on H'(M) is given by W_,H' (M) = A(W_,M) ®4 Q. From
(1)) in Proposition 9 we know that

W_,M = {me M =Homa.(¢*M, Q} ojc)im m(* W,y M) =0 forall  <p}.

Tensoring this with O(€¢ \ D¢) over Ac it follows from the commutative diagram

A(WM/M) ®a4 O(€c N D) i> 5*WMIM R Ac O(Cc N\ D¢)

0 0

A(M) ®4 O(€c N De) ——5—— "M ®4, O(€c \ Dc)

that W_,H' (M) = AW_,M) ®4 Q = W_, Homg (H; (M), Qé?/F ) for all —p € Q.

Finally, since 4 = (6"hy; ® idg(z—¢))~ L(6*M ® 4. C[z — (]) is the Hodge-Pink lattice of H, (M),
the Hodge-Pink lattice Homgp,_¢)(q, C[z — (]dz) of Hom(H, (M), Q) equals by Definition the
image in Homg (H; (M), Qé/Fq) ®0 C((z — ¢) = H' (M) ®¢g C((z — ¢))dz of the map

*hyr” ® idea—cyaz:  Homep (6" M @4, Clz — (], Clz — (Jdz)
< Home,—¢) (Hi1(M) ®¢ C(z — ¢)),C(z — ¢))dz)
= H'(M)®q C((z - ()d=.

Since 6*hy; " = har ! and M = HomAC(6*M, Q}%/(c) by Proposition .17l we conclude that

Homer, —¢1(@, Clz — (Jdz) = (hy ® ide(e—¢)) ™ (M @ac Clz = C])
equals the Hodge-Pink lattice of H' (M) as desired. O
The main theorem of [HP18] also holds for uniformizable mixed dual A-motives:
Theorem 4.33. Consider a uniformizable mized dual A-motive M.
(a) H, (M) is locally semistable and hence indeed a Q-Hodge-Pink structure.

(b) The functor Hy: M — H, (M) is a Q-linear exact fully faithful tensor functor from the category
A-dMUMotI to the category Q-HP.
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(c) The essential image of H is closed under the formation of subquotients; that is, if H' C H, (M)
is a Q-Hodge-Pink sub-structure, then there exists a uniformizable mized dual A-sub-motive
M' C M in A-dMUMotI with H,(M') = H'.

(d) The functor H, defines an exact tensor equivalence between the Tannakian subcategory (M) C
A-dMUMotI generated by M and the Tannakian subcategory (H,(M)) C Q-HP generated by its

Q-Hodge-Pink structure H; (M).

Proof. By Theorem the functor H,: M + H, (M) is naturally isomorphic to the composition of
functors M +— M (M) — Hom (ﬂl (M (M )),Q), the first of which is an exact tensor-anti-equivalence
by Proposition .17l Thus the theorem follows from Theorems 2.10] and 3.34 O

Assertions and @ are the function field analog of the Hodge Conjecture [Hod52, |Gro69bl,
Del06]. We will discuss its consequences for the Hodge-Pink group FHl( A7) in Section [6l

Example 4.34. To continue with Example II2, we let A = Fy[t], 2 = 1, 0 := ¢*(t) =
t—46 0
b (t—0)3
(AC, (t— 0)3), and M has weights -3 and -1.
Similarly as in Example B.35], we set fg =112, - C7't) = o*(t;) € O(¢¢) and choose an 7 € C
with n9=! = —¢. Then

1
¢ €C

S
and M = AR? with 7, = & := < > Thus Gt} M = (Ac, (t — 0)) and Gr'%5 M =

MG M) = AeO(e): (t—0)"(\) = A} = (P8)) ™" F,lt).

AGIY, M) = (nqllf)_g -Fyt], and
. (naf7)~1 0
MaD) = (i) Falde () Fuld

for g € O(¢¢) with b- (nqgg)?’—i—&*(g) = (t—6)-g. Note that g = —o™(f) for the f from Example 3.35]

)~ 0 v v
(anj)‘lg) and Ay 1= <(nql7{)*3 ), we get H(M) = \-Q®Xo-Q and W_sH(M) = \2-Q.
. —1 .
. (nté7)~t 0 nie; 0 . . - .
Thus ¥ = S . = ¢ . € O(€c)?*? gives the rigid analytic
< () ~tg ()" g (n9€;)? (€)™ & & Y
trivialization of ®, which represents h M_l. According to Lemma EI8 we have ¥ = (¢*¥)~! for the
matrix ¥ from Example B35l Now the Hodge-Pink lattice of H (M) is described by

et S A
q=0v¥-p= <—6’*g (nEC)g) p.

Since EE has a simple zero at z = (, one sees that p/q (which is also isomorphic to coker 7y;) is
isomorphic to C[z — ¢]/(z — ¢) ® Cz — (]/(z — ¢)? if (t — 0)|5*g (equivalently, if (t — 6)|b) and
isomorphic to C[z — ¢]/(z — ¢)* if (t —0) 1 5*g (equivalently, if (t —6) 1 b). So the Hodge-Pink weights

of H, (M) are (—vl, —3) or (T4’ 0), and the weight polygon lies above the Hodge polygon with the same
endpoint WP(M) > HP(M) in accordance with Theorem and Remark 2.8

Putting A1 := <

4.5 Cohomology Realizations

Let M = (M ,Ty7) be a dual A-motive over C. Similarly as in Section B.5] the Betti cohomology
realization of M is given by

Hy petti (M, B) := A(M) @4 B and Hp; (M, B) := Homa(A(M), B)
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for any A-algebra B. This is most useful when M is uniformizable, in which case both are locally
free B-modules of rank equal to rk M and H; (M) = Hl,Betti(]\_vJ , Q). By Theorem [4.23] this realization
provides for B = () an exact faithful neutral fiber functor on A-dUMotI.

Moreover, the de Rham cohomology realization of M is defined to be
Hy gr(M,C):=M/J-M and Hiz(M,C):= Home(M/J- M, C).
We define a decreasing filtration of Hl,dR(_M ,C) by C-subspaces
Ft HLdR(]\_VL C) := image of M N J* . %M(é*M) in Hl,dR(M,(C) foralli e Z,

which we call the Hodge-Pink filtration of M.
If M satisfies J - M C 73;(6*M) C M, for example if M is the dual A-motive associated with a
Drinfeld A-module, then

F7' = Hiar(M,C) D F* = #y(6"M)/J-M > F' = (0).

As noted in Remark2.TTland Example[2.5)(c), more useful than the Hodge-Pink filtration is actually
the Hodge-Pink lattice q, and the latter cannot be recovered from the Hodge-Pink filtration in general.
We therefore propose to lift the de Rham cohomology to C[z — (] and define the generalized de Rham
cohomology realization of M by

Hy ar(M,C[z—¢]) = M®a.Cl[z—(] and
Hiar(M,C((2 = () = M@ C(z—() and
Hig(M,Clz—¢]) = Homu. (M, C[z—(]) and
Hijr (M,C(2 —¢))) = Homa. (M, C((z-())-

In particular by tensoring with the morphism Clz — g]] —- C, z — ( — 0 we get back Hl,dR(]\_VL C) =
Hy ar (M, Clz—(]) ®c[.—¢gC and Hig (M, C) = H}jz (M, C[z—(]) ®c[.—)C. We define the Hodge-Pink
lattices of M as the C[z — (]-submodules

g™ = (7)) (Homa (6*M, C[z —¢])) < Hiz(M,C(z-¢)) and
Gy = Fip(0*M) @4, Clz — (] C Hiar(M,C(2 - Q).

Then the Hodge-Pink filtrations F* H(liR(]\_Z ,C) and F* HLdR(]\_Z ,C) of M are recovered as the images
of HéR(M, Clz— C]]) N(z— C)iqM in HéR(M, C) and of Hl,dR(M, Clz— C]]) N(z— ()iqM in HLdR(]\_VL C)
like in Remark 2.4l All these structures are compatible with the natural duality between H GllR and
Hj gr. The de Rham realization provides (covariant) exact faithful tensor functors

(4.4) Hygqr(.,C): A-dMotI — Vectc, M — Hl,dR(]\_Z,(C) and

Hiar(-,Clz = (]): A-dMotI — Modcp.—(], M — Hl,dR(M, Clz—<])-

This is clear for Hy gr(.,C[z—(]) and for Hy 4r( ., C) exactness follows from the snake lemma applied
to multiplication with z — ¢ on Hy gqr(.,C[z — (])). To prove faithfulness for Hy gr(.,C) note that
every morphism f: M’ — M can in A-dMotI be factored into M’ — im(f) == coim(f) — M.
If Hy gr(f,C) is the zero map the exactness of H; gr(.,C) shows that H; gr(im(f),C) = (0). Since
dim¢ Hy gqr (M, C) = rk M it follows that the dual A-motive im(f) has rank zero and therefore im(f) =
(0) and f = 0.

Finally, let v € C be a closed point. We say that v is a finite place of C. Let A, be the
v-adic completion of A, and let (), be the fraction field of A,. Consider the v-adic completions
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Acy = l(iglA(C/v”A(c of Ac and M, = lglM/v"M = M ®a. Ac,y of M. Note that 7: 1+ ayatais)

for m € M induces a 5*® id 4,-linear map 7: M, — M,. We let the F-invariants of M, be the A,-
module

M = {m € M, | 7(h) = m}.
It is isomorphic to AP kM 2nd the inclusion Mg C M, induces a canonical 7-equivariant isomorphism
M} ®a, Ac,y = M, by an argument similar to [TW96, Proposition 6.1]. Then the v-adic cohomology
realization of M is given by

Hl,v(_MaAv) = MZ and Hl,v(_M7 Qv) = MZ— KA, Qv and
HY(M,A,) := Homyu, (M, A,) and HY(M,Q,) := Homga, (M],Q.,).
If M is defined over a subfield L of C then they carry a continuous action of Gal(L*P/L) and the
v-adic realization provides (covariant) exact faithful tensor functors

(45) Hl,v( .y Av) : A-dMot — MOdAv [Gal(LsP /L)] 5 _M — Hl,v (M, Av) and
Hl,v( Q) A-dMotI —» Modg, [Gal(Lser /L)) 5 M — Hl,v(My Qo) -

This follows from the isomorphism HLU(M JAy) ®a, Acy = M, because A, C Ac,y is faithfully flat.
Moreover, if L is a finitely generated field then

(4.6) Hio(., Ay): Hom(M, M') ©4 Ay == Hom y, Gairser /1)) (H1,0 (M, Ay), Hi (M, Ay))

is an isomorphism for dual A-motives M and M’. This is the analog of the Tate conjecture for dual
A-motives and follows by Proposition 3] from the analogous result (3.9]) of Taguchi [Tag95b] and
Tamagawa [Tam94, § 2] for A-motives.

Proposition 4.35. Let M be a pure or mized dual A-motive, which is defined over a finite field
extension L of Q. Let P be a finite place of L, not lying above 0o or v, where M has good reduction,
and let Fp be its residue field. Then the geometric Frobenius Frobp of P has a well defined action
on Hl,U(J\_VJ,AU) and each of its eigenvalues lies in the algebraic closure of Q in C and has absolute
value (#Fp)* for a weight i of M. Dually every eigenvalue of Frobp on HL(M, A,) has absolute value
(#Fp)~* for a weight u of M. These eigenvalues are independent of v.

Remark. The geometric Frobenius Frobp of P is the inverse of the arithmetic Frobenius Frob;l, which
satisfies Frob;l(:n) = z7F? mod P for x € Oy,

Proof. This follows by Proposition from the corresponding fact for M (M ) proved in Proposi-
tion [3.30] O

The morphism h,; from Proposition 4.27] induces comparison isomorphisms between the Betti and
the v-adic, respectively the de Rham realizations similarly to Theorem [B3.371

Theorem 4.36. If M is a uniformizable dual A-motive there are canonical comparison isomorphisms,
sometimes also called period isomorphisms

hBetti,vi Hl,Botti(M,Au) = A(M) ®a Ay = Hl,u(M,Au), A & fr— (f - A mod Un)neN
and
hBetti,dr = hy ® idep—¢p: Hisewi (M, Clz —¢]) == Hyar(M,C[z—(]),
hBetti,ar =  hyymod J : Hi petti (M, C) =~ Hy4r(M,C).

By diagram (&3] the latter are compatible with the Hodge-Pink lattices, respectively the Hodge-Pink
filtration provided on the Betti realization Hy ewi(M,Q) = Hi(M) via the associated Hodge-Pink
structure Hy (M). O
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Example 4.37. Let C' = IP’Ilpq, A=F,t],z=10=c"(t) = % € C, and let M = (C[t],7y; =t —0) be
the dual Carlitz t-motive from Example As in Example we obtain A(M) = (77‘1!75)_1 -Fy[t]
for llf = [, - C7't) = o*(l;) € O(¢c) and an € C with 79! = —(. The comparison
isomorphism Apetti, dr = hyy ® idc[.—¢] sends the basis (nqllf)_l of HLBCm(M,Fq[t]) = A(M) to the
element (77‘1!75)_1 = 0’*(7765)_1 S HLdR(]\_Z,(C[[z —(]) = C[z — (], respectively to the Carlitz period
(ang)_1|t:9 = (=¢nTI2,(1- {qi_l))_l € Hy gr(M,C) = C. The latter is the function field analog of
the complex number 2i7, the period of the multiplicative group G, g, and is likewise transcendental
over Fy(0) by a result of Wade [Wad41]. See Example [5.49] for more explanations.

To formulate the next result let Q}% /F, and ﬁ}%u /C and ﬁ(lcﬂz—gﬂ c = C[z — (]dz denote the

modules of continuous differentials. They equal Q4 /r, ®4 Ay, respectively Q4 /p, ® 4 Ac v, respectively
Qa/r, @4 Clz — (]. See also Remark [5.46] below.

Proposition 4.38. Let M be a dual A-motive and let M = M(M) be the corresponding A-motive
from Proposition [{.3. Then there are canonical isomorphisms

Hy (M, A,) = Hy(M,A,)®4, QY e, and
Hip(M,Clz —¢]) = Hgp(M,C[z —¢]) ®cfo—¢) Clz — (Jdz.
The latter is compatible with the Hodge-Pink lattices. If M and M are uniformizable then in addition,
H]%etti(MvA) = H]%etti(—MvA) ®4 Qi&/qu
and these isomorphisms are compatible with the period isomorphisms from Theorems [3.37 and [{.50
Proof. If M and M are uniformizable, then the isomorphism between A(M) = Hi;(M,A) and
Hyoii(M, A) ®4 Q}L‘/Fq = Hom (A (M), Qh/Fq) was established in Proposition [Z.17}

To establish the isomorphism for the v-adic realizations, note that M = Hom . (5* M, Q}% /C). By
applying [Eis95, Proposition 2.10] this yields a chain of canonical isomorphisms

(4.7) M, = Homuo(6°M, Q4 o) @ac Ac,y = Homag, (6* My, Q) =

oy HOInAC’v (MJ ®4, Ac,w, 62114@,71/@) = Homy, (MZ, ﬁhv/Fv) ®4, Ac,w

under which the o*-linear endomorphism m — 7y(0*m) of M, corresponds to the o*-linear en-
domorphism A ® f — A ® o*(f) of Homu,(M], QAU/FU) ®4a, Acy. By taking the invariants un-
der these endomorphisms and observing that (Ac,)” = A, we obtain the canonical isomorphism
HY(M,A,) :== M] =~ Homy, (M7, Q}%/Fv) =: HY(M, A,) ®a, Q}%/Fv' If moreover M and M are
uniformizable this isomorphism is compatible with the period isomorphisms hpetti » because (1) is
compatible with hy, and hy = (6*hMV)_1; see Proposition A.I7]

Finally, the equalities M = Homa(5*M, Q}% /(C) and Tar = (757)" yield the isomorphism for the
de Rham realization

Hig(M,Clz = (]) = 0*M @4, Cle = (] =
= Homy. (M, C[z — (Jdz) = Hig(M,C[z — ¢]) ®c[o—¢] Clz — ¢]dz
and its compatibility with the Hodge-Pink lattices. If moreover M and M are uniformizable, its

compatibility with the period isomorphisms hpesti, qr follows from the equation hy; = (0*h MV)_l that
was established in Proposition E.171 O
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5 Anderson A-modules

A main source from which effective A-motives arise are Drinfeld A-modules [Dri76] and abelian An-
derson A-modules. For C' = ]P’Ilpq and A = F,[t] the latter were introduced by Anderson [And86] under
the name abelian t-module; see also [BP20), §3.1]. In this section we review the notion of abelian An-
derson A-modules and their associated A-motives. Likewise we review the notion and analytic theory
of A-finite Anderson A-modules and their associated dual A-motives which was developed by Greg
Anderson in unpublished work [ABP02]. Also for Anderson A-modules which are both abelian and
A-finite we prove the compatibility between the associated A-motive and dual A-motive.

5.1 Definition of Anderson A-modules

To recall the definition for general A we need the following notation. For a smooth commutative
group scheme E over C we let Lie B := Homc(e*Q}E Jc C) be its tangent space at the neutral element
e: SpecC — E. It is a vector space over C. The differential d: Homc(E, E') — Homc(Lie E, Lie E’)
associates with each homomorphism f: E — E’ of smooth group schemes the induced homomorphism
Lie f: Lie E — Lie E’ of tangent spaces. We consider the additive group scheme G, ¢ = Spec C[X] as
a C-module scheme via the action of b € C by v} : C[X] — C[X], X — bX. Its relative g-Frobenius
endomorphism Frob, g, is given by Frob; g : C[X] = C[X], X — X9. Let C{r} := { > 7 (bit":n €
Ny, b; € (C} be the non-commutative polynomial ring in the variable 7 with the commutation rule
7b = bir for b € C.

Lemma 5.1. There is a natural isomorphism of C-modules between the d' x d-matriz space C{r}% >4
and the C-module Hom]pq,(c(va(c, Gg:(c) of Fy-linear homomorphisms of group schemes over C, which
sends the matriz F = (fi;)i; € C{r}**? to the F,-homomorphism f: Gic — GZ:C with f*(y;) =
Zj fij(z;) where Gic = SpecClzy,...,z4] and Gg:c = SpecCly1,...,yq]. Under this isomorphism

the map f — Lie f is given by the map C{r}¥*¢ — C¥*d F = Yo Fut = Fy.

Proof. This is straight forward to prove using Lucas’s theorem [Luc78], see also [Fin4d7, p. 589], on

congruences of binomial coefficients which states that ( ;’Zfis) = () (t) mod p for all n,m,t,s € Ny,
and implies that () =0 mod p for all 0 < i < n if and only if n = p© for an e € Nj. O

Definition 5.2. Let d be a positive integer.

(a) An Anderson A-module E = (E, ) of dimension d over C consists of a group scheme E isomor-
phic to the d-th power Gic of G,,c together with a ring homomorphism ¢: A — Endc(E),a —
g such that

(5.1) (Lie pq — c*(a))d =0 on LieE.

Under a — Lie ¢, the tangent space Lie F becomes an Ac-module. Note that the commutativity
of A implies that ¢, lies in the ring Endr, c(£) of F4-linear endomorphisms for the structure of
F,-module scheme on E provided via ¢. Note further that there always exists an isomorphism
E = Gic of Fy-module schemes.

(b) An Anderson A-module of dimension 1 is called a Drinfeld A-module of rank r € N5 if under
such an isomorphism E =~ G,c and the induced identification Endp,c(E) = C{r} from
Lemma 5.1 the 7-degree of ¢, equals r times the order of pole of a at co for all a.

(¢) A morphism of Anderson A-modules f: (E',¢') — (E,¢) is a homomorphism of group schemes
f: E' — E satisfying @, 0 f = fo ), for all a € A. We say that f: (E',¢') — (E, ) or simply
(E',¢) is an Anderson A-submodule if f is a closed immersion.
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(d) For a € A, we define the closed subgroup scheme E[a] := ker(¢,: £ — E).

Every Anderson A-module over C possesses a unique exponential function expy : Lie E — E(C)
satisfying @, (expg (z)) = expp (Lie pq(z)) for all € Lie F and a € A. Under an isomorphism
p: B = Gic of F,-module schemes and the induced isomorphism Lie p: Lie E =~ C? the exponential
function expp is given by matrices E; € C¥9 with Ey = Idy such that the series (p o expp o
(Lie p)~H)(&) = Y22, Ei 0™ (&) converges for all £ € C%; see [And86, Theorem 3] for A = F[t] and
[BHOT, §8.6] for the passage to general A. In loc. cit. these facts are formulated and proved under the
additional condition that E is abelian (see Definition below), which is actually unnecessary. We
also define

A(E) := ker(expp).

It is an A-module via the action of a € A as Liey, on A(E) C Lie E. Moreover, the exponential
map expp and A(E) are covariant functorial in E, in the sense that f o expp = expp o Lie f and
Lie f: A(E') — A(E) when f: E' — E is a morphism of Anderson A-modules. The following lemmas
are well known.

Lemma 5.3. For every £ € Lie E and a € A the sequence Lie p,"(§) converges to 0 as n — oo.

Proof. Identify Lie E =2 C? and write Lie ¢, = ¢*(a)(Idq +N) with strictly upper triangular (nilpotent)
N having only entries 0 and 1. Then || Lie o, 1 (&)|| < |e*(a)|™! - ||€]| with respect to the maximum
norm || .|| on C%. Now the lemma follows from |c*(a)| > 1. O

Lemma 5.4. For every isomorphism p: E =~ GZ’C of Fy-module schemes and every norm || .| on

C? there exists a constant C' > 0 such that expg maps {§ € Lie B: || Lie p(§)|| < C} isometrically onto
{x € E(C): ||p(z)|| < C}. The inverse of this isometry is a rigid analytic function

logg; : {a € B(C): [|p(a)]| < C} = {€ € Lie E: || Lie p(&)]| < C}

satisfying logg (pa(r)) = (Liepy)(logg (x)) for all a € A and all x € E(C) subject to the condition

lo(@)|], ||p(pa(x))|| < C. It is called the logarithm of E.
In particular A(E) = ker(expg ) C Lie E' is a discrete A-submodule.

Proof. Since all norms on C¢ are equivalent by [Sch84, Theorem 13.3], we may assume that ||.|| is
the maximum norm on C% and on C¥<. If po expp o (Liep)™' = 272  E;7" then the constant

C = sup{* Y[E;: i > 1}~ suffices and logp equals (350 E; 7)™ = 322 (=%, E; )" €
C{r ¢ where C{r}} = {>i%obiT": b € C} is the non-commutative power series ring with
7b = biT for b € C. O

With every Anderson A-module E = (E, ¢) is associated an Ac-module as follows. This construc-
tion is due to Anderson [And86]; see also [BP20, §4.1]. Let M := M(E) := Homp, c(E,Gqa,c) be the
Ac-module of Fj-linear homomorphisms of group schemes, where a € A and b € C act on m € M via

a:mr mo Qg and b: mwypom.

The o*-semi-linear endomorphism of M given by m — Frob, g, om yields an Ac-linear homomorphism
v oM — M. Note that after choosing an isomorphism £ = GZ’C of F,-module schemes we

obtain M (E) = C{r}'*? from Lemma B} where >, b;7" € C{r}'*? with b; = (b;1,...,b;iq) € C*4

corresponds to the morphism Gic — Gqc given by (z1,... ,xd)T — z” bi,jx?l. In particular the
endomorphism m +— 7a(c*m) = Frob, g, om of M corresponds to the endomorphism y, b;7°
7 (3, bit?) of C{r}**? which is injective. Since C is perfect, o* is an automorphism of Ac. So
o*: M — o*M is an isomorphism and hence, 7y is injective.
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There is a natural isomorphism of Ac-modules
(5.2) M/7map(c"M) == Homc(Lie E,C), m mod 7as(6*M) — Liem.

see |[And86, Lemma 1.3.4], where a € A acts on Lie F via Lie ¢,. Condition (5.1) in Definition
implies that J¢ = 0 on M /7y (0* M), where J := (a® 1 — 1 ® c*(a): a € A) C Ac. Therefore, T
induces an isomorphism 7y: 0*M ® 4. Ac[J ] = M ®4. Ac[J 7).

Definition 5.5. Let E be an Anderson A-module over C and define M (E) := (M (E), 7ar) as above.
If M(E) is a finite locally free Ac-module then E is called abelian and M (E) is the (effective) A-motive
associated with E. The rank of M (E) is called the rank of E and is denoted rk E.

For example, if C' = ]P’Ilﬁ-q, A=TF(t], 0 =c*(t) € C,and E = (G, ¢, pr = 0+7) is the Carlitz-module,
then E is abelian of rank 1 and M (E) = (C[t], 7ar =t — 0) is the Carlitz t-motive from Example

Remark 5.6. (a) By [And86, Proposition 1.8.3] the rank of E is characterized by the isomorphism
Ela](C) = (A/(a))®rkE for every a € A.

(b) If E is a Drinfeld A-module the rank of E from Definition equals the rank from Definition
by [Gos96, §4.5].

Anderson [And86, Theorem 1] proved the following

Theorem 5.7. The contravariant functor E — M(E) is an anti-equivalence from the category of
abelian Anderson A-modules onto the full subcategory of A-Mot consisting of those effective A-motives
(M, Tar) that are finitely generated over C{t}, where T acts on M through m — 7p(c*m).

5.2 The Relation with dual A-motives

In unpublished work [ABP02] Greg Anderson has clarified the relation between Anderson A-modules
and dual A-motives. For convenience of the reader we reproduce some of his results here (in our own
words); see also [BP20, §4.4].

Let F be a group scheme over C isomorphic to Gg,@ and let ¢: A — Endc(F) be a ring homo-
morphism. The set M := M(E) := Homp +.C(Gac, E) 9f F,-linear homomorphisms of group schemes
is an Ac-module, where a € A and b € C act on 1 € M via

a: M — g oM and b: h— moy.

There is a G*-semi-linear endomorphism of M = M(E) given by 1 — 17 0 Frobg g,, which induces
an Ac-linear homomorphism 7 : 5*M — M. Note that after choosing an isomorphism F =2 Gic of
F,-module schemes we obtain M (E) = C{r}? from Lemma (.1 where Y, b;7" € C{r}¢ with b; € C¢
corresponds to the morphism G,c — Gic given by z — >, b;z9" . In particular the endomorphism
m > Fy(6*m) = 1 o Frobyg, of M corresponds to the endomorphism >, b;7¢ +— (3, b;7%) - 7 of
C{r}¢ which is injective. Since C is perfect, & is an automorphism of Ac. So &*: M — 5*M is an
isomorphism and hence, 7;; is injective.

There is the following alternative description of M(E). Let C{7} be the non-commutative poly-
nomial ring over C in the variable 7 with 7b = /b7 for b € C. Consider the t-operation (called
x-operation in [BP20, §4.4]) which sends a matrix B = 3, B;7* € C{7}"*" with B; € C"™*"" to the
matrix Bf := (3, 6™ (B;)#)" € C{#}""*". Here (...)" denotes the transpose. The t-operation sat-
isfies (BC)T = CTB! for matrices B € C{r}"*"" and C € C{r}"*"". It induces an isomorphism of
Ac-modules

(5.3) t: M(E) = C{r}? = C{#}**4, m — ml,
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where a € A and b € C act on ! € C{#}'*? via
a:ml—ml Al and b: ! —b-ml.

Here A, € C{r}dxd = EHqu,C(GZ,c) & Endp, c(F) is the matrix corresponding to ¢,. Under this
isomorphism {: M(E) =~ C{#}'*¢ the &*-semi-linear endomorphism 7 + rm o Frob, g, of M(E)

corresponds to the G*-semi-linear endomorphism m! +— 7 - mf of C{#}'*¢. This gives M(E) the
structure of a finite free left C{7}-module which is independent of the isomorphism E = Gic.

Proposition 5.8. Let E be a group scheme over C isomorphic to GZ,(C’ and let p: A — Endc(FE) be
a ring homomorphism. Set E = (E, ) and let M = M(E) and #y;: 5*M — M be as above. Then
there is a canonical exact sequence of A-modules

(5.4) 0 — M — M —— E(C) — 0,

Liel —— 0.

(5.5) 0 — &N — 4 a1
m +——— (Liern)(1)

In particular, E = (E,p) is an Anderson A-module if and only if 7y; induces an isomorphism
Fip M ®@a. Ac[J ™Y = M @4, Ac[J7Y]. In this case, & factors through M /J?M and extends to
an Ac-homomorphism &y: M ® . (9(@@ N Uiens, V(c™*J)) — Lie E.

Under the above identifications E(C) = C? and Lie E = C% and t: M(E) =~ C{#}'*¢ these
sequences take the form

7—1 01

0 —— C{r}tx¢ — C{7}txd c? — 0,
mt ol —mt, Y —— o™ ()T
i 7
and
0 —— C{fpd —T 5 c{rpd ©_, ¢ 0.
mt — . Y ——
i

Proof. The map 07 is A-linear because a - m = @, o M+ (g 0 M)(1) = @4 (m(1)). The map dy is a
homomorphism of Ac-modules because a - m = ¢, o i — Lie(p, 0 )(1) = Lie p,(Lie (1)) and

b-m = moiy — Lie(moy)(1) = (Liem oLievy)(1) = b- (Liem)(1).

To prove that the composition of the two morphisms in (5.4]) is zero, we compute (7y;(5*m) —m)(1) =
1m o Froby g, (1) — m(1) = m(1) —m(1) = 0 for all i € M. To prove that &y o 73y = 0 in (5H), note
that since C is perfect, 5*: M — ¢*M is an isomorphism. Therefore, every element of %M(&*M ) is of
the form 7;(6*m) = 7 o Frob, g, and satisfies Lie(rh o Froby g,) = (Lien) o (Lie Frob,g,) = 0.
Furthermore, §; is surjective because through every point € E(C) there is a morphism m: G, c —
E with (1) = x. For example if we identify the F-module schemes p: E =~ Gic = SpecC[X7, ..., X4]

T

and G, c = SpecC[Y] we can take m: X; — ;Y where p(z) = (z1,...,24)". This 7 also satisfies

(Lierh)(1) = x and this shows that &y is surjective.
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To show that (5.4]) and (5.5]) are exact, we keep this identification and the induced isomorphism

M(E) = C{r}d. Ifm =3, bt € C{r}9 satisfies 0 = (1) = 3, b;, then

~ ~ v*vl)_m/:m/T_m/
for ' = > .b;(1 4+ 7+ ...+ 7°71). This proves that (5.4) is exact in the middle. Exactness on
the left holds because multiplication with 7 — 1 is injective on C{r}?. Clearly, (5.5) is exact on the
left because 7y is injective. If i =3, byt satisfies 0 = (Liem)(1) = by then m = (3, bi7i1) - 7 =

Fip (0 S, bt 1Y) € 7y (6* M), and this proves the exactness of (5.5). Moreover, under the ]L operation
m o= Y. bittis sent to ml = >, 7 for ¢; = ¢ (b;)T and so §1(m) = 3, b = >, 0%(¢;)T and
do () =bo = ¢ -

Finally, #;; induces an isomorphism 7,;: &*M ®a. Ac[J™!] = M ®a. Ac[J7'] if and only if
the elements of J are nilpotent on Lie . Since Lie E is a d-dimensional C-vector space, the latter
is equivalent to condition (5.]) in Definition If this holds, the morphism §q factors through
M/J?M, and extends to a homomorphism 8y: M ®4. O(€c ~ Uiens, V(c™J)) — Lie E because
O(éC N Uiens, V(e™]))/(J?) = Ac/J [

Definition 5.9. Let £ be an Anderson A-module over C and define M (E) := (M (E), 7;) as above.
If M(E) is a finite locally free Ac-module then E is called A-finite and M(E) is the (effective) dual
A-motive associated with E. The rank of M (E) is called the rank of E and is denoted rk E.

Remark 5.10. By the analog of [And86, Proposition 1.8.3] (see Proposition below) the rank
of E is characterized by E[a](C) = (A/(a))®rkE for every a € A, where Ela] := ker(¢,: E — E).
Together with Remark this shows that for an Anderson A-module E which is both abelian and
A-finite the Definitions and of the rank of E coincide.

The assignment £ — M(E) = (HomFmC(Ga,c,E),&*m — moFrob%Ga) is a covariant functor
because a morphism f: E = (E,¢) — E' = (F',¢') between abelian Anderson A-modules (which
satisfies f o, = ¢}, o f) is sent to

M(f): M(E) — M(E'), 1w fom,

which satisfies a-M(f)(m) = ggo(fom) = fo(paom) = ]\_Z(f)(aﬁ@) and b- M (f)(1h) = (for) oy, =
W) (b-1) and (7)o 6* M (1))(6%10) = (f 07h) o Froby, = (M () 0%y (o) for a € A,b & €
and 1 € M(E). The following result is due to Anderson; see [BP20, Theorem 4.4.1].

Theorem 5.11. (a) The functor M(.): E — M(E) from the category of Anderson A-modules to
the category of pairs (M TM) conszstmg of an Ac-module M and an isomorphism of Ac[J™!]
modules 7y : 6*M[J™Y == M[J™Y] is fully faithful.

(b) The functor M(.) restricts to an equivalence from the category of A-finite Anderson A-modules
onto the full subcategory of A-dMot consisting of those effective dual A-motives (M, 7y;) which
are finitely generated as left C{7}-modules, where 7 acts on M through m — Ty (5*m).

Proof. @ Let E and E’ be Anderson A-modules and fix isomorphisms E = G¢ a,C and B &~ G¥ a,C of Fg-
module schemes. Then under the identification Homp, c(E, E') = C{r}¥*4 from Lemma [5.I} a mor-
phism f: E — E' corresponds to a matrix F' € C{7}%*¢ and the induced morphism M (f): C{r}% =
M(E) — M(E") = C{r}? corresponds to multiplication on the left with the matrix F'.

Conversely, let g: C{r}% = M(E) — M(E') = C{r}¥ be a morphism, that is Fargn © 079 =
9 © Typ(p)- Since Ty (67m) := 1 o Frobgg, = m - 7 in M(E) = C{r}%, this means that the map
g: C{r}¢ = C{r}?¥ is compatible with multiplication by C{r} on the right. Therefore, g corresponds
to multiplication on the left by a matrix G € C{r}¥*?¢. This means that g induces a morphism
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of Fq-vmodule schemes f: E — E' with M(f) = g. Since g commutes with the A-action on M (E)
and M(E'), also f commutes with the A—actionv on E and E’, that is f is a morphism of Anderson
A-modules. This proves the full faithfulness of M (.).

[(b)] Let M be a dual A-motive which is finitely generated over C{7}. Then M is a finite free C{7}-
module by the C{7}-analog of [And86, Lemma 1.4.5], because it is a torsion free Ac-module. Any
C{#}-basis of M provides an isomorphism M = Homgp, ¢(Gq,c, E) =t M (E) compatible with 7; and
TVI(EB)> where F = Gic with d := rkcz3 M. The action of a € A on M commutes with 7;;. Therefore,
it is given by multiplication on M =2 C{7}'*? on the right by a matrix Al = S Bt € C{r}dxd,
The map ¢: A — C{r}¥¢ = Endp, c(E), a = A, = (3, 0" (B;)7")T makes E into an A-module
scheme. Sequence (5.5 shows that £ = (E, ) is an Anderson A-module which is A-finite, because
M= M(E). O

Let E = (E, ) be a (not necessarily A-finite) Anderson A-module and let M = (M, #y;) = M (E)
be as in Definition 5.9 The following crucial description of the torsion points of E is Anderson’s
“switcheroo”; see [ABP02] or [Jus10, Lemma 4.1.23].

Proposition 5.12. Let i € M and let x = §; (1) = m(1) € E(C). Let a € ANTF,. Then there is a
canonical bijection

{m' € M/aM: #y, (5" ) —m' =m in M/aM } = {2/ € E(C): po(z') =z}
(5.6) m’ — S (a (M4 —%M(&*m’))),

where &' == 61(a™ (m + ' — Fy;(6*m"))) is defined by choosing any representative ' € M of M €
M /aM, taking " € M as the unique element with 1 + m/ — 7y (5* ') = am”, and setting 2’ =
51 ().

If h = 0 both sides are A/(a)-modules and the bijection is an isomorphism of A/(a)-modules

(M/aM)" = E[a(C), m > d&i(a (0 —Fy(6*m"))) .

Proof. First note that the map is well defined. Namely, any two representatives of m/ € M /aM
differ by an for an element 7 € M. Then the corresponding elements i/ differ by 7 — Ty (0*0)
which lies in the kernel of §;. Therefore, 2’ is independent of the representative m/ € M. Moreover,
x' = 61 (m") satisfies @q(2') = o (81 (")) = 61(arn”) = §1(m) = x. If 7h = 0, then the map clearly is
an A/(a)-homomorphism.

If 2/ € E(C) with p,(2') = x is given, there is an m” € M with 6;(0”) = 2’ by (Ed) in
Proposition 5.8 and then d1(an”) = pa(01(m")) = @u(2') = x = §1(h) implies that m — am” =
Fy7(5% ') — 1m’ for an element 7’ € M. This proves the surjectivity.

To prove injectivity let 1},m5 € M be mapped to the same element 2/ € E(C) and let m/ =
a~ ! (m+ m} — 7y (5*m})) for i = 1,2. Then &, (]) = 2’ = 61 (rn4) implies by (E.4) in Proposition 5.8
that mf = m’l’ + #y7(6*n) — 7 for an element 7 € M. From this it follows that TM( *(mb + an —
m})) — (b + ai — 1)) = 0 and the exactness of (5.4]) on the left implies ] = 1} + an. O

The relation between M (E) and M(E) of an abelian and A-finite Anderson A-module E is de-
scribed by the following

Theorem 5.13. Let E be an abelian Anderson A-module over C, let M = (M, 1) = M(E) and
M = (M, #y) = M(E) be as in Definitions[58 and[59. Let M (M) = (Homa,(c* M, Q) /C) ) be
the dual A-motive from Proposition [{.3. Then there is a canonical injective Ac- homomorphzsm

= HomAC(a*M,QzC/C) — M, 5+,
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such that for every m € M
(5.7) monm, = Z(Resoon(éi*(q}i_lm)))q = Endp,c(Gac) = C{r}.
i=0

It is compatible with Ty and 7y, that is, the following diagram commutes:

(5.8) Hom (0" M, QY o) ————— M

o] [

*

6" Homa, (0" M, QY 0) = Homa (M, QY o) — L= 6° M1

[1]

Moreover, = is an isomorphism if and only if E is A-finite. In this case Z is an isomorphism of dual
A-motives =: M(M) = M(E).

Proof. 1. To show that the sum in (5.7)) belongs to C{7} we have to show that
Resoon(éi*(TA_/[i_lm)) =0 forall > 0.

By Proposition BTl the z-isocrystal M\ = M ®4. C((2)) is isomorphic to €, M\ d;r; With all d; > 0 by
Proposition The explicit description of M, dy,r; 0 ([B4) shows that there is a C[z]-lattice V' of
full rank in M = M ®4c C((2)) such that V' C T&(Uj*V) for all 7 > 0, and a positive integer s with
27V c 15,(0%*V). This implies

gnsti=b* (72" 7IYY C 2g*V for all integers n > 0 and 0 < j <.

We extend n € Homu. (0" M, Q}%/C) ton € Hom(c((z»(a*]\//f,C((z))dz). In particular, n(c*V) C
2z NC[z]dz for an integer N. For every m € M, there is an integer e with m € 27°V so that
(e HI=V (7, m)) € 2"¢"NC[z]dz. It follows that Ressn (6™~ (r,,°/m)) = 0 for all
n>N+eandall 0<j <s.

2. Fix an n € Homy. (0" M, Q}%/C). To define 11, € M we choose an isomorphism p: E =~ Gic
of F,-module schemes, let pr;: Gg,c — Ggq,c be the projection onto the j-th factor, and set m; :=
prjop € M(E) =Homp, c(E,Gqc) for j =1,...,d. We define m,, € M = Homp, c(Gq,c, E) via

p oIy, = (Z(Resmn(éi*(q}i_lmj))y-Ti> € C{r}¥?.

=0 j=1

In particular, (5.7) holds when m = m,; for j = 1,...,d. To prove that (51 holds for all m € M we
use that myq,...,mg form a C{7}-basis of M. Thus it suffices to show that (&7 is compatible with

(a) addition in M,
(b) scalar multiplication by elements of C, and
(c¢) multiplication with 7.

Since both sides of (5.7) are additive in m, [(a)]is clear.

[(b)] Let m € M and b € C and assume that (5.7]) holds for m. The left hand side equals (bm) o 1y =
b- (mo1my). On the right hand side we have Res n(5% (75, 7" (bm))) = b7 '
Therefore, (5.7) also holds for bm.

-Resoo (6™ (T]\_/[i_lm)) .



5 ANDERSON A-MODULES 95

We assume that (5.7)) holds for some m € M. The left hand side equals (7m) o7, = 7 - (m o 1hy).
The right hand side for 7m = 7)7(0*m) equals

o ) ) qt . o ) ) qt=VDgq .
Z (Resoo 77(61*(7']\_/[2_1 o TM(J*m)))> Tt = Z (Resoo n(é(’_l)*(TA}Zm))) 7!
i=0 =1
> . . ¢t .
= T- (Z <ResC>O n(&(’_l)*(T]\_/[Zm))) . TZ_l),
i=1
because TA_/;_l = Ui*T]\_/[l o.. .OO'*T]\_/[l OT]\_/[l and in the first line the term Ress n(0*m) for i = 0 vanishes

by [Vil06, Theorem 9.3.22] as n(c*m) € Q}% sc- Therefore, (B7) also holds for 7m.

This establishes (5.7) for all m € M.
3. To prove that the assignment Z: 1+ 1, defined in step 2 is C-linear, note that additivity is clear.

Let b € C. Then by is sent to b -, because

> ; d
po My = (Z(Resoo(bn)(6"*(5\7—1%)))(1.Ti>‘

=0 1

0 i . d
= (Z (Resoo n(c}i*(T]\}i_lmj)))q A

=0 j=1
= po mn o wb
=: po(bmy).

4. The map Z is also A-linear. Indeed, let a € A. Then an is sent to a - 77, because

oo i

. . q ;
Prjopomy, = Z <R€Soo (an) (5'1* (TA}Z_lmj))) T
1=0

= i(Resw n(a- c}i*(TA_Ji_lmj))>qi. 7t
i=0

— Z <ResOo n(6™ (3, (m; o cpa))))q 7t
i=0

= M O Pq 0y

%

=: prjopo (amy).

5. To prove that Z is compatible with 7p; and 7,; we must show that Z(5*n o 7ar) = 7y;(6*y,). This



5 ANDERSON A-MODULES o6

1 v —1 1 -1 1 -ix

is true because 7,/ = o"*1,; o...00%7),; o7y, implies Tps 0 77,/ = ¢""1,,, and hence,

=0

00 i d
. . q .
S b ) )
i=1

%) i d
= (Z (Resoo(c}*n) (c}i*(T]\_/[imj)))q : Ti)
=0 j=1
[ i d
= (Z (ResOo " (n(6(i_1)*(TJ\_/[imj))))q . Ti>
i=0

J=1

00 . d
- (St zim) )
7j=1

i=1
= ponmyolFrob,g,
= po*ﬂw(6*ﬁ%ﬂ7

where in the fourth line the term Resy n(c*m;) for i = 0 vanishes again by [Vil06, Theorem 9.3.22]
as n(oc*m;) € 9114@/0

6. We prove that the Ac-homomorphism Z is injective. If 7, = 0, then formula (5.7) implies
that Resoon(éi*(TA}i_lm)) = 0 for all # > 0 and all m € M. We must show that n = 0. Since
n € Homy.(0"M, Q}%/C) C Hom(c((z»(a*]\/i,C((z))dz) is z-adically continuous with o*M :=
0*M ®4. C((2)), the preimage U := n~!(C[z]dz) is a z-adically open neighborhood of 0 in o* M.
By Proposition B.15] oM =U + Usen, 5’i*TA_4i_1(M). Since the C-linear map Resscon is zero on U

and also on the second summand, it is zero on all of o* M. This implies that n = 0.

7. If Z is an isomorphism, then M = M (E) is locally free over Ac of rank equal to rk E, because M
and hence Hom 4. (c* M, Q}%/C) are, as F is abelian. So E is A-finite.

8. Conversely, assume that E is A-finite, that is, M is locally free over Ac of rank equal to rk E.
Since also M and hence, Hom 4. (0" M, ch /C) are locally free over Ac of rank equal to rk E/, as E is
abelian, an argument analogous to [Tae09al Proposition 3.1.2] shows that coker = is annihilated by
an element a € A (and not just by an element of Ac); see also [BHI11l, Corollary 5.4]. We use this to
prove the surjectivity of = in the next step.

9. To prove that = is surjective, when E is A-finite, take for the moment an arbitrary element
a € ANTF, and let n € Homy. (0" M, QZC/C) be such that n — (6*n o 1p) = an' for some 1 €
Hom 4. (0" M, ch/c), where ¢*n € Hom 4. (M, Q}%/C) and 6*nory € Homa,(c*M, Q}%/C), as M(E)
is effective. Then my,, — 75;(6%1m,) = am,y by parts 4 and 5 above. Moreover, let m € M be such that
m — 1p(0*m) = am’ for some m’ € M. Then we have a telescoping sum

F* (1 tm) —o*m = aZéj*(TA_/[j_lm/) forall ¢ > 0.
=0
Since 7n'(c*m), 5*(n(oc*m’)) € Q}%/C we have Resoon/(0"m) = Resoo 6% (n(o*m’)) = 0 by [Vil06,
Theorem 9.3.22]. Finally, by part 1 above there is an integer N such that n(&"*(TA_A,"_lm)) and
7' (5™ (13" 'm)) lie in C[z]dz for all n > N. Since a™! € zF,[2], also a_ln(c}N*(T]\_/[N_lm)) €
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C[z]dz. For all such n > N this implies

(moiny)(1) =

-

I

~
I
o

~
I
o

I

~
Il
o

Il
=
7N 7N /N /N /N
=
@D
n
8
—
3
|
Q0
3
o
\]
S
=
—~
R)
<
*
S
<d
AR
3
=
N—

(59) = i iReSoon(Uj (af lm/)))q - i(zil Resoo 1)(67* (7, 1m’))>¢1
=0 =0 i=0 “j=0
= <§:0Resoo77(é’j*(7'Mj 1m’)))q
A

<
Il
o

N . .
= > Resw n(&”*(TA}J_lm/))
7=0
= Ress a_ln(éN*(T]\_/[N_lm)) — Resoo a” 'n(a*m)
= —Resa 'n(c*m),

where the independence of n > N of the expression in the seventh line implies that this expression
lies in Fy. Since (m o 1y )(1) = m(1(a™* (i, — 73, (6%1y))) by definition of 41, it follows that the
diagram (5.I0) described in the next corollary is commutative. In this diagram the left horizontal
arrow is injective, because if n € (M (M)/aM (M))" satisfies n(c*m) € aQ}Lx/Fq for all m € (M /aM)7,

then (M /aM)™ ®p, C = M /aM implies that n(c*m) € aQ} /C for all m € M, whence n € aM (M).

This arrow is surjective because both Hom 4., (M /aM)7, A/F /aQA/IF ) and (M(M)/aM(M))"
are locally free A/(a)-modules of rank rk £, and hence, are finite dimensional Fg-vector spaces of the
same dimension, because E is A-finite. ) )

_ This implies that = induces an isomorphism (M(M)/aM(M))" = (M(E)/aM(E))". Since
(M /aM)™ ®r, C = M /aM for every dual A-motive M over C, we conclude that = is an isomorphism
M(M)/aM (M) =~ M(E)/aM(E). In particular if we take the element a € A from part 8 which
annihilates the cokernel of E this shows that coker(Z) = 0 and that = is an isomorphism. Altogether
we have proved the theorem O

Along with the proof of the theorem we also showed the following

Corollary 5.14. Let E be an abelian and A-finite Anderson A-module, and let M(E) and M =
M(E) be its associated (dual) A-motive. Let a € A and consider the dual A-motive M(M) :=
(HomA(C (o*M, Q}% /C), TX/[) from Proposition [[.3. Then the following diagram consisting of isomor-
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phisms of A/(a)-modules is commutative

(5'1(1){)0mA/(a)((M/aM)T, QL g /a0 g ) = (M(M)/aM (M) = (M(E)/aM(E))
e e
(hy:m e n(o*m))  —————  n = ﬁfv
|
P 61 (a™ (mhy — Ty (6% 1Ry))

where the left horizontal arrow sends n € (M(M)/aM(M))T to hy = (10 0")|(am/anr), where the
right horizontal arrow is the isomorphism Z from Theorem [L.13, where the left vertical map is (up to
a minus sign motivated by Theorem [5.77 below) Anderson’s isomorphism [And86, Proposition 1.8.3]
which sends h € Hom 4 (o) (M /aM)7, Qh/Fq/th/Fq) to the point P € Ela](C) satisfying m(P) =
—Resoo ath(m) for all m € (M /aM)", and where the right vertical map is the isomorphism 1m
&1 (a=t(m — 737(6%m)) from Proposition [5.12.

Proof. The proof of the corollary was given in step 9 of the proof of Theorem [E.T31 O

The theorem naturally leads to the following

Question 5.15. If E is an abelian and A-finite Anderson A-module, the inverse of the isomorphism
= from Theorem defines a perfect pairing of Ac-modules

M(E) ©a. 0" M(E) — Qe m@o m — E7(m)(o"m).

Is it possible to give a direct description of this pairing, that is an explicit formula of the differential
form Z=1(m)(c*m) in terms of m and m ?
For Drinfeld F,[t]-modules the question has an affirmative answer as follows.
Example 5.16. Let C = IP’Ilpq, A =T,t], Ac = C[t], 0 := c*(t), and J = (¢t —0). Also we choose z = 1
a

as the uniformizing parameter at co. Then ch/c = C[t] - dt and dt = —2% dz. Let E = (E,¢) be
Drinfeld F,[t]-module given by E = G, c and

Yt = ¢9+¢a107+---+1/1a7.0TT

with a; € C and «, # 0. Then the powers 1y := 7% for k = 0,...,r — 1 form a C[t]-basis of
M = Homp, c(G,, E) on which 7; acts via 7j;(7") = 77! for 0 <i <r —1 and

. -1 -1
Ta(TT) = T = oy e =Wy e TT OVt e T T 0 Y ey

—r
QAr_1 /Oj?

. 1 _r —(r—1) —r -1
= (t—-0)/a? —af Ja? 7—...—al | Ja2 77",

Thus with respect to this basis of M and the induced basis of 5*M the C[t]-linear map 7,; is given



5 ANDERSON A-MODULES 99

by the matrix

O 0 (t_e)/afT

1 —af ' Jal
=10

0 B R T Y

In particular £ is A-finite.
On the other hand the powers m; := 79 for j = 0,...,7 — 1 also form a C[t]-basis of M =
Homp, c(E,Gg4) on which 737 acts via () =7 for 0 < i <r —1 and

r—l) r r—1

= T = 1/11/%0%—1/19/%—Tﬁal/aroT—u'—Tﬁar,l/aroT

= (t—0)/oy —aifoy -T—...—p_1/ap-T"L.

T (T

Thus with respect to this basis of M and the induced basis of 0*M the C[t]-linear map 7,/ is given
by the matrix

0 ...................................... 0 (t — 6)/&7»
I —ay /oy
[ R 0o 1 _ar;l/ar

In particular Eis also abelian.
Let ny € M(M) = Homa.(c*M, ch/c) for £ =0,...,7 — 1 be the basis dual to (c*m;); which

G0

is given by n¢(oc*m;) = 0j0dt = ——7 dz, where J;, is the Kronecker delta. We want to compute
the matrix representing the isomorphism = from Theorem [5.I3] with respect to the bases (1), and

(g )x. For this purpose we have to compute (13, 'm;) € 0*M ®4. C((2)) modulo 22, because

il (@] 22 C[z] - 0*mj) C C[z]dz and the elements of the latter have residue 0 at co. We set a; := 0

for ¢« > r and observe ﬁ = 1Z%5; € 2C[z]. By induction on i one easily verifies that the matrix
d~1.. .. .5"d ! which represents é'i*TJ\_/[i_l = TA_41 0...0 61'*7']\_41 with respect to the basis (m;);, is

congruent to

vl*(?ﬁ‘bi) V(i—l)*<1cﬁ22> ................ 161122 O o 0
i (B212) 0 (flf} ch P 1@_2 -
z*<<134r_—10§> < (i—1)* (?T_—zj) ______________ a{‘_l—elzz 1
w*(loﬁ“ ZZ> < (i—1)x (‘13‘7“_—199 ________________ ‘13‘7”_—192 0
<?—+92> 5 (i—1)x (al—_lgzz) .............. 101” ;2 O o 0
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modulo 22 C[z]"*" for i = 0,...,7 — 1, and to
0 0. v<r—1>*< ¥ 2 > ........ v<i—r+1>*<M)
U 1—-6z ) 7 11— 0z
v(z—r+1)*( Qr 2 )
1-0z
() e e 0
fori=r—1,...,2r — 2, and to the zero matrix for i > 2r — 1. It follows that
. . —gi—j)= y i<
six( —i—1 _ o (Qet14i—j) for j <1,
and hence, m; o m,, = — Z?Tf agilﬂ T = k—TJ STy ZTkakMH for k =i — j. These equations
are equivalent to =(ng) = m,, = — 2:%) ¢ ozz 441"k Therefore, Z is represented with respect to the
bases (n¢)¢ and () by the matrix
al a2 ........................... a?”
o ag” _________ ol 0
(5.11) X =-| .7 7 | ecL(c) c GL.(C}).
ol
ol 0 0

=0 Qe 0
. 0 af o qg” .
(5.12) X -9 = — : "0 = o.5%(X),

Br_10 - Br_1r1

denotes the inverse of the matrix X from (5.I1) then the pairing from Question [5.15]is explicitly given
by

r—1 r—1 r—1 r—1
frrm fiotmy — > > fiBufudt
k=0 j=0 =0 k=r—1—j

with fi, f; € C[t] for 0 < j, bk <7 — 1.
(b) More generally let E = (E,¢) be an Anderson F,[t]-module given by E = G¢ o.c and

= Ag+Ajo7+...+Ag07°
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with A; € C¥™9, such that (Ag — )¢ = 0. Assume that A, € GL4(C). Then (with the Kronecker
delta) the elements

61,1/Tk (517,,‘7:‘1}C
Mgy = : L x>

5d,1/7'k 5d’quk

forv=1,...,dand k=0,...,s — 1 form a C[t]-basis of M = Homp, c(Gq, E). And the elements

z1
mjvl’ = (51,1/Tj, e ,5d7V7—j) : — ':ngj
Zd
forv=1,...,dand j =0,...,5—1 form a C[t]-basis of M = Homp, c(&,G,). A similar computation

as in (a) shows that with respect to these bases of M and M and the induced bases of &*M and o* M
the C[t]-linear maps 7,; and 7ps are given by the matrices

[0 0 (t— Ag) - 5% (A1)
1dg v
.
O o 0 Idy _5—(8—1)*(As_.1) S5 (AT
and
O o 0 (t— Al - (a7HT
14, Ay
2= | 0 5
0 0 Idg —AT . :(As_l)T

In particular E is A-finite and abelian of dimension d and rank r := sd and pure of weight —s.
Let g\ € M(M) = Hom 4. (0" M, ch/c) forA=1,...,dand £ =0,...,s— 1 be the basis dual to

(M) () which is given by ngx(0*m;,) = 6;0, 1 dt = —%# dz. A similar computation as in (a)

then shows that = is represented with respect to the bases (1) ,x) and (17g,) ..y by the matrix

Aq Ag oo A,
U*_AQ 6*_A3 ............. _J*AS 0
X = — € GL,.(C) ¢ GL,(CJt))

s,

5(s—i)*AS 0 0

which satisfies
t— Ag [ 0
0 G My o F*A, 3
Xl - - - 0| =
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Corollary 5.17. Let E = (E, ) be a Drinfeld A-module. Then E is abelian and A-finite.

Proof. Fix an element t € A\ F, and consider the finite flat ring homomorphism A= Fy[t] — A. By
restricting ¢| 7: A — Endp, ¢(E) we view E as a Drinfeld Fy[t]-module. Then M(E) and M (E) are

finite free modules over A¢c = C[t] by Example Therefore, they are finite and torsion free, hence
locally free modules over the Dedekind domain Ac. O

5.3 Analytic theory of A-finite Anderson A-modules

We equip the C-vector spaces of matrices C%*? and vectors C? = C4! with the maximum norm ||. ||
given by ||(x;;)| := max{ |x;;|: all 4,5 }. Then || BC|| < ||B]| - ||C| for all matrices B,C. All norms on
these spaces are equivalent by [Sch84, Theorem 13.3] and induce the same topology.

Lemma 5.18. Let f: Gic — Ggic be a homomorphism of Fy-module schemes over C. Then f induces
a continuous Fy-linear map f: GiC(C) =Ct— Gg:c((@) = C¥. More precisely, there is a constant
C € Rxq such that ||f(y)|| < C - |ly| for every y € C* with ||y| < 1.

Proof. Under the isomorphism Hoqu7C(GZ7C,Gch) >~ C{r}¥*¢ from Lemma [5.1 we write f =
>0 Bt with B; € C¥*? and B; = 0 for i > 0. Let C := max{|Bi]|:i > 0}. For y € C?
with ||y|| <1 we have ||o™(y)|| = ||y||? < |ly||, and therefore

Il = | Y B w)|

i>0
< max{ |Bio™(y)||: i > 0}
< max{|Bil| - [o"(¥)]:i>0}
< Oyl
Since f: C* — C% is F-linear, this shows that f is continuous. O

Definition 5.19. Fix an a € A\ F,; and an z € E(C).
(a) A sequence x(g),7(1),T(2),--- € E(C) is an a-division tower above x if

Pa(T(n)) = T(p—1y foralln>0 and Pa(T(0)) =T

(b) An a-division tower (z(,))n>0 is said to be convergent if for some (or, equivalently, any) isomor-
phism p: F = Gic of F,-module schemes, nh_)n(f)lo p(%(r)) = 0 in the C-vector space GZ’C((C) =
ce.

Proof. We must explain, why the definition in @ is independent of p. For this purpose let p: £ =~
Gic be another isomorphism. Then gop~! € AUth,C(GZ,c) induces a homeomorphism pop~': C? —
C? by Lemma BEI8 It follows that limy—oo ||p(z(n))|| = 0 if and only if limp e [|3(z()|| = 0 as
claimed. O

If E is A-finite (or abelian) then a-division towers exist above every x. This follows from The-
orem [5.21] (or respectively Proposition [(.45)(a)| below). But there may or may not exist convergent
ones.
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Theorem 5.20 ([ABP02]). Let E be an Anderson A-module over C, let x € E(C), and let a € ANTF,,.
Then there is a canonical bijection

{{eliek: expg (§) =x} == { convergent a-division towers above  }

5.13 Lie g, "
(5.13) ; — (owp (Liegy"(©))
If p: B =~ Gic is an isomorphism of F,-module schemes and Liep: Lie B - C? is the induced
isomorphism of Lie algebras then

(5.14) lim Lie(po @it op™)(p(x(m))) = (Liep)(€)

n—o0
holds in C? for all € € Lie E with T(p) = €Xpp (Lie go;"_l(ﬁ)) form > 0.

Remark. Equation (5.14) is the analog of the fact, that for a real or complex Lie group G the

exponential function exps,: Lie G — G has derivative 1 near the identity element of G' (with respect

to any coordinate system). For example li_I)n a” (exp(a‘"ﬁ) - 1) = ¢ for G = G,y,, where £ is any
n o

complex number and a € Z ~\ {—1,0,1}.

Proof. The element z(,) := expp (Lie ¢, "7 1(¢)) € E(C) satisfies @q(2(,)) = expg (Lie p;™(£)). This
equals x(,_1) when n > 0 and it equals  when n = 0, hence, (a:(n))n is an a-division tower above x.
By Lemmas 5.3l and [5.4] it is convergent and so the map is well defined.

If £,¢ € LieE satisfy expg (Liep,"(¢)) = expg (Liep,™(¢')) for all n > 0 then Lemma 5.3
implies that Lie ¢, ™(§) and Lie ¢, "(£’) converge to 0 in Lie E and therefore Lie ¢, ™(§) = Lie ¢, "(£)
for n > 0 by Lemma [5.4l This implies £ = £, and hence the map is injective.

To prove surjectivity, let (z(,))n be a convergent a-division tower above x. Since (x(,)) con-

verges to 0 there is an ng € Ny such that logg (z(,)) exists by Lemma (.4l for all n > ng. We

set £ = LiecpZOH(logE (az(no))). Then LiengH(logE (x(n))) = LiecpZOH(logE (cpg_”o(a:(n)))) =

Lie prot! (logE (:E(no))) = ¢ for n > ng by Lemma 0.4l Therefore, x(,) = expg (Lie (,0;"_1(5)) for
(T(ne)) = @a0 " (expp (Liep,™71(€))) =

all n > ng, and for n < ng we compute z(,) = @,° "

expp (Lie gp;"_l(f)).

It remains to prove (B.I4]). With respect to the coordinate system p and Liep we write ¢, as
a matrix A, = popgopt =3 A7 € C{r}?? and expp as a matrix Y 200 F; 7! := po
expp o (Lie p)~! with Ay, E; € C*d and Ao = Lie(po g, 0p~t) and Ey = Idy. By replacing p by
p:= Bop for a matrix B € GLy(C) c C{r}¥*¢ = EndFmC(Gic) we can write Ay g = ¢*(a)(Idg+N)
with strictly upper triangular (nilpotent) N having only entries 0 and 1. This replacement is allowed
because pop~' = B is an automorphism of the C-vector space C%. Then Lie(po@lTlop™) (,o(x(n))) =
AZ"El Sy Bio™ (A;g_l Lie p(¢)). We consider the maximum norm ||. || on C¢ and C%*4. For i > 0
the term AZ’ngEiai* (A;g_l Lie p(£)) equals

(5.15) (@) (1dg +N)" 1 E; ¢ (a) " ) (1dg +N) " Lo (Lie p(€))

and has norm less or equal to ||E;| || Lie p(¢)||7 |c*(a)|~@ ~D®+D) | because ||.|| is compatible with
matrix multiplication and |[Idg +N|| = 1. Since |c*(a)| > 1 and expp converges on all of Lie £, that

is lim;_,o0 || E; | || Lie p(€)]|7 = 0, the terms (5.15) go to zero uniformly in i when n — co. Therefore,
limy, s 00 AZBl Yo Eio™ (A;g‘_l Liep(§)) = AZBlEOA;S_l Lie p(§) = Lie p(&), proving (B.14). O

From now on we assume that E is A-finite. The following theorem of Anderson [ABP02] is crucial
for the theory of uniformizability. Let a € A \ F, and set M, := l'£1]\/[v/a"M. If UL, Us are the
maximal ideals of A which contail} a then @1 Ac/(a™) =TI;_; Acw, and My, = [;_; M ®a. Ac,y,. The
latter equals the completion of M at the closed subscheme V(a) C Spec Ac. Since V(a) C €c N\ D¢
there are natural inclusions O(€c \ D¢) < [[;-; Ac.; and M @4, O(Cc \ D) < M,,.
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Theorem 5.21 ([ABP02]). (a) Let E be an A-finite Anderson A-module and let (M, #y) = M(E)
be its dual A-motive. Let m € M and x = 61(mh) = m(l) € E(C). Then Proposition
defines a canonical bijection

(5.16) {m' e My: #y;(5"m') —m' =m} = {a-division towers (Z(n))n above x }

as follows. Let 1/ € M, satisfy 7y;(5*m') — m' = . For each n € Ny choose an 1nl, € M with

' = 1!, mod a"*'M,. There is a uniquely determined m! € M with a"* ! = m + 1m!, —
Tap(0%my,). Then x () = 81 (my,).

(b) Let m/ correspond to the a-division tower (x(y))n under the bijection (5.16). Then the following
are equivalent:

(i) m' € M®AC O(€c~D¢) C M,,
(ii) m' € M @a. O(€c \ Usen., V(6™J)) C M,,
(i4) (2(n))n s convergent,

(iv) with respect to some (or, equivalently, any) isomorphism p: E =~ Gic of Fy-module
schemes the sequence c*(a)" - p(w(y)) is bounded in the C-vector space GZ’C((C) = C¢.

If these conditions hold and if £ € Lie E is the element from Theorem that corresponds
to the convergent a-division tower (T(n))n, that is v, = expg (Lie o "~ 1(€)) for all n, then
¢ = 6o(m/ + 1) for the map &y: M — Lie E from Proposition [5.38.

Proof. 1. By Proposition [5.12] the definition of x(,) is independent of the chosen 77;,. In particular
we can take 1, | = 1y, and ;| = amy, to obtain . (z(,)) = d1(amy,) = 61(my_) = T(,—1) and
va(x(0)) = 01(armg) = 61(m) = x. This defines the bijection (E.I6]). Note that we explicitly describe
its inverse in part 5 below.

2. To prove [(b)] note that trivially [(b)(i)={(b) ()] and [(b) (iv)[={(b)(iii)} because |¢*(a)| > 1.

3. To prove |[(b)(iii)={(b)(iv)| for any isomorphism p: E = Gic of F,-module schemes, we write
popsopt = A, = > j>0Daj e C{r}¥xd = Enqu,(c(GiC) with A,; € C>4 and A,; = 0
for j > 0. By replacing p by 5 := B o p for a matrix B € GLy4(C) C C{r}¥*? we can write

Ag o = c¢*(a)(Idg +N) with strictly upper triangular (nilpotent) N having only entries 0 and 1. This
replacement is allowed because p o p~! = B is an automorphism of the C-vector space GiC(C).

Consider the maximum norm |z| = max{|x;|: i = 0...d} for * = (z1,...,24)7 € C? and the
norm ||y| := |lp(y)|| on y € E(C) induced via p. As A;(l] = ¢*(a)"}(Idg —N + N? — ...) we find
lz]| = 1Az 080z < [e*(@)] " [Ago 2]l < |c*(a)l "M e* ()] - |zl = ||z]|, whence [|Ago 2l = |e*(a)]- ]
If n> 0 then ||z, || < 1 by assumption |(b)(iii)} whence 67 p(z )| = llxm) |7 < [|#0y || for j > 0.
So [c*(a)| > 1 implies [[Aqj o7*p(zm))ll < |c*(a)] - |zm)ll = Qa0 p(@(m))]l for n >0 and all j > 0.

Thus [|2(m—1) | = l[a(@m)ll = | 22550 Baj 07 pl2m))]l = [ (@)] - |2 || for n>> 0, and this yields the
boundedness of [c*(a)|" - |2l and ¢*(a)™ - p(2(y))-

4. To prove |(b)(iv)—{(b)(ii)| and |(b)(1)=={(b)(iii)| we choose an isomorphism p: F =~ Gic of Fy-
module schemes and consider the induced Ac-isomorphism f: M == C{#}'*¢, m s ! from (53).
Moreover, under the finite flat ring homomorphism F([t] — A, t = a we have Ac/(a") = Ac ®cyy
C[t]/(t") and ];_, Ac,; = Ac ®cpy C[t], as well as O(€c \ D¢) = Ac ®cpyy C(t); see B.3). We also
abbreviate 6 := ¢*(a) and for a real number s we use the notation

(5.17) Clg) == {2 bt':b; €C, lim [b;|-0]* =0}  and  C(t) = C(k).
i=0 1—00
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We consider M as a finite (locally) free module over C[t] of rank r. We choose a C[t]-basis B of
M and use it to identify M, = C[t]®" and M ®a. O(€c ~ D¢) = C(H)®". Let ||.|| denote the
maximum norms on C", C¢ and C'*?, and consider the norm |jy|| := ||p(y)|| on y € E(C) and the
norm || 3, ¢ |, = sup{|lc;||: i > 0} on C{#}**? and M where ¢; € C'*?. For all s € R consider
also the norm || >, b;t*||, := sup{||b;| ]c*(a)\“: i > 0} on C[t]®" and M where b; € C". When s < s
these norms satisfy the inequalities ||. ||, < ||.]|,,. Note that C(%)®" is the completion of C[t]*" with
respect to the norm || . ||,, which therefore extends to C(z)®".

5. We now assume that |(b)(iv)| holds for our fixed isomorphism p. For each n € Ny we let
(m;;)f = plagy)’ 70 e C4F0 c cf{Fpt* = A,

We set m” | :=m and x(_y) := x. Then §;(mhy;,) = x(, for all n > —1, and hence, 6, (trny, —my, ;) =
©a(T(n)) = T(n—1)y = 0 implies that trn) —m) | = yn — Ty (0 yy) for an element y, € M for n > 0.
Moreover, the elements (¢! — mg_l)f = ()" (Aa)T = (Ml_)T = plam)” - (AT = plxp-1)T
lie in the finite dimensional C-vector space W := @jzo C™4#i where ¢ is the maximal 7-degree of
the entries of the matrix (A,)T € C{7}?*? corresponding to .. If (y,)" =: > ;) € C{#}'*¢ then
(!l —m/_ )T =2 el —F- > ;7 = > (¢;j —5*(cj—1)) 7. Writing (tra], — ;)T = Z] N
we compute 0 (c] 1) = ¢; — ¢;. Together with ¢; = 0 for 7 > 0 this implies ¢; = 0 for all j > ¢ and

Zy U=k (&) for j < £. So (y,)! € W. In particular, the series 0, y,t" in M, = C[¢]*®"
satlsﬁes
o0 o0 o0
(5.18) %M(ff*(zoynt")) —(Zoynt”) Zo(t"”/ — ) =y =,
n= n= n=

whence ' = "7, y,t™ by Proposition

Moreover, our assumption [(b)(iv)] that |c*(a)|™ - [|p(x(m))” ]|, is bounded together with |c*(a)|™ -
[t |l = 1" (@)]" o)™ (Aa)ll, < le* (@)™ - lp(z )" Il - |(Aa)T[l implies that [¢*(a)|" - || (¢, —
m!_ O, HZ?:O c*(a)" - ¢;79]|. = max{|c*(a)" - &||: 0 < j < ¢} is bounded, say by a con-
stant C; > 1. Therefore, ||cU=R*(&,)| < ]c*(a)]‘”qkijCi]kiJ < |e*(a)| ™™ Cy for 0 < k < j and
thus ||¢j|| < \c*(a)\_"/qzCl, whence |ly,|, < ]c*(a)]‘”/qul. Fix an s with 0 < s < ¢~%. Since

C is complete with respect to |.| the restrictions of the norms ||.||. and ||.||, to the finite dimen-
sional C-vector space W are equivalent by [Sch84l Theorem 13.3]. Thus there is a constant Cy with
|.]ls < Co-|.|l on W. Since 1! € W we obtain in particular [[t"*1m/||, = |¢*(a)[5™+V|m! ]|, <

e (@)D [l Co = e (@) S0V [ play) [ = |e*(@)] "=+ (a)|" | p(()[|C2 for all m, and
hence, lim,,_,« [[t"T 10|, = 0. Moreover, |y,l. < llyall,Co < |c*(a )]‘”/qung for all n, whence
im0 [|[Ynt™]l, = limp—soo [[ynll, [c*(a)|*™ = 0. This shows that even m’' € C(#)®" and equation
(5IR) holds in C(z)®".

The matrix ® € C[t]"*" representing 7;; with respect to the basis B has determinant c- (t — )¢ for
ac e C” due to the elementary divisor theorem and the condition that coker & = M/ %M(&*M ) = C?
is annihilated by (t — 0)¢ € J%. Let ®*! € C[t]"" be the adjoint matrix which satisfies ®*1d =
c-(t —0)?1d,. Recall the element be = [T, (1— 9%) € O(¢¢) from Example B:20(b) which satisfies
b = —5(t—10)- o*{;. Multiplying (5.I8) with 0( ((iid)cd 24 setting o' := a*(ﬁg)d -’ € C(&)®" and
applying ¢* we obtain

1 . 1 .
I % *(p ch)ad o (I)ad l>
y=9 ((—e)dc“ (b ™ m + e @™y
Since 0*(y') € C(4%)®" this shows that y € C(4%)®" and iteratively y' € C(ﬁ@” for all s’ = ¢*s,

whence y' € M ® 4. O(¢c) and 11/ = a*(ﬁg)_dy’ € M®a, U*(@E)_d(’)((":(c). IfPe @C\Ui€N>O V(o™ J)
is a point, that is P = V(I) for a maximal ideal I C O(€¢) with I # o™ for all i € N-g, such that
P lies in the zero locus of 6™({; ), then we make the
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Claim: m’ € M ®Ac O@C p for the local ring Oé@ p of Ccat P

When the claim holds for all those P, we derive 1/ € M ®4, O (&c Uien-o V(o™J)), that is assertion
(OI0) )

To prove the claim let n € N5 be the integer with t —07" € I, which exists because a*(ﬁg) vanishes
at P. Thent—07""" € 57*I and ¢79*I # J for all 0 < j < n. Thus Tar: 6*M®AC Oéc,\/(&j*l) = M@AC
Og..v(ss1) 15 an isomorphism. For j = n it follows from o*({;)|;=9 # 0 that o*(¢;) € (Oéc,\/((r"*l))x
and m’ = o* (Q)‘dy’ € M ®a, Og¢..v(sn1)- Therefore,

m' = o (7 (m+m)) € o* (7, (M ®ac O yignep)) = M @ac O, ygin-vep

and iteratively this yields i/ € M ® Ac (9€'(C V(&) for j =n,...,0. So our claim and with it assertion

(b)(i1)|is proved.

6. Conversely, to prove [(b)(1)F={(b)(iii), we keep the notation from part 4 above and write m’ as

S bit' € C[t]®" with b; € C™ and assume [(b)(1)} that is lim; o b; = 0 in C". For each n € N we
n o

set m/, := > bit' € M and ', ;= 3. bit'. Then
i=0 i=n+1

mh =t — (G mL) +ml) = T (Fy (6tml,) —ml,) € M.

Note that the entries of 7! are polynomials in C[t] whose degree is bounded by a bound which is

independent of n and only depends on the degrees of the entries of 7 and of the matrix ® € C[t]"*"

representing 7,; with respect to the basis B. It follows that all 7i], lie in a finite dimensional C-vector

space V. By [Sch84] Theorem 13.3] the restrictions of ||.|, and ||.|, to V are equivalent. From
lim; 00 b; = 0 it follows that lim,_, |25, |, = 0. Thus |7y (5*mL,)|, < [, >nH1/q implies
lim, oo ||, = 0, and hence, lim,, s [|/2?], = 0. If (M)l = > c;j7 € C{#}*? then n > 0

implies |77y ||, = max{|[c;: j > 0} <1 and thus p(z(,)) = p(d1 (7)) = >, 07*(c;)T satisfies
lzll < max{[lo?(cs)ll: > 0} < max{lle;l|: j >0} = [y, .

Therefore, (x(,))n is convergent. Thus |(b)(i)| implies |(b)(iii)

7. Finally, for the last statement of the theorem we keep the notation from parts 4 and 6 above
and assume moreover, that m' = Y 7°b;t' satisfies [b)(ii)}] Let 1 < s < g. Then SpC(z) C
¢e~ Uienw, V(o™.J) and this implies >0 bit" € C()®", that is lim;_.o [|bs]| |¢* (a)|¥ = 0; see (5.17).
Fix a real number ¢ > 0 with ¢ < |](i>HZ//§q_1). Then there is an ng € N such that ||b;]| |¢*(a)|**/7 <

|b:] |¢*(a)|*® < € for all i > ng. So n > ng implies 7S, < s, <e< H<I>|| e/ and
17y (@ )y < NI, - 16705, = 11, - [R5l < (@,

and hence, [y, < |c*(a)|_("+1)5/q||<i>\| el/a. We write ()t = 37, ;7" € C{#}*?. This time we
use that by [Sch84] Theorem 13.3] the restrlctlons of [[.,, and [|.|[; to V are equivalent. So there
is a constant C3 such that |||, = sup{|lc|: i > 0} < \c*(a)\_(”“)s/qH(ﬁ”s/qal/qu for all n > ny.
By enlarging no we may assume that ]c*(a)]_("+1)s/q|]<i>Hs/q€1/qC3 < 1. Therefore, |l¢;|| < 1, whence
o™ e = [leil| < |leg]|? for all i > 1. So

lo(61(7)) — (Lie p) (So(rm)) | = 113 o™ (e)™]| < |e* (@)1 @]¢) eC.

i>1
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By choosing the isomorphism p: F =~ Gic appropriately in the beginning we may assume that
Lie(po ¢, 0 p~1) = ¢*(a)(Idg +N) for a nilpotent matrix N with only 0 and 1 as entries. This yields

(5.19) lim, o0 || Lie(p 0 @2 0 p=1) (p(61(1f2)) — (Lie p) (o (2)))|| <
< im0 e (@)D= |B]|, 2CE = 0

By Theorem we have limy, o0 Lie(p o @2 o p™1) (p(81(1]}))) = (Lie p)(£). So we must compute

(5.20) Lie(po @it! o p™") o (Lie p)(do(rhy,))

(Lie p) (6o (t"+ il
= (Lie p) (0o (i + 1, — Ty (5710y,)))
(Lie p) (d0(

Lie p) (8o(r 4 1ay,)) .

Since the projection 6y : C(7 >@d — M /JM = Lie E from Proposition 5.8is continuous with respect
to ||, and im0 ||/ — 10, ||, = limy, oo [|4, ]|, = 0, we find limy,_,o0 8o (1R +172),) = o (TR +17'). In
combination with (5.19) and (5.20) this proves that & = dg(m + ) and establishes the theorem. O

Corollary 5.22 ([ABP02]). Let C' = IP’Hl;q, A =T,[t], Ac = Clt] and 6 = c*(t). Then O(€c \ D¢) =
C(t). Fiz an isomorphism p: E = Gic of Fg-module schemes and write po @p o p~t =1 Ay =
>0 77 € C{r}¥? = Endp, ¢ (GZC) with Ayj € C™ and Ay; = 0 for j > 0. For v > 0
consider the columns of the matriz ;- Ay w7 € C{r}d*d qs elements of C{r}? = M wia p. Note

that this matriz is zero for v > 1. In the situation of Theorem [2.Z1] let (x(n))n be a t-division tower
above x and let

Zp Dt e Cl]?

be the associated Anderson generating function. Then the bijection (B.10G) from Theorem [5.21] sends
(T(n))n to the element

(5.21) W = —Z(ZAt,V+jTj)aV*(f) e M, = M agy C[t].

v>1 j>0
Moreover, the t-division tower (z(n))n is convergent if and only if f € C(t).

Proof. In step 5 of the proof of Theorem 521 we obtain p(2(,-1)) = >_ 50 At - aj*p(x(n)) and

(try —mp_ )T = p(ry)” - (AT = P(fﬂ(n—l))T
= plzm)) ZJJ* At j) —o7*p x(n))T . ZAEJ
>0 >0
= ) (F =10 plam)" - AT
i>1
7j—1
= Y- (32F) o ple)” AT,
i>1 =0
j=v+1 o s 1
) (D e elaw) AL
v>11>0
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Since also (tm! — m”_ ) = (y, — 7(6*ya))T = (1 — 7) - (yn)! Proposition 5.8 implies that y, =

n—1

=201 22in0 Atpti - T 0V p(2 (). Multiplying with ¢ and summing over all n > 0 yields

m = Z Ynt" = — Z(Z At yi- Ti) ' Z o p(x(m))t"
n=0 n=0

v>1l >0

and establishes (5.2I)). Finally, if (z(,))n is convergent then by definition f € C(t)?. Conversely, the
latter together with (5.2I)) implies that 77’ € M ®cpy C(t). By Theorem [.21] this is equivalent to
(T(n))n being convergent. O

The following corollary is the analog in terms of dual A-motives of Sinha’s diagram [Sin97, 4.2.3].

Corollary 5.23. Let E be an A-finite Anderson A-module and let (M, ;) = M(E) be its dual A-
motive. For every ' € M ®a. O(€c Uien-o V(a™J)) such that m := 7y, (5*m’) —m' € M we
have

expE (50(771/ + m)) = 51 (m) .

Proof. This follows from the last statement of Theorem [5.21] and Theorem O

Corollary 5.24. The morphism 8o: M — Lie E from Proposition restricts to an A-isomorphism
S0t (M ®a, (9(@@ N Uiens, V(J”J)))T = AE) = ker(expg).

Proof. Let m/ € (M ®4, O(€c Uienw, V(o™J)))", that is m = Fy(¢*m/) —m’ = 0. Then
x := 61(m) = 0. By Theorems [5.21] and both sides of the claimed isomorphism are in bijection
with the set of convergent a-division towers above 0. By the last statement of Theorem [5.21] the
combined bijection equals dg, which is A-linear by Proposition [5.8] O

5.4 Purity and mixedness

Before we define purity of Anderson A-modules which are abelian or A-finite in terms of the corre-
sponding (dual) A-motives, we show that the functors E — M (E) and E — M (E) are exact.

Proposition 5.25. Let E' C E be an Anderson A-submodule. Then the quotient E" := E/E' exists
as an Anderson A-module with dim E” = dim E — dim £’

(a) E is abelian if and only if both E' and E" are abelian. In this case tk E” =rk E —rk E’ and the
induced sequence of A-motives

0—— M(E") — M(E) — M(E') —0

is exact in the sense of Remark [33(b) (that is, the sequence of the underlying Ac-modules is
exact).

(b) E is A-finite if and only if both E' and E" are A-finite. In this case rtk E” =1tk E —rk E' and
the induced sequence of dual A-motives

0—— M(E") —— M(E) — M(E") ——0

is exact in the sense of Remark [{.Z)(b) (that is, the sequence of the underlying Ac-modules is
exact).
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Proof. Let E = (E,p) and E' = (FE’,¢'). Then the quotient E” := E/E’ is a smooth irreducible
group scheme with dim E” = dim E — dim £’ by [Bor69, Theorem I1.6.8] and isomorphic to a power
of G,,c by [Ser88, Proposition VII.11]. It inherits an action ¢”: A — Endc(E”) of A satisfying (5.1])
in Definition because Lie E” = Lie E/ Lie E’. Indeed, E — E” is smooth because E’ is smooth
over C and so Lie E — Lie E” is surjective by [BLR90, § 2.2, Proposition 8] with Lie E’ contained in
its kernel. By reasons of dimension Lie E’ equals the kernel of Lie £ — Lie E”. We obtain an exact
sequence of Anderson A-modules

(5.22) o—se g g0

@ We apply the contravariant functor M(.) from Definition This yields an exact sequence of
Ac-modules

(5.23) 0—— M(E")—— M(E)—— M(E').

It is exact on the left because £ — E” is surjective. It is also exact in the middle by the universal
mapping property of the quotient E”; see [Bor69, I1.6.1]. If E' and E” are abelian, that is M (E’) and
M (E") are finite locally free over the Dedekind domain Ac, then also M (E) is finite locally free and
E is abelian. Conversely, if M (E) is finite locally free, then also M (E") is, and E” is abelian.

If E is abelian it remains to prove that M(E) — M(E') is surjective and E’ is abelian. We
consider the quotient M := M (E)/M (E") which injects into M (E'). Since M (E) is finitely generated
both over A¢c and over C{r}, so is M. Since M(E') has no C{r}-torsion the same holds for M,
and so M is locally free over Ac by [And86, Lemma 1.4.5]. Therefore, M is an effective A-motive.
If M =~ M(E') this will imply that E' is abelian. By [And86, Theorem 1] there exists an abelian
Anderson A-module E~ with M =M (E) and a morphism E — E induced from M(E) — M . Any
C{r}-basis (mq,...,mj) of M provides an isomorphism m; X ... X my: E =~ Gic of Fy-module
schemes, and if Gq,c = SpecC[z] then the Z; := mj(z) for j = 1,...,0 are free generators of the
polynomial algebra I'(E, Op) = Clz1,...,%4 over C. Since M is a quotient of M (E) the m;(z) lie
in the image of I'(E,Og). Therefore, E~ — FE is a closed immersion. Let m; be the image of m; in
M(E"). Sending #; to (m/;)*(x) defines a C-homomorphism I'(E, Ogz) — I(E',Op). In this way the
maps M(E) — M < M(E') induce morphisms

E/ E E E// .

Since the composite map M (E") - M(E) — M is the zero map, the closed immersion E < E factors
through the kernel of F — E”, which equals E’. So £/ — E must be an isomorphism. This shows
that M(E') = M(E) = M onto which M (E) surjects. Thus the sequence (5.23) is also exact on the
right. From this also the formula for rk E” follows.

[(B)] We apply the covariant functor M(.) from Definition 5.9l to the sequence (5.22). This yields an

exact sequence of Ac-modules
(5.24) 0—— M(E') —— M(E) —— M(E").

It is exact on the left because £’ < E is a closed immersion. It is also exact in the middle because
E' equals the fiber of E — E” above 0. If E' and E” are A-finite, that is M(E') and M(E") are
finite locally free over the Dedekind domain Ac, then also M (E) is finite locally free and E is A-finite.
Conversely, if M(E) is finite locally free, then also M(E') is, and E’ is A-finite.

If E is A-finite it remains to prove that M(E) — M(E") is surjective and E” is A-finite. We
consider the quotient N := M (E)/M (E') which injects into M (E"). Since M (E) is finitely generated
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both over Ac and over C{#}, so is N. Since M(E") has no C{+}-torsion the same holds for N, and
so N is locally free over AC by the 7-analog of [And86, Lemma 1.4.5]. Therefore, N is an effective
dual A-motive. If N = M(E") this will imply that E” is A-finite. By Theorem G.T1] there exists an
A-finite Anderson A-module E with N = M(E) and _morphisms f:E— E and g: E — E" induced
from M(E) - N < M(E") and satisfying " = go f. N

Since the composite map M (E’) — M(E) — N is the zero map, the morphism fof: B/ < E — E
is the zero morphism by Theorem [E.111 By the universal mapping property [Bor69, II.6. 1] of the
quotient E/E’ = E" the morphism f: E — E factors as f = ho f” for a morphism h: E” — E. Again
by the universal mapping property, f” = gh o f” implies that gh = idg». Therefore, M (g) o M (h) =
id gy and M(g) is surjective. As it is injective by construction we have N = M(E") and the
proposition is proved. O

Corollary 5.26. The category of abelian, respectively A-finite, Anderson A-modules is an exact cat-
egory in the sense of Quillen [Qui73, §2] (see Remark [33(b) for explanations) if one calls the se-
quences E' — E — E" of Anderson A-modules exact where E' C E is an Anderson A-submodule and
E" := E/E’ is the quotient from Proposition [5 The functors E — M(E) from Theorem [5.7, re-
spectively B — M(_) from Theorem are emact equivalences, that is, a sequence E' — E — E"
1s exact if and only if the induced sequence of A-motives, respectively dual A-motives, is exact.

Proof. We start by proving the second assertion. By Proposition (.25l the functors map exact sequences
to exact sequences.

Let B/ — E — E” be a sequence of abelian Anderson A-modules whose associated sequence of
A-motives 0 - M(E") — M(E) — M(E’) — 0 is exact in the sense of Remark B.5(b). Consider an
isomorphism p’ = (p},... ,pd,) E = Gd(c where pl: E' — G, c = SpecClz] is the projection onto
the i-th coordinate. Then p; € M(E’) and I'(E’,Op) is generated by p}(z). Since M(E) surjects
onto M (E’), we see that p} lies in the image of I'(E, Og) — I'(E', Og/), and hence E' — E is a closed
immersion. Let E := E/E' be the quotient from Proposition Then the A-motives M (E") and
M (E) both equal the kernel of M(E) — M(E') by Proposition By Theorem [5.7] this shows that
E" =~ E, and hence the sequence E' — E — E" is exact as desired.

On the other hand, let B/ — E — E” be a sequence of A-finite Anderson A-modules whose
associated sequence of effective dual A-motives 0 — M(E') — M(E) — M(E") — 0 is exact in the
sense of Remark [4.4|(b), that is on the underlying Ac-modules. Applying the snake lemma to

0——*M(E") —— 6*M(E) —— 6*M(E") —— 0

(£")
TN (E’)[ N1 @f N1 (E”)f
(£") ——

0 —— M(E'") —— M(E) —— M(E" 0
yields by (5.5) that the sequence on tangent spaces at the origin 0 — Lie ' — Lie E — Lie E” — 0 is
exact. Analogously, (5.4) yields that the sequence 0 — E'(C) — E(C) — E”(C) — 0 is exact. Both
sequences together show that E’ — F is a closed immersion. Let _E := E/E' be the quotient from
Proposition Then the dual A-motives M(E") and M(E) both equal the cokernel of M(E') —
M (E) by Proposition By Theorem this shows that E” = E, and hence the sequence
E' — E — E" is exact as desired.

The first statement now follows from Remark B.5(b), respectively Remark [2.4|(b). O

Definition 5.27. (a) An abelian Anderson A-module E of dimension d and rank r is pure if M(E)
is pure. In this case, we set wt £ = —wt M(E) = —%; see [And86, Lemma 1.10.1].

(b) An abelian Anderson A-module E is mized if it possesses an increasing weight filtration by abelian
Anderson A-submodules W, E for © € Q such that GrZV E:=W,E/ (U W<p W;/E) is a pure
abelian Anderson A-module of weight p for all p € Q, and such that dim E = 5 LEQ dim GrZV E
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(c) An A-finite Anderson A-module E of dimension d and rank r is pure if M(E) is pure. In
this case, we set wt E = wt M(E) = —2. (This formula follows from the analog of [AndS6]
Lemma 1.10.1] using Proposition [5.8])

(d) An A-finite Anderson A-module E is mized if it possesses an increasing weight filtration by
A-finite Anderson A-submodules W, E for ;1 € Q such that GrZVE = W,E/ (Uu’ < W,/E)
is a pure A-finite Anderson A-module of weight u for all p € Q, and such that dimE =
> g dim GrZV E.

Remark 5.28. (a) The set {W, E : 1 € Q} of closed irreducible and reduced subschemes of E is to-
tally ordered by inclusion, and hence finite by reasons of dimension. Therefore, also Uu’ < WwE
and ﬂ;l>u Wy E belong to this set and are Anderson A-submodules of E. By Proposition
they are abelian, respectively A-finite if E is, and the quotient GrEVE = W,E/ (Uu’ <u W;/E) is
again an abelian, respectively A-finite Anderson A-module of dimension dim GrEV E = dmW,E —
dim(U, ., W E).

(b) The weights of E are the jumps of the weight filtration; that is, those real numbers p for which

U,u’<,u WH'E —»C«— nﬁ>u WﬂE
By (a) the condition ueg dim GrZV FE = dim E in Definition is equivalent to the conditions
that all jumps lie in Q, that W, E = nﬁ>u Wi E for all € Q, that W, E = (0) for u < 0, and that
W, E = E for u > 0; compare Remarks and 3.101

(¢) By Definition and all weights of a mixed abelian, respectively A-finite Anderson A-

module are negative. In particular, a Drinfeld A-module of rank r is pure of weight —% !

(d) Every pure abelian, respectively A-finite Anderson A-module of weight p is also mixed with
Wy E = (0) for p/ < p, and Wy E = E for p// > p, and GrEVE =F.

Theorem 5.29. (a) An abelian (respectively A-finite) Anderson A-module E is mixed if and only
if its associated A-motive M(E) (respectively dual A-motive M(E)) is mized. In this case the
weights of E are the negatives of the weights of M(E) (respectively equal to the weights of M(E)).

(b) If an Anderson A-module E is both abelian and A-finite, then it is mized (respectively pure) as
an abelian Anderson A-module if and only if E is so as an A-finite Anderson A-module. In this
case its weight filtrations and weights as an abelian, respectively A-finite Anderson A-module
coincide.

Proof. First let E be abelian and let M = M (E). Assume that E is mixed. We set
W_,M = ker(M—»M( U WM/E)).
W<y
Then WeM is an increasing filtration of M by saturated A-sub-motives. Equivalently, if 1 < ... < pu,

are the jumps of the weight filtration W, £, set in addition pg := —00, pin41 := +00, and W,y £ = (0).
Then W, E = WyE C W, E for all u; < p/ < pi1 and hence, for any p with p; < p < pipq we

i4+1 =

have Uu’<u WyE =W, EadW_,M = ker(M — M (W, E)) In particular, if p; < p < ji < pit1,
then
(5.25) W_iM = ker(M - M(W,, E)) = ker(M - M(W,E)).
This yields the following diagram with exact rows
0— U WiM—M M(W,, E) ——0
I
0— W_, M M M( U WyE)——0.

W<p
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So Proposition and the snake lemma yield GrKVuM =~ ker(M(W,E) - M (U <p WyE)) =

M (GrZV E). The latter is pure of weight —u and therefore M (E) is mixed with weight filtration W M
which jumps at —p, < ... < —p;.

Conversely, let M be mixed with weight filtration W, M. If v; < ... < v, are the weights
of M set in addition vy := —oo and v,4; := 400 and set W,)M = (0) and W, , := M. For
€ Q with —v;11 < p < —v; for some ¢ let W, E be the abelian Anderson A-submodule of £ with
M(W,E) = M/W,,M. (Note that M(W,E) is effective and finite free over C{7} because M is.)
Then the considerations above show that E is mixed with respect to this weight filtration.

Now let E be A-finite and let M = M (E). If E is mixed then setting

(5.26) WM = M(W,E)

and applying Proposition shows that GrZV M(E)=M (GrZV E). Therefore, M is mixed with the
same weights than E. Conversely, if M = M (E) is mixed with weight filtration W“]\_Z let W, E be the
A-finite Anderson A-submodule of E with M (Wu.E) = WM]\_Z . (Note that WMJ\_Z is effective and finite
free over the noetherian ring C{#} because M is.) Then ]\_Z(GrZV E)= GrZV M (E) by Proposition [5.25]
and E is mixed with the same weights than M.

If E is both abelian and A-finite then M (M (E)) = M(E) by Theorem (I3l The last statement

of the theorem therefore follows from Proposition O

5.5 Uniformizability
Definition 5.30. An Anderson A-module is called uniformizable if its exponential expy is surjective.

Remark 5.31. (a) If E is uniformizable and a € A, the snake lemma applied to

expg
0 A(E) LieF — FE(C) —— 0
Lie gpal Lie gpal l@a
expg
0 A(E) LieF — FE(C) — 0

together with the fact that Lie g, is an automorphism of Lie E yields E[a](C) = A(E)/aA(E).

(b) By [And86l, Theorem 4] an abelian Anderson A-module £ is uniformizable if and only if A(E) :=
ker(expy ) is a locally free A-module of rank equal to rk E, if and only if its associated A-motive M (E)
is uniformizable. The analog for dual A-motives is the following theorem of Anderson.

Theorem 5.32 ([ABP02]). Let E be an A-finite Anderson A-module and let M = M(E) be its
associated dual A-motive. Then the following are equivalent

(a) E is uniformizable,
(b) ker(expg ) is a locally free A-module of rank equal to rk E,
(c) M(E) is uniformizable.
If these conditions hold then the map &g from Corollary provides an isomorphism of A-modules

do: A(M) = A(E).
Proof. If E is A-finite, that is M = (M ,Ty7) is finite locally free over Ac then for every a € A\ F,
Proposition implies E[a](C) = (M /aM)T = (A/(a))@rkE.

If we assume [(a)| this observation together with Remark [E.3Ti(a) implies that the discrete A-

submodule A(E) := ker(expg ) C Lie E is locally free of rank rk E, whence [(b)} compare the proof of
[Gos96, Theorem 4.6.9)].
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By Corollary (.24, condition implies that A(M) is a locally free A-module of rank rk £ := rk M.
So [(c)] follows from Lemma EI6(b)]

Finally, assume and let 2 € E(C). By (54) in Proposition (.8 there is an m € M with
61(m) = x. By Lemma EI0(c)| there is an m/ € M ®4, O(€c \ D¢) with 7y, (5*m') — ' = m. By
Theorem B.21] the element & := dy(7/ 4 1) satisfies expy (€) = . This proves that expy is surjective,

that is @

The last assertion follows from Corollary 5.24] and Proposition [4.27] O

The following corollary is the analog of [And86, Corollary 3.3.6] for uniformizable A-finite Anderson
A-modules.

Corollary 5.33. If E is a uniformizable A-finite Anderson A-module, then the set A(E) generates
the C-vector space Lie E.

Proof. This question does not depend on the ring A, so we fix an element ¢t € A \ F, and the finite
flat inclusion A := Fy[t] C A. Let { € Lie E' and consider z := expg (§) € E(C) and the convergent
t-division tower z(,) := expEv(Lie cp;"—l(g)) above x from Theorem We set M(E) = (M,7y)
and choose an element m € M with §; (1) = x; see Proposition 5.8 By Theorem [5.2]] there exists an
m € M ®a. O(€c Uiens, V(o™.J)) such that & = 0o (2’ + ).

Now choose a basis B of M over Ac = C[t] and write 7y; with respect to B as a matrix ¢ €
GL, (C[t][m]) By Theorem and Lemma 18] there is a rigid analytic trivialization ¥ €
CL,(C(t)) satistying 6*¥ = ¥ - d. We set f := U - (i + m) € C(t)", where we denote the column
vectors representing 7m’ and m with respect to B again by m/, respectively . We now consider
fmod (t — c*(t))3™E as a C-linear combination of elements f1, ..., fn € Fy[t]". Then ¢ = do(¥~1- f)
lies in the C-span of the §o(¥~! - f;) by Proposition 5.8, because & is C-linear. Since the W1 - f; lie
in A(M) by Lemma [£.18] the corollary follows from Theorem O

Remark 5.34. We review Anderson’s theory of scattering matrices [And86, Chapter 3|. Let E
be an abelian Anderson A-module over C and let M = M(E) be its associated effective A-motive.
Assume that E, and hence also M are uniformizable. In particular A(E) = ker(expy ) and A(M) =
(M ®a O(@c))T are locally free A-modules of rank equal to rk £. By [And86, Corollary 2.12.1] there
is an isomorphism

(5.27) Ba: A(E) = Homa(A(M), 9,14/1&1)’ A—mj where mj 1 m = waxm

is determined by the residues Resoo(a - waxm) = —m(expy (Lie py(N))) € Fy for all a € Q. Note
that indeed m(expg (Liepq()))) € Fy is well defined. Namely, we choose an o’ € A with ad € A
and we approximate m € A(M) by an element m/ € M(E) such that m —m’ € a’ - (M ®4, O(€¢)).
Then we define m(expg (Lie pq()))) := m/(expg (Lie ¢4(A))) € C which is independent of o’ and
m/. Since m € A(M) we conclude that m(expg (Liega())) = (rar(0*m)) (expg (Liega(X))) :=
m(expg (Lie ©a(N))? € Fy as desired.

We next reduce to the situation of abelian t-modules in which Anderson defines scattering matrices.
By Lemma there is a t € A such that Q is a finite separable extension of Q := F,(t). Then

04z, = Yyp, ©4 Q = Qdt by [Maf86, Theorems 25.1 and 25.3]. We set A := Fy[t] C A. This

inclusion corresponds to a morphism C' — ]P’IIFQ under which the preimage of SpecF,[t] is Spec A and

the preimage of o0 := V(%) is co. We view all A-modules as A-modules and all Ac-modules as modules

over Ac = C[t]. Then the trace map

(5.28) Try,5: Qom, = Qdt — Qg p, = Ft)dt, adt—Tr dt

/g(a)
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satisfies Resco(w) = Resa.g(TrQ/@ w) for all w € Qé/Fq by [Vil06, Formula (9.16) on p. 299]. In
particular, consider the isomorphism of F,[t]-modules which is analogous to (5.27])

Bi: AE) == Homp, [ (A(M),F,lt]dt), A+— M7\

where mjvzm: m > wg, , is determined by Resz(a-wy, ) = —m(expg (Liepq(N))) € Fy for all
a € Q. It satisfies wy, = TrQ/@(wA)\,m) because in Qs dt = Fy((4))dt both can be written in the

formwz, =>4 bitFdt and TrQ/@(WA,)\,m) => biptFdt with
by, = — ReSg.g(t_k_l TI"Q/@ wA)\,m)

= —Resoo(t_k_lwA7/\,m)
(5.29) = m(expg (Liew, "1 (V)))

—k—1
= —Resgx(t wK,A,m)

= by.

Note that in particular, b, = 0 for k£ < 0.

Now Anderson’s theory of scattering matrices [And86, §3] proceeds as follows. Fix an [F,[t]-basis
(A1, -5 Ar) of A(E), where r = tkg, g A(E) = ke M, and a C[t]-basis B = (my,...,m;) of M, and
define the scattering matrix ¥, where ¢ is the row index and j is the column index

(5.30) U o= (Z m;(expg (Lie gpt_k_l()\j)))tk)

k=0 7;,]':17...77“

Its entries lie in C(z) for all s < 1, see (B.IT), because for any isomorphism p: E = Gl of
[F,-module schemes, Lemma [5.4] implies for £ — oo the estimate

lp(expg (Lie o, * (M) Il = || Lie p(Lie ;"1 (A)) | = O8]~ - | Lie p(A))]) 4

and then Lemma [5.18 applied to f = m; o p~! implies

Hmi(eXpE (Lie gpt_k_l()\j))) | = O(|9|_k_1) for k — oco.

Note that our scattering matrix ¥ is the negative of Anderson’s [And86, §3.2]. This is motivated by
Example and Theorems and [0.47] below.

If 7)/ is represented with respect to the basis B by the matrix ® € M, (C[t]) NGL, (C[t][;X5]), then
Anderson [And86] Proof of Lemma 3.2.1] shows that 0*¥? = UT® and that the columns of (¥~1)T
form an F,[t]-basis C = (ni,...,n,) of A(M). In particular ¥ € GL,(C(t)). In terms of Lemma
this means that ¥ is a rigid analytic trivialization of ®. More precisely, the /-th column of (¥~17 is
the coordinate vector of ny with respect to the basis B. Therefore, with respect to the bases C and B
the morphism Ay : A(M) ®4 O(€c) = M @4, O(€c) is represented by (¥~1)T € M, (O(€c)). Since
coker ® = coker 7y is a C[t]/(t — 0)%module with dimension d = dim E as C-vector space, it follows
by the elementary divisor theorem that det® € (t — 6)¢ - C". Together with o*¥” € M, (C(%)) this
implies that U7 € M, ((t — 6)4C(%)).

In fact, we show that the IF,[t]-basis (A1,..., ;) of A(E) is even mapped under 87 to the basis of
Homg, ) (A(M), F,[t]dt) which is dual to C. Namely, if ey = (814, ...,0r¢)" is the £-th standard basis
vector and (W~1)Te, = (g1,...,g,)7 is the £-th column of (¥~1)T | then ny = 3, gsm; and by (5.29)
we obtain
(5.31) Wi = an(expE (Lie gpt_k_l()\j)))tk dt = (g1,-..,9r) VU -ejdt = elejdt = §gdt.

k=0
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Example 5.35 (Cf. [Pel08, §4.2]). We continue with our Example [5.16[(a) of Drinfeld F,[t]-modules.
Let A € A(E) be a period. The corresponding convergent t-division tower from Theorem [5.20] is
(expE (9_”_1)\)):;0 and the corresponding Anderson generating function from Corollary [5.22] is

(5.32) ) = expp (07N € Cit).

n=0

Multiplying the equation

expg O7"N) = ¢ (expE (9_”_1)\))
= 0 -expg O\ + o - expp O I+t expg (O~ IN)7,

by t" and summing up we get

0 fr(t) + oo falt) + ...+ ar o™ fr(t) = D expg (07"
n=0
(5.33) = expg (A) +tAH{E) = thH().

We claim that the solution 1/, € M corresponding to A by Corollary .22 of the equation Ty (o m') =
m’ is given with respect to the basis (1) by the coordinate vector

a*(fx)
X‘ E bl
a™ (fx)

where X is the matrix from (EII), that is m} = — S0 Soh—6 0 (auik) - 07*(f2) - 17y Indeed, the
Ix I-matrix 3~ At 4577 € C{r} from Corollary 5.22is identified with the element > k>0 T (ap)-
ty € M for all v = 1,...,r. Note that the inverse assignment mm\ — X is given by the map ¢y from
Corollary 524t see also Theorem

Let A1,..., A\ be an F,[t]-basis of A(E). For i =1,...,r we write f; := f), and ) := m;l for the
corresponding solutions. From the linear independence of the sets {A1,..., A} and {r],...,m.} =
{65 (\)s- -+, 05 (\)} it follows that {fi, ..., f,} is linearly independent over F,[t]. From the descrip-
tion of f) in (5.32]) we see that the matrix

il p) Ir
o* f1 oc*fa - o fr
U= ) ) )
U(r—i)*fl O,(r—‘l)*f2 . O,(r—‘l)*fr

is the scattering matrix from (5.30), and equation (5.33) shows that indeed U7 . & = ¢*U7. In
particular the columns of (¥7)~! are the coordinate vectors with respect to the basis (m;) of an
[F,[t]-basis C of A(M); see Lemma

We set ¥ := ¢*T~1. X1 € GL,(C(t)) so that the columns of ¥~! = X - 0*¥ are the coor-
dinate vectors of the F,[t]-basis (1m},...m.) of A(M) with respect to the basis (1i,)z. Moreover,

equation (5.12)), that is X - ®7 = & - 5* X shows that

&5 = 54X U = X070 = X.00 = P!

and U is hence a rigid analytic trivialization of ® in the sense of Lemma I8l By Corollaries 331 and
4.29]the entries of the matrices ¥ ~! and ¥ even converge for all t € C. Note that the matrix equations



5 ANDERSON A-MODULES 76

obtained above correspond to the isomorphisms of C(t)-modules from Theorem [5.13] Propositions [£.17]
and [4.27] in the following diagram

[1]

Homgyy(0* M, Oty ¢) @iy C{t) M ®cpy C(t)

(U*hMV)_ﬁ hM[

Homg, 1 (A(M), U, y/5,) OF,l Ct) ¢ A(E) O,y C(t) ¢ AM 1) ®r, 1 C{t)
‘ Br, 1 do ® id

Namely (6p ® id)~!, respectively Br,[, send the basis (\;); of A(E) to the basis (1) of A(M),
respectively to the dual of the basis of C of A(M); see Remark [5.341 Moreover, hjs is represented with
respect to the basis C and the basis (m;); by the matrix (¥7)~!, so (¢*hps¥) ™! is represented by the
matrix o*¥ with respect to the basis (1), of Homeyy (0 M, Q<1C[t}/<c) which is dual to (c*m;); and the

basis dual to C. And finally = is represented with respect to the bases (n,), and (r7;); by the matrix
X.

This example also suggests that the columns of the matrices .- Aty € C{r}¥? from
Corollary [5.22, when viewed as elements of C{7}% = M via an isomorphism p: E =~ Gic of Fy-

module schemes, are relevant for an explicit description of the isomorphism = from Theorem [5.13] and
the pairing of Question 519l

5.6 The associated Hodge-Pink structure

Let E = (E, ) be a uniformizable mixed abelian, respectively A-finite Anderson A-module of dimen-
sion d and rank r over C. Consider the exponential exact sequence

0 — AE) — LieE —2; BE(C) — 0,

where A := A(E) := ker(expy ). It is a discrete A-submodule which is projective of rank r by [And86),
Theorem 4], respectively Theorem We extend the action of A on the C-vector space Lie F to an
action of Qc = Q®r, C by letting a/a € Q with a,a € A act via Lie g/, := (Lie pg) o (Lie ©a) L. Note
that Lie ¢, is invertible for a # 0 because (Lie ¢, — c*(a))¢ = 0 on Lie E and c¢*(a) # 0. Since J% =0
on Lie E and Ac/J? = C[z — (]/(z — ¢)¢ by Lemma [[3, we may view Lie E' as a C[z — ¢J-module.
We obtain a well defined C[z — (]-homomorphism ~ on the right in the sequence

(5.34) 0—sq—AE)®4C[z — (] —— S LieE—— 0

A® Y bi(z = O —— 22 bi - (Liew. — O)'(N),

and we let q be its kernel. The sequence (0.34)) is exact on the right by Anderson [And86, Corol-
lary 3.3.6] when E is abelian, respectively by Corollary £33 when E is A-finite. So the pair (A, q)
determines the A-module Lie I and via expp also E. We further set

H = Hy(E) = A(E)®4Q and W,H :=H(W,E).

Then H,(E) := (H,WeH,q) is a Q-pre Hodge-Pink structure all of whose weights are negative. It
satisfies (z — €)% C q C p and hence, F~?H¢ = Hc and F'Hc = (0). Recall that if E is pure, then,
by our convention, its weight is —%l and so H, (E) is a pure @-pre Hodge-Pink structure of weight —%.
By Theorem [3.34] and Theorem below, respectively by Theorem [£.33] and Theorem below,
H, (E) is in fact a Q-Hodge-Pink structure.
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Definition 5.36. Let £ be a uniformizable mixed abelian, respectively A-finite Anderson A-module
over C. The @-Hodge-Pink structure H, (E) constructed above is called the Q-Hodge-Pink structure
associated with E. We also set H' (E) := Hy(£)" in Q-HP. The functor H, is covariant and H' is
contravariant in F.

Remark 5.37. This construction parallels the classical situation in which abelian Anderson A-
modules are replaced by abelian varieties and rational mixed Hodge structures are associated with
them. Let E be an abelian variety of dimension d over the (classical) complex numbers (which we
denote C in the rest of this remark). Then E(C) = Lie E/A(E) where A(FE) is a Z-lattice of rank 2d
in Lie . This lattice is functorially in F described as the Betti-homology group A(FE) = H;(FE,Z).
There is a natural surjection on the right in the sequence

0—— LieF — H (F,Z) ®7 C—— Lie E—0,
ARb——b- .

The subspace FYH;(E,Z) ®z C := Lie E constitutes the Hodge filtration on the Betti-homology of E.

Theorem 5.38. Let E be a uniformizable mized A-finite Anderson A-module over C and let M =
M(E) be its associated effective mized dual A-motive. Then H,(E) and H; (M) are canonically iso-
morphic. In particular, Hy(E) and HY(E) are mized Q-Hodge-Pink structures.

Proof. Since A(M) = (M ®a, O(é@ N Uiens, V(O‘”J)))f by Proposition Corollary
provides an A-isomorphism dy: A(M) =~ A(E). By (528) in the proof of Theorem it satisfies
W, AM) = AW,M) = A(M(W,E)) =~ AW,E) = W,A(E), that is, it is compatible with the

weight filtrations. Moreover, Jg fits into the commutative diagram

0 q A(M)@AC[[z—g]]TM/%M(ﬁM)—m
M
o do ® idlg 5({2
0 q AME)®4CJlz — (] ——— LieE ———— 0,

that is, it is compatible with the Hodge-Pink lattices. The last statement follows from Theorem E.33]
O

Theorem 5.39. Let E be a uniformizable mized abelian Anderson A-module over C and let M =
M(E) be its associated mized A-motive. Consider the Q-Hodge-Pink structure Q = (H,W¢H,q)

which is pure of weight 0 and given by H = Qé/Fq = Qdz and q = Cz — ¢]dz. Then Hy(E) and

H, (M) ® Q = Hom(H(M),Q) are canonically isomorphic.

Before we prove the theorem note that C[z — (]dz = ﬁ<1c[[z— ¢/ is the C[z — ¢]-module of con-

tinuous differentials. Further note that Q = 1(0) and hence, H, (E) = H, (M) and H'(E) = H'(M).
Combining the theorem with Theorem [3.34] leads to the following

Corollary 5.40. If E is a uniformizable mized abelian Anderson A-module, then H,(E) and H(E)
are mized @QQ-Hodge-Pink structures. D

Proof of Theorem[5.39. Let M = M(E) = (M, 7y ) and write H, (E) = (H;(E), WoH1(E), qg) and
H' (M) = (H'(M), WJH! (M), g*) and Hom(H' (M), Q) = (Har, WeHr, Gur)-

1. The isomorphism Hy(E) = A(E) ®4 Q = Hj; = Hom(A(M), Qi;/]Fq) ®4 Q in question will be
induced from the isomorphism [And86l, Corollary 2.12.1]

Ba: AME) = HomA(A(M),Qb/Fq), A mj where mj 1 m = waxm
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is determined by the residues Resoo(a-wa xm) = —m(expg (Lie pq(N))) € Fy for all a € Q; see (B.27).
We verify its compatibility with the weight filtrations

W,H(E) = AWLE)®4Q and
W,Hy = {heHomgH" (M), Q5 ) h(W_gH (M) =0 forall u<ji}.

Let pp < ... < py be the weights of E and set pg := —oo and 41 := +00. If p; < p < fi < pii41, then
W_HY (M) == H' (W_; M) = ker (H (M) — HY(M (W, E))) by (G:25) and Lemma 325l This implies
Wuﬁ v = Homg(H'(M (W, E)), Qé /Fq). Therefore, S4 ® idg maps W,H;(£) isomorphically onto
WM]?I M as desired.

2. We must show that 84 ® idg satisfies the compatibility (84 ® idg(.—¢))(9E) = qu with the
Hodge-Pink lattices. As M is effective, ¢ sits in the exact sequence

(5.35) 0 pM qM coker 7y —— 0,

where pM = A(M) ®4 C[z — ¢] and coker 7ps := M /7y (0" M). We also set
pu = Homep._¢p(p",Clz — ¢]dz) = Homa(A(M), 2} 5 ) ©a C[z - (].
Applying Homep,_¢j( . ,C[z — (]dz) to (£.35) and observing that JY4™E . M C 75/(c* M) implies

Homg,—cp(coker 7a7, C[z — (]dz) = 0, yields the upper row in the following diagram of C[z — (]-
modules with exact rows

(5.36) 0 dqn Py Extgp, ¢ (coker 7oz, Clz — (Jdz) —— 0
|
I~
=
. . YA ¥
0 q pv Homg (coker 77, C) —— 0

o~

%[ﬁA ® idcpz—¢] ’E]\a

0—— g —— A(E) 4 C[z — (] 7 Lie £ 0.

In this diagram « is the isomorphism from (5.2])
a: Lie E = Homc(coker 7a7,C), A — (my: m + (Liem)()))

The map v was defined in (5.34) and the isomorphism 84 ® idc[,—¢] is induced from the above
isomorphism 54. Finally, the map 74 is given by

Ja: Homep,_¢ (pM . C[z — ¢]dz) — Homc/(coker 1s,C),
mY — (M — —Res,—¢(m"(m))) .
Here m = m mod 7p(c*M) and m"(m) € C((z — ¢))dz is defined as
mY(m) = (m” ® id((j((z—g‘)))((hM (9 id(c((z_c»)_l(m & 1))

where (hy ® id(c((z_o))_l(m ®1) is the preimage of m® 1 € M ® 4. C((z — ¢)) under the isomorphism
hyr ® ide(z—¢y: AMM) @4 C((z = () == M @4, C((z — ¢)) from (B.6). Note that Res.—¢(m"(m)) =0
for all m € 7a7(0* M) because for them (hy ® idg(s—cy) ' (m ® 1) € pM and then m” € pps implies
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mY(m) € C[z — (]Jdz. This proves that Res.—c(m"(m)) only depends on 7 and that the map 74 is
well defined.

We show that 44 is C[z — (]-linear. The C[z — (J-action on Homc (coker 737, C) is induced from
the action of Ac on coker 73y which factors through C[z —(]/(z — ()% = Ac/J? for d = dim E by (5.2)
and the discussion thereafter. For m” € py, f € C[z — (], and ™ € coker 7ps this implies

(f-Fa(m”) (@) = Fa(m”)(f -m)
= —Res,—¢(m"(fm))
= —Res.—¢((f - m")(m))
= Aalf-m")(m)

proving the C[z — (]-linearity of 4.

To prove that g := Homep, (™, Cz — (]dz) is the kernel of 54 first note that m* € gy and
(hyr @ idg(a—ey) H(m @ 1) € g™ imply m¥(m) € C[z — ¢]dz and hence, Res,—¢(m*(m)) = 0 and
qm C kery4. Conversely, let mY € ker y4. It follows for any m € M and any n € Ny that

Reszzc ((Z — C)" . (mv & id((:((z—()))((h]\_/[ ® id(c((z_c»)_l(m & 1))) = ’N}/A((Z — C)n . mv)(m) = 0.

Therefore, m” ® idc(;—¢) ((har ® idg(a—¢)) ' (m @ 1)) belongs to C[z — ¢]dz. Since the C[z — (]-
module g is generated by the elements (hy ® id(c((z_c»)_l(m ® 1) for m € M it follows that
mY € Homc[[z_gﬂ(qj‘—”, Clz — ¢]dz) = qp. We will show in step 3 below that the lower right square in
of diagram (5.36]) commutes. Therefore 44 is surjective, because 7 is. We conclude that also the middle
row (5.30)) is exact and that Ext(lc[[z_ ¢p(coker 77, Clz — (]dz) and Homc (coker 7p, C) are isomorphic
as quotients of pys.

3. To prove the theorem it remains to show that (84 ® id¢(.—¢))(qr) = qu. For this it suffices to
show that the lower right square in (5.36]) commutes; that is, a 0y = 4 0 (84 ® idg(.—¢)). By the
C[z — ¢]-linearity of the four maps this is equivalent to the following

Claim 1. The inverse isomorphism 85" : Homa (A(M), /qu) =~ A(E) is determined by the compo-

sition oy o ﬁ;l which is given by 74; that is, by

-1
Hom a(A(M), 2 ) 7SN A(E)C Lie E @

Homc (coker 77, C)

mY i (m — — Res,—¢(m" ® 1)(m)) ,

where m¥ ® 1 € Hom 4 (A(M), Qh/Fq) ®4 Clz — (] = pu is induced from m".

This can be made more explicit by choosing a coordinate system; that is, an isomorphism k =
(K1,... ka)T: B~ Gg,c of Fg-module schemes. The x; € Homp, c(E,G,,c) = M then form a C{7}-
basis of M, where 7 is the o*-linear map 7: M — M, m s 7p(c*m), and the &; := k; mod 737 (0* M)
form a C-basis of coker 7j; and yield an isomorphism (%1, . ..,%q)T : Lie E =~ C?. In these terms the
isomorphism « has the inverse

a~': Homg(coker 77, C) = Lie B, m" +— (" (K1), ... ,mv(ﬁd))T
and Claim 1 is equivalent to

Claim 2. The inverse isomorphism ;"' : Homa(A(M), Q4 /Fq) =~ A(E) is given by

m” +— (= Res,—¢(m” @ 1(k1)),...,— Res.—c(m" ® 1(/{d)))T
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To prove Claim 2 we apply Anderson’s theory of scattering matrices. We recall the notation
introduced in Remark 534l In particular A = F,[t] C A is a finite flat ring extension for which
the corresponding morphism of curves C' — ]P’Ilpq is separable, B = (my,...,m;) is a basis of M over

Ac =C[t], and (M1, ..., )\,) is an Fy[t]-basis of A(E), where r = rky ) A(E) = rkepy M. Then

v o= (Z mi(expE (Lie @;k_l()\j)))tk) c Mr((t _ 9)—d(c<%>) .

k=0 ’l,jzl,...,T’

is Anderson’s scattering matrix, where # = ¢*(t) € C and d = dim E. The matrix (¥~')7 belongs to
M, (O(€¢)) and its columns form an F,[t]-basis C = (n1,...,n,) of A(M). With respect to the bases
C and B the morphism hy;: A(M) ®4 O(€c) = M @4, O(e) is represented by (¥~1)T.

Under the induced morphism C¢ — P& the point V(J) € Cc maps to V(t — ) € PL. We extend
the trace map from (B.28)) to Trquet(ac)/ce) : Q(lguot( Acy/c Q<1c(t) sc- Then again by [Vil06, Formula
(9.16) on p. 299]

(5.37) Resi—g(Trquot(ac)/cy w) = Z Res, w
P|V(t—0)
for all w € QQuot( Ae)/C where the sum runs over all points P € C¢c mapping to V(¢ — ). Consider the

rigid analytic closed disc Sp C(%) = {|t| < |6|} inside (P{)"® and its preimage Sp Ac¢ ®(C[t] C(%) inside
Cc. By C-linearity and continuity (5.37) extends to all differential forms w € (t — 9)_ Ac @cpy C(§) dt
with pole above V(t — 6) of order at most d and holomorphic on (Sp Ac ®cpy C(5)) \ V(t — 0).

If we denote by [k € C[t]" the coordinate vector of r, with respect to the basis B and by
p [(har ® idg(s—¢))~ (ke ® 1)] the coordinate vector with respect to the basis C, then

c [(hM & id(c((z_g)))_l(/{g ® 1)] = = B[/fé] = (f1,--- 7fr)T € (t— 9)_dc<%>®r

The map Ba(N;) = my y, sends ng to wa,x; n, and hence, (har @ ide(a—c))~ Yke®l) = i@ f;
to > ; fiwaa,m;. The latter is a differential form in (t — 6)~?A¢ ®C[t C(%) dt which is holomorphic
outside V(J), because hy ' is an isomorphism on (Sp Ac ®cp C(§)) ~ V(J). This differential form
has trace

Trquot(ac)/cw) (i fiwarin) = Lifi- Trg5Wanm) = 2 fiwga n, = fidt;
e (531). Applying (5.37) yields
—Res.—c(miy, @ 1(rr)) = —Res,=¢((m4y, ® ide(a—g)) (har © ide(z—c)) ™ (ke © 1))
- _ ReSV(J) (X fiwann)
= —Resi—g Trquot(ac)/c) Qi fiwann;)
= —Resi—g(f; dt)
= —Resi—g(e] U7 [k dt)
= Fe(Nj).

Here the last equation is [And86, Formula (3.3.3)] taking into account that our scattering matrix ¥
differs from Anderson’s by a minus sign. This shows that

>\j = (_ ReSZ:C(ﬁA(A]‘) ® 1(’{1))7 ey T Resz:((ﬁA()\j) ® 1(/€d)))T

and indeed the inverse isomorphism ﬁ;l has the form described in Claim 2. This finishes the proof of
Claim 2, Claim 1 and the theorem. ]
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We also record the following theorem, which we will prove after Lemma [5.50] below.

Theorem 5.41. Let E be a uniformizable mized Anderson A-module over C which is both abelian
and A-finite, and let M = M(E) and M = M(E) be the associated (dual) A-motive. Then the
isomorphisms above are also compatible with the isomorphisms from Theorems [{.32, and
and the isomorphism Z: M(M) =~ M(E) from Theorem[5.13, in the sense that the following diagram
commutes

. H,(Z) .
(5.38) H (M (M) = H, (M(E))
Theorem T’E 2| Theorem [£.38)
H,(M) o Q —heoremBI) g (p)

5.7 Cohomology realizations

Let £ be an Anderson A-module over C with exponential function expp : Lie £ — FE(C) and let
A(E) := ker(expg ). We assume that £ is abelian or A-finite. Anderson defined the Betti cohomology
realization of E to be

Hy Betti(E, B) := A(E) ©4 B and  Hpy;(E, B) := Homa(A(E), B)

for any A-algebra B; see [Gos94], Definition 1.3.6]. This is most useful when E is uniformizable, in
which case both are locally free B-modules of rank equal to rk £ and H; (E) = Hj getti (£, Q); see Re-
mark 5.3T|(b), respectively Theorem By [And86, Corollary 2.12.2] (respectively Theorem [5.32])
this realization provides for B = @ an exact faithful functor on abelian (respectively A-finite) uni-
formizable Anderson A-modules.

Moreover, let v be a finite place of C, that is a closed point v € C' and let A, be the v-adic
completion of A, and @, the fraction field of A,. Let T, FE := Hom4 (QU/AU, E((C)) be the v-adic Tate
module of E. The v-adic cohomology realization of E is defined as

Hl,v(EyAv) = T,KF and Hl,v(Ea Qv) = T,k XA, Qv and
HY(E,A,) = Homyu, (T,E,A,) and HI(E,Q,) := Homa, (T,E,Q.);
see [Gos94) §1.2]. These are free A,-modules, respectively @Q,-vector spaces of rank equal to rk E by

Remarks and B.I0l Indeed, after fixing an integer e such that v® C A is a principal ideal and
choosing a generator a of v® we can identify A[2]/A =~ Q,/A,. Then there is an isomorphism

(5.39) TE = lm(E[a"|(C),¢a) = {(Pu)n € I;INE[CL"]((C):QDQ(Pn+1):Pn}

= { a-division towers (P,), above 0} .

This isomorphism sends f € Homy (Qv /Ay, E((C)) to the tuple P, := f(a™™). It is indeed an iso-
morphism, because from (P,), we can reconstruct f: A[L]/A — E(C) as f(ca™) = ¢.(P,) for
ce A,neN.

By Proposition below, respectively Proposition below, we obtain covariant functors
H; (., Ay) on abelian, respectively A-finite Anderson A-modules, which are exact and faithful, because
they can be compared with the corresponding functors on the associated (dual) A-motives. If E is
defined over a subfield L of C then H; ,(E, A,) carries a continuous action of Gal(L**?/L) and the
v-adic realization factors through the category Mod 4, (qai(zser/1))- Moreover, if L is a finitely generated
field then

(540) Hl,v( O] Av) : HOHI(E, El) ®A AU - HOIHAU [Gal(LseP /L)] (Hl,v (E7 AU)7 Hl,v (E/7 Av))
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is an isomorphism for abelian, respectively A-finite, Anderson A-modules F and E’. This is the analog
of the Tate conjecture and follows by Proposition [5.45(a)} respectively Proposition 5.48(a)| from (3.9,

respectively (4.0]).

Proposition 5.42. Let E be a pure or mized Anderson A-module, which is defined over a finite field
extension L of Q and is abelian or A-finite. Let P be a place of L, not lying above oo or v, where E
has good reduction, and let Fp be its residue field. Then the geometric Frobenius Frobp of P has a
well defined action on Hy (£, A,) and each of its eigenvalues lies in the algebraic closure of @ in C
and has absolute value (#Fp)* for a weight p of E. Dually every eigenvalue of Frobp on HL(E, A,)
has absolute value (#Fp)~* for a weight p of E. These eigenvalues are independent of v.

Remark. The geometric Frobenius Frobp of P is the inverse of the arithmetic Frobenius Frob!, which
satisfies Frob;l(:n) = 27" mod P for x € Oy,

Proof. This follows by Proposition (5.45|(a), respectively Proposition [5.48(a)| from the corresponding
facts for M (E), respectively M (E) proved in Propositions B.36], respectively [4.35] O

Finally, if E is abelian, let M = (M, 1p;) = M(E) be the associated A-motive. Then the de Rham
cohomology realization of E is defined to be

Hig(E,C) := Homa(Qp , 0" M/J-0*M),
Hi\R(E,C[z—(]) = HomA(Qz/]Fq, 0*M ®4.C[z —(]) and
Hyar(E,Clz —¢]) := Homa.(o"M, Qfp_qc),

where §<1C[[z—g]] jc = Clz = (]dz is the C[z — (J-module of continuous differentials. We define the
Hodge-Pink lattices of E as the C[z — (]-submodules

g€ = HomA(Q}L‘/]Fq, TA_JI(M) ®ac Clz — {]]) C HéR(E, C(z— C))) and
qe = (TJ\\/J ® id(C((z—C)))(HomAc (M7 Q(%j[[z_d]/(c)) C Hl,dR(E7(C((Z - C))) .

On the other hand, if E is A-finite, let M = (M, 7)) = M(E) be the associated dual A-motive.
Then the de Rham cohomology realization of E is defined to be

H\x(E,C) := Homc(M/JM,C),
Hig(E,C[z —¢]) := Homa.(M,C[z—(]) and
Hy ar(E,C[z —(]) = M®a.Clz—(].

We define the Hodge-Pink lattices of E as the C[z — (]-submodules

B = () Homa, (57, Oz —(]) © Hig(E.C(:—0)) and

G5 = F(6* M) @4, Cllz — (] C Hiar(E,C(=—0))-
In both cases the Hodge-Pink filtrations F* HéR(E, C) and FiHLdR(E,(C) of E are recovered as the
images of HéR(E,(C[[z — C]]) N (z — ¢)'gZ in HéR(E, C) and of HLdR(E,(C[[z — C]]) N(z— {)in in

H; gr(Z, C) like in Remark 241 All these structures are compatible with the natural duality between
HéR and Hl,dR-
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Remark 5.43. Let E be an abelian Anderson A-module and let M = (M,7y) = M(E) be its
associated A-motive. Our definition of Hly (E,C) and its Hodge filtration coincides with the one of
Goss [Gos94, Definition 2.6.1]. If E is a Drinfeld A-module, the de Rham cohomology realization
HéR (E,C) of a E was earlier defined by Deligne, Anderson, Gekeler and Jing Yu as the C-vector space
of extension classes

0—Gqc— E*"—E—0

of group schemes with A-action together with an A-equivariant splitting of the induced exact sequence
of Lie algebras. Here a € A acts on G, c via ¥+ (q); see for example [Gos94, §1.5] or [BP20), § 3.4].

There is an equivalent formulation as follows, see [Gek89, § 2] and [Yu90], which was extended to
abelian Anderson A-modules by Brownawell and Papanikolas [BP02, §3]. An F,-linear biderivation
of A into 7p7(0*M) is an Fy-homomorphism

n: A= (6" M), arsn, suchthat n. =c*(a) -my+b-1,

7 is called inner if there is an element m € M with n, = ¢*(a) -m —a-m € Ty (c*M) for all a € A.
The condition ¢*(a)-m —a-m € 1p7(c* M) holds for example if m € 7);(c* M) in which case 7 is called
strictly inner. Let D(E,C) (respectively D;(E,C), respectively Dy (E,C)) be the C-vector space of
[F,-linear biderivations of A into mps(c*M) (respectively inner, respectively strictly inner ones). Then
define

Hir(E,C) := D(E,C)/Ds(E,C).

For Drinfeld A-modules E the isomorphism between these two definitions of Hig (E,C) is given by

sending n € D(E,C) to the extension E* = G, ¢ xc E with the action of a € A by (wcg(“) Z“)

and observing 1, € M(E) = Homp, c(E, G, c); see [Gos94, Theorem 1.5.4]. Finally, Gekeler [Gek89)
(2.13)] defined the Hodge filtration of the Drinfeld A-module E by setting F° Hl (E,C) = Hig (E,C)
and F2H}z(E,C) = (0) and

F'HiR(E,C) = Di(E,C)/Dy(E,C) C Hji(E,C).

For general abelian Anderson A-modules the relation to extension classes of group schemes was de-
veloped by Brownawell and Papanikolas [BP02) § 3.3] but they did not define the Hodge filtration.

The following result, which justifies our definition of HéR(E,(C) and g€ above, can be found in
[Gek90, Lemmas 4.3 and 4.4].

Lemma 5.44. Let E be an abelian Anderson A-module over C. Then there is a canonical isomorphism
(5.41) D(E,C)/Ds(E,C) == Homa(Qyp , 0" M/J-0*M).

If E is a Drinfeld A-module over C then (5.41)) restricts to an isomorphism

(5.42) Di(E,C)/Dgi(E,C) == Homa(Qy g, 73/ (J - M)/J-a*M).

In particular our definition of Hig (E,C) and of F*Hlg (E,C) coincides with the definition of Deligne,
Anderson, Gekeler, Yu, Brownawell and Papanikolas which we recalled in Remark[5.43

Proof. Let A :=ker(A®r, A — A, a®b — ab). Then A® 94 Ac = J C Ac. When we view 7ps(0* M)
as an A ®p, A-module with (a ® b) - m := ac*(b) - m := 1Py om o, for m € Tps(c*M) C M(E) then
by [Bou70,, § I11.10.10, Proposition 17|

D(E,C) = Homaga(A, Tm(c*M)) =+ Homuy(J, c*M)

(5.43) .
n o — ((a®1—1®a)|—>77a) — ((a®1—1®0*(a))|—>TM(77a)).
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The last isomorphism is induced from 7y;: 0*M == 7);(c* M) and from the fact that 7a;(c*M) is an
Ac-module. If z € J and ), z;9; € J - Homu.(J,0*M) with z; € J and ¢g; € Homa.(J,0* M), then
O xigi)(x) == >, gi(xix) = - m for m = Y, gi(z;) € 0*M. Therefore, ), z;g; corresponds under
the isomorphism (5.43)) to the strictly inner derivation (n: a — (¢*(a) — a) - Tm(—m)) € Dyi(E,C).
On the other hand, since J is an invertible Ac-module, we may identify o*M = J - Homa.(J,0* M)
and write every m € ¢*M in the form ), x;9; € J - Homa,(J,0*M). This shows that Dy;(E,C) ==
J-Homa.(J,0* M) under the isomorphism (5.43). Finally, (5.41)) follows from A/A? = QY sr, and the
induced identification

Homa.(J,0*M)/J - Homa.(J,0*M) = Home(J/J?, o*M/J - 0*M)
= HomA(Q}LVFq, o*M/)J-c*M).

Moreover, if E is a Drinfeld A-module then J - M C 7p(c*M). Therefore, we can consider the
morphism induced from (5.43))

D(E,C) +«— Homu.(J,73/(J-M))) += M
(n: aw (c*(a) —a)- (—m)) <+ (z — TA}l(xm)) —1 m.

Its image equals D;(E,C) and M =~ Homa (J, (T M ))) is an isomorphism because J is an
invertible Ac-module. Therefore, D;(E, C) 2 Hom, (J, (T M ))) and

D;(E,C)/Dg(E,C) = Homua.(J, 75, (J - M))/J-Homa.(J,0* M)
=3 Homc(J/J?, 73,/ (J - M)/J - 0*M)
e HomA(QIIL‘/Fq, TJ\_/[l(J.M)/J.a*M) .
This proves the lemma. O

Proposition 5.45. Let E be an abelian Anderson A-module over C and let M = M(E) be the
associated A-motive.

(a) There is a perfect pairing of A,-modules
Hl,U(E7 Av) X Hzl)(Ma Av) — Hoqu(Qv/Ava IE‘q) ’ (f7 m) = mo fa

where mo f: Qu/Ay, = Gqc(C) = C factors through F, by the T-invariance of m. It induces
isomorphisms

HY(M,A,) = HY(E,A,)®a, Homp, (Qu/Ay,F,)  and

HI,U(E7 Av) - Hl,v(M7 Av) XA, Hoqu(Qv/Ava Fq) .

(b) There is a canonical isomorphism of Cz — (]-modules
Hip(M,Clz —¢]) == Hir(E,C[z —(]) @cfo— ﬁ%ﬁﬂz—g‘]]/@’
which is compatible with the Hodge-Pink lattices.
(c) If E is uniformizable, there is a perfect pairing of A-modules
Hi et (B, A) X Hpoyi (M, A) — Qg (Am) ¥ warm

where WA \m is determined by the residues Resoo(a - waxm) = —m(expE (Lie cpa()\))) € Fy for
alla € Q.



5 ANDERSON A-MODULES 85

Proof. @ The existence of the perfect pairing follows from Anderson [And86, Proposition 1.8.3]. The
rest follows from this.

@ By the universal property of the tensor product ﬁ(lc[[z_ q/c = Clz—(¢]®a 9}4 /F, and our definitions
H\R(E,C[z—(]) = HomA(Qh/Fq, o*M ®a. Clz — (])

= Homcp.—¢)(pe—¢cr Hin(M, CLz —(]))
and this is compatible with the Hodge-Pink lattices.

The perfect pairing was established by Anderson [And86, Corollary 2.12.1] and already used by us
in (5:27) and in Theorem O

Remark 5.46. Let F, be the residue field of A,. Then there is a canonical isomorphism of A,-modules
(5.44) Homp, (Qv/Av, Fy) = Hoqu(Qv/Ava Fq) N TrIFU/IF'q of

given by composition with the trace map Trg, /r, : F,, — Fy. Indeed, Q,/A, =, v™" Ay /A, is a union
of finite dimensional F,-vector spaces, and the A,-homomorphism

Homp, (Jv™"Ay /Ay, Fy) == Homg, (Uv "A,/Ay,Fy), [ — Trg, /r, of

is injective, whence bijective by dimension reasons, because an element of these Hom sets is non-zero
if and only if it is surjective onto F,, respectively F,. So the injectivity follows from the surjectivity
of Tro JFq

Furthermore, the A,-module Homp, (Q,/A,,F,) is canonically isomorphic to the module of con-
tinuous differential forms Q}% /R, under the map

(5.45) QAU/FU =~ Homp, (Qy/A4y,Fy), wr— (a+ Resy®(aw)),

where Resg“: ﬁzv /R, F, is the residue map. After choosing a uniformizing parameter z of A, we
can identify A, = F,[z] and Q}% w, = Fo [z]dz and the inverse map is given by Homp, (Q,/A,,Fy) —

Foleddz, £ o Y2 f(e 1)z,
Combining (5.44)) and (5.43]) and putting Res, := Trg, /r, oResiv: sz /r, — Fq yields the isomor-
phism

(5.46) ?2114”/15‘” =~ Homp, (Quv/Ay,Fq), wr— (a+ Resy(aw)).

To obtain a comparison isomorphism between Betti cohomology and de Rham cohomology of
Drinfeld modules, Gekeler [Gek89, §2] defined a kind of “cycle integration” as follows. He shows that
for each 7 € D(E,C) there exists a uniquely determined power series Fy,(X) = > 02, fiX? in one
variable X such that

(5.47) Fy(c*(a) - X) = ¢*(a) - Fy(X) = na(expp (X))

for all @ € A. (See [BP02, §3.2] for the generalization to abelian Anderson A-modules.) This defines
a pairing

(5.48) Hy peti (B, A) x Hig(E,C) — C, (A\,n) — [yn = F,(\) € C.

We generalize this as follows.
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Theorem 5.47. If E is a uniformizable abelian Anderson A-module there are canonical comparison
isomorphisms, sometimes also called period isomorphisms for all v

hBettiw: Hipetti (B, Av) = A(E) ®a4 Ay == Hiu(E,A,) = Homa(Q,/Ay, E(C)),
ARy +— (a; — expg (Lie cpxy()\)))
where xy is viewed as an element of A[X]/A for v¢ = (a) as above, and
hBetti, dR - H%Bctti(Ev Clz—(¢]) = HéR(E,(C[[Z —(]) and
hBetti,dRi Hllaotti(E,(C) - HéR(E,(C)

which are compatible with the Hodge-Pink lattices and Hodge-Pink filtration provided on the Betti real-
ization Hy.;(E, Q) = H'(E) via the associated Hodge-Pink structure H'(E). All these isomorphisms
are compatible with the comparison isomorphisms from Theorem [3.57 and Proposition [5.79]

Moreover, if E is a Drinfeld A-module, our comparison isomorphism hpetti, dr coincides with
Gekeler’s which is given by “cycle integration”

I ar® Hir(E.C) = Hpoi(E,C) = Homa(A(E),C), n+— (A [yn).

Proof. Clearly, the A,-homomorphism hpetti,v is well defined. In order to show that Apettin is an
isomorphism it suffices to prove that it is compatible with the comparison isomorphisms from Theo-
rem [3.37] and Proposition (.45l For this purpose we show that the following diagram commutes

thtti,'u

(5.49) Hi Betti (£, A) ®a Ay Hy ,(E, A,)

% F

Hom 4 (Hb i (M, A), Homg, (Q, /Ay, Fy)) «—— Hom 4, (HL(M, A,), Homg, (Q, /Ay, F,))

By Proposition and the identification ﬁzv /r, = Homp, (Quv/Ay,Fy) from Remark 5.46] the
left vertical arrow is given for A € Hjpetti(£,A) and y € A, and m € Hllgotti(]\_/[,A) by the as-
signment A ® y — (M — wAxm ®Y) Where wgxm, @Y € Qh/Fq R4 Ay = ?2114”/1“ is identified with
the map wa xm ® y: Qu/Ay, = Fy, = Resy(warm ® zy) = Trr, /F, (Reslgv (Warm ® a:y)); see
Remark When we view zy as an element of A[]/A for v° = (a) as above then the global dif-
ferential form xy - wa xm € Qé /R, is holomorphic outside v and oo, and therefore Res, (zy - wa xm) =

— Resoo (2 - waxm) = m(expg (Lie gzy(N))) by [Vil06, Definition 9.3.10 and Theorem 9.3.22]. Ac-
cording to Proposition and Theorem [B.37 this coincides with the composition of the other
three maps in diagram (5.49]) as claimed.

We define hpeti, ar to be the composition of the isomorphisms

Hpei (B, Clz — (]) == Homgp,_¢] (ﬁ(lc[[z_q]/(ca Hieqii (M, Cllz — C]]))
—— Homep, (Q}C[[z—q]/o Hir (M, C[z - (]))
== Hig(£,Clz —<])

from Theorem [B.37] and Proposition [5.45)(c)| and The compatibility with the Hodge-Pink lat-
tices was established in Theorem [5.39 for the first of these isomorphisms, and in Theorem [3.37] and
Proposition [5.45] for the other two.

To prove that for a Drinfeld A-module our period isomorphism hpetti, ar is equal to Gekeler’s, we
describe the pairing

(5.50) Hyr (E,Clz — (]) x Hy petsi(E,4) — Clz — (]
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induced by our hpei dr. Let f € H(liR(E,(C[[z -] = HomA(Q}L‘/Fq, oc*M @4, Clz — {]]) =
HomC[[z—d](Qé[[z—g]]/c’ HéR(M,(C[[z — C]])) Under the period isomorphism hpeti,ar = 0 hy for M
from Theorem B.37 this f is sent to o*hy Lo f € HomC[[z—C}](ﬁé[[z—g]]/w Hioi (M, Clz — (])). For
A € Hipetti(E, A) := A(E) consider the element S4(\) = mj , € HomA(A(M),Qz/Fq) from (5.27]),

which sends m € A(M) to the differential form wa xm € Qa/r,. Then our pairing (5.50) sends (f, \)
to

(5.51) (M4 ®4 ide—c)) 00" ha o f € Endep—q(Qbp_c) = Clz—(].

To compute this element we apply Anderson’s theory of scattering matrices [And86, § 3] and recall
the notation from Remark [5.34] In particular A = Fy[t] C A is a finite flat ring extension for which
the corresponding morphism of curves C' — ]P’Ilpq is separable, B = (my,...,m,) is a basis of M over

Ac =C[t], and (\1,...,\,) is an Fy[t]-basis of A(E), where r = rky [ A(E) = rkepy M. Then

U o= <Zmi(eXPE (e_k_l)‘j))tk) < MT’((t_H)_dC<§>)'

= i,5=1,...,r

is Anderson’s scattering matrix, where § = c*(t) € C and d = dim E. The matrix (¥~1)T belongs
to M, (O(é@)) and its columns form an F,[t|-basis C = (n1,...,n,) of A(M). With respect to the
bases C and B the morphism hy: A(M) @4 O(€c) = M @4, O(€c) is represented by (W17, At
every point P € Cg¢ lying above V(t — ) € IP’}C the element ¢t — 6 is a uniformizing parameter by
Lemma[[.3] Therefore, P is Linramiﬁed and A®p, () C[t — 0] =1 p|v—o 60(5,}3 = I1p|vi—a) Clt— 0]
Let pr: A®p, 1y C[t — 0] = Oc. v(sy = C[z — (] be the projection onto the factor for P = V(J). The
trace map Trg/r, 1) @ — F,(t) corresponds under this product decomposition to the map

Tro/m, o) ®r,¢) idep—ep: || CIE—0] — Ct—0], (fp)p — > _fp.
PV (i—) P

We now view Sa(A) = m} , € Homu(A(M), Qi;/]Fq) as an element of Hompy, (A(M), Q}4/Fq) and
consider (mk)\@]}rq[t] id(c[[t_gﬂ) € HOHl((:[[t_gﬂ (A(M)@]Fq[t]((:[[t—eﬂ, leq/Fq ®Fq[t}(c[[t—9]])- Let f; € C[t—0]
be such that 3, n; ® fi € AM) ®p, 1 Ct — 6] = AMM) @4 [1pvi-s @Cc,p is the element whose

component at P = V(J) is (6*hpy ! o f)(dt) and whose components at P # V(J) are 0. Writing
A =3;cjA; with ¢; € Fy[t] we obtain

((mA ®a idcpe—¢p) 00 ha o f)(dt) = pro(mh\ @p, ideg—gp) (i @ fi)
= (Trq/r, ) ®r @ idep—op) O fi - warn,)
= Z f7’ ’ w;{,)\,ni
= Y firaadt,
where the third equality was proved in (5.29) and the last equality in (5.3I). Thus by (5.51) our
pairing (5.50) sends (f,\) to Y, fic; € C[t — ] = C[z — (].
We compare this to Gekeler’s pairing (5.48). For our f € Hlg(E,C[z — ¢]) consider the element
v (f(dt)) € Tar(0* M) ® 4. Clz — (]. Its reduction modulo z — ¢ in Ty (0* M) ® 4. Ac/J induces by

(E41) and (543) an element n mod Dy;(E,C) in D(E,C)/Ds;(E, C) with n, = mas(f(dt)) mod (z — (),
because J/J? = C-(t—0). So modulo J we have >, n;® f; = (o*har o f)(dt) = (o*har Loyt () =
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has 1 (n:) mod J. Let g[n;] € C[t]” be the coordinate vector of 1; € Tas(0* M) C M with respect to the
C[t]-basis B of M. Then W7 - z[n,] is the coordinate vector of has~!(n;) with respect to the C(%)-basis
C of A(M) ®g, 5 C(§). Therefore, using (547) we compute modulo .J

(f17”’7fT’)T = \IlT'B[nt]

o T
(Z i (eXpE (H_k_l)\j))tk)
j=l..r

k=0

[ee) oo T
(t DR 0Tt =Y "6 Fn(ﬁ_k_lx\j)tk>
j=1l..r

=0 k=0

= (Fn()\j))jzl...r mod J .

Since (c1,...,cr)T is the coordinate vector of A with respect to the F,[t]-basis (A1,..., ;) of A(E) we
conclude . c;f; = >, ¢;Fy(A;) = Fy(A) mod J. So modulo J - C[z — (] = (2 — () our pairing (5.50)
specializes to Gekeler’s pairing (5.48]). This completes the proof of the theorem. O

Proposition 5.48. Let E be an A-finite Anderson A-module over C and let M = M(E) be the
associated dual A-motive.

(a) The isomorphism (5.16l) from Theorem [5.21] induces canonical isomorphisms of Ay-modules

Hl,v(MaAv) - Hl,v(EaAv) and H};(MaAv) — H}}(E,AU)

(b) There are canonical isomorphisms of C[z — (]-modules
Hir(M,C[z —¢]) =~ Ha(E,Clz—(¢])  and
Hiqr(M,C[z - ¢]) = Hyar(E,C[z—]),
which are compatible with the Hodge-Pink lattices.

(c) If E is uniformizable, the map &y from Proposition and Corollary provides canonical
isomorphisms of A-modules

dp: Hl,Betti(M,A) = Hl,Betti(EaA) and
(65) 7" Hpgu(M,A) > Hpe(E, A)

If E is both abelian and A-finite and M = M(E) is the A-motive of E from Definition [5.3, the
isomorphisms above are also compatible with the isomorphisms from Propositions [{.38 and [5.49] and
the isomorphism Z: M (M) = M from Theorem [5.13, in the sense that the diagram

Hy (Z)

Proposition T% %J
Proposition

Hom (HL(M), Q) — Hy (E)
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is commutative where x € {Betti,dR,v} and Q = Q}L‘/Fq for = = Betti, respectively = §<1C[[z—q]/<c _
Clz — ¢]dz for * = dR, respectively Q2 = Q}qv/m = Homqu(Qu/Av,Fq) for * = v.

Proof. [(a)| Let e be a positive integer such that v® = (a) C A is a principal ideal. Then Hy ,(E, 4,) =
{ a-division towers (P,), above 0} by (5:39). Note that our definition of the map Hy, (M, A,) —
H, ,(E, A,) corresponds to Anderson’s “switcheroo”; see [ABP02] or [Jus10, Lemma 4.1.23 and The-
orem 4.1.24(i)].

[(b)] By definition Hig (M, C[z — ¢]) := Homua. (M, C[z —(]) =: Hix(E,C[z —¢]).
was proved in Theorem

Let now E be both abelian and A-finite. For H; gr we enforce the compatibility by defining the
isomorphism on the bottom of diagram (5.52)) between

Homgp,_¢g (HéR(M,(C[[z — <], Clz — C]]dz) = Homy. (0" M, Q}%/C) ®ac Clz — (]
=: HldR( ( ) (C[[Z—C]])

and Hy qr(E, C[z — ¢]) := Hyar (M (E), C[z — (]) to be Hy ar (Z,C[z — (]).

The compatibility for H; , follows from Corollary [5.14] and the isomorphism (5.46)), taking into
account that Res,(a"th(m)) = —Ress(a"'h(m)) for (a) = v* C A by [Vil06], Definition 9.3.10 and
Theorem 9.3.22].

For Hj pett; we fix an element ¢t € A \ F, such that @ is separable over F,(¢) and consider the

finite flat ring homomorphism A = F,[t] — A. Let oo be the complement of Spec A in ]P’Hl;q. All

members of diagram (5.52) are finite projective A-modules and we consider them as finite projective
A-modules. We use the identification Hy,;(M, A) = A(M) = Hy,;(M,A) and the isomorphism
Tr, z: Hom 4 (Hp; (M, A), O Hom 3(Hp; (M, A), Ql/ ) from Lemma below. Let
(n;) be an A-basis of Hh;(M, A) and let (Aj) be the A-basis of Hi Betti (£, A) which is dual to (n;)
under the pairing from Proposition [5.45)(c)|, that is WE g = i dt. Let (n;) with n; € A(M(M)) C
M(M)®@a. O(Ec~ Uienz, V(c™J)) be the A-basis of Hom ;(Hf; (M, A), Q}?{/Fq
of (A\;) under the isomorphism from Proposition (.45] that is n;: m — wyx Ay Let nj := Z(n;) €
Hl,Betti(M(E)yAv) and )\; = 00(nj) € Hipeti(E, Z) We must show that )\9 = \; for all j, or
equivalently wy, . =wz X, = oM (expE (Lle cpt Tk 1(X)))tkdt for all i and j; see (5.29).

Fix a k and write 7; = m] + th+lm My with m’, € M(E) ®a. O(&c ~ UzeN o V(o c*.J)) and
my, € M(E). Then m Tt t’l‘“rl =y =Ty (6 n]) = Ty (] ) + 7 7y (6% 1) and

) which is the image

(5,53) )\;. = do(n ) — 50(4, 4 ¢kt J,k—fM(&*m;/Jf)) = Lie(pf+150(7‘]\;[(§*m;7k)),

because 0o (Fy; (577 ,)) = 0. Let 1y g := Fyy(5%m); ) — s = 71wl — 7y (6% m))) € M(E).
Then (5.53]) and Corollary [5.23] imply

expp (Lie oy 'H(A;)) = expp (Oo(), +105x)) = 01(1Mjk).

We write n; = m;; + thtlm for an m; € M and an m; ik € M ®ac (9(@@). Then we obtain
m; — (0 m%k) n; — tk“ ix — Tm(otng) + thtlrp (o mg ) = tk“(TM(a*m;’k) —mj ). Setting
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iy = E—l(mg"’k) € M(M) = Homa,(c* M, Q}%/C) and using (5.9)), we compute

n; (eXpE (Lie gp[k_l(Ag))) = M (eXpE (Lie gogk_l()\;)))
= (mixom;k)(1)
= —Resgt "'l (0" min)

—k—1, 1
= Res;—qt njk(a*m@k)

= Resigt " 77 (™)
= —Resgt " n;(ny)
= —Resg t_k_l&j dt
= 0ij0k0
where in lines four and six we use [Vil06, Theorem 9.3.22] and that 7}, (6" m; ;) € Q}% s and n; (n;) =

nj(c*n;) € QA/IFq7 as n; = o*n; in A(M), and in line five we use that t == (n;(0*n;) —n;fk(a*mi,k)) =
t=F= (0 n; — o*myg) + (n; — n;/k)(a*mzk)) = nj(o*mj,;) + u_l(m] ) (@*m; 1) is holomorphic at
t = 0. By (5:29) this implies

[e.9]

w&)\}m = Zni(eXpE (Liegot_k_l()\;)))tkdt = §;dt = Wiy,
k=0

as desired. ]

YELUZ

Example 5.49. Let C = ]P’Hl;q, A=TF,t], z=1,0=c"t) = % €C, and let E = (G, =0+ 1)
be the Carlitz module. It is uniformizable, abelian and A-finite and its (dual) A-motive was described
in Examples 3.9 B39, A7, and E37. Let n € C satisfy n9~! = —¢. By [Tha04} p. 47 bottom] the
period lattice A(E) := ker(expp ) is generated by the Carlitz period 7 := (n?]];2;(1 — ¢ 1))~ "
which is the function field analog of 2iw. In particular, the Carlitz period equals 50((77q€C) ) for the
generator (ang)_l of A(M (E)) from Example @37l The compatibility of Proposition (.48 implies
various interesting identities, like for example

ZexpE (O~ 17tk = (nt;) H (1- ¢t t)”
k=0 i=0

for the (1 x 1-)scattering matrix; see Remark [5.34]

Lemma 5.50. Let A < A be a finite flat morphism such that Q/ Quot(g) s a separable field extension
(where Spec A and Spec A are smooth affine curves over Fy). Then for any field extension k/F, and
any finite projective Ap-module P the map

Try iz : Homp, (P, k) — Homjz (P QL ), f— Tr

Ak AJA of

is an isomorphism of Ap-modules.

Proof. This is a special case of [Har66l, Corollary 3.4(c), p. 384], which is reproved in elementary terms
by [Sin97, Theorem 4.1.5], respectively [And86, Lemma 4.2.1] when A = F[t]. O

Proof of Theorem [5.41] The commutativity of diagram (5.52]) for H; petti implies the commutativity of
diagram (5.38]) on the level of the underlying @Q-vector spaces. This suffices, because the compatibility
with the weight filtrations and the Hodge-Pink lattices was proved in Theorems4.32] [5.38]land[5.39. [
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Theorem 5.51. If E is a uniformizable A-finite Anderson A-module there are canonical comparison
isomorphisms, sometimes also called period isomorphisms for all v

hBetti,v: Hl,Betti(Ea Av) = A(E) ®a Av — Hl,v(Ea Av) = HOIIlA (QU/AIH E(C)) )
A®y — (x> expp (Lie pay(N)))
where xy is viewed as an element of A[X]/A for v¢ = (a) as above, and
hetti,ar:  Higeti (£, Clz — (]) == Hiar(E,C[z—(]) and
hBetti, dR : Hi Betti (£, C) == Hiar(E,C)

which are compatible with the Hodge-Pink lattices and Hodge-Pink filtration provided on the Betti real-
ization Hi Bewi (B, Q) = H1(E) via the associated Hodge-Pink structure H, (E). All these isomorphisms
are compatible with the comparison isomorphisms from Theorem [{.36 and Proposition [5.78

Proof. From Theorem [5.2T] we obtain the commutativity of the diagram

v hBetti,v v
Hl,Betti (M7 A) XA Av ~ Hl,v (M7 Av)

do ® 1L§ gl

hBetti,
Hy petti(E, A) ®4 A, Sl Hi,(E, Ay)

~

where the right vertical isomorphism was defined in Proposition .48 This proves that hpetti,v is
an isomorphism and compatible with the comparison isomorphisms from Theorem and Proposi-
tion [(.48]

We define hpetti, ar as the composition (h,; ® idc[[z—g]]) o ((50_1 & id(C[[z—g‘]]):

Hi pewti (B, Cz — ¢]) == Hipewi(M,Clz — ¢]) = Hyar(M,Clz—¢]) = Hyar(E,C[z—(]).
All compatibilities follow immediately. O

Remark 5.52. Let E be an abelian, respectively A-finite Anderson A-module. Then the various
comparison isomorphisms between the cohomology realizations of E, of M = M(E) and M = M(E)
are compatible with a change of the ring A as follows. Let AcC Abea subring such that @ is a finite
separable extension of Q Quot(A) and let 7: C — C be the corresponding finite flat morphism
of prOJectlve curves. Then o0 := 7(00) is the complement of SpecA ¢ C and 7 1(x) = - {00}, and
so 7 1(Spec A) = Spec A and A is a finite locally free A-module of rank tky A =1[Q : Q]. In this

way E becomes an abelian (respectively A- finite) Anderson A-module and M (respectlvely M) is its
associated (dual) A-motive. We have tky E = [Q : Q] - tka £ and dimz E = dima £. When we

compute the cohomology modules of £ as an A-module (respectlvely A- module) we add the index A
(respectively A) to the notation, and similarly for M and M.

(a) Then the Betti (co)homology satisfies

Hipettia(E,A) = AE) = H

= 1,Betti, A(E A)

H]13etti,A(M7A) = AM) = HllsomA(M A) and

Hl,Betti,A(M,A) = AM) = H

— 1,Betti, A(M A)
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The isomorphisms from Propositions [5.43] and [5.48] and .38 are compatible with the change of rings
A C A via the following commutative diagrams

Hi Betti A(M A) —> Hy Botti,A(Ea A)

o

Hy o, (L A) —2— Hy g 3B, A)
and
Hi Betti,A(E, A) ®4 HBCmA(M A) —> QA/F , (A,m) — WA N m
T lTrA .
Hy s (B, A) @7 L (O, 0) 0l () — @y -

The proof is similar to (5.29) and also follows from Lemma [5.50)

(b) For the de Rham cohomology let Z be a uniformizing parameter of C at 50 and let ¢ = ¢*(3).
Then % — ( is a uniformizing parameter at the point J:= (a®1—-1®c*(a):a € A) C Ac, and also
at every point P € C¢ lying above V(J ) € Cc by Lemma [[3l Therefore, P is unramified and

(5.54) Ae;CLE={) = [] Ocer= ][ Clz-T.

P|V(J) P|V(J)

Let pr: A®;C[z — {N]] —» (/Q\C'C’V(J) = C[z — (] be the projection onto the factor for P = V(J). This
induces the left column in the following diagram

hBetti, dR, A

H(11R7A (M, Clz - C]]) ~ H]13etti,A (Mv Cl= - C]])
oM ®4c (C[[Z _ C]] thtt;dR,A A(M) B4 (C[[Z B C]]
I 7
e PBetii, ar, A ~
oM @4, (Ac ® 3, C[2 - (]) S AM) @4 (A®5C[E ()
H hgegi, ar, A H >
HilR A(M Clz - C]]) = HIIBCtti,Z(M’ Clz <)

If moreover M is uniformizable, also the right column exists and the diagram is commutative, where the
horizontal isomorphisms are the period isomorphisms from Theorem [3:37l There are similar diagrams
for (uniformizable) dual A-motives and for (uniformizable) abelian or A-finite Anderson A-modules,
which fit into the comparison diagrams

Homg (% ., HY (M, C[z — {])) —— Homq (2}, 5, , Hig 4(M,C[= - (]))

Q/F,’ dR,A
|| H
Hip 1(E.Cl2 - <) = Hip _4(E,C[z — ¢])

respectively

H(liR 7(E:Clz q) 4»HdRA(E Clz—<I)
| [

HYp (M, C[z — ) —— Hig 4(M,C[z —¢])
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Note that Ql/ F, = de and QQ/F =Qdz.

(c) For the Hodge-Pink structures, (a) and (b) imply the compatibility
(idpg, idw,m,pr): HY(M) = (H,W.H,q) — H4Y(M) = (H,W,H,pr(q)),

where pr is the projection of (5.54]) onto the factor for P = V(J).

(d) For Hj let 0 € C ~ {3} be a closed point and let vy, . .., v, be the points of C'~ {o0} lying above
0. Then A®; Ay = [[;=; Ay,. This induces the decomposition

H! z(M HH (M, A,,)

and similarly for dual A-motives and for abelian or A-finite Anderson A-modules. All comparison
isomorphism are compatible with these product decompositions.

6 Applications

Theorem [3.34] that is the Hodge conjecture, has consequences for the motivic Galois groups of (dual)
A-motives and Anderson A-modules from Definitions and and the Hodge-Pink groups of
mixed @-Hodge-Pink structures from Definition For a uniformizable dual A-motive M our
motivic Galois group I';; equals the motivic Galois group defined by Papanikolas [Pap08| §3.5.2]. We
also explain further results known about this group.

Theorem 6.1. Let M (respectively M ) be a uniformizable mized (dual) A-motive and let H := H' (M)
(respectively H := H'(M)) be the associated mized Q-Hodge-Pink structure. Then the motivic Galois
group I'pr (respectively FM) is canonically isomorphic to the Hodge-Pink group I'py.

Proof. This is a direct consequence of the canonical equivalence (M) ~ ((H)) (respectively (M) ~-

(H)) from Theorem (respectively Theorem E33(d)). O

Proposition 6.2. The motivic Galois group I pr of a uniformizable mized A-motive M is smooth and
connected.

Proof. 1t was proved by Pink [Pin97bl Proposition 9.4 and 9.6] that PEI(M) is connected and re-
duced and satisfies I" Frob?,, HI (M) = Dppary XQFrobye @ for every n € N. So in particular, also
FHI( M) XQ,Frobgn Q is reduced Since every finite purely inseparable extension of () is contained in an
extension of the form Frobg»: @ — @ by [Sil86, Proof of Corollary 11.2.12], this implies by [EGA IV,
Proposition 4.6.1(d)] that Fﬂl (ur) is geometrically reduced, and hence smooth. The statement for I'pr
follows from Theorem [G.11 O

The v-adic cohomology realization H.(M,Q,) of a (uniformizable) A-motive M defines an ex-
act tensor functor ([B.8]). If M is defined over a subfield L C C, the elements of Gal(L*P/L) act
on HY(M',Q,) for M' € (M) as tensor automorphisms. If M is uniformizable this action is com-
patible with the comparison isomorphism Apetti, : H%Ctti( LA) ®4Q, = HL(.,Q,). This induces
homomorphisms of groups

(6.1) Gal(L*P/L) — Ty(Q,)  and  Gal(L*P/L) — Ty (AL),

where Aé =A® A @Q denotes the finite adeles of ). Here A= 1{&114/ I is the projective limit where
I runs over the ideals of A different from (0). Richard Pink and his group also proved the following
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Theorem 6.3. Let E be a Drinfeld A-module and let H = (H,WeH,q) := H,(E) be its Q-Hodge-Pink
structure. Then

(a) Ty equals the centralizer Centgy, gy Endce(E) of Endc(E£) inside GL(H).
Assume now that E is defined over a finitely generated subfield L C C such that Endy(E) = Endc(E).

(b) For every place v the image of Gal(L**P/L) — Centqrm, ,(£,Q.)) Endc(E) is v-adically open.

(¢) The image of Gal(L*P/L) — Fﬂ(Aé) is open in the adelic topology.

Proof. [(a)] was proved by Pink [Pin97h, Theorem 10.3] taking into account that Endc(E) ®4 Q =
End¢(H) by Theorems 5.7 and respectively Theorems [5.11] and

[(b)] was proved by Pink [Pin97al Theorem 0.2].

was proved in the formulation that the image of Gal(L* /L) — (Centgy,sy Endc(E)) (Ag) is open
by Pink and Riitsche [PR0O9b, Theorems 0.1 and 0.2] after previous work by Pink, Breuer, Riitsche
and Traulsen [Pin97al [BP05, [PT06, PR09a]. Using @ yields our formulation. ]

Remark 6.4. Note that for M = M(E) when E is a Drinfeld module, Theorem implies

that I'yy = Centgrg) Endc(M). This point of view is taken in [CP12, Theorem 3.5.4]. Indeed,

the inclusion I'yy C Centgy,g) Ende (M) is automatic by Lemma [L8 Since the commutation with

Endc (M) is a linear condition, Centqgyr,gy Endc (M) is an irreducible group. Therefore, if I'p; was a

proper subgroup, the image of (6.I]) could not be open in Centgr,z) Endc(M) in contradiction to|(b))
Therefore, Theorem is equivalent to Theorem for Drinfeld modules.

The motivic Galois group also carries information about transcendence. For example Papaniko-
las [Pap08| Theorem 1.7] proved the following analog of Grothendieck’s period conjecture.

Theorem 6.5. Let M be a uniformizable dual [F,[t]-motive which is defined over the algebraic closure
L C C of Fy(0) where 0 = c*(t). Let ¥ be a rigid analytic trivialization of M as in Lemma[f.18 and let
L,; be the field extension of L generated by the entries of the matrix U|,—g. Then the transcendence
degree of L, over L is equal to the dimension of the algebraic group I' ;.

Papanikolas [Pap08, Theorem 4.5.10] also shows that I" a7 €quals the Galois group I'y, of the Frobe-
nius difference equation 5*¥ = U - ® corresponding to M. The group I’y can be computed explicitly
in many cases. This is a powerful tool which already lead to several transcendence results. For
example it was applied to determine all algebraic relations among Carlitz logarithms by Papaniko-
las [Pap08, Theorem 1.2.6], respectively among Carlitz (Multi-)Zeta-values and Gamma-values by An-
derson, Brownawell, Chang, Mishiba, Papanikolas, Thakur and Yu [ABP04. [CY07, [CPY10, [CPTY10,
CPY11l [Mis14], respectively among periods and logarithms of Drinfeld-modules by Chang and Pa-
panikolas [CP11) [CP12| [Chal2]; see the article of Chang [Cha20] in this volume for an overview of
these results.

There is also a comparison isomorphism between the v-adic cohomology and the de Rham coho-
mology of an A-motive defined over an extension of Q,; see [HK16, Remark 4.16]. Analogous to and
inspired by Theorem [6.5] Mishiba [Mis12] related the transcendence degree of that comparison iso-
morphism to the dimension of the motivic Galois group of M and applied this to the Carlitz A-motive;
see [HK16, Remark 4.17 and Example 4.19].

Example 6.6. To end this section we compute the motivic Galois group of the uniformizable mixed
F,[t]-motive M = (M, 1pr) with M = A%2 and Ty = @ = < tge " —1)9)3 > from Example B.35]
and the associated dual F,[t]-motive M = M (M) from Example @34l Since M is an extension

(6.2) 0 — 1(1) — M — 1(3) — 0,



7 o0-BUNDLES 95

the representation p of I'y; on H'(M) can be written in upper diagonal matrix form such that the
diagonal entries are representations corresponding to the simple constituents of M. Therefore, I'y/ is
a subgroup of {(8 o3 )} C GLy,g. There are now two cases, according to whether the extension (G.2))
splits or not. We will discuss a criterion for the splitting in Example [[.4] below.

If the extension splits, then (M)) = (1(1))) and I'yy = I'y1) = Gy, by Example In this
case * = 0 and the isomorphism is given by G, = L, u — diag(u, u?).

Conversely, if * = 0 the inclusion (1(1))) C (M) is an equivalence of categories by Theorem [LG(b)]
because the corresponding group homomorphism I'yy == Gy, @, (g 33) — wu is an isomorphism. This
implies that (6.2]) splits. We conclude that if (6.2)) does not split, then I'y/ is the semi-direct product
Ga,9 X Gy, where Gy, ¢ acts on G, ¢ by multiplication with the character u — u?.

7 o-bundles

In this section we give the proof of Theorems [3:34] and [£:33] which uses in particular the classification
of o-bundles associated with uniformizable mixed (dual) A-motives.

7.1 Definition of o-bundles

Recall the punctured open unit disc D¢ = {0 < |2| < 1} around oo introduced at the beginning of
Section [3.3] and set

O = I(Dc.0p.) = {D_ biz':b; € C, lim |bif[¢[* =0 forall s>0}.
€L

This disc can be exhausted by the closed annuli {|¢[* < |z] < |¢|*'} for s, s’ € Q with 0 < s’ < s. Hence,
D¢ is a quasi-Stein space in the sense of Kiehl [Kie67, §2]. In particular, the functor F F(Cﬁj@, F)
is an equivalence between the category of locally free coherent sheaves on ¢ and the category of
finite projective @—modules; see Gruson [Gru68, Chapter V, Theorem 1 and Remark on p. 85]. Note
further, that the rings

C(Z. ) = TP <l < 1K1}, Opgecpaiziary)
= 2 b e C, lim |b; " — 0 forall 8 <8’ <s an
bizi:b; € C, lim |bi][C for all 5’ < s” d
s i—Foo
C(&) = T({lzl < IKI"}s Ogai<icy)
= {D b'ibeC, lim |b][¢[* =0}
ieNo 1—+00

are principal ideal domains by [Laz62l, Proposition 4].

Definition 7.1. A o-bundle (over O) is a pair F = (F,7r) consisting of a finite projective O-module
F (or, equivalently, locally free coherent sheaf on C‘jc) together with an isomorphism 77: c*F =~ F.
We define the rank of F as rk F := ki, F.

A homomorphism f: (F,7r) — (G,7g) between o-bundles is a homomorphism f: F — G of
O-modules which satisfies Troo*f = forg.

The 7-invariants of (F,7r) are defined as F™ :={f € F:7x(c*f) = f }.

If follows from Theorem below that the module F underlying a o-bundle is actually free.



7 o0-BUNDLES 96
Example 7.2. (a) The trivial o-bundle is (F,77) = (O, idg). Its T-invariants are (0, idg)"={f¢€
O:0*(f)=f)= Fy(2)) = Qoo, because f =3, biz" = 0*(f) = 3,5 blz" implies b; = bY, whence
b; € Fy, and ligl |b;] [¢]** = 0 implies that there is an integer n with b; = 0 for all i < n.

1—> 00
(b) More generally, for relatively prime integers d,r with » > 0 we let F, be the o-bundle consisting
of Fyr = O with

Q ) 1 ) 0 e 0
T]:d,'r = 0
0 1

P | 0

(c) We exhibit the following 7-invariants of F, | = (0,271). Let a € C with 0 < |a| < 1. Then

the product £, == [] (1 - %) € O has simple zeroes exactly at z = af for i € Ny and satisfies
i€Np
(1—-2)o*(¢;) = £,. To obtain a non-zero £, = {3 - £, € F1.1" satisfying 2710 (ly) = Lo we need
a function £ = > bzt € O with by # 0 satisfying 0*(£}) = (2 — a)¢}. The latter amounts to the
i>0

equations bg_l = —« and b? = b;_1 — ab; for ¢ > 0. Since C is algebraically closed these equations can
be solved recursively, yielding an element ¢, € 117, which due to z_la*(ﬁa) = {,, has simple zeroes
exactly at z = af for all i € Z. Note that ¢, is not canonically defined but depends on the chosen
solutions b;. A different choice replaces ¢} by £} = u- ¢/ for u € Fy [[z]]X because u = £}/l € (C[[z]]X
satisfies 0*(u) = u. One can prove that in fact, all 7-invariants in F; ;7 are obtained in this way; see
[HP04 Theorem 5.4].

(d) On the other hand F4,” = (0) for d < 0. Indeed, since (7£,,)" = 2~%1d,., any such 7-invariant
(fio..o, fr)7 satisfies f; = 2790 (f;) for all j. If we write f; = 3,5 biz" with b; € C this implies
b= b7, = b0, for all i,k € Z. As [bikg| — 0 for (i + kd) — —oc, that is for k — 400, this implies
b; = 0 for all 7.

The structure theory of o-bundles was developed in [HP04].

Theorem 7.3. (a) Any o-bundle F is isomorphic to @, Fa, r, for pairs of relatively prime integers
d;,r; with r; > 0, which are uniquely determined by F up to permutation. They satisfy Tk F =
>, 1 and we define the degree of F as deg F =), d;.

(b) There is a non-zero morphism F g . — Fq, if and only if f—; < %l.

(¢) Any o-sub-bundle F' C Fq,%" satisfies deg F' < % -tk F'.
(d) If F' C F is an inclusion of o-bundles with vk F' =tk F = r, then for any s > 0 we have
deg F — deg 7' = dimc(F/F')|(|¢jra<)zi<ic)

Proof. Statements @ and are [HP04, Theorem 11.1, Proposition 8.5, and Proposition 7.6,
respectively], but also easily follows from @ and @ Namely, 7' = @, Fa,r;, by @ with f—: < %
by @ yields

[(d)] We use the results of Lazard [Laz62] and normalize his valuation v such that v(¢) = 1. Then his
ring Lc[s, gs[ is the ring of rigid analytic functions on {[(|*? < [z| < [(|*} and his ring Lc([s, ¢s] is

our (C(C%, C—?) Since the latter is a principal ideal domain we may choose bases of F' ® & (C(C%, %)
and F ®;, (C(C—ZS, i) and write the inclusion 7/ C F with respect to these bases as a matrix 7.

z
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By the elementary divisor theorem there are matrices U,V € GL, ((C(C—Zs, g)) such that UTV =

diag(fi,..., fr) is a diagonal matrix with diagonal entries f; € (C(Cis, §> Changing U we can multiply
the f; with units and by [Laz62, Proposition 4] we may assume that they are monic polynomials in
C[z], all of whose zeroes « satisfy | ]‘15 < lal <[5 Cons1der1ng those zeroes a of all the f; which
satisfy [(|?° < |a| they even satisfy I¢]* < la| < [¢|° for an " with s < &' < gs. We write fi = f/ - fi
with f, f; monic such that all zeros a of 11, respectively of f;, satisfy IC|*" < |a| < [C]°, respectively
la| = [¢|®. Then f; is a unit in L¢[s, ¢s[ and

(F/Fq1¢lastziicly = HLC 5,48 HC

where the last equality follows by Euclidean division in L¢[s,¢s[ in the style of [Laz62, Lemma 2].
This implies

dime (F/F)|(qracizi<icsy = D deg, f{ = dime C[z]/(f] -+ f}) = dime(Lels, gs[)/(det T),
=1

because det T" differs from f]--- f/ by a unit in L¢[s, ¢s].
We now compute det 7" in a different way. Namely, by Theorem [[3|(a)| there are isomorphisms F &
D, Fa,r, and F' = P ; F d - These provide O-bases of F and F’ with respect to which the inclusion

F' C Fis given by a matrix S. Then S-77 = 77-0*S implies det S - £z~ 8L = ;= deg L. 5*(det §),
and hence, f := v/+1-det S = 27¢-o*(f) with e := deg F — deg F’. From [Har11), Proposition 1.4.4]
it follows that f =g - 4o, - ...l With g € IF'q((z))X and |¢|? < |oy] < [C]5. Since £y, (2 — ;) L is a
unit in L¢([s, ¢s[, and the matrices T' and S differ by a base change over L¢ls, gs[, we conclude that

dime L¢[s, gs[ /(det T) = dimc Le[s, ¢s| /(f) = dimc Le[s, ¢s] /H(z —a;) = e.
i=1

The theorem follows. O

7.2 The pair of o-bundles associated with an A-motive

Consider a uniformizable A-motive M over C. Then E(M) = (E(M),7e) == AMM) ®a Fo,1 is a
o-bundle with £(M) := A(M) ®a O and 7¢ = id. By Proposition B30, £(M) coincides via h M with
M ® 4 O on D¢~ Uien 12 = ¢?"} and via 0*hyy it coincides with o "TM®ac O on D¢~ Uisolz = ¢7 s

So it can be obtained as a modification of M ® 4. O at all places z = (7 for i > 0.

But M also gives rise to a second o-bundle as follows. The isomorphism 7 is an isomorphism
between o*M and M outside z = (. So one can modify M ® 4. O at z = = (7 for i < 0 to obtain a
o-bundle F(M) = (F(M), 7r) with

(7.1) F(M) = {feMaaOl"]: 7if(c™f) € M @a. Clz— (] foralli € Z}
= {ree@i: (0™ f) € M @a. Clz— (] foralli € Z }
and 77 = 73y ® id. To see that this is indeed a o-bundle, we view it as a sheaf. Then
T({IC]” <2l < K1}, F(M)) = {feAM)®a <C<<,, ) T (0™ f) € M @4, Clz — (]
for all i € Z with |¢|7° < [¢] < [¢|7*"}.

The latter is a finite free module over the principal ideal domaln C(&

it is contained in the free module £ COANM) @4 C(Z

> because by Proposition [3.30]

¢ 2

Sy it Jd M C (o M).

¢z



7 o0-BUNDLES 98

Again by Proposition 3.30L F (M) coincides via hy with M ® 4, O on D¢ ~ Uicolz = qu} and via
o*hyy it coincides with o* M ®4, O on D¢ ~ Uicotz = ¢a'y.

Definition 7.4. The pair (F(M),E(M)) constructed above is called the pair of o-bundles associated

with the uniformizable A-motive M.

Assume that M is effective with 737(c*M) C M. Then we visualize these o-bundles over O by the
following diagram, in which the thick lines represent sheaves on ®¢:

F(M)

M@ACO U*M®ACO

(7.2) 2= (Y 2=¢ 2=l

Sheaves drawn higher contain the ones drawn below. All sheaves coincide outside | J;c,{z = qu}.
At those points in (J;cz{z = qu} where two sheaves are drawn at almost the same height, they
also coincide. Indeed, £(M) coincides via hps with M &4, O outside Uien 12 = ¢} and via o*hy
with 0*M ® 4. O outside Uieno {2z = ¢} and is contained in these modules by Proposition
Via 7pr also M contains o*M and differs from it only at z = {. Finally, one sees that M ®4, O
is via hps~! contained in F(M) and they coincide outside |J;.{z = ¢7'}. Namely, the condition
Th (0™ f) € M ®4. Clz — (] for i < 0 is equivalent to (setting j := —i > 0)

f e (07 (M @a. Clz —C])) = T4 (07*M) @ 4. Clz — ¢”'] = M @4, Clz — (7]

In particular, for f € M ®4, O the condition is satisfied for i < 0 and obviously for ¢ > 0 proving
M®a.O C F(M). Interms of Definition B.32this also shows £(M)®;,Clz—(] = HY(M)®qC[z—(] =
p and F(M) ®; Clz — (] = q.

Proposition 7.5. Let M be a uniformizable mized A-motive, (F(M),E(M)) the associated pair of
o-bundles and let H' (M) = (H, W, H, q) be its mized Hodge-Pink structure.

(a) The T-invariants of E(M) are

EM)T = (AMM)®aFo1)" = AM) ®4 Qo = H®Q Qoo = Hu.
(b) We have degE(M) = 0 and deg F(M) = dimM = degqﬂl(]\_@.
(c) If M is pure of weight p = % with (k,1) =1, then F(M) = fg;kM/l. In particular,

k-rtk M

F= = porkH'(M) = deg" H'(M).

deg, H'(M) = deg F(M) =

(d) If M is mized, then also deg, HY (M) = deg"V H' (M) and deg, W,H' (M) = deg” W, H' (M) for
all .
Proof. [(a)]is obvious from the construction of £(M).

@ Since E(M) = H ®q Fo1 = fq@dim@H it has degree zero. There is an integer d € Ny with
T (J¢ - o* M) C M. Tt follows that Tg(fg -€) C F. We consider the o-bundle £’ := H ®g F_4,1 and
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the inclusions & — E(M), f — Ed fand & — F(M), f — Tg(ﬁg - f). If r =1k M = dimg H then
deg &’ = —dr. By Theorem [I.3 @] and Remark 2.8(a) we compute

deg F(M) = deg F(M) — deg& —dr = dimcq/(z — ()% —dr = deg, H'(M)

because on the annulus {|¢|? < |z| < [¢|} the quotient F(M)/E" equals q/(z — ¢)%. The equality
dim M = deg, H! (M) follows directly from the definitions.

(c)| To prove that F(M) = fi; kM/ l, recall from Proposition B.14fc)| that M extends to a locally

free sheaf M on C¢ on which szJlV[ is an isomorphism locally at co. We consider the ring of rigid

analytic functions C(Z) on the closed disc {|z| < [¢|} C €¢ of radius |¢| around co. Then we obtain an
isomorphism zf7¢,: ol* (JW@OCC (C(@) = (o¥*M) ®0c,, (C(C%> = ]\7@0% C<C%>’ because z has no
other poles or zeroes besides co on the disc D¢. Since (C(%) is a principal ideal domain, we can choose
a basis {el, ...,ep}of ]\_4®oc (C<z> with respect to which 7)/ is given by a matrix ® € C(&)|z 2T

and 2#7¢, by the matrix U := 2. &.0*(®)-....o(=V*(®) € GL, ((C( r)). We will prove the following:
Claim. There is a matrix S = > "2 S;z* € GL, ((C(%)) with U - O'l*(S) =S.

The equation is equivalent to o'*(S) = U~1S. Writing U~! = S°°, U;2" with Uy € GL,(C) we can
solve the equation ¢*(Sg) = UpSy for Sy € GL,(C) by Lang’s theorem [Lan57, Corollary on p. 557]
and then recursively solve the system of Artin-Schreier equations

j—1
o™ (Sg8;) — 5518y = Y8y g Uj-iSi
i=0
for S; € C"™". To compute the radius of convergence of S, let ¢ > 1 be a constant with \Uiqui\ <c
for all ¢ where |Uiqui| denotes the maximal absolute value of the entries of the matrix Uiqui. Then

j
“(8,¢7) Z (. ;¢a' =) SC){i(ql_l).
1=0
This implies the estimate |5} e = ol (S;¢7)| < e-max{|S;¢*|: 0<i<j}, from which induction
yields |S;¢7| < /@1 for all j > 0. In particular S € GL, (C<C )). But now the equation o'*(S) =
U~1S shows that ¢'*(S) € GL, ((C( r)), hence, S € GL, ((C< )) proving the claim.

A consequence of the claim is that we may use S to produce a new basis of M ®0c, (C(%) with respect
to which 2F7}, = Id, is the identity matrix. Thus also M ® . Ofo<iz<ic)y = F (M) ®p Ofo<|z1<|c|y has
a basis with respect to which T} = z~*. By Theorem this is only possible if F(M) = F ?lr kM/L
In particular, deg F(M) = k -tk M /I. This is what we wanted to prove.

@ If M is mixed, the construction of F(M) applies to W, M and GrZV M to yield an exact sequence

(7.3) 0 — U ZFWuM) — FW,M) — F(Gr M) — 0
W<y

of o-bundles. Indeed, the restriction of (73] to {0 < |z| < |{|} equals the tensor product over Ac of
0— U“,<“ WyM — W, M — GrEVJ\_J — 0 with Ogo|z<|¢c3- Therefore, it is exact because GrZV]\_J
is locally free over Ac. Since o71({0 < |2] < [¢]}) = {0 < |2| < [¢]"9} successive application of the
isomorphism 7~ ! yields exactness of (Z3)) on all of D¢. In particular, F (W, M) equals the intersection
of EW, M)[¢, ] with F(M) inside £(M )[ﬁgl]

Since the degree is additive in the sequence (IE{I) - (b)| and 1mply inductively for increasing
p that deg, W, HY (M) = deg F(W,M) = G rk(Gr _) =: deg"V' W,H'(M) and so also
degg H' (M) = deg" H'(M). O
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The reader should be warned however, that in the mixed case the weights % of F(M) = @D, Fa,r,
do not need to coincide with the weights of M.

Example 7.6. Recall the mixed A-motive M with weights 1 and 3 from Example [3:35] whose Hodge-
Pink structure H'(M) has Hodge-Pink weights (1,3) or (0,4) if (t —0)|bor (t —0)tb, respectively.
The motivic Galois group I'ys of M was computed in Example [6.¢

The associated o-bundles can be described by the following diagram.

(7.4) 0—— EWIM) = Fop —— E(M) = Fi7 —— E(GrY M) = Fo1 — 0

_ I 7
R ("6 aip) |

00— WiM®4 O——— M4, O ——— GV M @4, O ———0
[ I I
(@7t - 9) (66927(1)) ((;)7 (t - 9)3)

e ey
0—>f1,1 = (@,Z_l) —>E(M) = @ifdi,m‘ —>f3,1 = (@7Z_3) —0

where £ and £/ were defined in Example [[2(c). In particular, one sees that £(M) — M ®a, O is an
isomorphism outside | J;y, {z = ¢ @} and M® 4.0 < F(M) is an isomorphism outside | J <otz =¢ Y,

We determine the isomorphy type of F(M ) as in Theorem[T3|(a)l If f—: > 3, then by Theorem [T.3(b)|
the map of Fq, r, to F31 is zero, so Fq, r, C F1,1 and again by Theorem [7.3] f—: <1, a contradiction.
Similarly, if % < 1 then the map Fi1 — Fq,r, is zero, and F31 — Fq,r,, & contradiction. So
1< di < 3. Since deg F(M) = 4 the only possibilities are F(M) = F3? or F(M) = F11 ® F31.

The latter occurs if and only if the bottom horizontal sequence Sphts that is if and only if there
are u,v € O not both zero which define the map (u,v): M &4, O Fi,1, ( ) — ux +vy. This implies

that -
SRS A

defines a morphlsm f — F1,1. Since nl; u =z~ *(7765 u) and it vanishes at z = ¢, it also vanishes
at z = (9 for all i € Z. Therefore, it is divisible by /¢, whence u = n_lﬁz -4 with @ = o*u € Fy((2)).
If @ = 0 then (n@g)?’ v = z‘la*((nﬁg)?’ v). Since this vanishes at z = ¢ of order three, it also vanishes
at z = (7 for all i € Z of order three, and hence, it is divisible by (€c)3, that is v = (77_162)3 - 0 with
¥ = 220%(0) € F_217. By Example[.2(d) this implies & = 0 in contradiction to v # 0. So to split the
bottom horizontal sequence we must have u # 0.

We claim that in the case where (¢ — 0)|b in C[t], the bottom horizontal sequence splits if and only
if the sequence

(7.5) 0 — WiH"' (M) ®q Qoo — H' (M) ®q Qoo — H'(Gry M) ®g Qoo — 0

of “Q--Hodge structures” splits. Namely, in this case f is divisible by € by Example [3.35] and
therefore uf + (7]@5)31) vanishes at z = Cq for all ¢ € Ny and moreover for all i+ € Z because it
is a 7-invariant in F; ;. Thus uf + (776’)3 = l¢ - h for an element h = o*h € F,((2)). This
shows that in diagram (7)) the top row is split by the morphism (@, h): E(M) — E(W,M). Since



7 o0-BUNDLES 101

H' (M) ®0Q Qoo = E(M)™ this defines the splitting of (7.5) on the level of the underlying Qoo-vector
spaces. It is automatically compatible with the weight filtration here. Moreover, the splitting (a, l~z)
is compatible with the splitting of the bottom row in diagram (7.4 and this shows that the splitting
respects the Hodge-Pink lattices.

Conversely, by construction of the o-bundles £(M) and F(M) every splitting of (7.5]) induces a
compatible splitting of the top and bottom row in diagram (7.4]). Therefore, F(M) = F11 @ F3.1.

Note that when the extension 0 — (C[t],t — §) — M — (C[t], (t — 0)3) — 0, see ([6.2)), splits
then also (7.5]) splits, but the converse is false in general. Namely, by Theorem [3:34fb )| which we are
going to prove, the former occurs if and only if the associated sequence of Q-Hodge-Pink structures
analogous to (Z5)) splits. This is the case if and only if h/ii € Q C Quo = Fy((2)).

Remark 7.7. In general, one defines the o-bundle polygon SP(M) of M as the piecewise linear
function on [0, n] whose slope on [j—1, j] is the j-th smallest of the Welghts % where F(M) = D, Fa, r,-
Then the o-bundle polygon lies above the weight polygon W P(M) from Remark 2.8(b) and both have
the same endpoint, SP(M) > WP(M); see [Harlll, Proposition 1.6.6] or Theorem [.I3] below. In
particular, after we have proved Theorem B.34[(a)] Remark 2:8(b) yields SP(M) > WP(M) > HP(M)
and Example illustrates this.

7.3 The pair of o-bundles associated with a dual A-motive

To a uniformizable dual A-motive M = (M, #,;) we assign the pair of o-bundles, which was associ-
ated in the previous section with the corresponding A-motive M := M (M) = (( *M)Y, J‘V/I) More
precisely, we set

E(M) = AMM)" ®aFor = AMM)®aFoz.
It is a o-bundle with &(M ) = A( 1) ©4 O and Te = id. By Proposition .27 £(M ) coincides via
&*hy” with (o M)V ® 4. O on Dc ~ Uien 12 = ¢7'} and via h ¥ with MY @4, O on De ~ Uisofz =
qu}. So it can be obtained as a modification of (6*M)" ® 4, O at all places z = ¢4 for i > 0.

Again M gives rise to a second o-bundle as follows. The isomorphism Ty 1s an isomorphism

between M and (6*M)V outside z = (. So one can modify (6*M)Y @4, O at z = (7 for i < 0 to
obtain a o-bundle F (M) = (F(M), 7r) with

F(M) = {fe(*M) ®a, (’)[551] : ('X;I)i(ﬁ_i*f) €(6"M)" ®a. Clz—(] for all i € Z }
(7.6) = {fee@ni: (7)) (67 f) € (6" M)” @4, Clz — (] for alli € Z },

and 7 = %J\VPI ® id.
This is indeed a o-bundle, because it can be viewed like (M) above as a sheaf. Namely,

L({IC < |l < [P} FQD) = {f e M) ©aC(E,%):
(7)/ (677 f) € Fyg (5" M) @ a, Clz — C] for all i with |¢[2* < |2 < [¢[77 }.

The latter is a finite free module over the principal ideal domain C({-=; A > because by Proposition [4.27]

it is contained in the free module €Cd “A(M) ®a (C(CT, 7> if J4. M C 7 (6*M).

Again by Proposition E227], F (M) coincides via c*hy " with (5*M)” © 4, O on the space
D~ Uicofz = ¢7'} and via by ¥ with MY ® 4. O on D¢\ Uofz = (7'}

Definition 7.8. The pair (F(M),E(M)) constructed above is called the pair of o-bundles associated
with the uniformizable dual A-motive M.
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Remark 7.9. The choice of a uniformizing parameter z € ) at oo will give rise to isomorphisms

Q/p, = @z = Q and A(M(M)) ©4 Q = (AM)" ®4 Q) @ Uy, = AM)” ®4 Q and

(E(M(M)), F(M(M))) = (E(M),F(M)); see Proposition L7l

Assume that M is effective with 7, (6*M) C M. As in diagram (7.2]) we visualize these o-bundles
over O by the following diagram, in which the thick lines represent sheaves on ®c:

MV(X)AC O

E(M)

Dc

2=l 2= 2=
Indeed, £(M) coincides via hy; " with MY ® 4, O outside Uieno, iz = ¢} and via 6*hy;" it coincides
with (6* M) ®a, O outside Usen, 12 =¢ '} and is contained in these modules by Proposition @27l Via
7y, also (6" M)" contains M" and differs from it only at z = (. Finally, one sees that (6*M)" ®4, O
is contained in F(M) via 6*hy;" and they coincide outside | J;_o{z = ¢?'}.

Proposition 7.10. Let M be a uniformizable mized dual A-motive, (F(M),E(M)) the associated pair
of o-bundles and H' (M) = (H,WoH,q) its mized Hodge-Pink structure.

(a) E(M) ®, Clz = (] =H'"(M) ©q C[z — (] = p and F(M) @, Clz = (] =q C p[2].
(b) The T-invariants of E(M) are

EQM)™ = (MM) @4 For)" = AM)' ©4Quo = H@Qu = Hu
(c) We have degE(M) = 0 and deg F(M) = dimM = deg,H'(M).

(d) If M is pure of weight pu = —% with (k,1) = 1, then H'(M) is pure of weight —pu = £ and
F(M) = fﬁ;kﬂ—/‘[/l. In particular,

dogg H' (A1) = deg F(i1) = 8 = kB (1) = deg B'(AD)

(e) If M is mized, then also deg, H' (M) = deg" H' (M) and deg, W, H' (M) = deg" W,H' (M) for
all p.

Proof. We could adapt the proof of Proposition However, everything also follows from combining
Remark and Proposition with O

Again, the reader should be warned that in the mixed case the weights T’ of F(M) = D, Fa,r
do not need to coincide with the negatives of the weights of M. The analog of Example [7.6] for dual
A-motives is a case where this happens.

7.4 Proof of Theorem [3.34]

Proof of Theorem We want to show that H'(M) = (H,W,H,q) is locally semistable. So
let H., C Hy be a Qoo-subspace and let H. = (H.L ,WeH._,q’") be the induced strict @,.-subobject
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as in Definition 271 We have to show that deg, HY,, < deg" H'_ with equality for H., = (W, H)x.
We consider two o-bundles associated with H._:

&= (Ere) = EHL) = HL®q.Fo1 C How®qg., Fo1 = EM) and

F o= (F,rp) = FHL) = {f¢€ 8/[551] : Th(o™f)eq foralli€Z}.

That these are o-bundles is seen in the same way as for F (M) from (Z.I). Note that q' = qN (H} ®q..
C((z — ¢))) implies that F' is the intersection of &’ [Egl] and F(M) inside & [Egl]. The two o-bundles

&' and F' coincide outside J;c;{z = ¢} and satisfy

W= Hi ®0., Clz— (] = £'@,Clz—¢] and F'®,Clz—¢] = d ¢ 4]

.
Since deg £’ = 0 we compute as in the proof of Proposition [[.5(b)| using Theorem [7.3[(d)| that
deg 7' = deg F' —deg&’ = deg, H.,, .

From the weight filtration W,H. = H. N (W,H)x the o-bundle F’ inherits a weight filtration
with saturated o-sub-bundles W, 7' = F (W, H_,) being the intersection of (W,H.,) ®q.. O[ﬁgl] and
F(M) inside € [ﬁgl]. Moreover, W, F' equals the intersection F (W, M)NF' inside F, because W, F is
the intersection of (W, H s ®q.. (’)[551] and F (M) inside 5[@51]; see the proof of Proposition
From the exact sequence

(7.7) 0 — UWpFE — W, F — G F — 0
W<p

it follows that the natural morphism GrZV F — GrZV F (M) is injective. Since

GrZV F(M)= f(GrKV M) = f,(gill(W“M)/l for 1 = ¥ with (k,1) = 1 by Proposition [.5(c), Theorem [7.3]
implies deg(GrKV F)<p- rk(GrKV F'). Using rk(GrKV F') = dimg_ (GrZV H! ) and the additivity of
the degree in the exact sequence (7)) we compute

deg, H,, = deg F' = Zdeg((}r}f]f’) < Z,u-diono(GrE/Héo) = degV H' .
pHeQ neQ
Moreover, if H,, = (W;H ), then W, H,, = (W,H)so and W, F' = FW, M)NF = F(W, M) for
all 4 < fi and so all the above inclusions and inequalities are equalities. This shows that H' (M) is

locally semistable and finishes the proof of Theorem O

Proof of Theorem By construction the functor H' is Q-linear. To prove exactness of
H' let 0 - M’ — M — M" — 0 be an exact sequence of mixed A-motives. Then it follows from
Lemma [3.25 and Proposition B1I[g)| that 0 — H* (M) — H*(M) — H'(M") — 0 is exact and strictly
compatible with the weight filtrations. Consider the commutative diagram with exact rows

0—— M’ ®4, Clz — (] —— M ®4, C[z — (] —— M" @4, Clz — (] ——0

hi/}[ h;j[ hi},,

0—— /L] Pl P[] ———0,

where the vertical maps come from Proposition 3.301 Their images are the Hodge-Pink lattices q C
p[s1:]. Since M’ C M is saturated the sequence 0 — H'(M') — H'(M) — H'(M") — 0 is strict
exact.
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To prove that H' is faithful let f: M — M’ be a morphism of A-motives with H'(f) = 0. This
implies that A(f): A(M) — A(M’) is the zero map. Then by Definition B.I7 the map f ® id: M ® a4,
O(€c \D¢c) = M ®4. O(€c \ D) is the zero map and this implies f = 0.

To prove that H! is full let g: H' (M) — HY(M’) be a non-zero morphism of Q-Hodge-Pink
structures. It can be interpreted as an injection 1 — H'(M') @ HY(M)" = H'(M' @ MY). Tt
suffices to show that this Hodge-Pink sub-structure 1 ¢ H*(M’ @ M") is of the form H'(M") = 1
for an A-sub-motive M"” C M’ ® M" in the category A-MUMotI of uniformizable mixed A-motives
up to isogeny. Then necessarily M” has rank 1 and virtual dimension 0 and hence, equals 1; see
Example Therefore, M = 1 can be reinterpreted as a morphism f: M — M’ with H'(f) = g.

So Theorem follows from Theorem O

Proof of Theorem [3.34[(c)l To show that the essential image of the functor H': M — H(M) is
closed under forming subquotients we only need to treat the case of a Hodge-Pink sub-structure

H = (H' ,W.H',{) c H'(M) = (AM)®4Q,WaH,q),

because by the exactness of H!, quotient objects can be handled via their associated kernel subobjects.
By [Pin97hl, Proposition 4.7(c)] the inclusion H' C H!(M) is automatically strict. We will prove the
following

Claim 1. There is a saturated A-sub-motive M’ C M with H'(M') = H' C H and such that the
Hodge-Pink lattice of M’ equals ¢'.

We use the claim to prove Theorem [B.34](c)| as follows. By Proposition B.II|(c)| the A-sub-motive M’
is mixed with W, M’ = M'N'W, M C M. Then the exactness of H' implies that

H'(W, M) = H{(M)nH' (W, M) = HNnW,H = W,H’

and in particular H'(M') = H'.

To prove the claim, we set A’ := H' N A(M) and consider the o-sub-bundle & = A ®4 Fo1 =
H' ®¢q Fo,1 C E(M) whose underlying module &' = H' ®q O is a saturated submodule of E(M). As
above we modify &£ at J;c,{z = ¢} according to the inclusion p’ = H’ ®q Clz — (] C ¢’ to obtain
the o-sub-bundle

F = (Frp) = FH') = {fe&l"]: (0" f)eq forallicZ} C F(M).

Since ¢ = qN H' ®¢g C((z — ¢)) this sub-bundle is also saturated. We now consider the admissible
covering €¢ = {0 < |z < €7} U ec ~ {|z|] < [¢|} of the rigid analytic curve €, and we define a
saturated locally free subsheaf M’ C M ® 4. (’)((":c) of finite rank on €¢ together with an isomorphism
v ofMI[J7 2 M'[J7Y by setting

M,|€@\{\z\§|(|} = Al@AOC@\{Mg\C\} with M = id

! ._ ! .
M|{0<|2|<\C\q’1} T ]:|{0<\z\<|g‘|q*1} with ™M = TE

and glueing the two pieces on the overlap {|¢| < |z| < [¢|¢”"} via the isomorphism

, /
N@,L0 = Flci<iz<iclay -

ol
fel<tzt<icly = Elgaicta<icey
Since M @ a¢ Oge {21<icly = A(M) ®4 Ogegz1<|¢|y by Proposition and A’ C A(M) is saturated,
the subsheaf M’ C M ® 4. O(€¢) is saturated. Note that

(" Mlecngagigny = 0 Mlecngagiay) = A @4 Ocegai<icray

(@ Mlo<zi<icy = T Mlgapicreary) = @ Flosiz<icy
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and
* / 1 _ ! 1
@ M) acz<icrylzel = Elgepaparcrery 7=
/ 1 _ / 1
Flacaaz<iarylz=l = Mlgeacps<peertyl=l-
Therefore, T is an isomorphism between c* M’ and M’ outside z = (. At z = ¢ we have

(o* M) o) Clz — ¢ = E'®:5Clz—=¢] = ¢ and

M ®py Clz=C] = Fo,Clz—¢] = ¢ C p[e].

So indeed Trg: o*M'[J7Y =5 M’'[J71] is a isomorphism. If p’ C ¢/, then £ C F’ and therefore
e oM — M’ is a morphism with coker Tpy = (F'/E") @ Clz — (] = ¢'/p’. We visualize this
case as follows.

f’/

g/

|é
|
| M T (0* M)
|
|¢
i

<c
|z| =1 z=( z2=0

This picture has to be interpreted in the same way as diagram (7.2]), except that here we see the entire
rigid analytic curve €¢ = €¢ \ {z = 0} to which we have extended M’ and o* M’. Before we continue
with the proof we make the following

Definition 7.11. The M(H') := (M',7pr) constructed above is called the analytic A-motive and
(F(H'),E(H'")) is called the pair of o-bundles associated with the @-Hodge-Pink structure H'.

Especially for H' = H(M) we obtain I'(€c, M(H'(M))) & M ®4, O(€c) by diagram (72) and
Proposition Recall that the 7-invariants A(M) of M are computed as the T-invariants of M ® 4.
O(¢c Uien, V(6™J)). For our H' the 7-invariants of M(H') are

{m el(¢c~ U V(™ ), M) : Tap(o*m) = m} = A;
1€Np
use [BHOT, Proposition 3.4]. We therefore must show that M(H') & M’ ®4. O(€¢) for a saturated
A-sub-motive M’ C M. For this we use the following

Lemma 7.12. The saturated analytic A-sub-motive M' C M ® a,. O(¢¢) of rank v’ := rk M’ descends
to a saturated A-sub-motive M' C M with M' = M' ® a, O(€¢) if and only if the saturated analytic
A-sub-motive A" M’ C AT M ®Ac (9(@@) descends to a saturated A-sub-motive N' C A" M with
N'M =N @4, O(&c).

Proof. Clearly, the existence of M’ implies the existence of N’ := A™ M’. Conversely, if N’ = (N’, 7n/)
exists, we define M’ := {m € M: mAn =0 for all n € N’}. Then the equality A" M’ = N'® 4, O(¢¢)
implies that the submodule M’ C M is cut out by the same linear conditions as M’ C M ® 4. O(¢c).
Thus M’ = M’ @4, O(€c) because O(€c) is flat over Ac.

To construct 75, note that the isomorphism o*: Ac — Ac is flat. Therefore, 7); induces a map
v "M — {me M :mAn=0forall n € 7n/(6*N') C N'}. The target of this map contains M’
and even equals M’ because M’ C M is saturated and JIN' C 7n:(0*N'). Hence, M’ := (M', 1y is
the desired A-sub-motive of M. O
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By the lemma we may set 7’ := rk H' = dimg H’, consider the 7/-th exterior powers of everything
and thus reduce to the case that rk H' = 1. Then H’ is necessarily pure of some weight u € Z and
satisfies ' = (z — () "*p’. Clearly, the A-motive 1(u) of rank 1 satisfies H' = H'(1(11)). But we have
to prove that 1(u) is an appropriate sub-motive of M. Since rk H' = 1 we have F(H') = F4, for

d = deg F(H') = deg F(H') — degE(H') = deg,H' = degV H' =
q

Since F,1 = ((‘9,77%1 = 2z~ ") contains the tautological Op.-lattice Op., M’ extends to a locally
free rigid analytic sheaf M’ on €¢ with 74 : o* M’ = M'(p- 00 — - V(J)), where the notation
(1- 00 — p - V(J)) means that we allow poles at oo of order less than or equal to p and at V(J) of
order less than or equal to —u. Note that a pole with negative order is a zero. Also since H' C H is a
strict subobject it already lies in W, H = Hl(W M). We replace M by W, M and thus assume that
all weights of M are less than or equal to . By Proposition (b)| there is an extension of M to a
locally free sheaf M on C¢ with Tps: "M — M (p - 00 + d- V(J)) for some d € Z.

We want to show that the inclusion M’ — M ® Ac O(@c) extends to an inclusion M’ — M ®oc,
Og,. Consider the ring C(%) of rigid analytic functions on {[z] < [([} C €¢. It is a principal ideal
domain. So the module M ®0¢, C(%) has a basis {e1,...,en} with respect to which 27y o*(M ®
C{%) = (o *M) ®@ C( &) - M ® C(Z&) is given by a matrix A = S Azt € C{&Z)™". After
tensoring with the ring C(Z, > of rigid analytic functions on {|¢|? < |z| < ||}, the inclusion F, 1 ==
FH) =< FM), 1 — f mduces a map C(Z, Z> — .7-"(M) ®,: C(%,%> = M ®a4, C(%,%> with
Tv(0* f) = z7# f. Hence, the coordinate vector z € C<C’ - V7 of f with respect to the basis {e1, ..., e,}

satisfies Ao*(z) = z. We write z = >, z;2" and make the

Claim 2. There is an integer k € Z with z; = 0 for all i < —k, in particular, z*z € (C(§>”

To prove the claim, assume the contrary and let ¢ > 1 with |A;¢%| < ¢ for all i. Since x € C(Z 3 Z> we
can find a negative integer m with x,, # 0, |2,(™| =: ¢ < ¢! < 1, and |2, _;¢™ ¢ < & for all i > 0.
From z,, =Y ;2 Ai - 0*(xm—;) we obtain

m (1=g)m AR ) am—qi =q =
lzmC™ < I¢ ’r?zagi{ |AiC" | |o™ (2m—i)C ’} < cct = ¢,

a contradiction. This proves Claim 2.

We now replace M by M (k- c0) and thus the basis {e;} by {z7¥e;} and = by ¥z € C(%)". This
shows that f € M ® C(%) and hence, the inclusion M — M ®a. O(C¢) extends to an inclusion
fiM > M ®0¢,. Occ- By the rigid analytic GAGA principle (see Liitkebohmert [Liit90, Theo-
rem 2.8]) for the projective curve C¢ there is an algebraic subsheaf M’ < M over C¢ together with an
isomorphism 70 0*M' == M'(pu- 00 — - V(J)) such that M' = M’ ®0¢, Oce and Ty = T @ id.
In particular, M’ := (P(Cc,M/),TM/) C M is the desired A-sub-motive with H'(M’) = H’. This

proves Claim 1 and hence also Theorem [3:34)(c)] O
Proof of Theorem This follows directly from Theorem O

We want to end this section by discussing which Q-Hodge-Pink structures come from uniformizable
mixed A-motives. We give a criterion in terms of o-bundles and the polygons from Remarks 2.8] and

v}

Theorem 7.13. Let H be a Q—Hodge—Pmk structure. Then H = Hl( ) for a uniformizable mized
T I'W

A-motive M if and only if for every u = % wzth (k,1) =1 the o-bundle is ]:(GrW H) = fﬁg kG H)/l,

that is, if and only if the o-bundle polygon of ervﬂ and the weight polygon of Grzvﬂ are equal,

SP(GrEV H) = WP(GrZV H). Since WP(GrEV H) has one single slope p, the latter holds if and only if
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SP(GrEV H) lies above WP(GrEV H) and both have the same endpoints, SP(GrZV H)> WP(GrEV H).
In this case the o-bundle polygon of W, H lies above the weight polygon for every p and both polygons
have the same endpoint, i.e. SP(W,H) > WP(W,H).

We remark that the condition SP(W, H) > W P(W, H) on the polygons of W, H in general does
not imply the condition on the polygons of GrZV H and the existence of M.

Proof of Theorem [7.13. To prove the first direction let H = H'(M). Then Proposition [[.5c)] yields

I rW
f(GrZV H) = f% KGNy particular, SP(GrEV H) = WP(GrZV H) is the polygon with one

single slope p. Consider the exact sequence (7.3]). Using the convention that the sum of two polygons
is defined to be the polygon whose slope multiset is the union of the slope multisets of its summands,
we compute by induction on pu

WP(W, H)

WP(| ) WuH) + WP(Gr)l H)
W<p

< SP(|J wyH) + SP(Gr)) H)
W<p

< SP(W,H).

Here the first equality follows from the definition of the weight polygon, the first inequality is the
induction hypothesis, and the final inequality follows from [Harlll Proposition 1.5.18].

I rW
Conversely, let f(GrEV H) = ffg R o no= % with (k,l) = 1. Let d € Ny be such that

(z — ¢)% C q. Recall the construction of the associated analytic A-motive M (GrZV H) = (M,70m)
before Definition [.T1l It satisfies
w

M(Gr}l H) Goen) Otpeteizicy = E(Gl H) @6 Oppcraisicy = Ey " " 96 Opociaisicny
Inside the right hand side the tautological (C(§>—lattice C(§>®(rk Gri" #) defines an extension of M (GrEV H)
to a locally free rigid analytic sheaf M on ¢¢ with 7p¢: 0* M — /W(k‘ co0—d- V(J)) such that sz}V(
is an isomorphism locally at co. By the rigid analytic GAGA principle (see Liitkebohmert [Lit90}
Theorem 2.8]) on the projective curve Cc there is a locally free algebraic sheaf M together with a
homomorphism 737: 0*M — ]\_J(k ‘oo —d- V(J)) such that M = M ®0c, O¢. and T = T @ id.
This implies that sz]lV[ is an isomorphism locally at co. In particular, M (GrZV H) = (F(C'(C, M), TM)
is a pure A-motive of weight p with M(Grzv H) = M(Grzv H) @a. O(¢c).

We now consider the exact sequences

0 — (JMWuH) — MW,H) — MGty H) — 0.
W <p

By induction on p and application of Proposition [7.14] below we obtain a mixed (algebraic) A-motive
M with W, M ®a. O(¢¢) = MW, H) for all u. Since H'(M) is computed from M ®Ac O(¢¢) we
find H' (M) = H and the theorem is proved. O

Proposition 7.14. Let M', M" be A-motives and let 0 — M'® 4. O(¢c) = M — M"® 4 O(¢c) = 0
be an exact sequence of analytic A-motives. Then there is an exact sequence of (algebraic) A-motives
0—M — M — M"— 0 and an isomorphism of extensions of analytic A-motives

0—— M’ @4, O(€c) — M @, O(€c) — M" @4, O(Ec) ——0

|

0—— M @4, O(¢c) M M" @, O(€c) —0.
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Proof. 1. Let R :=T'({0 < |2| < [¢|}, O¢.) and R? := 0*(R) =T ({0 < |2| < [¢]?}, O¢,.) be the rings of

rigid analytic functions on the punctured discs {0 < |z| < |(]}, respectively {0 < |z| < |¢]|?}. The exact

sequence of projective R-modules 0 — M’ ®4, R - M Qo) R =M " ®4. R — 0 splits and yields
™™ foTmy

0 TM!" >

for a homomorphism f € Homa.(M", M') ® 4. R? which is in general not compatible with the 7’s.

Note that f exists because 7y ® idres is an isomorphism. A change of the splitting corresponds to

idM/ h / " . TM! fOTM//
0 idyn > of (M"® M") ®a. R. This replaces 0 g by

idM/ h TMm! fOTM// * idM/ h - . TM! fOTMN
< 0 idMn>'< 0 Tam >'” < 0 idMn> - ( 0 Tam )
for f = f +h — 1ap 0 0*(h) OT]\_/[%,.

By [Harll) Proposition 1.4.1(b)] the functor F = (F,7x) = (F ®; R, 7F @ idr<) is an equivalence
of categories between o-bundles over O and o-bundles over R. We now consider the o-bundle H =
(’H T 0*H == H ®r R7) over R with H := Homa.(M", M')®4. R and my: 6*(h) = 1pp 00*(h) 0
TM,, Then we just proved that the isomorphism classes of extensions of M” ® 4. R by M’ ® 4. R are
in bijection with

an isomorphism M ®¢ ¢ R = (M’ @ M") ®a. R under which 7o takes the form

an automorphism (

HY(H) = coker(1 —myo00*: H—HRrR?, hs h—1y(c*h));

compare [Harlll, Proposition 1.3.4] or [HP04, Proposition 2.4].

2. To change the analytic extension M into an algebraic extension we now proceed as follows. We
choose locally free sheaves M’ and M"” on C¢ which extend M’ and M”. Then 7 and 7y, have
poles of finite order on M’, respectively M”. Since (C(%) is a principal ideal domain we can choose

a basis of H := Hom(c<§>(]\7'/ ® C(@,M’ ® C(@) With respect to this basis the element f €
Homa (M",M")®4. R = H®@<§> R? associated with M in step 1 can be viewed as an element f =
Soven [zt € (RO)¥" C C{& Syen - Also 1 is given by a matrix T = (tij) € GL, ((C(i>[ ~1]). Let

qu 2
¢ > 1 be a constant with || T']lq := max{||tij|lq: 1 < i,j <n} < cwhereforx =3 ;2,2 € C(Z, C_Z‘1>
lelly = sup{lelICle: v €2
denotes the supremum norm on the annulus {|z| = |(|?}. By the convergence condition on f there is an
2
integer m < 0 with HZKm fvz” H < C := 321 < 1. Consider the linear function a: (C<Cq’ C:>€9" N

C(f)EB", T=) e T2 Zugm x,2” which satisfies ||a(x)]|q < ||z]l4. Also note that any element
T=) 0, T2 € (C(%)GB" satisfies

lo*(@)llq = sup{|2Z[ ¢ : v <m} < sup{ (jo|[¢]")": v <m} = |z

Recursively we define go := a(f) and g := o(To*(gr—1)) € (C( V@ for all k € N. Then we show by
induction that [|gg|l; < < C'3. Indeed llgollg < C and we estimate

k=1 3_ k=1 k
lgelly < 170" (gr-1)llg < I Tlg llgr—1ll§ < e-CUF2T < c2matatTy = Clty

as claimed. This implies that g := ) ;2 gr converges in (C( “yén (C( )P By construction

a(g) = g. We compute a(f + To*(g) ~ g) = a(f) + X520 a(To*(gr) — SZogr = 0. Hence,
h = f+ TU*( ) —g € C(&H) ~11%". From the formula g = f 4 To*(g) — h one inductively sees

that g € (C< ¢ Yo" for all j € Ny, whence g € R®". Now consider the element f := o~ (T~ 'h) e
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C(%)[z‘l]@n, which satisfies f — f = To*(f — g) — (f — g). This shows that the class of f in H'(#)
is the same as the class of f and we may identify M ®q ¢ R = (M"® M") ®a. R such that
™ = < T](‘)J/ f :J\Z\'JN ) Thus M extends to a locally free rigid analytic sheaf M on €¢ with
M@ C(2) = (M'& M") ®o¢, C(%). Since Ty, Tarn and f all have poles of finite order at oo, also
Tm extends to o oM — M(1- 00 —d - V(J)) for some integers | and d with 7pq(c*M) C JIM.
Again the rigid analytic GAGA principle [Lut90, Theorem 2.8] produces a locally free algebraic sheaf
M together with a homomorphism 7a;: 0*M — M (- 00 —d-V(J)) such that M = ]\7@0% Og. and
Tm = T; @ id. By construction M := (F(C’C, M), 7ar) is the extension of M” by M’ in the category
of A-motives we were searching. This proves the proposition. O
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